2024 International Conference on Machine Learning and Applications (ICMLA) | 979-8-3503-7488-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICMLA61862.2024.00291

2024 International Conference on Machine Learning and Applications (ICMLA)

Unifying Robust Activation Functions for Reduced
Adversarial Vulnerability with the Parametric
Generalized Gamma Function

Sheila Alemany*, Emma Worthington®, Alberto Dominguez!, Ilan Grapel?, Niki Pissinou®
*§School of Computing and Information Sciences, Florida International University
TCollege of Engineering and Applied Science, University of Colorado Boulder
National Science Foundation Research Experience for Teachers Fellow
{*salem010, 8pissinou} @fiu.edu

Abstract—Adversaries minimally perturb deep learning input
data to reduce a learning model’s ability to produce domain-
specific data-driven recommendations to solve specialized tasks.
This vulnerability to adversarial perturbations has been argued
to stem from a learning model’s non-local generalization over
complex input data. Given the incomplete information in a
complex dataset, a learning model captures non-linear patterns
between data points with volatility in the loss surface and
exploitable areas of low-confidence knowledge. It is the respon-
sibility of activation functions to capture the non-linearity in
data and, thus, has inspired disjointed research efforts to create
robust activation functions. This work unifies the properties
of activation functions that contribute to robust generalization
with the generalized gamma distribution function. We show
that combining the disjointed characteristics presented in the
literature with our parametric generalized gamma activation
function provides more effective robustness than the individual
characteristics alone'.

I. INTRODUCTION

The fast-paced development of machine learning models
with exceptional accuracy and generalization has begun an
equally intense pursuit of creating robust and resilient systems.
One of the critical challenges in this pursuit is the vulnerability
of machine learning models, especially deep neural networks,
to adversarial attacks [1]. Attackers generate malicious inputs
by optimizing their attacks to find a minimal perturbation to
an existing input sample based on the model’s probability
density function and decision surface such that it causes
incorrect model output. These adversarial perturbations have
been shown to impact real-world domains, especially in safety-
critical applications like autonomous vehicles [2], medical
diagnoses [3], and mobile/Internet of Things (IoT) systems
[4].

In attempts to maintain high-performing accuracy despite
these stealthy malicious inputs (e.g., increasing adversarial ro-
bustness), existing literature has proposed adversarial training
[5], regularization [6], and varying data augmentations [7].
Of existing efforts in realm of adversarial machine learning,
adversarial training has been shown to maintain the highest-
performing machine learning models [5]. However, it has been

I'The source code for this research effort: https://github.com/sheilaalemany/
generalized- gamma-activation.git

found to have poor generalization and a significant increase
in training time, keeping the pursuit of adversarial robustness
a significant research priority [8]. A common thread among
proposed improvements is the importance of the parameter loss
and decision surfaces that facilitate or inhibit an adversary’s
ability to attack effectively.

Activation functions play a significant role in a learning
model’s created decision surfaces, even in scenarios with
comparable high generalization performance. As a result,
studies have explored curvature in activation functions to
improve the generalization quality of adversarial training and
the overall adversarial robustness [9]. Additionally, varying
activation functions have been proposed to increase the overall
adversarial robustness through different means (e.g., non-
monotonicity and symmetry) [10], [11], [12]. Unfortunately,
it seems as though these efforts were disjointly executed.
Thus, they reached separate, parallel conclusions. As a result,
we propose a parametric activation function that unifies the
properties of existing robust activation functions and evaluate
how consolidating these characteristics impact the overall
decision surface from an adversarial robustness perspective.

II. RELATED WORK

a) Loss and Decision Surfaces for Robustness: The
geometric representations of knowledge (i.e., input/parameter
loss surfaces, decision surfaces) have been studied in machine
learning for improved explainability [13], [14]. Researchers
have begun similarly analyzing learning models from an
adversarially robust perspective [15]. However, similar to the
noteworthy research area of explainable Al, there remain
substantial questions regarding all the geometric qualities that
prevent an adversary’s ability to optimize the most uncertain or
humanely-unpredictable outputs. Adversaries have efficiently
identified these uncertain spaces by traversing the loss and
decision surfaces while optimizing their attacks [16], [17].
Thus, successful defenses, such as adversarial training, in-
crease robustness by directly focusing on the uncertainty of
the spaces that specific attacks target [18]. Meanwhile, others,
such as robust feature selection or dimensionality reduction
techniques, aim to minimize the overall model uncertainty
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[19]. These defenses have been shown to increase robustness,
but work still needs to be done for an overall better understand-
ing of what we, as a research community, strive for regarding
a robust decision surface.

Various efforts have identified smoothness as a favorable
characteristic of adversarial robustness. Smoothness refers to
the property of a model’s loss or decision surface to change
gradually and predictably as the input data changes (e.g.,
higher quality generalization) [20]. Visually, as expected, the
surfaces look smooth, with no visual steps. From an adversar-
ial perspective, the lack of smoothness in a decision boundary
results in abrupt or erratic changes in its output, resulting in an
adversary’s ability to quickly identify minimal perturbations
that cause the most erratic change to a model’s output. On
the other hand, smoothness also impacts the transferability
of adversarial examples or malicious inputs’ ability to fool
unseen models with a significant success rate. Trained models
with local non-smooth loss surfaces harm the transferability
of generated adversarial examples [21]. Overall, smoothness
has been achieved by constraining the model’s architecture,
training process, or loss functions [22]. Defense techniques,
such as adversarial training and defensive distillation, have
combined the idea of smoothness with other strategies to create
models that are more resistant to adversarial attacks [23], [24],
[25].

Additionally, a flat loss surface, or the property of a learning
model’s loss function where the loss function value changes
only minimally as its parameters vary, has been positively
correlated with robustness [20], [26]. Kanai et al. [20] showed
how the flatness of the loss in the input space can contribute
to increased smoothness in the decision surface. In adversarial
training, a flat loss surface can contribute to stability during
the training process, reducing sharp and unpredictable local
minimum [26]. This works as a regularization technique that
discourages the trained model from fitting to noise or minor,
highly uncertain variations in data. Hence, it increases robust-
ness against these imperceptible malicious examples. Yu et al.
[15] argued that although a flat loss surface in the input space
is valuable under adversarial settings, observing the decision
surface contributes more insight into the adversarial robustness
of a model since the characteristics in the decision surface
correspond more highly to robustness compared to the loss
surface. In this work, we observed similar patterns.

b) Robust Activation Functions: Tavakoli et al. [10]
proposed SPLASH, a piecewise dynamic linear function op-
timized for robust generalization during training. Their opti-
mized activation function is non-monotonic and aligns with
the results by Zhao et al. [27], which proved the importance
of symmetric activations to suppress signals of exceptional
magnitude (i.e., more significant perturbations). Meanwhile,
Rozsa et al. [11] introduced tent activation functions with
bounded open space risk as they observed that adversaries
exploit the unbounded open space risk that standard monotonic
activation functions provide. Interestingly, they also show
that open space risk cascades over each layer to create an
overall vulnerable classifier implying that a robust activation

1893

must be present at each layer. Although SPLASH was a
dynamic function that was different and robustly specific to
each layer, they did not elaborate on which activation function
properties should be prioritized in early vs. later layers. The
main limitation with the approaches by the SPLASH [10] and
tent [11] activations is the significant (up to 2x) increase in
training time. Parisi et al. [28] reached a similar activation
shape as SPLASH without iterative learning that also improved
general robustness implying that the non-monotonic nature of
the activation function contributed more towards adversarial
robustness than the dynamic, unique activations per layer.
Lastly, Singla et al. [29] suggested using smoothness and low
curvature in activation functions to increase robust general-
ization, specifically when using adversarial training to avoid
overfitting to adversarial examples. Low curvature is defined
as relatively small second-derivative values for the activation
functions. Dai et al. [12] observed similar robustness effects
through low curvature with their ReBLU function. Still, they
did not explain its impacts on the decision surface and, thus,
the impact of low curvature on adversaries’ ability to optimize
stealthy malicious inputs. With this work, we aim to unify
the research efforts of robust activation functions and take
a deeper look into how this changes the decision surface to
better understand favorable or unfavorable characteristics from
a robustness perspective.
¢) Stackable Defenses Against Adversarial Examples:

Different from ensemble approaches, stackable defenses are
implemented through different sections of the machine learn-
ing pipeline. These defenses can be entirely independent but
target specific vulnerable components. For instance, detection
techniques can be used to filter out malicious inputs with larger
perturbation budgets along with dimensionality reduction to re-
duce uncertainty contributed by non-robust features to defend
against malicious inputs with smaller perturbation budgets
[30]. In addition to these defenses, adversarial training can
be stacked to increase robustness against adversarial examples
generated by a specific adversarial attack.

ITI. PARAMETRIC GENERALIZED GAMMA ACTIVATION
FUNCTION

Based on our literature review, we have pinpointed the fol-
lowing activation function characteristics as the main favorable
ones for increased adversarial robustness: (1) continuous and
differentiable in the range [0, 1] and domain (—o0, 00) to avoid
gradient masking [31]; (2) non-monotonic and symmetric [27],
[10]; (3) bounded with finite support (i.e., goes to 0 beyond
a certain distance from the origin) [11]; (4) smoothness [29];
and (5) relatively low curvature [29]. We chose to employ
the generalized gamma distribution function as an activation
function since we identified this as a highly parametric func-
tion that allows us to mold an activation function into one that
meets our required characteristics thanks to its shape and scale
parameters.

Figure 1 shows our generalized gamma activation
(GenGamma) function compared to ReLU, Swish, hyperbolic
tangent, and robust tent activation functions. It is worth
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Fig. 1: Comparing the generalized gamma activation function
with the ReLU, Swish, hyperbolic tangent, and robust tent
activation functions

mentioning that the activation function shape we reached with
our parametric generalized gamma function is similar to that of
the Gaussian distribution function. Sibi et al. [32] employed
the Gaussian activation function as activation functions for
optimizing the training process in deep learning. However,
the main characteristics of activation functions favorable for
increased adversarial robustness remain an open research prob-
lem. Thus, we anticipate that our generalized gamma activation
function is more adept for this application due to the flexible,
parametric nature of its shape and scale parameters as research
identifies further desired activation function qualities.

a) Initialization: The generalized gamma distribution has
two shape parameters (o, ¢), and a scale parameter (s). For
the activation function to be continuous and differentiable
from (—o0,00), we define the generalized gamma activation
function as:
|c|xca71€7wc

sT(a)

where z = >0, a>0,c#0 and I'(«) is the Gamma
function on . For < 0, f(x,a,¢) = 0. We achieved a
range within [0, 1] and function shape that met the implications
from past robust activation efforts with the parameters o = 1,
c 3, s 1.17, B = 3, and p = —2.6. Similarly to
the tent activations, initialization of the generalized gamma
activation function needs to ensure that significant inputs do
not fall into saturated regions to avoid low model performance
[11]. Observing the convergence of the loss values and of
high-performing accuracy, we were able to ensure the deep
learning model could still perform comparably compared to
the other activations. Given our initialized parameters, we
observed comparable accuracy when training on the MNIST
and CIFAR-10 datasets against the other activation functions
(within 5%). The scale parameter can be increased for more
complex models to maintain high-performing accuracy.

ey

.f(x7 a? C) =

T—p

IV. EVALUATION
A. Activation Functions

a) ReLU: The Rectified Linear Unit (ReLU) activation
function is widely used in deep learning models because its
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simple yet effective definition introduces non-linearity to the
network without being computationally exhaustive. This aids
the learning model to accurately represent complex relation-
ships found in data with less training time compared to other
activation functions [33]. It is defined as:

f(x) = max(0,z) 2)

The ReLU activation mitigates the vanishing gradient problem,
or when gradients become small to the point where they
hinder convergence to high-performance accuracy, that can be
present when using sigmoid or hyperbolic tangent [34]. Lastly,
sparsity is encouraged with this activation because negative
inputs are transformed to 0, with only a subset of neurons
being activated at any given time. Encouraging sparsity is
favorable from an adversarial defense perspective since sparse
networks tend to have a lower sensitivity to small changes
in input due to their nature of ignoring a significant portion
of their input space [35]. This can make it more difficult
for adversarial perturbations to impact the network’s decision
boundary significantly.

b) Swish: The swish activation function was introduced
as an alternative to the traditional ReLU [36]. It is defined as:

f(z) = x x sigmoid(Bx) 3)

where [ is a learnable parameter that determines the slope
of the function. The core idea behind the swish function is
that it maintains the desirable properties of ReLU (e.g., a
positive slope for positive inputs) but introduces a smoothness
akin to hyperbolic tangent for negative inputs. In addition
to smoothness, swish also contains lower curvature than the
existing hyperbolic tangent and sigmoid activations [29].

¢) Hyperbolic Tangent: The hyperbolic tangent activa-
tion function, often abbreviated as “tanh,” is a non-linear
function that transforms its input into a range between —1
and 1. It is defined as:

“

tanh(z) =
This activation function is symmetric and centered around
zero, which promotes a more balanced representation of data
and contributes to a probability density function that is more
humanely-predictable across the entire input space [27].

d) Robust Tent: The tent activation was derived based on
the core hypothesis that adversaries leverage open space risk
of activation functions when generating adversarial examples
since when the input strays from the training samples, there is
an increased risk that it is from an unknown, highly-uncertain
distribution. It is defined as:

f(z,0) = maz(0,6 — |z|) 5)

where ¢ is the parameter that determines the width of the tent,
making the function sensitive to initialization, similar to our
parametric generalized gamma activation function. In addition
to significantly increasing training time, the tent activation
primarily lacks smoothness.
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e) SPLASH: The Simple Piecewise Linear and Adaptive
with Symmetric Hinges (SPLASH) activation was derived as a
parameterized piecewise linear activation function that could
approximate a wide range of functions while restricting the
function to be continuous and grounded with symmetric and
fixed hinges. The number of hinges determines the number of
parameters that must be tuned during training. They incorpo-
rated the activation into the hidden unit A as:

(S+1)/2 (S+1)/2
h(z) = Z a®max(0,x—b%)+ Z a®mazx(0, —x—b%)
s=1 s=1

(0)
where S is the number of hinges in the activation function.
Given this definition per hidden layer, each layer derives a
unique function during training. This significantly increases
training time (up to 2x) but maintains high benign performance
accuracy while also increasing robustness. As stated in the
Section II, an activation of similar shape reached comparable
robustness as SPLASH hinting that the non-monotonicity
ultimately contributed more towards adversarial robustness
than the dynamic, unique activations per layer [28].

B. Training and Performance

Our training configuration for this work was LeNet-5, the
MNIST [37] and CIFAR-10 [38] datasets, with our activation
function requiring approximately 10% more epochs to reach
comparable performance (within 5% benign accuracy) to the
ReLU, hyperbolic tangent, and swish activation functions on
an M1 Macbook Pro. Both datasets were divided into a
75/15 training and testing split. Each activation function under
evaluation was included in each hidden layer since robustness
has shown to have a cascading effect in the hidden layers
[11]. The learning rate was 0.01 for all tests. We selected this
training environment to ensure the highest performance across
all the models that were trained without modifying any training
parameters outside of our control variable of the activation
functions. This is because even modifications to the learning
rate have been found to influence the optimized loss and
decision surfaces [39]. Thus, fine-tuning additional parameters
could impact an adversary’s ability to attack effectively and
impacting the conclusions of this work. Lastly, we could
not execute the tent and SPLASH activation functions with
comparable performances as reported in the original publica-
tions. Still, we compared our results against the documented
performances by SPLASH since they had the same evaluation
environment with LeNet-5, MNIST, and CIFAR-10.

C. Threat and Attack Methods

To ensure analysis for worst-case scenario robustness, we
tested the activation functions using white-box evasion attacks
where the adversary has full access to the trained neural net-
work, the defenses used, and the data distribution after training
[40]. We consider evasion attacks where the adversaries can
attack only during model deployment, meaning they tamper
with the input data after the deep learning model is trained.

To generate the adversarial examples, we used Fast Gradient
Sign Method (FGSM) [41], Projected Gradient Descent (PGD)
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[42], and C&W [, [43] attack implementations from the
Adversarial Robustness Toolbox by IBM Research [44] with
no changed hyperparameters. These attacks vary in how they
traverse the loss or decision surfaces to identify the most
stealthy adversarial example possible. FGSM is an efficient,
one-step attack that generates adversarial examples using the
gradient of the loss function. PGD is an iterative improvement
over FGSM that refines perturbations using multiple iterations
and projection. C&W results in the stealthiest malicious inputs
as it minimizes an objective function that consists of two
components: a loss term that encourages misclassification and
a term that encourages the perturbed image to be visually
similar to the original image.

V. RESULTS

We are focused on the robustness of neural network clas-
sifiers, our primary metric is the networks’ performance ac-
curacy as a function of the perturbation budget, or distortion
(e). Specifically, we define attack success as an adversary’s
ability to reduce model accuracy: attack success = 1—model
accuracy. To ensure that we evaluate an adversary’s impact
on the accuracy, we only perturb 1,000 random benign in-
put samples that were correctly classified before the model
was attacked. Figure 2 compares the activation functions,
our generalized gamma activation against ReL.U, swish, and
hyperbolic tangent, with the MNIST dataset on the LeNet-5
architecture. We observe a significant increase in robustness
across a varying range of perturbation budgets for the three
gradient-based attacks we employ. For instance, when the
perturbation budget is 0.1 for the FGSM attack, our GenGamm
activation maintains an attack success of 23% while the other
activation functions have an average attack success of approx-
imately 51%. We observe similar significant improvements
with the PGD and C&W attacks as shown in Figures 2b
and 2c. Figure 2c contains the average distribution of the
performance under attack across 15 iterations. Performance
under attack refers to the performance accuracy of the LeNet-
5 model, given the input is maliciously perturbed. We can see
that the consistency of attack performance is more volatile for
our generalized gamma activation when compared to the other
activations. However, regardless of the less predictable attack
results, we remain with higher robustness.

We observe similar patterns when evaluating with the
CIFAR-10 dataset. Figure 3 shows that the attacks required
less perturbation to achieve high attack success due to the
increased model uncertainty with the more complex dataset.
However, despite the overall higher attack success rate, we
perform significantly better than the other activations, meaning
we have a higher robustness rate when there is more model
uncertainty. We also observe a 26.3% increase in robustness
compared to SPLASH with the CIFAR-10 dataset and a
perturbation budget of e = 0.06.

A con that is introduced with the generalized gamma
activation is an increase in training time. Although the training
time was not increased 2-3x times like the SPLASH [10]
and tent [11] activation efforts, our training increased by 25%
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relative to the ReLU, hyperbolic tangent, and swish activation
functions. However, the parametric nature of the generalized
gamma activation function allows us to tailor the shape and
scale parameters to improve convergence during training in
future work.

A. Stacking with Adversarial Training

We have stacked the activation functions with adversarial
training to explore how stacking robust activation functions
can complement the existing high robust performance of
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with robust performance after our activation as consistent
with the discussion presented by Kanai et al. [24] and Singla
et al. [29]; highlighting the impact of smoothness and low
curvature on robust generalization of the adversarial examples
used during training.

VI. DISCUSSION: LOOKING AT DECISION SURFACES

Defining the decision boundary of a neural network from a
loss perspective allows us to observe how the trained decision
surface is influenced by the activation functions and how
adversaries can consequently exploit them with a perturbation
budget of ¢ € P where P is the set of all possible pertur-
bations. As derived by Yu et al. [15], we can analyze the
geometry as follows:

L0,z + Az) = L(,z) + JAz + %AxTHAz )
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Fig. 5: Decision surfaces for six (6) activation functions on a Gaussian mixture data model and binary classification with a

2-layer fully connected neural network

with the following constraint:

L,z +¢)— L(O,x)] <t,Vee P (8)
where x is an input sample with a label y; corresponding to
the correct class ¢, L(z) is the decision boundary, 6 is the
parameters of the neural network, J is the Jacobian vector of
the same dimension as z and H is the Hessian matrix or the
square matrix of second-order partial derivatives of the loss
function with regard to x. Combining these equations, the
following inequality is derived to observe how the Jacobian
vector and Hessian matrix relates to the adversarial perturba-
tion magnitude:
L 7

mam(|J-e+§e He|) <t ®
This inequality enforces that the neighborhood points of x
should not only share the same decision but also have similar
confidence bounded by the absolute, non-negative difference
of L(6,x) t. Thus, the upper bound of this function
defines the exclusive lower bound distance of the adversarial
perturbation needed to cause a misclassification. We can see
then how the model robustness and the stealthiness of the
generated adversarial examples rely heavily on the magnitude
of the Jacobian and the eigenvalues of the Hessian.

Visually, we evaluated the decision surface characteristics
for the varying activation functions on a Gaussian mixture data
model and binary classification with a 2-layer fully connected
neural network shown in Figure 5. The motivation behind our
discussion is to provide an intuition for our observations on the
models’ Jacobian or Hessian matrix from an adversarial per-
spective and not to rigorously prove a monotonic relationship
between these activation characteristics and robustness.
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a) Symmetric, non-monotonic, and bounded with finite
support: The generated abstractions between hidden layers
are cascaded across each layer to learn increasingly abstract
features, resulting in adversarial vulnerability to cascade across
layers [27], [11]. Zhao et al. [27] found that empirical dis-
tributions of the abstracted features are often compact and
symmetric, causing symmetry to represent the input data
distribution better and suppress signals that stray from the
expected distribution. Thus, as expected, the impact of sym-
metry on adversarial robustness depends on the nature of the
data and the specific symmetry involved. Some symmetries
are naturally present in data, while others may need to be
explicitly enforced during training, as done by Wang et al.
[45] for instance. The non-monotonic property is required for
an activation function to be symmetric.

Activation functions bounded with finite support have been
contributed to have the same benefits as symmetric ones in
suppressing signals that stray from a limited range [11]. In
contrast, non-symmetric and unbounded activation functions
like ReLU have no upper bound, which allows for a broader
range of values. This change to the Jacobian results in a
restricted optimization of adversarial examples as adversaries
exploit the steepest change in eigenvectors. These steeper
changes are often found in signals that stray from the dis-
tribution since those are the areas correlated to high model
uncertainty. We are minimizing the magnitude of the Jacobian
through our activation function, resulting in less sensitivity to
minor changes and increased robustness.

Overall, symmetry and boundedness with finite support can
be seen as a form of regularization in neural networks by sup-
pressing signals that stray from the benign distribution. This
regularization can help improve generalization and adversarial
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robustness by encouraging the network to rely on more stable
and meaningful features, a characteristic that also benefits
adversarial training [46]. We observe both symmetry and
boundedness in the tent activation function and our generalized
gamma activation function. Figure 5 shows how the symmetry
across the y-axis is reflected in the equally symmetric Gaussian
mixture data model. However, steep visual steps are observed
for the tent activation function in Figure 5b due to its lack of
smoothness which negatively impacts robustness.

b) Smoothness and low curvature: Bounded activation
functions do not always result in smoother decision bound-
aries, as we observed with the tent activation function. Acti-
vation functions that contain smoothness themselves result in
inherently smoother decision surfaces without the need for
additional regularization techniques or changes to the loss
function. Overall, the outputs of these activation functions
change gradually as the input varies, leading to less volatile
values in the Jacobian, smoother transitions between classes
in the decision surface, and increased robustness as described
in Section II.

Singla et al. [29] highlight how smoothness tends towards
higher robustness only when the activation function has low
curvature since low curvature directly impacts the norm of the
Hessian matrix. Increasing the curvature in an activation func-
tion increases the maximum eigenvalue of the Hessian matrix
and, consequently, decreases the minimal perturbation needed
by an adversary to cause a misclassification. We calculated a
maximum curvature value of 1.44 for our generalized gamma
activation function. Similarly, the maximum curvature for the
swish and hyperbolic tangent activation functions were 1.27
and 1.91, respectively. As a result, with the parameters evalu-
ated in this work, the curvature of our function was not lower
than swish. The low curvature values and the open space risk
(e.g., the metric measure the boundedness with finite support
[11]) are inversely proportional, complementing each other
concerning adversarial robustness. Future deployments of the
generalized gamma activation can observe a reduced curvature
to accommodate for the increase in model complexity at the
cost of increasing the tight boundedness of the function.

c) Sparsity and non-linearity: In addition to the main
characteristics contributing to adversarial robustness, our gen-
eralized gamma activation function encourages sparsity and
increased non-linearity. Like the ReLU function that was
identified as encouraging sparsity, the generalized gamma
activation function introduces sparsity by suppressing values
that stray from the distribution. This means only a subset of
neurons in a layer will activate for a given input, leading to
sparse activations. Overall, we are minimizing the magnitude
of the Jacobian through our activation function and reducing
the trained model’s sensitivity to minimal perturbations by
encouraging sparsity.

The generalized gamma activation function also has in-
creased non-linearity compared to the other activation func-
tions. Changing the model’s non-linearity has alluded to
enhance adversarial robustness because a more non-linear
decision surface that more closely aligns with the data man-
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ifold’s non-linearity reduces the learning model’s uncertainty
[47]. In other cases, non-linearity has been contributed to
reducing robustness [48]. We are not contributing “increased
non-linearity” to adversarial robustness as it is not a one-size-
fits-all solution because the data manifold must be thoroughly
understood for each unique dataset to achieve the correct
amount of non-linearity. Understanding the linearity of the data
manifold in highly complex real-world data is challenging and
a highly researched area in generalization in machine learning
[49], [50]. However, we mention the change in non-linearity
here to be thorough with the potential characteristics that
could have influenced the significant increase in robustness
we observed in our evaluation. Given the complexity of the
evaluation environment, this increase in non-linearity could
have contributed to the increase in robustness, as we see that
our relative robustness performance increased as the complex-
ity of the dataset increased [51]. A better understanding of the
relationship between the linearity of activation functions and
the complexity of the data manifold on adversarial robustness
is left for future work.

VII. CONCLUSION

The efforts regarding robust activation functions have often
been pursued in isolation, leading to separate and parallel
conclusions. As a result, we unified research efforts regarding
robust activation functions through our parametric generalized
gamma activation function that is non-monotonic, symmetric,
bounded with finite support, smooth, and with relatively low
curvature. We examined why and how consolidating these
traits improved robustness against gradient-based attacks com-
pared to the ReLU, hyperbolic tangent, swish, and SPLASH
activation functions and how the different characteristics in-
fluenced the overall decision surface from the perspective of
adversarial robustness. While this work shows an increase in
adversarial robustness through the unification of characteristics
explored disjointly by various research efforts, the complete
list of characteristics desired in activation functions for adver-
sarial robustness remains an open problem for future work.
We provide non-linearity as an example for future work of a
characteristic that is unclear of the magnitude of its impact on
adversarial robustness [48].
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