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Abstract—This paper presents a practical method for detecting
step changes in real-world synchrophasor measurements based on
three fundamental theories. Step changes can be caused by shunt
switching, generator set point changes, and other changes in grid
apparatus, and detecting them is important for understanding the
grid’s response to inverter-based resources. To precisely localize
step changes, a nonorthogonal discrete wavelet transformation
(DWT) based on smoothed gradient estimation is used. A detector
based on a multiscale point-wise product of wavelet coefficients is
proposed, which takes advantage of the broadband characteristic
of step changes in the wavelet coefficient space. This product also
suppresses undesirable signal components, thereby reducing false
positives. Finally, Rosin’s unimodal thresholding is used to provide
an adaptive threshold for the step detector. The effectiveness of
the proposed approach is demonstrated on synthetic signals and
real-world synchrophasor data obtained from Dominion Energy’s
power grid.

Index Terms—step detection, synchrophasors, nonorthogonal
wavelets, multiscale products, Rosin thresholding.

I. INTRODUCTION

Phasor measurement units (PMUs) provide high-precision,
synchronized time series data from multiple locations, al-
lowing utilities to perform advanced, real-time, wide area
monitoring [1] of different dynamics of the power system.
A monitoring tool that exploits PMU data to continuously
monitor electromechanical oscillations arising from degraded
grid conditions, known as a “mode meter”, provides alerts
to operators to take remedial actions when the damping of
specific modes decreases [1]. Such monitoring tools can also
enable the use of new control schemes, thus mitigating the
impact of such oscillations [1]. Another dynamic pheonomena
at a slower time scale that may arise due to weakened
power grid conditions is voltage instability. To address this,
data-driven techniques use an approximate model (Thevenin
equivalent [2]) of the grid to detect the emergence of voltage
instability.

A major obstacle in solving these monitoring problems in
practice is that there are numerous components that interact
with the grid simultaneously, so it is essential to select the
suitable data window, where the relevant dynamics of the grid
are predominant. When concerned in monitoring deteriorating
grid conditions, this can be addressed by finding instances
with step changes in relevant variables (e.g. voltage magnitude,
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active/reactive power of a power plant, etc.), which is the focus
of this paper.

Several PMU applications exploit signal processing tech-
niques as an effective means to extract and analyze the relevant
dynamics of the power system present in the measurement
data. These have proven to be effective in assessing dynamic
performance driven by data from normal operation (ambient
conditions) [1], [2]. Other applications of interest for the
work in this paper include event detection and classification
algorithms [3] that extract unique signal attributes in the time
domain. Meanwhile, in [4], an orthogonal wavelet transfor-
mation is used for event detection in real-world applications.
Constructing an “event” detector typically requires selecting
an appropriate set of basis functions, i.e. the mother wavelet,
to act as filters that extract a significant component from the
signal. After that, it is necessary to determine an appropriate
threshold for the ’filtered signal, which is a difficult task
in itself and is only vaguely discussed in previous research,
relying on prior knowledge about ambient data, and thus is
addressed herein.

Step and edge detection algorithms have conventionally
relied on smoothed gradient estimation of signals. Within this
context, the Gaussian derivative has gained popularity as a
technique among filtered derivative methods [5]. Since the
selected scale has a considerable impact on detection per-
formance, derivative estimation with simultaneous multiscale
smoothing was proposed in [6]. On the other hand, it is recog-
nized that wavelets are needed to detect local signal regularity
and singularity on different scales [7]. Therefore, bridging the
gap between wavelet transformation and the smoothed gradient
estimation in multi-level smoothing could be a potential solu-
tion for enhanced step/edge detection. To this end, an efficient
non-orthogonal discrete wavelet transformation (DWT) was
proposed in [8] that uses a smooth gradient estimation and
adjusts the smoothing level depending on the (dyadic) scale. In
order to achieve this, quadratic spline wavelets that imitate the
derivative of the Gaussian estimator are employed to maintain
regularity information for each point at each scale in time
and identify the singularities. This technique is also called
Mallat and Zhong (MZ)-DWT. It is important to emphasize
that MZ-DWT is capable of recognizing various points of
abrupt changes in the signal, including step-like shapes. In
this paper, we extend this approach by analyzing multiscale
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wavelet transformations. The MZ-DWT is able to maintain a
strong relationship between different scales while still keeping
the same time frame for all scales. Thus, multiscale pointwise
noise products [9] can be used to amplify multiscale peaks
associated with steps in the measurement data while simulta-
neously damping and other sharp variations [6].

The application of the multiscale product theory reduces
noise, leading to a data set with few step-related features, such
as sharp peaks, and many values close to zero. Consequently,
the distribution function of this data set is unimodal, primarily
centered around zero, with a negligible peak at the end of
the tail. This feature allows us to utilize Rosin’s unimodal
thresholding technique [10], which effectively differentiates
the group of zeros (noise signatures) from the step-related
signatures, thus greatly improving the automated detection
process. In the following section, the proposed methodology
is given in Section II. The Numerical Analysis is presented in
Section III. Finally, we conclude the paper in Section IV.

II. PROPOSED STEP DETECTION APPROACH
A. Nonorthogonal Discrete Wavelet Transform

The step/edge detection methods work by first smoothing
the signal at different scales and then detecting points of
abrupt changes by examining the derivatives of the signal.
Within this context, the derivative of Gaussian has become
an effective method among the edge detection approaches,
calculating the gradient after applying a Gaussian smoothing
function in different scales [5]. The authors of [8] introduce
a discrete wavelet transformation equipped with smoothed
derivative estimation and Gaussian to detect edges, which we
briefly present as follows.

The smoothing function ¢(t), such as Gaussian, is defined
as a function for which the integral equals 1 and as ¢ tends to
infinity, the function converges to zero. The derivative of the
Gaussian function is denoted as 0(t) = %(tt). The derivative
of this smoothing function shares the progerty of wavelets, as
its integral equals zero, represented as L;; 0(t) dt = 0. Sub-
sequently, the wavelet transforms are computed by convolving
the signal g(t) with a re-scaled wavelet, given as

Wig(t) = g(t) = 0,(t) (1)
0(t/s)

where 0,(t) = ===, introducing a re-scaled derivative of
Gaussian function at the scale s. Now, the wavelet transform
is modified as

Wag(t) = (1) = (s°02)(1) = 5.5 (9(6) * 6)(0). @)

The equation (2) operates as a derivative estimation of the
smoothed signal at the scale s, meaning that the local extrema
of this transformation are corresponding with the inflection
points of g(t) * ¢s. The degree of smoothing depends on the
adjusted scales. However, selecting scales varying on dyadic
sequence (Qj ) ez is the superior choice when compared to
continuous scafe s, minimizing the computational burden. The
discrete filters N and M define the characteristics of the

quadratic wavelet. The subsequent algorithm is used to com-
pute the Discrete Wavelet Transform (DWT) for the discrete
synchrophasor measurements [8].

Algorithm 1: MZ-DWT

Data: Synchrophasor measurements, discrete filters of quadratic
splines (N, M), number of scales (J).
Result: Discrete wavelet transforms in different scales
Initialization; j = 0
while j < J do
L _1 .

- Wiig= By ng g* Mj;

- Sd]+1 9= S;j g% Nyj;

—j=i+1
end

In Algorithm 1, A; denotes the normalization coefficient for
the quadratic wavelet. The finite responses of the filters N and
M associated with the quadratic wavelet are provided in the
Appendix of [8].

B. Multiscale Products

Researchers have examined how the noise and singularity
in the signal behave at different wavelet scales using the
Lipschitz regularity concept [11]. Singularities have a greater
degree of Lipschitz regularity, meaning that they follow a more
consistent behavior compared to noises. For instance, the step
change on the measurements has a Lipschitz regularity of
zero, while structures less smooth than a step possess negative
regularity. On the other hand, white noise appears almost
singular, maintaining a uniform regularity that equates to -0.5.

A theory is introduced that relates the evolution of wavelet
transformation magnitude with Lipschitz regularity of the
signal [12]. A signal denoted as g(t) is considered uniformly
Lipschitz ¢ (0 < ¢ < 1) within the range [t1,t5] if and
only if there exists a positive constant N for all values
in the range, the wavelet transformation is constrained as
Waig()] < N(27)e.

This constraint indicates that as the scale increases, the
wavelet transforms’ magnitude increases when c is positive.
Conversely, the magnitudes of the wavelet transform get
smaller as the scale increases for the negative value of c.
By adopting MZ-DWT, The signal’s singularities change over
different scales, with noticeable peaks, while noise diminishes
significantly across the scales. Thus, we can visualize that
when the DWT is multiplied at consecutive scales, it magnifies
the characteristics of edges while diminishing the impact of
noise. Thus, the multiscale product of B scales is defined as

B
mp(t) = H Wig(t). 3)

C. Unimodal Thresholding

Rosin’s method is developed for thresholding unimodal
distribution of multiscale products and is recognized as a
remarkably straightforward approach [10]. This method as-
sumes that there is a dominant group within the data, resulting
in a prominent peak positioned toward the lower section of
the histogram relative to the second population. The second
population associated with the step-related feature may not
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exhibit distinguishable peaks but should indicate a reasonable
degree of separation from the main peak.

A typical distribution function, which usually has one
obvious peak, is shown in Fig. 1. To define the thresholding,
we need to fit a realistic distribution function to the histogram
of our data, allowing us to work with the data points on this
function. To find the function, we employ the kernel density
estimate (KDE) approach. Next, the straight line is sketched
from the highest point of the distribution function to the end of
the final populated bin in its histogram. The threshold point
is optimized in such a way that the perpendicular distance
(shown with a blue dotted line) between the red line and the
optimal point on the distribution function is maximized. Then,
the black dotted line gives the value of the threshold at the
optimal point of the intersection with the x-axis. These steps
are performed with Rosin’s algorithm.

III. NUMERICAL ASSESSMENT

In this section, the competence of the proposed framework
is shown by performing an analysis of synthetic data and field
PMU data on the service territory of the utility. Synchrophasor
data with a reporting rate of 30 phasors per second are
available through the digital fault recorders in the substations.
We select positive sequence voltage magnitude data to examine
our approach. We also employ two effective thresholding
methods for comparison [13]: 1) the mean plus three times
the standard deviation, referred to as SD, and 2) the median
plus three times the median absolute deviation, named MAD.

A. Case 1

A synthetic signal, encompassing steps, large spikes, ramp-
ing, and noise, is simulated for the purpose of conducting a
step detection test. Step changes result from set point adjust-
ments, capacitor bank and breaker switching, and controller
responses. Transient disturbances commonly induce spikes,
while ramping is primarily caused by generation unit output
adjustments and voltage regulator actions. Algorithm 1 is used
to obtain the wavelet transformations. The dyadic wavelet
transformations of the signal, as shown in Fig. 2(a), are
obtained and illustrated in Figs. 2(b) to 2(e). This transfor-
mation, enabled by the Gaussian derivative (quadratic spline),
indicates the derivative estimation of the original signal at
different levels of smoothing. Our proposed method preserves
the length of the transformation as the original signal, keeping
the regularity information at each sample (time) on every scale.

The first scale, shown in Fig. 2 (b), includes high-frequency
variations, including the large spikes on the signal located at
sample 75 and 140. The features corresponding to large spikes
in the original signal are represented as two consecutive spikes
in opposite directions. Specifically, when a spike in the signal
points downward, the wavelet transformation represents it with
an initial spike in the negative direction. Conversely, when the
spike points upward in the measurement, its transformation
is depicted on the positive side of the y-axis. This distinctive
feature associated with the spikes of the signal can also be seen
on the second scale, but it becomes less pronounced from the
third scale. Similarly, noises are being filtered more efficiently
on the larger scales. Consequently, the increased smoothing
on larger scales leads to a reduction in the magnitude of local
extrema seen due to noise.

In addition, the signal includes four small step changes
happening in samples 30, 60, 100 and 150. The effect of
these steps can be seen better on larger scales because the
convolution of the signal with derivative of the smoother
function eliminates small and narrow fluctuations in the signal.
More specifically, the step occurring in sample 30 moves
upward, and all transformations in four scales show this step
with local maxima. The other three steps are also characterized
with local extrema in the downward direction across all scales
of wavelet transforms. The MZ-DWT helps in preserving
edge-like features and closely finding instance of occurrence.

The multiscale relationships are clearly observable in the
presence of step changes. To enhance the multi-scale peaks
associated with the steps and then establish a robust threshold,
the multi-scale pointwise product is implemented. Fig. 3 shows
the result of this product for scales 3 and 4. All scales together
or other scales can be chosen, but in smaller scales, we see
more false local extrema, even though the steps are localized
more accurately. In addition, fewer local extrema can be seen
when a larger scale is selected, but the accuracy in locating
the time of occurrence of the steps may slightly reduced. In
this case (and in the following cases), the product of two
adjacent scales (3 and 4) is considered, preserving both the
advantages of detection and localization by suppressing noise
and sharpening step-type features [7]. Now, the product of
scales is statistically characterized to establish a robust thresh-
old to differentiate step-related changes from other variations.
This happens because when we have large spikes or severe
noises on the signal, their impact can still be seen on the
product of the scales, although they are becoming smaller
shapes in this transformation. Thus, one may interpret them
as step changes in the multiscale product series, as they are
essentially smaller maxima. This fact necessitates the use of
a threshold to distinguish steps from other transient and sharp
variations. Since the product of scales comprises many values
close to zero and only a few values larger than that (associated
with edges), its histogram follows a unimodal pattern centered
around zero. That is why Rosin’s unimodal thresholding is
selected. First, we fit a function to the histogram using KDE.
As shown in Fig. 3, the unimodal threshold can effectively
catch four peaks associated with small steps, while separating
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Fig. 2. An illustration of MZ-DWT, showing (a) the comprehensive signal,
and (b) to (e) the initial four scales of the DWT.
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Fig. 3. The product of scales and the computed threshold for Case 1

smaller peaks associated with large spikes and noise below
the dotted red threshold line. However, Fig. 3 demonstrates
that the SD threshold only detects two steps, while the MAD
threshold exhibits conservative performance by detecting all
steps and one large spike, resulting in a false alarm.

B. Case 2

In this scenario, the voltage time series is recorded by a
PMU situated on the substation of the 115 kV solar power
plant. The reporting rate of the PMU is 30 values per second,
and we have chosen a 90-second window for analysis. As
shown in Fig. 4(a), the voltage indicates some oscillations
that appear in this region near the solar power plant. A
step change with a small magnitude of 0.005 p.u. (0.33 kv)
occurs around 15:59:02. Wavelet transformations are shown
on different scales in Figs. 2(b) to 4(e). All transformations
indicate large spikes moving upwards when the step rises.
Furthermore, the multiscale products are indicated in Fig.
5, damping the noise and variations with higher frequencies
associated with oscillations. The time of the step change is also
closely maintained in the product of scales. The robustness
of the threshold is again indicated in Fig. 5, since it could
differentiate undesired variations from sudden step-related
changes in the multiscale product time series. Furthermore,
SD detects the step accurately, while MAD shows conservative
performance by detecting all steps and several spikes asso-
ciated with oscillations and noise, resulting in several false
alarms.

C. Case 3

In this section, we illustrate the line voltage recorded by a
PMU located in a real-world substation. The PMU provides
phasor estimates, which are reported at a rate of 30 estimates
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Fig. 4. An illustration of MZ-DWT, showing (a) the voltage time series, and
(b) to (e) the initial four scales of the DWT.
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Fig. 5. The product of scales and the computed threshold for Case 2

per second. We have “downsampled” these estimates from the
stream of PMU data, which can be regarded as samples of
a function reporting at 1 sample per second to evaluate our
approach under slower dynamics. Please note that the values
obtained from the PMU represent the outcomes of multiple
measurements and are not samples of a signal. The field
voltage measurements are shown in Fig. 6(a) for two hours.
This signal consists of two small steps and two relatively
large steps. The first step change, which resulted in the largest
measurement change, is due to the CB switching in the local
under-study substation. This is why the voltage increases
more than other step changes caused by other sources. The
magnitude of the step can be used as an identifier to locate
the source of the changes.

At each dyadic scale, a uniform length of the transformation
is obtained in the wavelet domain, as shown in Figs. 6(b) to
6(e). The step changes are detected precisely on scales three
and four of wavelet transforms because the smoothing with the
Gaussian at higher scales vanishes noises and abrupt pulses
while preserving step-related features. On the other hand, two
small steps are not distinguishable at scale 1, as this scale
contains higher-frequency information. However, the impact
of small steps can still be detected at scale 2. Since the
extrema appear due to steps in wavelet transformations and
are transmitted across scales 3 and 4, the product of these
extrema tends to reinforce the voltage signal response. Fig. 7
clearly indicates that the point product effectively preserves
step responses and closely pinpoints the step rise time.

The Rosin thresholding effectively separates four step-
related signatures from other variations. Fig. 7 shows that SD
is unable to detect the smallest step’s signature, while MAD
exhibits conservative performance by detecting several noise-
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Fig. 6. An illustration of MZ-DWT, showing (a) the voltage time series, and
(b) to (e) the initial four scales of the DWT.
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Fig. 7. The product of scales and the computed threshold for Case 3

related features. Note that there are limited options available
for thresholding unimodal distributions, which is why we
recommend using Rosin’s method.

D. Orthogonal Daubechies Wavelet

Daubechies 1 (dbl) with an orthogonal basis is selected to
discuss its performance in the problem due to its promising
performance in detection [4]. The dbl wavelet is sensitive to
sharp changes, which is intuitive as it uses a step-like wavelet.
We also examined db2-db8, which shows a poorer detection
performance compared to dbl, which was also proved in [4].
Fig. 8 illustrates the dbl transformation for Case 3, where the
scales are not of the same length, unlike the results of the
complete MZ-DWT. As a result, dbl cannot precisely localize
the time of the changes. Furthermore, we cannot find a single
scale that can pinpoint all four steps with different magnitudes
simultaneously, whereas the proposed MZ-DWT effectively re-
veals these evolving step features on various scales, especially
larger ones. Additionally, the proposed product theory and
threshold are not applicable to dbl with orthogonal scales with
varying lengths that cannot preserve edge features on different
scales at the same data points. As a result, the process of these
transforms and choosing an appropriate scale for detection
can be a challenging task for real-world data analytics. Then,
thresholding needs to be done separately on each scale for
dbl and other orthogonal wavelets, which may lack sufficient
information about small steps commonly found in the ambient

data analysis, leading to poor detection performance.
IV. CONCLUSIONS

This paper proposed an effective framework for detecting
step-like patterns in real-world synchrophasor data, which is
a growing need for power system studies in the utility. Many
changes in the system manifest as steps in the synchrophasor
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Fig. 8. The dbl transformation, showing four scales from (a) to (d).

data, and accurate detection of these steps greatly aids in
identifying the type and source of changes, understanding
controller responses, detecting events, and classifying them
to enhance situational awareness.

The nonorthogonal wavelet transformation, based on
smoothed gradient estimation, was used to identify singulari-
ties in the signals. Then, multiscale product theory was applied
to effectively extract step-related features by filtering out
noise. Finally, the Rosin threshold provided effective detection
performance to complete the automation loop. The proposed
approach was able to detect the small and large step changes
in synchrophasor data effectively while providing information

on the instant of the step changes.
REFERENCES

[1] D. Kosterev et al, “Implementation and operating experience with
oscillation detection applicatioin at bonneville power administration,”
in CIGRE 2016 Grid of the Future Symposium, 2016, pp. 1-12.

[2] J. Lavenius et al, “Performance assessment of pmu-based estimation
methods of thevenin equivalents for real-time voltage stability monitor-
ing,” in 2015 IEEE 15th EEEIC, 2015, pp. 1977-1982.

[3] Y. Liu et al, “Robust event classification using imperfect real-world PMU
data,” IEEE Internet of Things Journal, 2022.

[4] D.-I. Kim et al, “Wavelet-based event detection method using pmu data,”
IEEE Transactions on Smart Grid, vol. 8, no. 3, pp. 1154-1162, 2017.

[5] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6,
pp. 679-698, 1986.

[6] B. Sadler and A. Swami, “Analysis of multiscale products for step
detection and estimation,” IEEE Transactions on Information Theory,
vol. 45, no. 3, pp. 1043-1051, 1999.

[71 P. Bao and L. Zhang, “Noise reduction for magnetic resonance images
via adaptive multiscale products thresholding,” IEEE Transactions on
Medical Imaging, vol. 22, no. 9, pp. 1089—-1099, 2003.

[8] S. Mallat and S. Zhong, “Characterization of signals from multiscale
edges,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 7, pp. 710-732, 1992.

[9]1 A. Rosenfeld, “A nonlinear edge detection technique,” Proceedings of

the IEEE, vol. 58, no. 5, pp. 814-816, 1970.

P. L. Rosin, “Unimodal thresholding,” Pattern recognition, vol. 34,

no. 11, pp. 2083-2096, 2001.

S. Mallat and W. Hwang, “Singularity detection and processing with

wavelets,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp.

617-643, 1992.

Y. Meyer, “Ondelettes et opérateurs,” New York: Hermann,, 1990.

C. Leys et al, “Detecting outliers: Do not use standard deviation

around the mean, use absolute deviation around the median,” Journal of

experimental social psychology, vol. 49, no. 4, pp. 764-766, 2013.

[10]

[11]

[12]
[13]

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 13,2025 at 18:45:08 UTC from IEEE Xplore. Restrictions apply.



