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Abstract—This paper presents a practical method for detecting
step changes in real-world synchrophasor measurements based on
three fundamental theories. Step changes can be caused by shunt
switching, generator set point changes, and other changes in grid
apparatus, and detecting them is important for understanding the
grid’s response to inverter-based resources. To precisely localize
step changes, a nonorthogonal discrete wavelet transformation
(DWT) based on smoothed gradient estimation is used. A detector
based on a multiscale point-wise product of wavelet coefficients is
proposed, which takes advantage of the broadband characteristic
of step changes in the wavelet coefficient space. This product also
suppresses undesirable signal components, thereby reducing false
positives. Finally, Rosin’s unimodal thresholding is used to provide
an adaptive threshold for the step detector. The effectiveness of
the proposed approach is demonstrated on synthetic signals and
real-world synchrophasor data obtained from Dominion Energy’s
power grid.

Index Terms—step detection, synchrophasors, nonorthogonal
wavelets, multiscale products, Rosin thresholding.

I. INTRODUCTION

Phasor measurement units (PMUs) provide high-precision,

synchronized time series data from multiple locations, al-

lowing utilities to perform advanced, real-time, wide area

monitoring [1] of different dynamics of the power system.

A monitoring tool that exploits PMU data to continuously

monitor electromechanical oscillations arising from degraded

grid conditions, known as a “mode meter”, provides alerts

to operators to take remedial actions when the damping of

specific modes decreases [1]. Such monitoring tools can also

enable the use of new control schemes, thus mitigating the

impact of such oscillations [1]. Another dynamic pheonomena

at a slower time scale that may arise due to weakened

power grid conditions is voltage instability. To address this,

data-driven techniques use an approximate model (Thevenin

equivalent [2]) of the grid to detect the emergence of voltage

instability.

A major obstacle in solving these monitoring problems in

practice is that there are numerous components that interact

with the grid simultaneously, so it is essential to select the

suitable data window, where the relevant dynamics of the grid

are predominant. When concerned in monitoring deteriorating

grid conditions, this can be addressed by finding instances

with step changes in relevant variables (e.g. voltage magnitude,
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Foundation under Grant ECCS-2033927.

active/reactive power of a power plant, etc.), which is the focus

of this paper.

Several PMU applications exploit signal processing tech-

niques as an effective means to extract and analyze the relevant

dynamics of the power system present in the measurement

data. These have proven to be effective in assessing dynamic

performance driven by data from normal operation (ambient

conditions) [1], [2]. Other applications of interest for the

work in this paper include event detection and classification

algorithms [3] that extract unique signal attributes in the time

domain. Meanwhile, in [4], an orthogonal wavelet transfor-

mation is used for event detection in real-world applications.

Constructing an ”event” detector typically requires selecting

an appropriate set of basis functions, i.e. the mother wavelet,

to act as filters that extract a significant component from the

signal. After that, it is necessary to determine an appropriate

threshold for the ’filtered signal,’ which is a difficult task

in itself and is only vaguely discussed in previous research,

relying on prior knowledge about ambient data, and thus is

addressed herein.

Step and edge detection algorithms have conventionally

relied on smoothed gradient estimation of signals. Within this

context, the Gaussian derivative has gained popularity as a

technique among filtered derivative methods [5]. Since the

selected scale has a considerable impact on detection per-

formance, derivative estimation with simultaneous multiscale

smoothing was proposed in [6]. On the other hand, it is recog-

nized that wavelets are needed to detect local signal regularity

and singularity on different scales [7]. Therefore, bridging the

gap between wavelet transformation and the smoothed gradient

estimation in multi-level smoothing could be a potential solu-

tion for enhanced step/edge detection. To this end, an efficient

non-orthogonal discrete wavelet transformation (DWT) was

proposed in [8] that uses a smooth gradient estimation and

adjusts the smoothing level depending on the (dyadic) scale. In

order to achieve this, quadratic spline wavelets that imitate the

derivative of the Gaussian estimator are employed to maintain

regularity information for each point at each scale in time

and identify the singularities. This technique is also called

Mallat and Zhong (MZ)-DWT. It is important to emphasize

that MZ-DWT is capable of recognizing various points of

abrupt changes in the signal, including step-like shapes. In

this paper, we extend this approach by analyzing multiscale
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wavelet transformations. The MZ-DWT is able to maintain a

strong relationship between different scales while still keeping

the same time frame for all scales. Thus, multiscale pointwise

noise products [9] can be used to amplify multiscale peaks

associated with steps in the measurement data while simulta-

neously damping and other sharp variations [6].

The application of the multiscale product theory reduces

noise, leading to a data set with few step-related features, such

as sharp peaks, and many values close to zero. Consequently,

the distribution function of this data set is unimodal, primarily

centered around zero, with a negligible peak at the end of

the tail. This feature allows us to utilize Rosin’s unimodal

thresholding technique [10], which effectively differentiates

the group of zeros (noise signatures) from the step-related

signatures, thus greatly improving the automated detection

process. In the following section, the proposed methodology

is given in Section II. The Numerical Analysis is presented in

Section III. Finally, we conclude the paper in Section IV.

II. PROPOSED STEP DETECTION APPROACH

A. Nonorthogonal Discrete Wavelet Transform

The step/edge detection methods work by first smoothing

the signal at different scales and then detecting points of

abrupt changes by examining the derivatives of the signal.

Within this context, the derivative of Gaussian has become

an effective method among the edge detection approaches,

calculating the gradient after applying a Gaussian smoothing

function in different scales [5]. The authors of [8] introduce

a discrete wavelet transformation equipped with smoothed

derivative estimation and Gaussian to detect edges, which we

briefly present as follows.

The smoothing function φ(t), such as Gaussian, is defined

as a function for which the integral equals 1 and as t tends to

infinity, the function converges to zero. The derivative of the

Gaussian function is denoted as θ(t) = dφ(t)
dt . The derivative

of this smoothing function shares the property of wavelets, as

its integral equals zero, represented as
∫ +∞
−∞ θ(t) dt = 0. Sub-

sequently, the wavelet transforms are computed by convolving

the signal g(t) with a re-scaled wavelet, given as

Wsg(t) = g(t) ∗ θs(t) (1)

where θs(t) = θ(t/s)
s , introducing a re-scaled derivative of

Gaussian function at the scale s. Now, the wavelet transform

is modified as

Wsg(t) = g(t) ∗ (sdφs

dt
)(t) = s

d

dt
(g(t) ∗ φs)(t). (2)

The equation (2) operates as a derivative estimation of the

smoothed signal at the scale s, meaning that the local extrema

of this transformation are corresponding with the inflection

points of g(t) ∗ φs. The degree of smoothing depends on the

adjusted scales. However, selecting scales varying on dyadic

sequence
(
2j
)
j∈Z

is the superior choice when compared to

continuous scale s, minimizing the computational burden. The

discrete filters N and M define the characteristics of the

quadratic wavelet. The subsequent algorithm is used to com-

pute the Discrete Wavelet Transform (DWT) for the discrete

synchrophasor measurements [8].

Algorithm 1: MZ-DWT

Data: Synchrophasor measurements, discrete filters of quadratic
splines (N,M ), number of scales (J).

Result: Discrete wavelet transforms in different scales
Initialization; j = 0
while j < J do

− Wd

2j+1 g = 1
λ j

Sd

2j
g *Mj ;

− Sd

2j+1 g = Sd

2j
g *Nj ;

− j = j + 1
end

In Algorithm 1, λj denotes the normalization coefficient for

the quadratic wavelet. The finite responses of the filters N and

M associated with the quadratic wavelet are provided in the

Appendix of [8].

B. Multiscale Products

Researchers have examined how the noise and singularity

in the signal behave at different wavelet scales using the

Lipschitz regularity concept [11]. Singularities have a greater

degree of Lipschitz regularity, meaning that they follow a more

consistent behavior compared to noises. For instance, the step

change on the measurements has a Lipschitz regularity of

zero, while structures less smooth than a step possess negative

regularity. On the other hand, white noise appears almost

singular, maintaining a uniform regularity that equates to -0.5.

A theory is introduced that relates the evolution of wavelet

transformation magnitude with Lipschitz regularity of the

signal [12]. A signal denoted as g(t) is considered uniformly

Lipschitz c (0 < c < 1) within the range [t1, t2] if and

only if there exists a positive constant N for all values

in the range, the wavelet transformation is constrained as

|W2jg(t)| ≤ N(2j)c.

This constraint indicates that as the scale increases, the

wavelet transforms’ magnitude increases when c is positive.

Conversely, the magnitudes of the wavelet transform get

smaller as the scale increases for the negative value of c.
By adopting MZ-DWT, The signal’s singularities change over

different scales, with noticeable peaks, while noise diminishes

significantly across the scales. Thus, we can visualize that

when the DWT is multiplied at consecutive scales, it magnifies

the characteristics of edges while diminishing the impact of

noise. Thus, the multiscale product of B scales is defined as

mB(t) =
B∏

i=1

Wsg(t). (3)

C. Unimodal Thresholding

Rosin’s method is developed for thresholding unimodal

distribution of multiscale products and is recognized as a

remarkably straightforward approach [10]. This method as-

sumes that there is a dominant group within the data, resulting

in a prominent peak positioned toward the lower section of

the histogram relative to the second population. The second

population associated with the step-related feature may not
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Fig. 1. The frequency distribution used for finding the threshold

exhibit distinguishable peaks but should indicate a reasonable

degree of separation from the main peak.

A typical distribution function, which usually has one

obvious peak, is shown in Fig. 1. To define the thresholding,

we need to fit a realistic distribution function to the histogram

of our data, allowing us to work with the data points on this

function. To find the function, we employ the kernel density

estimate (KDE) approach. Next, the straight line is sketched

from the highest point of the distribution function to the end of

the final populated bin in its histogram. The threshold point

is optimized in such a way that the perpendicular distance

(shown with a blue dotted line) between the red line and the

optimal point on the distribution function is maximized. Then,

the black dotted line gives the value of the threshold at the

optimal point of the intersection with the x-axis. These steps

are performed with Rosin’s algorithm.

III. NUMERICAL ASSESSMENT

In this section, the competence of the proposed framework

is shown by performing an analysis of synthetic data and field

PMU data on the service territory of the utility. Synchrophasor

data with a reporting rate of 30 phasors per second are

available through the digital fault recorders in the substations.

We select positive sequence voltage magnitude data to examine

our approach. We also employ two effective thresholding

methods for comparison [13]: 1) the mean plus three times

the standard deviation, referred to as SD, and 2) the median

plus three times the median absolute deviation, named MAD.

A. Case 1

A synthetic signal, encompassing steps, large spikes, ramp-

ing, and noise, is simulated for the purpose of conducting a

step detection test. Step changes result from set point adjust-

ments, capacitor bank and breaker switching, and controller

responses. Transient disturbances commonly induce spikes,

while ramping is primarily caused by generation unit output

adjustments and voltage regulator actions. Algorithm 1 is used

to obtain the wavelet transformations. The dyadic wavelet

transformations of the signal, as shown in Fig. 2(a), are

obtained and illustrated in Figs. 2(b) to 2(e). This transfor-

mation, enabled by the Gaussian derivative (quadratic spline),

indicates the derivative estimation of the original signal at

different levels of smoothing. Our proposed method preserves

the length of the transformation as the original signal, keeping

the regularity information at each sample (time) on every scale.

The first scale, shown in Fig. 2 (b), includes high-frequency

variations, including the large spikes on the signal located at

sample 75 and 140. The features corresponding to large spikes

in the original signal are represented as two consecutive spikes

in opposite directions. Specifically, when a spike in the signal

points downward, the wavelet transformation represents it with

an initial spike in the negative direction. Conversely, when the

spike points upward in the measurement, its transformation

is depicted on the positive side of the y-axis. This distinctive

feature associated with the spikes of the signal can also be seen

on the second scale, but it becomes less pronounced from the

third scale. Similarly, noises are being filtered more efficiently

on the larger scales. Consequently, the increased smoothing

on larger scales leads to a reduction in the magnitude of local

extrema seen due to noise.

In addition, the signal includes four small step changes

happening in samples 30, 60, 100 and 150. The effect of

these steps can be seen better on larger scales because the

convolution of the signal with derivative of the smoother

function eliminates small and narrow fluctuations in the signal.

More specifically, the step occurring in sample 30 moves

upward, and all transformations in four scales show this step

with local maxima. The other three steps are also characterized

with local extrema in the downward direction across all scales

of wavelet transforms. The MZ-DWT helps in preserving

edge-like features and closely finding instance of occurrence.

The multiscale relationships are clearly observable in the

presence of step changes. To enhance the multi-scale peaks

associated with the steps and then establish a robust threshold,

the multi-scale pointwise product is implemented. Fig. 3 shows

the result of this product for scales 3 and 4. All scales together

or other scales can be chosen, but in smaller scales, we see

more false local extrema, even though the steps are localized

more accurately. In addition, fewer local extrema can be seen

when a larger scale is selected, but the accuracy in locating

the time of occurrence of the steps may slightly reduced. In

this case (and in the following cases), the product of two

adjacent scales (3 and 4) is considered, preserving both the

advantages of detection and localization by suppressing noise

and sharpening step-type features [7]. Now, the product of

scales is statistically characterized to establish a robust thresh-

old to differentiate step-related changes from other variations.

This happens because when we have large spikes or severe

noises on the signal, their impact can still be seen on the

product of the scales, although they are becoming smaller

shapes in this transformation. Thus, one may interpret them

as step changes in the multiscale product series, as they are

essentially smaller maxima. This fact necessitates the use of

a threshold to distinguish steps from other transient and sharp

variations. Since the product of scales comprises many values

close to zero and only a few values larger than that (associated

with edges), its histogram follows a unimodal pattern centered

around zero. That is why Rosin’s unimodal thresholding is

selected. First, we fit a function to the histogram using KDE.

As shown in Fig. 3, the unimodal threshold can effectively

catch four peaks associated with small steps, while separating
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Fig. 2. An illustration of MZ-DWT, showing (a) the comprehensive signal,
and (b) to (e) the initial four scales of the DWT.

Fig. 3. The product of scales and the computed threshold for Case 1

smaller peaks associated with large spikes and noise below

the dotted red threshold line. However, Fig. 3 demonstrates

that the SD threshold only detects two steps, while the MAD

threshold exhibits conservative performance by detecting all

steps and one large spike, resulting in a false alarm.

B. Case 2

In this scenario, the voltage time series is recorded by a

PMU situated on the substation of the 115 kV solar power

plant. The reporting rate of the PMU is 30 values per second,

and we have chosen a 90-second window for analysis. As

shown in Fig. 4(a), the voltage indicates some oscillations

that appear in this region near the solar power plant. A

step change with a small magnitude of 0.005 p.u. (0.33 kv)

occurs around 15:59:02. Wavelet transformations are shown

on different scales in Figs. 2(b) to 4(e). All transformations

indicate large spikes moving upwards when the step rises.

Furthermore, the multiscale products are indicated in Fig.

5, damping the noise and variations with higher frequencies

associated with oscillations. The time of the step change is also

closely maintained in the product of scales. The robustness

of the threshold is again indicated in Fig. 5, since it could

differentiate undesired variations from sudden step-related

changes in the multiscale product time series. Furthermore,

SD detects the step accurately, while MAD shows conservative

performance by detecting all steps and several spikes asso-

ciated with oscillations and noise, resulting in several false

alarms.

C. Case 3

In this section, we illustrate the line voltage recorded by a

PMU located in a real-world substation. The PMU provides

phasor estimates, which are reported at a rate of 30 estimates

Fig. 4. An illustration of MZ-DWT, showing (a) the voltage time series, and
(b) to (e) the initial four scales of the DWT.

Fig. 5. The product of scales and the computed threshold for Case 2

per second. We have “downsampled” these estimates from the

stream of PMU data, which can be regarded as samples of

a function reporting at 1 sample per second to evaluate our

approach under slower dynamics. Please note that the values

obtained from the PMU represent the outcomes of multiple

measurements and are not samples of a signal. The field

voltage measurements are shown in Fig. 6(a) for two hours.

This signal consists of two small steps and two relatively

large steps. The first step change, which resulted in the largest

measurement change, is due to the CB switching in the local

under-study substation. This is why the voltage increases

more than other step changes caused by other sources. The

magnitude of the step can be used as an identifier to locate

the source of the changes.

At each dyadic scale, a uniform length of the transformation

is obtained in the wavelet domain, as shown in Figs. 6(b) to

6(e). The step changes are detected precisely on scales three

and four of wavelet transforms because the smoothing with the

Gaussian at higher scales vanishes noises and abrupt pulses

while preserving step-related features. On the other hand, two

small steps are not distinguishable at scale 1, as this scale

contains higher-frequency information. However, the impact

of small steps can still be detected at scale 2. Since the

extrema appear due to steps in wavelet transformations and

are transmitted across scales 3 and 4, the product of these

extrema tends to reinforce the voltage signal response. Fig. 7

clearly indicates that the point product effectively preserves

step responses and closely pinpoints the step rise time.

The Rosin thresholding effectively separates four step-

related signatures from other variations. Fig. 7 shows that SD

is unable to detect the smallest step’s signature, while MAD

exhibits conservative performance by detecting several noise-
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Fig. 6. An illustration of MZ-DWT, showing (a) the voltage time series, and
(b) to (e) the initial four scales of the DWT.

Fig. 7. The product of scales and the computed threshold for Case 3

related features. Note that there are limited options available

for thresholding unimodal distributions, which is why we

recommend using Rosin’s method.

D. Orthogonal Daubechies Wavelet

Daubechies 1 (db1) with an orthogonal basis is selected to

discuss its performance in the problem due to its promising

performance in detection [4]. The db1 wavelet is sensitive to

sharp changes, which is intuitive as it uses a step-like wavelet.

We also examined db2-db8, which shows a poorer detection

performance compared to db1, which was also proved in [4].

Fig. 8 illustrates the db1 transformation for Case 3, where the

scales are not of the same length, unlike the results of the

complete MZ-DWT. As a result, db1 cannot precisely localize

the time of the changes. Furthermore, we cannot find a single

scale that can pinpoint all four steps with different magnitudes

simultaneously, whereas the proposed MZ-DWT effectively re-

veals these evolving step features on various scales, especially

larger ones. Additionally, the proposed product theory and

threshold are not applicable to db1 with orthogonal scales with

varying lengths that cannot preserve edge features on different

scales at the same data points. As a result, the process of these

transforms and choosing an appropriate scale for detection

can be a challenging task for real-world data analytics. Then,

thresholding needs to be done separately on each scale for

db1 and other orthogonal wavelets, which may lack sufficient

information about small steps commonly found in the ambient
data analysis, leading to poor detection performance.

IV. CONCLUSIONS

This paper proposed an effective framework for detecting

step-like patterns in real-world synchrophasor data, which is

a growing need for power system studies in the utility. Many

changes in the system manifest as steps in the synchrophasor

Fig. 8. The db1 transformation, showing four scales from (a) to (d).

data, and accurate detection of these steps greatly aids in

identifying the type and source of changes, understanding

controller responses, detecting events, and classifying them

to enhance situational awareness.

The nonorthogonal wavelet transformation, based on

smoothed gradient estimation, was used to identify singulari-

ties in the signals. Then, multiscale product theory was applied

to effectively extract step-related features by filtering out

noise. Finally, the Rosin threshold provided effective detection

performance to complete the automation loop. The proposed

approach was able to detect the small and large step changes

in synchrophasor data effectively while providing information

on the instant of the step changes.
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