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Abstract—Adversarial perturbations in object recognition and
image classification tasks impact a learning model’s ability to
perform accurately and increase the safety risks of deployed
machine learning models. During the adversarial example
generation process, adversaries approach areas most prone to
model uncertainty. Identifying partially occluded items, especially
without understanding general object shapes, contributes to
significant model uncertainty since object boundaries are not
inherently at the forefront of the feature generalization process
in deep learning models. Thus, this work aims to reduce
model uncertainty surrounding partially occluded boundaries
and increase adversarial robustness by augmenting the training
dataset with amodal segmentation boundary masks. By observing
performance degradation, robust sensitivity, and loss sensitivity,
we show how including these masks during training impacts
an adversary’s ability to generate effective adversarial examples
on the versatile MS COCO dataset. Lastly, we observe how
including these masks during training influences the performance
of adversarial training.

I. INTRODUCTION

Adversaries have been found to exploit image boundaries
during computer vision and image processing tasks since object
boundaries are not at the forefront of feature generalization in
learning models [1]. These boundaries refer to the edges or
transitions between different objects, regions, or features in an
image. Various adversarial attacks have been shown to modify
image pixels, changing boundaries to represent other classes
in the dataset [2].

Amodal segmentation is the result of the estimation of
the boundary shape of an object beyond a visible region
and the mask for the occluded region [3]. These boundaries
are often challenging to decipher in images because strong
contextual knowledge is needed to correctly interpret one or
more occluded items in images. This can be challenging even
in human interpretation contexts because our environment
is dynamic, complex, and unorganized. The capability of
humans to perceive incomplete objects is called amodal
completion, allowing humans to have an easier time classifying
partially occluded items [4]. Unfortunately, this task is not as
straightforward for computers since occlusion can happen in
various ratios, angles, viewpoints, and lighting environments
[4]. For a simple example, suppose an apple partially covers
the center of a banana. In that case, it is challenging to identify
the separate disjointed pixels that correspond to the singular
banana without understanding the general shape of the banana

and, thus, the areas where the banana ends and the apple starts
are the areas that are prone to the highest uncertainty.

During the adversarial generation process, adversaries tend to
iteratively approach areas most prone to uncertainty. Visually,
the areas of uncertainty in an image have been visualized
through a saliency map, where the areas of highest uncertainty
contain the most significant increase in slope surrounding
those pixels. Gradient- and Jacobian-based attacks using
this information to optimize their adversarial examples [5].
Identifying partially occluded items, especially without a proper
understanding of the general object shapes, contributes to
significant model uncertainty. As a result, this work reduces the
impact of minor adversarial perturbations by augmenting an
image dataset with boundary masks to strengthen the contextual
information around the boundaries of images.

This research effort shows how including these masks
during the image classification training phase impacts an
adversary’s ability to generate effective adversarial examples
on the Microsoft Common Objects in COntext (MS COCO)
[6] dataset. We observe the attack success (i.e., how much
performance accuracy degrades), the robust sensitivity [7], and
loss sensitivity [8] to analyze how the trained generalized
information model changes when augmenting the training
dataset with amodal boundary masks. Lastly, we also observe
how including these masks influences the performance of
adversarial training.

II. RELATED WORK

The research field of adversarial machine learning is vast.
As a result, we include the relevant literature regarding the
current state of knowledge surrounding the vulnerable input
spaces and the current state of amodal segmentation models.
This work builds on these two research areas to implement and
discuss the impact of including amodal segmentation contextual
information on adversarial vulnerability.

A. Vulnerable Input Spaces: Occluded Items

The study of machine learning tasks with occluded items
has lied mainly in the research field of generative learning,
where learning models are tasked to generate images containing
various partially occluded items [4]. However, these efforts
provide insight into the vulnerable input spaces in images. For
instance, the quality of images through resolution enhancement
and occlusion handling has been improved by authors in [9] to
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overcome attribute classification challenges (e.g., telling two
items of the same type but with different unique attributes).
Multiple inpainting approaches also exist to increase the quality
of images to be used in image classification tasks [10], [11],
[12], [13]. These techniques aim to restore the corrupted regions
of occluded objects due to low image resolution, extreme
lighting variations, occlusion, or even disguise. They highlight
how contextual information influences the generalization of
information in image classification tasks and makes it more
challenging for learning models to classify occluded items
correctly.

Autonomous driving applications of machine learning also
highlight how occluded items contribute to high model un-
certainty since they have to make decisions with incomplete
information about a particular object [14], [15]. Specifically
regarding adversarial perturbations, authors in [2] deterministi-
cally evaluated how much a region of input space is vulnerable
to adversarial perturbations relative to other areas of the
complete input space. They observed that occluding input
spaces where boundary masks are most similar to other classes
are the input spaces most vulnerable to perturbations. Overall,
occluded items in natural environments contain too much or too
little information regarding the context surrounding an object in
an image. Thus, we evaluate whether amodal segmentation can
decrease uncertainty by highlighting the shape of the classifying
items (e.g., including only masks of animals if the tasks is
to classify animals). Through this approach, we augment the
training dataset with boundaries between multiple occluded
items, reducing unnecessary context that may be present in an
image and, consequently, reducing a learning model’s sensitivity
to adversarial perturbations.

B. Amodal Segmentation Models

Three main methods have been used for image segmentation:
traditional methods, CNN-based methods, and weakly super-
vised methods [3]. Traditional methods were the initial methods
proposed for amodal shape completion [3]. These techniques
assume the most likely shape or curve of an invisible region and
have limited abilities to generate accurate masks. CNN-based
methods use deep learning for their occlusion handling, but
the ability to predict an amodal mask is inversely proportional
to how many occluded objects are included. Thus, various
techniques use image patching and heavily labeled datasets to
output accurate amodal masks. For instance, authors in [16] use
a Bayesian approach for their amodal segmentation model that
shows to be more robust to occluders and could successfully
generalize out-of-distribution items when trained with non-
occluded objects. However, this approach relies on 2D shape
priors for its high accuracy. This work highlights the benefits of
including complete information regarding non-occluded items
for lower uncertainty and high-quality generalization. Similarly,
Mask R-CNN [17], [18] has also been a successful technique
to generate segmentation masks building on a Region-based
CNN (R-CNN) that provides a class label and a bounding-box
offset to allow for precise extraction of the mask and spatial
layout of an object.

Weakly supervised techniques have been proposed to ex-
plore ways to relieve supervision demand for amodal mask
completion. For example, the authors in [19] proposed a weakly
supervised method for estimated amodal segmentation where
they specifically estimated the occlusion boundary in addition
to the occlusion mask. The occlusion boundary highlights how
the areas of uncertainty lie in the pixels where two or more
objects overlap. However, this approach has issues separating
occlusions from the foreground and background, sometimes
merging two items. In general, amodal segmentation models are
computationally expensive models that aid in object detection
computer vision tasks with limitations regarding the accuracy of
the occlusion handling and identifying where they are relatively
located in the input space [3].

III. EVALUATION METHODOLOGY

A. Contextual Dataset

Due to the challenging nature of amodal segmentation,
various datasets for amodal segmentation and object recognition
are limited in their dataset evaluations. We utilize the Mi-
crosoft Common Objects in COntext (MS COCO) [6] dataset,
which contains various items and contexts. The MS COCO
dataset benefits image object recognition tasks where there is
superfluous contextual information surrounding the classifying
objects [6]. This was achieved by including images of complex
everyday scenes containing common items in their natural
real-world context. The dataset contains photos of 90 objects
with 2.5 million labeled instances in 328k images. The 2014
release originally included 82,783 training images and 40,775
testing images. There are approximately 270,000 segmented
people and 886k segmented object instances in the 2014 train
and validation sets, including 80 objects corresponding to 12
superclasses.

This work used a subset of 92,544 images containing 4
superclasses (e.g., ‘animal’, ‘food’, ‘vehicle’, and ‘person’) for
the training and validation sets to simplify the original learning
task without reducing contextual information. Table I includes
the sub-class labels in the superclasses used for this evaluation
to provide insight into the types of items included in this dataset.
We specifically selected a subset of the dataset with superclasses
whose amodal shapes are generally distinct between classes.
Lastly, significant existing amodal segmentation of occluded
items focuses on the occlusion handling of 2D images and
excludes 3D and video data [1]. Thus, the dataset used in this
work follows the same assumptions.

B. Amodal Segmentation Mask Generation

Considering that amodal segmentation mask generation
models are generally computationally expensive, we selected
the CNN-based Mask R-CNN model for instance segmentation.
Mask R-CNN is an improved version of Fast R-CNN to take
advantage of its quick training speeds. It classifies individual
objects and localizes each using a bounding box and semantic
segmentation, where this approach compartmentalizes each
pixel into a fixed set of categories without differentiating
object instances with relatively fewer computational resources
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TABLE I: Subset of the MS COCO superclass labels and their corresponding sub-class labels, enumerating the items included
in images for our evaluation.

Superclass Label Class Labels

‘animal’ ‘bird’, ‘cat’, ‘dog’, ‘horse’, ‘sheep’, ‘cow’, ‘elephant’, ‘bear’, ‘zebra’, ‘giraffe’

‘food’ ‘banana’, ‘apple’, ‘sandwich’, ‘orange’, ‘broccoli’, ‘carrot’, ‘hot dog’, ‘pizza’, ‘donut’, ‘cake’

‘vehicle’ ‘bicycle’, ‘car’, ‘motorcycle’, ‘airplace’, ‘bus’, ‘train’, ‘truck’, ‘boat’

‘person’ ‘person’

Fig. 1: Snapshot of training data samples for the augmented MS COCO dataset.

to run compared to other existing object handling models.
This framework can run at 200ms per frame on a GPU, and
training on MS COCO takes one to two days on a single 8-
GPU machine. Overall, Mask R-CNN provides state-of-the-art
amodal masks to include in this work.

We include generated amodal segmentation masks in the
training dataset and then train a learning model to classify the
4 superclasses. The boundary masks focus on the boundaries
of the class labels (e.g., the images in the ‘animal’ class
include shapes corresponding to birds, cat, etc.). Figure 1
includes a snapshot of the training data samples for the
augmented MS COCO dataset. The augmented MS COCO
dataset contained 113,214 total samples spanning those 4
superclasses, meaning we generated a total of 22,642 masks
using the Mask R-CNN approach across all categories. We
did not use a 1-to-1 ratio of original images to masks to
minimize the computational resources necessary and ensure
that the classification accuracy did not degrade. Minimizing the
required computational resources includes less mask generation
and less training time. We observed approximately 15-20% of
the training and validation sets with masks increase robustness
against adversarial examples in this evaluation, even when
using adversarial training, as shown in Section IV. The results

in Section IV reflect the average across training sets including
15-20% of the training and validation sets with masks. The
number of masks to include in a training set will vary per
dataset and learning model.

C. Learning Model

The training architecture for this work was ResNet-50 [20],
a convolutional neural network architecture that was developed
for large image datasets with high performance accuracy. For
the MS COCO dataset, we achieved over 95% accuracy with
a learning rate of 0.001 in both the augmented training dataset
and the original training dataset. To achieve this level of
accuracy, both models were equally trained for 80 epochs
with a batch size of 32. We selected this training environment
to ensure the highest performance across all the models that
were trained without modifying any training parameters outside
of our control variable of the augmented training dataset with
the amodal masks. Lastly, all images, including the amodal
masks, were shaped into squares of size 180x180 for training
to add homogeneity since the original MS COCO dataset and
the generated masks were all varying shapes and sizes.
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D. Adversarial Example Generation

Assuming a threat model with full-white box access, the
adversarial examples are created to cause the machine learning
model to produce a specific incorrect output, known as a tar-
geted attack. Specifically, for a correct label for f(x) ∈ M , we
use attack strategies that generate a perturbed input x̂ = x+ η
such that f(x) ̸= f(x̂) where η is the imperceptible adversarial
noise. These malicious perturbations can be optimized using a
set of different strategies.

To generate the adversarial examples, we used the Fast
Gradient Sign Method (FGSM) [21], and Projected Gradient
Descent (PGD) [22] from the Adversarial Robustness Toolbox
(ART) by IBM Research [23] with no changed hyperparameters
outside of the varying perturbation budgets. These attacks
are both gradient-based attacks that will optimize adversarial
examples around the pixels with the highest uncertainty using
the gradient of the loss function.

E. Metrics Used

1) Attack Success: A standard metric for evaluating model
robustness is the performance accuracy as a function of the
perturbation budget ϵ [24]. Attack success is defined as an
adversary’s ability to reduce model accuracy: attack success
= (1−model accuracy) ∗ 100, meaning that 100% attack
success signifies that the adversarial examples brought the
performance accuracy down to 0%. This metric verifies whether
a gradient-based adversarial attack is properly configured
for a classification task by observing an attack success that
approaches 100% as the perturbation budget increases [24]. To
ensure that we evaluate an adversary’s impact on the accuracy,
we only perturb and evaluate 500 random benign input samples
that were correctly classified before the model was attacked.

2) Empirical Robustness: Authors in [7] proposed the
measure of empirical robustness by evaluating the minimum
perturbation necessary to craft a successful attack (e.g., cause
a misclassification). We estimated the minimal perturbation by
calculating the sign of the gradient:

ρ̂adv(f) = ϵsign(∇xJ(θ, x, y)) (1)

where J is the cost used to train the learning model, θ are the
model parameters, and y is the classification label of the input
x. The method used to approximate this value is FGSM.

We employed the empirical robustness measure implemen-
tation by IBM’s ART [25] with no changed hyperparameters.
We calculated the empirical robustness values over 500 random
benign input samples correctly classified before the model
was attacked. We compared the distribution of the empirical
robustness values of the learning models trained with the
original, unmodified training data, the augmented dataset, and
adversarial training. Increasing the empirical robustness is an
indication of increased robustness. However, a value of 0 (e.g.,
no perturbation change) implies that in the no perturbation less
than ϵ was reached that caused a misclassification.

(a) FGSM

(b) PGD

Fig. 2: Comparing performance of the FGSM attack with the
MS COCO dataset on the ResNet-20 architecture

3) Loss Sensitivity: Authors in [8] proposed a loss sensitivity
metric that measures the impact of each sample on the average
loss. They accomplish this by measuring the norm of the loss
gradient for a previous input x after t number of stochastic
gradient descent (SGD) updates. The loss sensitivity function
is defined as:

gtx = ||∂Lt/∂x||1 (2)

where Lt is the loss after t updates. The average gtx over a T
set of SGD updates is the loss sensitivity value.

Similarly to the empirical robustness metric, we utilized
the loss sensitivity implementation by IBM’s ART [25] and
calculated the loss sensitivity values over each of the 500
random benign input samples correctly classified before the
model was attacked and compared against our various configu-
rations. Analyzing the density function of this loss sensitivity
allows us to observe how much adversarial perturbations impact
performance accuracy across the different training scenarios.

IV. RESULTS & DISCUSSION

Figures 2(a) and 2(b) compare the two neural networks, one
trained on an augmented training dataset with boundary masks
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and the other without the training dataset augmentations. Figure
2(a) includes the attack success against the FGSM attack for
perturbation budgets ϵ ∈ (0, 0.8]. Under the FGSM attack, the
model trained with amodal mask augmentation consistently
accomplished a lower attack success for all perturbation
budgets, an average robustness improvement of approximately
7.28% performance accuracy.

Similarly, Figure 2(b) includes the attack success against the
PGD attack for perturbation budgets ϵ ∈ (0, 0.8]. Under this
attack, the model trained with amodal mask augmentation also
consistently accomplished less attack success for all perturba-
tion budgets with an average improvement of approximately
6.65% performance accuracy. For both attacks, we achieved
this reduction of attack success only augmenting the training
data with 18% of added amodal boundary masks. Since both
of these models were trained using 80 epochs, the only added
computational costs were those of generating the masks on the
previously trained Mask R-CNN model.

A. Stacking with Adversarial Training

Adversarial training generates and includes adversarial
examples during training to encourage learning models to
familiarize themselves with worst-case, malicious perturbation
inputs [22]. This results in a shift in the distribution of the
training dataset with heavy cross-over between benign and
malicious examples [26], [27]. Since adversarial attacks tend
to exploit the context and boundaries surrounding partially
occluded objects, the adversarially trained learning model
should gain awareness surrounding these areas prone to high
uncertainty and increase overall robustness. Thus, we evaluate
the ResNet-50 models similarly to Figure 2. However, we
include adversarial training during the training phase and
observe whether adversarial training would benefit from having
additional object boundary context for a more considerable
increase in robustness.

Fig. 3: Comparing performance of the PGD attack with the
MS COCO dataset on the ResNet-20 against our augmented
training dataset and adversarial training (AT).

Figure 3 shows that adversarial training benefits from the
added information surrounding the image’s occluded and non-

occluded items for the PGD attack. Interestingly, we can see
that the model trained with only the amodal augmentation
performed better than the model with only adversarial training,
with an average difference of 3.6%. Adversarial training has
been attributed to not prioritizing high-quality generalization,
which leads to areas of high uncertainty despite the significant
increase in robustness and results in perhaps fewer adversarial
examples that cause misclassification but ones with signifi-
cant attack success [28]. On the other hand, amodal mask
augmentation prioritizes minimizing the uncertainty in the
areas prone to the highest uncertainty, resulting in adversarial
examples of less magnitude. When adversarial training is the
only defense deployed, there is a difference of 7% when
compared to both defenses are stacked together. Overall, these
complementing features of each defense seem to be highlighted
when joined together for the highest level of robustness, with
an average reduction of attack success of 10% compared to
no implemented defenses.

B. Empirical Robustness

Table II summarized the empirical robustness metric values
for the varying training configurations for the 500 input samples.
When we calculated the empirical robustness metric, the stack-
ing of the both defenses (i.e., adversarial training and boundary
mask augmentations) resulted in the most samples that could
not be perturbed to successfully cause a misclassification.
Only including the augmentations performed comparably with
about 9.6% more empirical robustness than adversarial training
alone. The results are consistent for successful adversarial
perturbations with a higher average perturbation signifying that
larger perturbations were more often necessary to successfully
attack.

Figure 4(a) shows the density distribution of the empirical
robustness metric values to observe the distribution of pertur-
bation magnitudes for a successful attack for all 500 samples.
We can see that using no defense had the highest amount of
samples successfully attacked with minimal perturbations and
adversarial training, having only slightly improved performance
from that baseline. These results are consistent with the
understanding that adversarial training does not reduce the areas
of high uncertainty that adversaries can exploit for stealthy
perturbations [28]. Overall, stacking both defenses contributes
to the highest levels of robustness, but when selecting between
adversarial training or boundary mask augmentations, the masks
reliably provide higher adversarial robustness.

C. Loss Sensitivity

Figure 4(b) shows the density distribution of the loss
sensitivity metric. We can see that adversarial training with
boundary mask augmentations has the least number of samples
with loss sensitivity, meaning that a random sample x is more
likely to have a loss sensitivity value close to 0 than the
other training configurations. Using both adversarial training
and boundary mask augmentations decreases the overall loss
sensitivity by 47.6%. Only using the amodal boundary masks
decreases the overall sensitivity by 37.7%. In this figure, we also
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Training Configuration ρ̂adv = 0 (%) Average ρ̂adv (ρ̂adv ̸= 0) Maximum ρ̂adv

With AT & Augmentation 52.8% 0.000581 0.00117
Only AT 40.8% 0.000545 0.00095

Only Augmentation 49.6% 0.000575 0.00089
No AT & No Augmentation 36.2% 0.000542 0.00096

TABLE II: Insight into empirical robustness metric values for the varying training configurations.

(a) Empirical Robustness (b) Loss Sensitivity

Fig. 4: Comparing the empirical robustness and loss sensitivity of the varying training configurations. The legend corresponds
to both subfigures.

see that only using the amodal boundary masks contributes to a
model with less overall loss sensitivity than adversarial training
alone, with a 27.7% decrease in loss sensitivity. These results
show the significant influence of model uncertainty around
objects’ boundary context in image classification. Without
providing boundary masks for all the training inputs, we could
reduce the overall loss sensitivity, contributing to a learning
model with more predictable outputs and less susceptible to
minor adversarial perturbations than the outstanding adversarial
training approach.

V. CONCLUSIONS & FUTURE WORK

Our results conclude that increasing the data context around
the boundaries of objects in images through amodal masks,
partially occluded or not, forces the generalized information
model to better understand the shapes of the items that
correspond to the correct classification. Amodal segmentation
was previously a task often used for object recognition tasks
outside of the research area of adversarial ML to encourage
learning models to focus on the item in question and not
the distracting environmental information surrounding the
object. The applications of the amodal masks in the training
process highlight how improving the quality of the data context
in learning tasks can significantly suppress the impact of
minor adversarial perturbations on feature characteristics that
adversaries often exploit. Our data augmentation was also
evaluated with and against adversarial training. The results
show that the model trained with only the amodal augmentation

performed better than the model with only adversarial training,
highlighting how prioritizing high-quality data context in the
generalized information model can impact robustness more
than the generalization of adversarial examples during training.
Our approach, in conjunction with adversarial training, resulted
in the highest robustness levels since the two priorities of each
defense are complementary and result in the highest level of
robustness. Overall, this shows how amodal segmentation in
the training dataset reduces a learning model’s sensitivity to
adversarial perturbations.

The main limitation of this work is that amodal symbol
systems can only be applied to computer vision tasks; thus, we
cannot evaluate this concept with datasets that correspond to
other domains. Additionally, we rely on the Mask R-CNN tech-
nique to generate the masks we used for training. However, as
with any deep neural network, the generated output has a margin
of error, resulting in potentially inaccurate masks for multiple
or occluded items. To address this limitation, we manually
reviewed a randomly selected sample set from the generated
masks to verify the quality of the amodal mask. The masks
were highly accurate since Mask R-CNN was optimized for MS
COCO. However, for other image datasets, the generated masks
may not be as precise, and thus, the impact on those masks is
unclear concerning adversarial robustness. Overall, future work
can extend this application to spatiotemporal datasets (e.g.,
video) with accurate amodal segmentation techniques designed
specifically for that domain and increase the robustness of the
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highly complex and inherently more vulnerable spatiotemporal
datasets.
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