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I N
Abstract

Large-scale geo-sequestration of anthropogenic carbon dioxide (CO,) is one of the most promising methods
to mitigate the effects of climate change without significant stress on the current energy infrastructure.
However, the successful implementation of CO, sequestration projects in suitable geological formations,
such as deep saline aquifers and depleted hydrocarbon reservoirs, is contingent upon the optimal selection
of decision parameters constrained by several key uncertainty parameters. This study performs an in-depth
parametric analysis of different CO, injection scenarios (water-alternating gas, continuous, intermittent)
for aquifers with varying petrophysical properties. The petrophysical properties evaluated in this study
include aquifer permeability, porosity, relative permeability, critical gas saturation, and others. Based on
the extensive data collected from the literature, we generated a large set of simulated data for different
operating conditions and geological settings, which is used to formulate a proxy model using different
machine learning methods. The injection is run for 25 years with 275 years of post-injection monitoring.
The results demonstrated the effectiveness of the machine learning models in predicting the CO, trapping
mechanism with a negligible prediction error while ensuring a low computational time. Each model
demonstrated acceptable accuracy (R? >0.93), with the XGBoost model showing the best accuracy with an
R? value of 0.999, 0.995, and 0.985 for predicting the dissolved, trapped, and mobile phase CO,. Finally,
a feature importance analysis is conducted to understand the effect of different petrophysical properties
on CO, trapping mechanisms. The WAG process exhibited a higher CO, dissolution than the continuous
or intermittent CO, injection process. The porosity and permeability are the most influential features for
predicting the fate of the injected CO,. The results from this study show that the data-driven proxy models
can be used as a computationally efficient alternative to optimize CO, sequestration operations in deep
saline aquifers effectively.

Keywords: CO, sequestration, Saline aquifers, Machine learning, Reservoir simulation, WAG process

Introduction

The increasing levels of carbon dioxide (CO,) emission into the atmosphere from human activities such as
burning fossil fuels and deforestation have raised serious concerns about their impact on the environment
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and climate. This increased emission has led to global warming, causing significant changes in weather
patterns, melting polar ice caps, and rising sea levels. To mitigate these impacts, there is a growing
need to find ways to capture and sequester anthropogenic CO,. One such approach is CO, sequestration,
where CO, is captured from the atmosphere and industrial processes and then injected into geological
formations such as depleted oil, deep saline aquifers, gas reservoirs, and unmineable coal beds (Klara et
al., 2003). The International Energy Agency (IEA) predicts that by 2030, over 220 Mt of CO, will be
captured annually (IEA, 2022), and the deep saline aquifers have the most significant storage potential for
larger-scale migration of the captured CO, (Wei et al., 2022; Yu et al., 2021). However, despite offering
significant storage potential, implementing carbon capture and storage (CCS) projects in deep saline aquifers
is challenging due to the various technical and economic uncertainties. These challenges include issues
related to site characterization, leakage, monitoring, and economic feasibility (Bachu, 2008; Lucier &
Zoback, 2008). Therefore, properly investigating the site geology and optimizing the relevant parameters
are important for successfully implementing CO, sequestration projects in deep saline aquifers.

Numerous experimental and numerical studies have evaluated different aspects of CO, storage in
deep saline aquifers. The experimental studies conducted on CO, sequestration in deep saline aquifers
are focused on exploring various aspects of the sequestration process, such as investigating different
trapping mechanisms (dissolution, mineralization, and residual), determining storage capacity, enhancing
the trapping capacity, and evaluating other relevant mechanisms (Bachu, 2002). However, experimental
studies on deep saline aquifers for CO, sequestration are limited by several factors, including the high-cost
experiments, safety concerns associated with the large amount of CO,, and the limitations of techniques
used to monitor and measure the storage amount of CO,. Additionally, the small scale of the experiments
can lead to difficulties in extrapolating results to a larger scale and accurately predicting the behavior of
CO, storage in the subsurface over long periods (Liu et al., 2019; Oloruntobi & LaForce, 2009).

Physics-based numerical simulation is a widely used approach to study the CO, sequestration process in
deep saline aquifers. This approach is particularly useful as it offers an economical and non-invasive solution
to assess the CO, trapping mechanisms in deep saline aquifers, and it can also be used to complement and
validate the findings from experimental studies. Kumar et al. (Kumar et al., 2004) conducted a compositional
reservoir simulation of a typical CO, sequestration project in a deep saline aquifer to comprehend and
quantify the sequestrated CO, in different mechanisms. They altered the geological parameters of the base
case model to present that aqueous and mineral trapping is the most efficient mechanism for CO, storage.
Based on the cases of their study, they concluded that the capacity of CO, storage by residual trapping
is higher than mineral trapping. Rasheed et al.(Rasheed et al., 2020) concluded that low to medium-level
heterogeneous aquifers with good porosity (>20%) are suitable for CO, storage. The understanding of the
detailed mechanism of subsurface sequestration is limited due to the scarcity of information about the
heterogeneity and the geometry of the aquifer selected for the process (Bachu et al., 2007). The outcome
of CO, sequestration is contingent upon various factors such as the injection rate, pressure, strategy, and
the design of the injection well. In their study, Calabrese et al. (Calabrese et al., 2005) aimed to understand
the physical and chemical processes that occur during CO, sequestration in a depleted gas reservoir located
in northern Italy. They concluded that an optimum injection rate must be obtained to maximize the storage
capacity. At a higher injection rate, the storage capacity is reduced as the gas channels through high
permeability streaks, and with a lower injection rate, denser CO, sinks to the bottom of the gas zone
and dissolves into the aquifers. The researchers also concluded that factors such as molecular diffusion,
dispersion, and geochemistry is less important in assessing CO, storage. Water alternating gas (WAG) has
been found to be effective in increasing the aquifer's storage capacity and improving the efficiency of the
CO, sequestration process. Pan et al. (Pan et al., 2016) compared the WAG process with continuous CO,
injection schemes in their investigation. They concluded that in WAG process, the water helps to create
pathways (increased effective porosity by 2.7% and permeability by 8.4%) for the CO, to flow into the
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aquifer, and the pressure changes caused by the alternation of the water and CO, help to keep the CO, in place
within the aquifer. Al-Khdheeawi et al. (Al-Khdheeawi et al., 2018a) also concluded that the WAG process
improves CO, storage efficiency and reduces the vertical CO, leakage risk. Several other investigations
have explored the different aspects of CO, storage in deep saline aquifers, including the effect of uncertain
geological and decision parameters of the storage capacity (Khanal & Shahriar, 2022), trapping efficiency,
and risk associated with leakage of the storage (Al-Khdheeawi et al., 2018b), application of nanoparticles
for quick mixing of CO, in brine (Singh et al., 2012).

Despite their versatility, numerical reservoir simulations can be difficult, time-consuming, and
computationally intensive. Processing the simulation data for sensitivity analysis and optimization can be
time-consuming, and each new simulation requires a significant amount of complex geological data. While
a well-validated reservoir simulation model is necessary for mature projects and requires a lot of geological
data, more accurate, reliable, and quicker results are often needed for initial screening and evaluation studies.

Machine learning (ML) models can be adapted as a practical tool for CCS projects. ML algorithms are
able to learn from historical data, make predictions, and perform optimizations more efficiently and with
greater speed than traditional simulation methods. For instance, Song et al. (Song et al., 2020) used an
artificial neural network (ANN) to forecast the Capacity for CO, storage by considering a synthetic model
to generate the training dataset. Kim et al. (Kim et al., 2017) also used ANN to predict the storage efficiency
of CO, sequestration in deep saline aquifers. They generated 150 different reservoir models by altering
properties such as permeability, porosity, residual oil saturation, thickness, and depth, which were then
utilized to create a proxy model based on an artificial neural network (ANN). Menad et al. (Menad et al.,
2019) utilized advanced machine learning models, such as multilayer perceptron (MLP) and radial basis
function neural network (RBFNN), to predict the solubility of CO, in brine for monitoring CO, sequestration
in saline aquifers. They applied different algorithms to optimize the models and concluded that RBFNN
optimized with artificial bee colony (ABC) algorithm is the most reliable one for predicting the solubility
of CO, in brine. Recently Safaei-Farouji et al. (Safaei-Farouji et al., 2022) worked on predicting the carbon
trapping efficiency in storage formations by using four different ML algorithms: neuro-fuzzy inference
system (ANFIS), extra tree (ET), random forest (RF) and radial basis function (RBF). They extracted 1868
data points of residual and solubility trapping of CO, from the published literature for training, testing, and
validation. They concluded that RF provides better accuracy in predicting residual and solubility trapping
with the R? value of 0.995 and 0.965, respectively. They also concluded that depth and post-injection time
are the most influential factors for residual and solubility trapping performance.

In summary, this article investigates the potential effect of different injection scenarios for CO, trapping
and compared the effectiveness of the WAG process over continuous and intermittent CO, injection. This
work will use various machine learning algorithms to optimize the ultimate storage capacity of CO, in
deep saline aquifers. The paper is structured as follows: First, detailed numerical simulations with varying
conditions are conducted using a 3D model to evaluate various aspects of CO, sequestration in a deep saline
aquifer. A finite reservoir is considered for the base case model where CO, is injected for 25 years, after
which the reservoir will be monitored for a further period of 275 years to evaluate the efficiency of different
trapping mechanisms (dissolution, residual, and structural trapping). After that, numerous iterations are
conducted by changing operating conditions and reservoir properties. Finally, the generated data is used to
train the XGBoost, RF, and ANN models for prediction. The proposed methodology can be utilized to predict
CO, sequestration efficiency without extensive and time-consuming compositional reservoir simulations.
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Materials and Methods

Reservoir Model

The CO, sequestration process is simulated in the GEM reservoir simulation package by the computer
modeling group (CMG-v2023.40). This model considers a multi-component system of brine and CO,
through component transport equations and thermodynamic equations between the gas and aqueous phases.
In this simulation, the foundation for the mathematical models is established through the application of
mass balance equations for every key component or phase present in the system (Celia et al., 2015). The
accumulation of CO, in a closed system with o phases and i components can be calculated using the
governing equation, which takes into account the contributions from convective mass transfer, diffusive/
dispersive mass transfer, consumption due to chemical reactions, and the mass of the injected gas. The
governing equation is-

Za:%pa¢samai = ;V . (pauamai + ]a) + i+ l//ai (1)

Where, p, is the density of the phase a, ¢ is the porosity, s, is the saturation of the fluid phase a, m, is the
mass fraction of the i component in o phase, u, is the Darcy flux for phase a, j, is the nonadvective flux of
the i component in a phase and y,: represents external sources or sinks of mass of component i in o phase.

A synthetic single-well CO, injection model shown in Fig.1 is used for the base case model in this
study. This study employs a limited reservoir size to reduce computational time, with a potential for scaling
to accommodate larger reservoirs (Khanal & Weijermars, 2019). The homogeneous model uses uniform
porosity and permeability and is 500 m x 500 m x 125 m with a uniform grid system of 31,250 cells divided
into 50 x 25 x 25 grids. The total pore and block volumes are calculated as 4.687 x 10° m? and 3.125 x 107
m?, respectively. 300 m?/day of CO, is injected at a depth range of 2365 m — 2375 m through the injector
placed at the corner of the model. The perforation of the well was performed on the 23rd to the 25th layer
and covered a length of 10 meters. The CO, is injected into the aquifer for 25 years, followed by a 275-year
post-injection period. The geological properties, including input parameters of the saline aquifer model, are
presented in Table 1.

Ground Surface

2310
2250 m
€0, Injector
2358
€0, Injector
2346

125m

2250

Depth (meters)

Figure 1—A visual representation of the deep saline aquifer for CO, storage
is shown through a 3D view on the left and a cross-section view on the right.
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Table 1—Saline aquifer system input parameters.

Aquifer Properties Values
Reservoir temperature (°C) 50

Max. bottom hole pressure (KPa) 44,500

Grid number 31,250 (50%25%25)

Length (m) 500
Width (m) 500

Depth at the top (m) 225,0
Thickness (m) 125
Permeability (mD) 200
Porosity 0.15
SC,./PV 0.2

*SC = surface condition, PV = pore volume

Relative permeability is an important parameter and is used to determine the effective permeability of
CO, and brine. The relative permeability curve shown in Fig. 2 has been sourced from Khanal et al. (Khanal
et al., 2024) for the reservoir model used in this study. The thermodynamic equilibrium between the gas
and the aqueous phase determines the solubility of CO, in the aqueous phase. Peng Robinson's Equation
of State (PR EOS) and Henry's law (Ali et al., 2014) are used to calculate the gas phase's fugacity and
the components dissolved in the aqueous phase, respectively. The Harvey correlation is used to calculate
Henry's law constant at varying temperatures and pressures (Ali et al., 2014).
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Krg scanning curve at sgh =0.725
i Krg scanning curve at sgh =0.559 500
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= =<
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=
g 05 2 300
o £
= 04 =
2 = 200
4 =
03 =
o
0.2
100
0.1
0 7 0
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Liquid Saturation Liquid Saturation
(a) (b)

Figure 2—(a) Relative permeability and scanning curve for drainage
and imbibition and (b) Capillary pressure curve (Khanal et al., 2024).

Workflow for Developing Machine Learning Models

The data generated from the simulation model is prepared for the testing, training, and validation of the
model. Then, feature scaling is applied to transform the input and target data into the same scale. In this
work, data normalization has been done into a standard range of -1 to 1 by using the following formula-

x=2(#%) 1 2)
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Where x represents the original value of the given parameter, x' represents the scaled value of x, min(x)
is the minimum value of x, and max(x) represents the maximum value of x.

The phase then begins by subdividing the dataset into training, testing, and validation. A K-fold
(K=5) cross-validation method is applied during the selection of training and testing. Next, the multilayer
perceptron (MLP), Random Forest (RF), and Extreme gradient boosting (XGBoost) machine learning
models are applied to the target dataset. Then, finally, the performance of each model is analyzed using
various statistical indexes described below-

51 il
=1 yisim yipl” ed,

Coefficient of determination (R?) : R?=1- . > 3)
Zi:](y i pred_y)
n
Mean Squared Error (MSE) : MAE = ﬁIZIyism ~Vipre a" 4)
=1
n 2
Mean Squared Error (MSE) : MSE = %Z(yl.s_m Vi d) (5)
=1
N :
Root Mean Squared Error (RMSE) : RMSE = Jﬁ;(yisim “Yipre d) (6)

Where, ¥ indicates the average value, y, and Vipred denotes the simulated and predicted values,
stm

respectively. Fig.3. Illustrates the general workflow of applying ML models.

Pre-Processing of
Data

*Data normalization

Applying Machine
Learning Model

*XGBoost
*ANN
*RF

*Data collected
from the

numerical

simulation model

*Randomly dividing
the base data to
training and
testing dataset

¢ Evaluating the
model through
statistical analysis.

Model Evaluation

Data Collection

Splitting Data

Figure 3—General workflow of applying machine learning algorithms
for predicting the CO, trapping mechanisms in the deep saline aquifer.

Result and Discussion

Comparison between Continuous, Intermittent, and WAG Injection Processes

This section analyzes continuous and intermittent WAG injection processes to assess the CO,-trapping
efficiency. For all the processes, an equal amount of CO, is injected for 25 years and then monitored for 275
years. The comparison between continuous, intermittent, and WAG processes demonstrated that a higher
amount of CO, dissolved in the WAG process. Fig.4 presents the extent of CO, trapped by dissolution,
residual, and structural trapping over the simulation period (300 years).
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Figure 4—a) Dissolved, (b) Residually trapped, and (c) Mobile phase CO, in
Continuous, Intermittent, and WAG injection process after 300 years of period.

After the injection period (25 years), ~85% of the injected CO, is dissolved in the WAG process, whereas
in the intermittent and continuous injection process, ~42% of the injected CO, is dissolved (Fig. 5). In the
WAG process, the larger CO,-water contact surface area increases the lateral spreading of CO, (Doughty,
2010); hence, more CO, comes into contact with the fresh brine and get dissolved. During the initial period,
it is observed that more CO, tends to be trapped residually in the intermittent injection process. However,
no significant differences in dissolution trapping are observed for the intermittent and continuous injection
process. The reason behind the initial differences in residual trapping for intermittent and continuous
processes is due to the time lag between imbibition and maximum CO, gas saturation achieved before
imbibition starts. As no significant imbibition is expected to happen before the injection stops (Doughty,
2007), the intermittent injection process experiences more imbibition in the initial period. After several
imbibition and drainage cycles, the maximum saturation of CO, is reduced in the intermittent injection
process. Therefore, less residual trapping is observed after ~9 years in intermittent injection compared to
the continuous injection process (Fig.5).
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Figure 5—(a) Dissolved, (b) Residually trapped, and (c) Mobile CO, in Continuous, Intermittent, and
WAG injection process after 25 year of period. The red box in (b) is the zoomed section of the blue box.

Effects of Wag Ratio

The WAG ratio significantly affects the trapping efficiency of CO, in the reservoir. This study uses WAG
ratios of 1:1, 1:2, 1:3, and 2:1 to examine the effect on CO, trapping efficiency (Fig. 6a-b). For all the cases,
an equal amount of CO, is injected over a period of 25 years. It is observed that increasing the CO, injection
cycle time increases the residual trapping and mobile phase of CO,. On the other hand, increasing the water
injection cycle time leads to more dissolution trapping, as more water would be available to dissolve the
injected gas. The findings are important as they suggest that CO, injection for a longer period of time
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in the WAG process could increase the mobile phase CO, which may increase the risk for CO, leakage
through caprock, whereas increasing the water injection cycle time will lead to a lower mobile phase CO,
and increase the dissolution trapping.
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Figure 6—(a) and (b) Presents the WAG ratio for one year used in this study, and (c), (d), and (e) are the
dissolved, residually trapped, and mobile phase CO, in different WAG ratios after 25 years of period.

Results of Proxy Models

Data Generation for Proxy Model. The WAG process with a ratio of 1:1 is selected as the base case model
for developing the ML model. We generated numerous iterations of the base case by changing different
uncertain properties of the reservoir. To represent different geological storage, nine parameters were varied.
The range of values for the selected parameters is based on previous literature (Krevor et al., 2012; Medina
etal.,2011; Michael etal., 2010; Vo Thanh & Lee, 2022; Zhao et al., 2010). Table 2 Represents the statistical
overview of the input parameters considered in this study. In total, 90 geological realizations are considered
during the WAG process to investigate the uncertainty of reservoir heterogeneities. For each case after five
years of interval, the amount of CO, trapped by dissolution, residual, and structural is considered as one
data point. In total, 5,551 data points are generated from the simulations for training, testing, and validating
the ML model. In order to avoid bias in selecting the training and testing dataset, this study employs a five-
fold cross-validation method.

Table 2—Statistical overview of the input parameters.

Parameter Range Reference
Porosity 0.10 - 0.30 (Medina et al., 2011; Michael et al., 2010)
Permeability (mD) 20 - 1000 (Medina et al., 2011; Michael et al., 2010)
Permeability ratio, k/k;) 0.01 -1 (Zhao et al., 2010)
Maximum residual gas saturation 0.1-0.5 (Vo Thanh & Lee, 2022)
Krg at Connate liquid 0.5-0.9 (Krevor et al., 2012)

Exponent for calculating Krw 5-17 (Krevor et al., 2012)
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Parameter Range Reference
Exponent for calculating Krg 1-4 (Krevor et al., 2012)
Endpoint Saturation: Critical gas 0.02-0.2 (Krevor et al., 2012)
Endpoint Saturation: Critical water 0.2-0.4 (Krevor et al., 2012)

Results of Machine Learning Models. In this study, three different ML models (RF, MLP, and XGBoost)
are applied to predict the fate of the CO, inside the reservoir. The capacity to capture nonlinear relationships
and the ability to handle high-dimensional and heterogeneous data made these models well-recognized in
CCS projects (Khanal & Shahriar, 2022; You et al., 2020). However, the hyperparameters of the ML models
need to be tuned to improve the prediction accuracy. This study uses the RandomSearchCV optimization
technique to identify the optimal set of hyperparameters. As it can effectively explore the hyperparameter
space by randomly sampling values from redefined distributions, especially when dealing with large search
space of hyperparameters. Moreover, it is faster than other hyperparameter tuning techniques. Table 3
summarizes the hyperparameters and their optimal values for RF, MLP, and XGBoost models.

Table 3—Hyperparameters and their optimal values for the ML models used in this study.

Models Prediction Target Parameters
XGBoost CO, Dissolved {*colsample bytree’: 0.84, ‘learning_rate’: 0.189,
‘max_depth’: 5, ‘n_estimators’: 177, ‘subsample’: 0.96}
CO, Trapped {*colsample bytree’: 0.83, ‘learning_rate’: 0.108,
‘max_depth’: 8, ‘n_estimators’: 117, ‘subsample’: 0.82}
CO, Mobile {‘colsample bytree’: 0.91, ‘learning_rate’: 0.112,
‘max_depth’: 8, ‘n_estimators’: 168, ‘subsample’: 0.85}
MLP CO, Dissolved {‘solver’: ‘Ibfgs,” ‘hidden_layer sizes’:
(64, 32), “alpha’: 0.1, ‘activation’: ‘relu’}
CO, Trapped
CO, Mobile
RF CO, Dissolved {‘bootstrap’: True, ‘max_depth’: 21, ‘min_samples_leaf’:
1, ‘min_samples_split’: 2, ‘n_estimators’: 1281}
CO, Trapped
CO, Mobile

Figure 7 shows the performance of ML models for predicting the dissolved, trapped, and mobile
phase CO,. A higher correlation factor (R?) and lower evaluation matrices generally correspond to higher
predictive model accuracy. For a better understanding of the prediction accuracy, the statistical accuracy of
each model is detailed in Table 4. For all the models, the R? values are satisfactory. However, the XGBoost
model shows the best accuracy with R? values of 0.999, 0.995, and 0.985 for predicting the dissolved,
trapped, and mobile phase CO,, respectively. For all the cases, the R? value for mobile phase CO, is lower
compared to the dissolved and trapped CO,. As time goes on, the mobile phase CO, approaches zero due
to dissolution and residual trapping. Since all the data for dissolved, trapped, and mobile phase CO, are
recorded after every five-year interval, time is strongly correlated with the amount of CO, trapped by these
mechanisms. But as the mobile phase CO, diminishes to zero sooner than the dissolved and trapped phase
CO,, less data is available to train the machine learning models, which leads to a lower R? value.
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Figure 7—Performance of predictive models obtained from XGBoost, RF, and MLP models.

Table 4—Statistical accuracy of the proposed machine learning models in predicting dissolved, trapped, and mobile phase CO,.

Models Prediction Target Evaluation Metrics
R2 MAE MSE RMSE
XGBoost CO, Dissolved 0.99962 0.00306 0.00004 0.00620
CO, Trapped 0.99514 0.00667 0.00025 0.01569
CO, Mobile 0.97876 0.00456 0.00033 0.01823
MLP CO, Dissolved 0.99862 0.00633 0.00014 0.01174
CO, Trapped 0.98672 0.01409 0.00067 0.02594
CO, Mobile 0.93292 0.00977 0.00105 0.03240
RF CO, Dissolved 0.99799 0.00440 0.00019 0.01414
CO, Trapped 0.98773 0.00937 0.00062 0.02494
CO, Mobile 0.93123 0.00839 0.00108 0.03281

Feature Importance Analysis. We investigated the effect of input parameters on the fate of CO, inside the
reservoir by calculating the feature importance plot for the machine learning models evaluated in this study
(XGBoost and RF). In the feature analysis of RF and XGBoost, there must be a strong relationship of time
with dissolved, mobile, and trapped CO,, as with time, the fate of the CO, changes within the reservoir.
However, we excluded time in the feature analysis to underscore the importance of other parameters in
relation to the different phases of CO,. Fig.8 shows that for both models, porosity is the most important
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parameter for predicting the dissolved CO,, which means dissolution trapping of CO, is greatly related to
porosity. If the reservoir porosity is low, the pressure within the reservoir will increase with CO, injection.
As the pressure-dependent Henry's constant controls the gas dissolution, the dissolution of CO, will also
increase (Khanal et al., 2024). For the trapped CO,, the most important feature is the vertical permeability,
with a score of 0.60 in RF and 0.33 in the XGBoost model. This indicates that compared to the horizontal
permeability, the vertical permeability of the reservoir significantly influences the trapping of CO,. In the
case of predicting the mobile phase CO,, vertical permeability is again the most crucial feature, with an
importance factor of 0.62, and the second most important feature is horizontal permeability in the RF model.
This is because, with high permeability, more brine can flow towards the perforation zone and will come
in contact with the fresh brine; hence, more CO, will dissolve. We can also relate this with the feature
importance plot, which shows that the second most important feature for predicting dissolved CO, is the
vertical permeability of the reservoir.

SWCRIT SWCRIT
SGCRIT SGCRIT
Porosity Porosity
Kv/kh ratio Kv/kh ratio
Perm.V Perm. V ]
Perm. H & Perm. H ;—I
Nw h Nw
No h mDissolved - @ Dissolved
KRGCL , @Trapped KRGCL @ Trapped
Hyskrg E @Mobile Hyskrg @ Mobile
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 0 0.1 0.2 03 04 05 0.6 0.7 08
(a) (b)

Figure 8—Feature importance plot for dissolved, residual, and mobile phase CO, for (a) RF and (b)
XGBoost model. SWCRIT: Critical water saturation, SGCRIT: Critical gas saturation, Perm. V: Vertical
permeability, Perm. H: Horizontal permeability, KRGCL: Krg at Connate Liquid, Hyskrg: Hysteresis
residual gas saturation, Nw: Exponent for calculating Krw and Ng: Exponent for calculating Krg.

Conclusions

This study investigated different CO, injection schemes in underground CO, storage projects. A proxy
model for a deep saline aquifer is developed using the machine learning model for predicting the CO,
trapping scenarios. Moreover, a feature importance analysis has been conducted to understand the effect of
different parameters on dissolved, trapped, and mobile phase CO,. The following conclusion can be drawn
from the findings of this work:

1. The WAG process is more suitable for safe CO, trapping in deep saline aquifers (Fig.5). In the WAG
process, more CO, comes in contact with the brine solution; hence, the dissolution rate is higher
compared to the intermittent and continuous injection process. However, further investigation on the
effect of injection rate, injection position, and economic analysis is required before concluding which
injection process is optimal for CCS projects.

2. Increasing the water injection cycle time in the WAG process is more suitable for CO, storage through
dissolution trapping (Fig.6).

3. A proxy-based reservoir model can be developed using the ML models to accurately predict the CO,
trapping mechanisms, which offers saving in both time and resources.

4. Three different ML models (XGBoost, RF, and MLP) are used to predict the dissolved, trapped, and
mobile CO, scenarios. The R?, MAE, MSE, and RMSE values are satisfactory for all the models.
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However, the XGBoost model shows better prediction accuracy than other models, with an R? value
01 0.999, 0.995, and 0.985 for predicting the dissolved, trapped, and mobile phase CO,, respectively
(Table 4).

Porosity is the most important feature for predicting dissolved CO, while vertical permeability is the
most crucial parameter for predicting trapped and mobile phase CO, (Fig.8).
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