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Abstract: The win ratio, initially developed for time-to-event dat

tended to any data type equipped with a partial o

We study this extension
in both nonparametric infer&‘e and semiparamet We begin by
sen two populations
uces to the familiar odds
sting, we prove that the empir-
ical two-sample wi o4 inst stochastically ordered distributions
A%5 alternatives under a total order. In re-
aal win ratio multiplicatively against covariates,
ision from binary to partially ordered responses. This
7 a generalized continuation-ratio logit model but requires
bn the relationship between response levels. To make infer-
struct a class of weighted U-statistic estimating equations and derive
pseudo-efficient weights to improve efficiency. Simulation studies demonstrate

that the proposed procedures perform well in both testing and regression under
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finite samples. As illustrations, we analyze bivariate radiologic assessments in
a recent liver disease study and subject smoking status in a youth tobacco use

study, treating them both as partially ordered outcomes. The proposed method-

ology is implemented in the R package poset, publicly available on Gitl\b at

https://lmaowisc.github.io/poset/and on the Comprehensive R Archive Net-

\

hsion; Odds ratio;

work (CRAN).

Key words and phrases: Continuation ratio; Logistic r

dinal data; Stochastic order; U-statistic.

1. Introduction

Partially ordered data, a co\mon variant of 2l data, frequently arise
in medical and sociological studies. Unldse tota dered tumor grades or

Likert scales, part‘ly ordered arily pairwise comparable.

For instance, in the tumor-no ancer staging system (Edge et
, 2010), primary mors are scored on four- and three-

'wo patients can be compared in overall

nd in groups of radiologic ratings or survey responses.
valence, partially ordered data have received only lim-
ited methodological attention. In the nonparametric setting,

(1991) discussed desirable properties for statistics measuring the association
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between two partially ordered responses (where one may be a binary treat-
ment). He demonstrated that the Wilcoxon rank sum and Spearman’s rank

correlation statistics satisfy these properties in the special case of totally

ordered data. [Mondal & Hinrichs (2016) proposed a class of A‘\ociation

tests by conceptualizing an underlying total order consist\t with the pM

tioned conditional models, c‘lstructed in thr snsecutive steps. First, a

nominal (i.e., multinomial) regression model is Stimate the proba-
bilities of any disjgint network wo elements are compara-
XU, each network is partitioned

tichains (Trotter [1992)), i.e., subsets

slements, whose conditional probabilities

ble (if more than one such netw,

Although the partitioned conditional models elegantly reduce complex par-



Statistica Sinica: Newly accepted Paper

tial orders into layers of familiar ordinal or nominal structures, they involve
extensive model assumptions that are difficult to verify. Moreover, the large

number of regression coefficients, many of which are not of direct interest,

complicates the interpretation of covariate effects. \

A potential solution lies in the win ratio, which has recqtly gained pog

partial order serving as the ggmparison rule a
as “ties”. Unlike the elaborate partition
focuses on dimens"ns with a
succinct summary of treatmen

the win ratio may 0 > 3 t alternative to standard ordinal re-

explored. Additionally, regression modeling of partially ordered data using

the win ratio has yet to be investigated in the literature.
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In this work, we conduct a detailed study of the win ratio for par-
tially ordered data in both nonparametric inference and regression anal-

ysis. Specifically, we define the win ratio formally as a model-free esti-

mand and explore the operating characteristics of its empirical\gtimator

with efficient weights informed by parallels with logistic r

well-known efficient score fu‘tion.

2. Two-sample estimatioy and WeWPng
2.1 Set-up

Let (¥, <) denote a N, W set, or poset (Trotter, 1992)), where

artial order <. Throughout, we assume that

ost countably many elements. The partial order
an pairs of elements in ) that satisfies the following
ixive (y = y for all y € V), anti-symmetric (y =< y*
and y* < y imply y = y*), and transitive (y =< y* and y* =< y™* imply

y <X y**, for all y,y*, and y** € V). Occasionally, the relation y < y* will
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2.1 Set-up

be equivalently expressed as y* > y. If neither y < y* nor y* < y, the pair

is said to be incomparable. If every pair in ) is comparable, the poset is

said to be totally ordered.

Example 1 (Ordinal data). Ordinal data, such as tumor gradesld Likert
scales, are totally ordered. If ) consists of m totally ordcqd elements,

can, without loss of generality, let (), <) =

{0,1,...,m — 1}. Binary data are a special case

when multiple ordinal attributes are combined, with two obse s being

1l components. In

t order , .

itized so that other com-

poset terminology, this is referred
Alternatively, cer\n compone
priotitized ones are tied. This is

ponents are compared omy

known as a lexicogra® lar to how words are arranged in a

(

reneral, the poset for outcomes with K or-

levels) bf a product order, =< can be replaced by <, which is

understood to operate component-wise.

Every partial order < induces a corresponding strict partial order <.
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2.1 Set-up

Namely, if y < y* and y # y*, then we say y < y*, or equivalently, y* > y.
By definition, the strict order is irreflexive, i.e., y £ y for all y € ), and

transitive. In Example [I} the strict order < is simply the strict inequality

<; in Example [2] with the product order, y; < y; if y; < y; comp\ent—wise
with strict inequality for at least one component. Without §ss of generalil
we use the symbol > as the win operator; that is,

y; if y; > y;. In both Examples, this means a hig

more favorable.

and D(y) ={v* @V : v" < v} Q& Y 4 . greatest or least element
of a subset A C Y, if it exists, 4

that s* < sor s* > , 3 all s* € A. A lattice is a special type

bement exists for D[y;] N Dy;] (Garg, 2015). It

ta spaces described in Examples [T and [2 are both
lattices. Non- bosets are also common in applications. For instance,

12)) described a national longitudinal study on youth tobacco

use with six levels of smoking behavior ordered in a non-lattice structure.
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2.2 Nonparametric estimand and estimator

For a probability measure v on ), we define some shorthand notation
as follows. With a random element Y ~ v, denote v(y) = pr(Y = y) for

ye Y, v(A) =pr(Y € A)for AC Y,and v(f) = E{f(Y)} for an integrable

function f : Y — R. For every v in question, it is always assume®that v is

\

supported on Y, i.e., v(y) > 0 for all y € V.

2.2 Nonparametric estimand and estimat

Let 11 and 1 denote the distributions of a partially ordered outcom:
treatment and control groups, respectively. An expedient

the two groups is to assign a numeric scord each outcome level and

consider the difference in the‘average score. ly, let f:Y — R

be a non—decreash\g‘function 1

nparametric estimand does not rely on such arbi-

ling. Define it as

trary scoring or

W(vi,vo) _ [ [ 1(ys = yo)vi(dyr)vo(dyo)

W (v, v1) B fff(’yo - yl)V1<dy1)V0(dy0>, 1)

R<V17 VO) =

where [(+) is the indicator function. If Y, ~ v, (z = 1,0) and Y; 1L Yy,
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2.2 Nonparametric estimand and estimator

we have W(v,,11_,) = pr(Y, > Y;_,), which represents the probability of
group z winning against 1 —z. Hence, the ratio R(v1, 1) can be interpreted

as the fold change in the likelihood of winning by the treatment compared

to the control. This interpretation is similar to that of the odds\tio for a

binary outcome. In fact, the metric reduces to the odds r‘o in the binayy

case.

Proposition 1 (Equivalence of win and odds rati

vi(D{1 — vp(1)}
R(vi, 1) = vo(1){1 — 1y (1)}

Let 7, denote the empiricgl distr i z of size n, (z = 1,0).

Then, a natural es\nator for R , 5-in R (14, 1), which is just

comparisons. It then 4 “(71,7p) is an efficient estimator for

between an ordered outcome and a binary treatment. In fact, if we think of

the W(0., 1_.), i.e., the empirical win and loss proportions, as the partial-
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2.3 Operating characteristics of the test

order equivalent of ranks, we can view the win ratio as an extension of
the Wilcoxon rank statistic 2022). Finally, the asymptotic normality

of R(in,00) and its variance are derived in the supplementary material,

using similar U-statistic techniques to those used for time—to—even&utcomes

\ults can also

prion model

(Luol [2015; Bebu & Lachin| 2016; | Dong et al., 2016]). The

obtained as a special case of the multiplicative r

in Section |3l with the treatment indicator as the

2.3 Operating characteristics of the test

In addition to measuring treatment effect, R (4l ) can also be used to test
the null hypothesis Hy : v; ="14. This test wil bularly sensitive if

Vo and 1vq are sto:ﬁmstically or@ared.

Definition 1 (Stochastig.oor Qs B C ) is called an up-set if
y € B implies Uly] robability measures vy and v; on ),

an 1y, denoted by vy < 14, or 1y = 1y, if
> vy(B) for every up-set B C ).

tends the concept of stochastic order from Euclidean
spaces to posets, capturing the intuitive notion that one random element

“tends” to win against another. An important implication of v; > 1y is
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2.3 Operating characteristics of the test

that v1(f) > vy(f) for every non-decreasing function f (Kamae & Krengel,

1978)). An example of such a function on (HkK:1 Ny,—1, <) is the average

score f(y) = K~! Zszl Ski,, where y = (i1,...,1x)" and spo < g1 < -+ <

Skm,—1 1s an ordered sequence of scores assigned to the my, levels § the kth
component (k=1,..., K).

Write n = n; + ng and assume that n,/n —

2

der Hy, where 07

is a nonparametric variance estimator

normal distributic‘

We show that this test is \nist the alternative hypothe-
v1 # vg. For a nontrivial poset ),
{R(t,19)} is finite, so the noncentrality
parameter brder O[n'/?log{R(v1,1)}]. As a result, the
tellds to 1 as n — oo if R(vy, 1) > 1 The following
. intermediate result for showing that R(vy,1vp) > 1

under vy > 4. The proof can be found in the Appendix.
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2.3 Operating characteristics of the test

Lemma 1. If v; > 1y, then

vi{U(y)} = vo{U(y)} for ally €Y,

with strict inequality for at least one y. \

In addition to consistency, we can also show that tl\win ratio tel.
when applied to ordinal data, is asymptotically e

odds alternatives.
Theorem 1. The win ratio test has the following properties.

(a) When vy = vy, for every a € (0, 1),
pr(|6§> Zi—aj2) = 1

(b) With a t&ually ordered

) conform to a proportional
odds model with a ngn-u 5110, the win ratio test achieves the

highest asympto . The precise statement is given in

Bhv0) = / v {U(y)}ro(dy) > / w{U(y)}1o(dy)
> / wo{U(y) i (dy) = Weo, ),
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where the first equality follows by Lemma [1| and the second by vy = 1y
and 19{U(y)} being a non-increasing function of y. The proof of (b) is

more involved and is relegated to the supplementary material, where the

asymptotic power function is derived explicitly. \ O]

\

3. Regression analysis

3.1 A multiplicative win ratio model

With a p-dimensional covariate Z € RP, we aim to assess its e

Y € Y. Like in the two-sample case, direct modeling of the ¢ nal dis-

tribution, denoted by v(- | Z\Would likely inv ssary assumptions

and nuisance parameters non-essential e effects. In keeping

with the two—grow\ win ratio ve focus on the covariate-

{U(' | 7’i)7

copies of Z. For conv v te this quantity as R(Z;, Z;). Fixing

specific win ratio re Z; and Z; are independent

ldependently from covariate groups Z; and Z;, respec-
tively, then R(Z;, Z;) = pr(Y; = Y, | Z;, Z;)/pr(Y; > Y; | Z;, Z;), which

represents the fold change in the likelihood of winning for subpopulation Z;
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3.1 A multiplicative win ratio model

as compared to Z;.
With multi-dimensional Z, especially when it contains continuous com-

ponents, a parsimonious model for R(Z;, Z;) is desired to avoid the curse of

dimensionality. Since R(-,-) € R™ and must satisfy R(Z;, Zj)R(A Z;)

it is natural to consider

log{R (%, Z;)} = 8" (Zi —

distribution O

n Z are left unspecified.

P(3.2) is similar in structure and interpretation to the

proportional win-fractions model of Mao & Wang (2021)) for composite time-

to-event outcomes. The latter, however, involves stricter assumptions on
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3.2 Model-generating mechanisms

the constancy of the win ratio as follow-up goes on (hence the proportional-
ity). If instead one chooses to model the win ratio under a fixed time frame,

then the (possibly component-prioritized) composite outcomes would likely

follow a partial order, and model (3.2]) would apply. \

3.2 Model-generating mechanisms

which (3.2]) holds.
First, we show that undele, <), model
dard logistic regression with t N i cOCificients. In this case,

B in (3.2)) can be interpreted win ratio or log-odds ratio,

's equivalent to the logistic regression model

__exp(y+p57Z)
L +exp(y+ p72)

for some v € R. (3.3)

Next, we show that in general, model (3.2)) is implied by a logit model
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3.2 Model-generating mechanisms

generalized from the continuation-ratio model for ordinal responses

strong & Sloan, (1989), as proved in the Appendix.

Proposition 3 (Sufficiency of generalized continuation-ratio model). Model

(13.2) is implied by the following generalized continuation-ratio motel:

' B exp{V(y) + STZ}
(Y -y [V =y 2) = T G T B2

Under model (3.4)), the conditional continuati

strictly “better” outcome given that it is comparable to an

y. The model specifies that the covariate effec

L invariant to the level y €
Y, which imposes a strong constraint across out 2s. In contrast, the
multiplicative winﬁxtio model S@eci rerall relationship between
the response and covariates wg cific constraints, making it

more relaxed.

model, which holds trivially with 8 = log{R(v1, 1)}, where (Y | Z = 2) ~

v, (z=1,0). On the other hand, model (3.4) imposes a real constraint. To
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3.3 Estimating equations

see this, write A,y = pr(Y > k| Y > k; Z = z). With logit(z) = log{z/(1—
x)}, the model implies that logit(Aqx) —logit(Aox ), the log-continuation odds
ratio at level k, is constant across kK = 0,1,...,m — 2, which need not be

true as (Ao, ..., Azm_2)" can vary freely in (0,1)®m=1, \

3.3 Estimating equations

Let (Y;,Z;) (i = 1,...,n) be a random n-sample of (Y, Z). To

(3.2), consider the pairwise error term

7 — Zj>W(Zi7 Zj§5)gij<5>a (3-5)

dependent symmetric function on Z%? and
suitable regulari 1ditions, finding # can be reformulated as a minimiza-
tion p Prictly convex function (see supplementary material for

details), allowing us to use the standard Newton-Raphson algorithm. With

a binary 7, it is easily seen that B under every W reduces to the log of the
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3.3 Estimating equations

empirical two-sample win ratio of Section 2.2
To estimate the variance of B, the correlations between the terms in

U, (5; W) must be accounted for. The following theorem, proved in the

supplementary material, establishes the asymptotic properties \B using

uniform central limit theorems for U-processes (e.g., Arco&s & Ginél, 1991

Theorem 4.10) under the following regularity con

true value of 5.

(C1) The covariate space Z is bounded and the covariance matri

positive definite.

(C2) With (Y;, Z;) UL (Y; A, we have that | Zi, Z;) > 0 with

probability one, where Mg - ; = Y;).
(C3) The weight function W
W —w|(z, 2*; 8) —, 0, (3.6)

w(z, z%; ) that is strictly positive, uniformly

nuous in 3 at Sy.

undedness of covariates in (C1) is imposed only to
simplify the proof and may not be necessary in practice. As shown in

the simulations in Section @, unbounded distributions like the Gaussian
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3.3 Estimating equations

distribution work well so long as their tail probabilities are not too heavy

(see, e.g., Andersen & Gill, [1982). Condition (C2) can be viewed as non-

degeneracy of the outcome distribution with respect to the partial order,
and is satisfied if there are at least two comparable points in Y wi strictly
positive conditional probabilities. Condition (C3) basicall\nsures that t\e

weight function is asymptotically stable with a

Theorem 2. Under conditions (C1)-(C3), we ha

nl/z(B — Bo) = o120 Z (Y, Z;) + 0,(1) asn

=1

where Q = E[R;;j(Z; — Zj)\Qw(Zqu;ﬁo){e N7 )+ exp(—535Z;)} ']

and

U(y,2) = E|(z —)w(% Z; Bo) 1 Z) — I(Y = y)exp(fy2)}] -

A

Estimators (2, - constructed by replacing the expec-
s, w with W, and 8, with 3. Then the

! be consistently estimated by the second mo-

- function (Bickel et al. [1993) on the right hand side

IO Y n S (Y, Z) @230t We can thus make
inference on [y based on the consistency and asymptotic normality of B

along with this variance estimator.
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3.4 Efficiency consideration

It is clear from Theoremthat the asymptotic distribution of B depends
on W(, -; ) only through its limit w(-,-; 3) at 8 = fy. Consequently, if we

substitute § in the weight function for some initial consistent estimator

Binit, the asymptotic property of the resulting estimator should r§nain the

same. This substitution can save considerable computatio\avhen the tar

Corollary 1. Let W (-, -;B)\? a weight funct estwng condition (C3)
and let Bmit be an initial estimator swch i Bo. Write VVimt(-, ) =

~ A

W(-, -;Binit). The\the estimato V) =0 and U, (B; Wini) =

0 are asymptoticall

Efficiency

the weight is just W = 1, but this choice may
ically efficient B To improve efficiency, we exploit
the eqigl cen the multiplicative win ratio and logistic regression
models in the case of a binary outcome (Proposition [2)).

The basic strategy is outlined as follows. We first rewrite the effi-
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3.4 Efficiency consideration

cient score of logistic regression in the pairwise form of (3.5)), with weight
(Z,, 5 0) = eff(Z,, 3 B) for some Weﬁ‘(Zi, Zj; 8). By standard likeli-

hood theory, WEH(ZZ-, Z;; ) must be the efficient weight in the binary case.

In the general case, because model (3.2) does not completely s\écify the
likelihood, we construct pseudo-efficient weights by mimi\ing the form \f
Weﬂ‘(Zi, Z;;3). While the efficiency of pseudo-e

w0 weights is

oretically guaranteed, we hope that they will at 1

form of Weﬁ‘(Zi, Zj;; B), with proof provided in the supplem

where Y(5) solves
+ BT Z;}
=0. 3.9
p{v )+ BTZ;} (39)
function U, (f; Weﬁ‘ reduces to a constant multiple

function for [ in the logistic regression model (3.3)

In the general setting, the form of Weff(ZZ‘, Z;; ) in (3.8) applies without

change. However, the definition of 4(3) in (3.9) needs adaptation, as the
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3.4 Efficiency consideration

outcome Y is no longer binary or numeric. We resolve this by mapping the

partially ordered Y monotonically onto a numeric scale.

Proposition 5 (Pseudo-efficient weights in general). Let r : ¥ — [0,1]

be a strictly increasing scoring function in the sense that it maps the least
&z’vely, and th

sistent initial

and greatest elements in Y, if existent, to 0 and

r(y;) < r(y;) for any y; < y;. Let Binie denote a ¢
for B, e.qg., B obtained under the naive weight W

efficient weight by

A . . -1 R R -1
Wpseff<Zi7 Zj) = [1 + eXP{’AY(%it) + ﬁiiitZi}:| + eXP{’AY(/Binit) + BiTnith} )

(3.10)

d by r(Y;). Then, the

case, it is usually straightforward to construct a proper scoring function by

following through a Hasse diagram (Trotter] [1992) for the partial order. An
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example is offered in the supplementary material for the non-lattice poset

from the smoking behavior study described in Section (Zhang & Ip),
2012).

Both the naive and pseudo-efficient analyses of win ratio\‘gression

models are implemented in the R-package poset, Which\ publicly av.
able on GitHub athttps://lmaowisc.github.iJjj#®et and on

prehensive R Archive Network (CRAN).

4. Simulation studies

We first assessed the empiri\al power of the satio test under the pro-
portional odds model for ordinal data j
We considered tW\scenarios, \
and 14(2) = 0.4, and the oth

v(1) = 0.2, and 1 3. We compared the win ratio with

other tests:

11 Id test based on the maximum-likelihood log-odds

ander the proportional odds model.

are test on the nominal levels.

3. The binomial test on the responses dichotomized by {0} vs {1,2} for


https://lmaowisc.github.io/poset
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(Ng, <) and {0, 1} vs {2,3,4} for (Ny, <).

Under varying odds ratios, we computed and plotted the empirical
powers of the four tests for n = 200 in Figure In both sceparios, the
asymptotic power function for the efficient test given in the supplementary
material provides accurate approximation to the
the win ratio and parametric tests, which outp
two tests by considerable margins. These results

efficiency of the win ratio under proportional odds alternatives,

in Theorem [1f (b).

Next, we assessed the i\erence procedu

= 2.0, 701 = 70 = 1.0, 702 = 720 = 111 = 0.2,
where v, is a shorthand notation for v(y). Under
litional probabilities for the nine levels of the outcome
given Z = (0,0)" are roughly bounded between 0.05 and 0.20. For n =

200,500, 1000 and 8 = (81, 52)" = (0,0)7, (0.25, —0.25)7, (0.5, —0.5)T, we
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assessed the estimation of 8; using both the naive estimator (derived from
U,(8; W) with W = 1) and the pseudo-efficient estimator. The latter was

constructed using the naive estimator as Bmit to form the pseudo-efficient

weight in (3.10) with the average scoring function r{(i1,i2)"} = 4\(21 +1is).

The results for both estimators are summarized in T\‘)le I Both

g = (0.5,—0.5)" ‘mpared t St . The efficiency differ-

ence is expected to widen un \ riate-response associations.

that produce skewed scores (e.g., square or square-root transformations).

The resulting pseudo-efficient estimators perform similarly and all outper-
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Table 1: Simulation results for estimation of ; in the multiplicative win

ratio model.

0.25 0.008 0.123 0.121

0.948 0.001

Naive Pseudo-efficient
n B  Bias SE SEE CP Bias SE SEE \
200 0 0.000 0.117 0.115 0.945 0.000 0.114 0.

1\? 0.951

—

0.50 0.016 0.147 0.137 0.932 —0.002

500 0 0.000 0.072 0.072 0.948 0.000
0.25 0.001 0.077 0.076 0.950 —0.002
0.50 0.008 0.090 0.088 0.940 0.000

1000 0 0.000 0.050 0.050 0.953 0.050 0.952 1.01
0.25 0.001 0.054 0&1 0.951 751 0.953 1.12
0.50 0.004 0.064 0.055 0.946 1.35

SE, empirical staAvrd error of the \to apirical average of the standard

in the supple material.

the 95% confidence interval. RE, relative

‘al variance, comparing the pseudo-efficient
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Power

0.4

Figure 1: Empiric\‘power as a g

tional odds model for (a) three

08 1.0

0.6

0.2

0.0

outcome.

(a)

8
A O
2o A
K O A
s,
L RN
‘o
& A
/o A
/ﬁ A
- B
T T T T
1.0 1.5 2.0 25

Odds ratio \

10

Power

ds ratio under the propor-

ve-level ordinal outcomes with

ower for the efficient test; plus sign:

st; circle: parametric Wald test; square:

of the empirical power is based on 2,000 replicates.
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5. Real examples

5.1 A radiologic study of liver disease

A total of 186 patients with non-alcoholic fatty liver disease (NA‘JD) were

recruited at the University of Wisconsin Hospitals in 20\7. The patients

underwent computed tomography scan of the liv
alcoholic steato-hepatitis (NASH), the most sev
images were subsequently assessed by two radiologists using a s
5, with higher values indicating a greater likelihood of dis

statistics on the study cohort are tabulated ingi#lee supplementary material.

For win ratio analysis ofMhe reader asses invert the scores

so that higher values indicat§ga lo disease and are thus

more favorable. BXause the tw ‘imilar levels of experience,
we apply the prod ariate scores. This results in an

PN, x Ny. Under the product order,

outcome space re
d change in the probability of achieving a

nsus of the two readers.

We employ t ultiplicative win ratio model of Section |3 to examine
the rel Coween the radiologists’ scores and several covariates: pa-

tient sex, the presence of advanced fibrosis (AF), and quantitative biomark-
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5.1 A radiologic study of liver disease

Table 2: Win ratio regression analysis of the non-alcoholic fatty liver disease

study data.
Naive Pseudo-efficient
Estimate Std error p-value Estimate Std error \—Value
Sex (f v. m) —0.144 0.270  0.593 —0.151 \0.262 0.563
AF (y v. n) —0.890 0.307  0.004 0.296  \0.002
Steatosis (%) —0.026 0.006 <0.001
Gray level —0.010 0.006  0.070
LSN score —0.062 0.134 0.646 —-0.074 0.130

ers such as percent of steatosis (liver fat cogilant), liver mean gray level

we first fit the model using tRg nai ®.owed by the pseudo-
efficient one utilizhg; an averag
\DM[2l While the point estimates of
nParable between the two methods, the

istently exhibit smaller standard errors and

1 steatosis are strongly and significantly associated with

the likelihood of NASH. In particular, patients with advanced fibrosis are
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exp(—0.89) = 41.1% times as likely to receive favorable assessments than
those without. Additionally, one percent increase in steatosis results in
1 — exp(—0.026) = 2.6% reduction in the likelihood of favorable assess-

ments. \

For comparison, we use the continuation-ratio mod\to analyze tW¥e

mean gray level intensity be‘mes less prono

that, despite the fewer assumptions inherent in

's smoking status classified into six partially or-

dered levels (

..,D), as illustrated in the Hasse diagram in Fig-
er was considered the most desirable status, while heavy

ure 2

frequent smoker was the least desirable. The PCM consisted of three or-
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dinal /nominal sub-models, generating three sets of regression coefficients.
Many of these coefficients, such as the log-odds between light frequent vs.

heavily infrequent smoking, may not be of direct interest if the primary

goal is to assess risk factors for undesirable behavior. \

As a comparison, we apply the win ratio approach tqa mock datadgt

of the study (Zhang & Ip, [2012). The data consi

female youths aged 12 to 16 years. Predictors

towards discipline, and havir‘smoking peers.
variables, as well as the outcome, are symari

We use the mygtiplicative
predictors on the smoking sta

weight. Then, with S \ ring function r(0) = 0,r(1) =r(2) =

highly significantly associated with smoking behavior. In particular, male

youths are 1 — exp(—1.087) = 66.3% less likely to have a desirable smoking
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Table 3: Descriptive statistics for the National Longitudinal Study of Youth

on tobacco use.

\

Female

Male Overall

Nonwhite
Live with parents
NS mother
Strict parents
Attend school
Neg. discipline
Smoking peers

Smoking status \ 0

1

Categorical variabl

Age (years)

14.0 (13.1, 14.9)

954 (28.3%)
1119 (33.2%)
2305 (68.4%)
1032 (30.6%)
2704 (80.2%)

98 (71.2%)

)
03! 7.6%)

334 (6.2%)

3887 (71.8%)

\14.0 (13.0,15.0)

13.9 (1

1174
1601 (

6366 (72.5

4061 (75.1%)

1268 (23.4%)

7527 (85.7%)

6616 (75.3%)
%) 7256 (82.6%)
) 799 (9.1%)

147 (4.4%) 205 (2.3%)
52 (1.5%) 88 (1%)
923 (27.4%) 1878 (21.4%)

168 (5%) 502 (5.7%)

1422 (42.2%) 5309 (60.5%)

= summarized by N (%) and quantitative variables by median
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S

Nonsmoker (n-5309)

3/\4

Former smoker (n-1878) Light infrequent (n-502)

\ (

1

Light frequent (n=205)

Heavy frequent (n-799)

Figure 2: Hasse diagram from [Zhang & Ip (2012)) for the

tudinal Study of Youth on t\acco use.

an alternative scoring

cerial, which shows similar

can be immediately extended to a stratified anal-
ysis, which is desi > if there is considerable between-strata heterogeneity.
Let X ®the categorical variable to be stratified on, e.g., sex, race,

or age groups, where X is a discrete space. To restrict comparisons within
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Table 4: Win ratio regression analysis of smokin

Longitudinal Study of Youth on tobacco use.

Naive Pseudo-efficient

Estimate Std error p-value Estimate St

Male —1.087 0.046 <0.001 —1.156
Nonwhite 0.623 \0.053 <0.001 0.047 <0.001
Age (years) 0.014 0.021 0.018 0.155
Live w. parents 0.442 0.044 <0.001
NS mother —0.537 —0.602 0.045 <0.001

Strict parents 0.623 0.045 <0.001

Attend school 1.221 0.056 <0.001

—0.722 0.046 <0.001
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each stratum, simply treat ) x X as the new outcome space, equipped with
the partial order =<y such that (vy;,x;) =< (y;,2;) if and only if y; < y; and

x; = xj. Under this formulation, the results for nonparametric inference

and semiparametric regression carry over without change. \

Compared to standard parametric models, the Win\atio provides\

parsimonious approach to treatment or covariat Pis, by focugiWg

on the global favorability of outcomes under the

tations for outcoVs that pr i o e educational attainment

(Agresti, [2010). A smaller sa \IS0 favor parametric methods

possible.
of partially ordered data has received insufficient
ture, and Theorem [I] and Proposition [5] provide only
preliminary results on this topic. For the multiplicative win ratio model,

in particular, the pseudo-efficient estimators show improvements over the
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naive ones but are not guaranteed to be globally optimal. A complete

semiparametric efficiency theory, traditionally relying on the concept of

influence functions (Bickel et al., |1993), is complicated by the pairwise

formulation of the model, which makes it hard to isolate the ikuence of

each individual. Recently, [Vermeulen et al.| (2023) exami\d the efficienyg

problem for the probabilistic index model (Thasj
defined model for continuous and ordinal outcom8

help shed light on the structurally similar win ratio regression.

Appendix

\

Proof of Lemma [1]

The inequalities fOgow by Defin U(y) being an up-set. For

shal" 11 {U(y)} = vo{U(y)} for all

strictness, suppose for a gont

must have that vy (Uly]) > vo(Uly]).

)

), contradicting the assumption that vy > 1.

or all y € )V, which is impossible unless
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Proof of Proposition

For sufficiency of (3.3)), use calculations similar to the proof of Proposition

[ to find that

pr(Yo=1|Z)pr(Y; =01 2;) _ exp(y + ﬁT>i)
pr(Y = 0] Zgpr(Y; =112) e\ 5'7)

= exp{f"(Zi - Z))},

R(Ziv Zj) =

where the second equality follows by pr(Y = 1

3.3)

Proof of Propoiion

Let S(y | Z2) = pr(Y =w | r odel (3.4), the numerator of

exp{v(y)}S(y | Z:)S(y | Z;) (6.12)
(14 exp{y(y) + BTZ}][1 + exp{y(y) + B~ Z;}]

=exp(87Z:) Y

yey
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By symmetry, the denominator of R(Z;, Z;) is the far right hand side of
(6.12) with the factor exp(8*Z;) replaced with exp(8*Z;). This yields the

desired form of R(Z;, Z;) in (3.2).

Proof of Propostion

Supplementary Material&

Supplementary mgterials inclulgatec . and additional numerical

studies. An R-package poset ! Dle > the proposed methodology

| N

is available on Git At AW 2ovisc . github. io/poset as well as

on the liver
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