
Nature Climate Change

nature climate change

https://doi.org/10.1038/s41558-024-02191-zArticle

Diverging responses of terrestrial 
ecosystems to water stress after disturbances

Meng Liu    1,2 , Josep Peñuelas    3,4, Anna T. Trugman    5, 

German Vargas G    1,2,6,7, Linqing Yang    1,2 & William R. L. Anderegg    1,2

Terrestrial ecosystems are major carbon (C) pools, sequestering ~20% of 

anthropogenic C emissions. However, increasing frequency and intensity 

of climate-sensitive disturbances (for example, drought and wildfire) 

threaten long-term C uptake. Although direct effects of disturbances are 

well-documented, indirect effects remain unknown. Here we quantify 

changes in the sensitivity of terrestrial gross primary production to water 

stress before and after severe droughts and fires. We find divergent changes 

across the globe, where dry regions have increased sensitivity, while wet 

regions have decreased sensitivity. Water availability, solar radiation, 

nutrient availability and biodiversity are the main drivers mediating these 

changes. Sensitivity takes ~4–5 years to recover after disturbances, but 

the increasing frequency of disturbances threatens this recovery. Our 

results reveal strong cross-system discrepancies in ecosystem responses to 

disturbances, highlighting the vulnerability of dryland ecosystems in future 

climates.

Terrestrial vegetation sequesters ~1.9 PgC yr−1 (net carbon (C) sink) 

and stores 450 PgC (ref. 1) across the globe, counterbalancing ~20% 

of human C emissions annually. Disturbances exacerbated by cli-

mate change, such as droughts and wildfires, decrease ecosystem 

productivity2,3, increase tree mortality4 and compromise the capac-

ity of terrestrial C sinks5,6. Climate change is projected to drive more 

frequent and severe disturbances in the following decades7, which will 

cause substantial threats to terrestrial C uptake and dramatically affect 

the global C cycle. Terrestrial gross primary production (GPP) directly 

measures photosynthetic productivity and vegetation C uptake and 

plays a key role in regulating the capacity of terrestrial C sinks, but it 

is strongly impacted by climate extremes and disturbances2,8,9. Hence, 

monitoring the long-term dynamics of terrestrial GPP and understand-

ing how ecosystem C uptake responds to disturbances may offer critical 

insights into how climate change will impact terrestrial ecosystems, C 

uptake and land C sinks

Disturbances have both direct and indirect effects on ecosystem 

productivity. GPP tends to decrease substantially during disturbances2, 

which is a direct effect. On the other hand, there are indirect effects, 

which are defined as the long-term changes in the sensitivity of ecosys-

tem productivity to climate stressors after disturbances. The indirect 

effects can persist for several years due to potential physiological 

damage, compositional changes and legacy effects10. The change in the 

sensitivity of GPP to water stress after disturbances captures the subse-

quent vulnerability of ecosystems to water deficits. A higher sensitivity 

of GPP to water stress implies a higher vulnerability to drought and less 

C uptake under dry conditions. The sensitivity of ecosystem productiv-

ity (GPP) to water stress can be influenced by many factors11–14, such as 

climate, soil, community composition and structure and physiological 

traits. A previous study has also found that the sensitivity of GPP to 

water stress is notably impacted by disturbances, where the sensitiv-

ity increased significantly after severe droughts and fires across the 

conterminous United States15. However, the patterns of the change in 

the sensitivity of GPP to water stress at the global scale due to distur-

bances (droughts and fires) remain unknown. Whether GPP becomes 

less or more sensitive to water stress globally after disturbances is 

Received: 21 May 2024

Accepted: 21 October 2024

Published online: xx xx xxxx

 Check for updates

1School of Biological Sciences, University of Utah, Salt Lake City, UT, USA. 2The Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake 

City, UT, USA. 3CREAF, Cerdanyola del Vallès, Barcelona, Spain. 4CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain. 5Department 

of Geography, University of California Santa Barbara, Santa Barbara, CA, USA. 6Department of Botany and Plant Pathology, Oregon State University, 

Corvallis, OR, USA. 7Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, USA.  e-mail: meng.liu@tamu.edu

http://www.nature.com/natureclimatechange
https://doi.org/10.1038/s41558-024-02191-z
http://orcid.org/0000-0002-1962-9154
http://orcid.org/0000-0002-7215-0150
http://orcid.org/0000-0002-7903-9711
http://orcid.org/0000-0003-1738-0014
http://orcid.org/0000-0002-6646-0718
http://orcid.org/0000-0001-6551-3331
http://crossmark.crossref.org/dialog/?doi=10.1038/s41558-024-02191-z&domain=pdf
mailto:meng.liu@tamu.edu


Nature Climate Change

Article https://doi.org/10.1038/s41558-024-02191-z

asked the following three questions. (1) How does drought sensitivity 

change after disturbances at the global scale? (2) What are the dominant 

drivers of the change in drought sensitivity? (3) How long does drought 

sensitivity need to revert to the predisturbance level and how does this 

compare to current and future disturbance return intervals?

Change in drought sensitivity globally
The drought sensitivity did not change significantly at the global scale 

after severe droughts but increased significantly after fires. Across the 

globe, the changes in drought sensitivity were highly heterogeneous 

among regions. The global mean change in sensitivity (Δk) after severe 

droughts was −0.23 ± 0.55 gC m−2 (mean ± s.e.), which was not signifi-

cant (Fig. 1a). Western North America was dominated by increased 

sensitivity (Δk > 0) after severe droughts, while South America had 

decreased sensitivity (Δk < 0), particularly in tropical rainforests. Tropi-

cal regions in Africa and southeastern Asia and boreal regions in Europe 

also had decreased sensitivity. Other regions, such as southern Africa, 

central Eurasia and Australia, had increased sensitivity. The latitudinal 

variation of the change in drought sensitivity in Fig. 1a also indicated 

decreased sensitivity in tropical regions and increased sensitivity at 

midlatitudes of the Northern and Southern Hemispheres. Sensitivity 

in Fig. 1b increased significantly after fires by 1.88 ± 0.71 gC m−2, and 

there were also differences in the changes in sensitivity among regions. 

We separated the five remote-sensing-based GPP products used in this 

still unclear. Quantifying the indirect effects of disturbances on eco-

system GPP at the global scale is important for illuminating the future 

of terrestrial ecosystem productivity and C sequestration in a rapidly 

changing climate.

We investigated the changes in the sensitivity of GPP to water stress 

after disturbances (severe droughts and fires) and quantified the time 

needed for the sensitivity to recover. We hypothesized that the sensitiv-

ity of GPP to water stress would increase after disturbances, but high 

ecosystem diversity might decrease the sensitivity due to the buffering 

effects of trait diversity. This study focused on high severity droughts 

because low severity droughts generally had limited impacts on ecosys-

tem functioning and C uptake. We used an ensemble of five long-term 

remote-sensing-based GPP products (Methods) and regressed GPP 

against drought indices, such as the Palmer drought severity index 

(PDSI)16 and the standardized precipitation–evapotranspiration index 

(SPEI)17. We estimated the sensitivity of GPP to water stress (hereafter 

‘drought sensitivity’) and compared the sensitivity before and after 

disturbances. We also analysed the patterns of the changes in drought 

sensitivity at both the global and the regional scales. We leveraged 

random forest regression18 to illuminate the contribution of climatic, 

nutrient and biological variables (for example, precipitation, tem-

perature, solar radiation, nutrient availability and biodiversity) to the 

change in drought sensitivity. We finally quantified the recovery time 

for drought sensitivity to revert to the predisturbance condition. We 
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Fig. 1 | Large spatial heterogeneities in the change in drought sensitivity 

after disturbances. a,b, Changes in sensitivity (Δk) after severe droughts (a) and 

fires (b) using the ensemble mean of remote-sensing-based GPP data (regressed 

by PDSI). Parameters k1 and k0 are the postdisturbance and predisturbance 

sensitivity, respectively. There are 23,172 and 5,358 pixels for drought and fire, 

respectively. The distributional maps are aggregated to 1° for visual display, 

and red values indicate increases in sensitivity. ‘Mean’ is the mean change in 

sensitivity derived from a GLS model, where the asterisk (*) indicates significant 

(P < 0.05, two-sided) on the basis of the GLS model. Multiple comparisons are 

not applicable. The shading in the latitudinal plots represents 1 s.e. and the thick 

black lines show the mean change in sensitivity. Basemaps from Natural Earth 

(https://www.naturalearthdata.com/downloads/110m-physical-vectors).
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study and obtained similar results (Extended Data Fig. 1), where the 

changes in sensitivity were not significant after severe droughts, except 

the result from the breathing Earth system simulator (BESS) GPP19 data 

(Δk increased significantly). The sensitivity for fires increased in all GPP 

products, and the P-model GPP20 and the BESS GPP had significantly 

increased sensitivity.

When using remote-sensing GPP and SPEI, the results for the 

change in sensitivity (Extended Data Fig. 2a,b) are comparable to those 

shown in Fig. 1, where the sensitivity did not change significantly after 

severe droughts but increased significantly after fires, with changes of 

0.18 ± 1.59 and 3.63 ± 1.81 gC m−2, respectively. Australia and southern 

Africa exhibited increased sensitivity, while tropical forests showed 

decreased sensitivity after severe droughts. When using GPP data 

derived from land-surface models in TRENDY1 and PDSI, the sensitivity 

decreased significantly at the global scale by −2.60 ± 0.83 gC m−2 after 

severe droughts (Extended Data Fig. 2c), particularly in tropical regions, 

Africa and Australia. The change in sensitivity after fires was negative 

and not significant (Extended Data Fig. 2d), at −0.86 ± 0.98 gC m−2. The 

decrease in sensitivity in Australia was evident after fires. The decreased 

sensitivity from model-based GPP data implied that land-surface mod-

els underestimated the sensitivity of GPP to water stress after distur-

bances, perhaps due to the overestimation of water-use efficiency 

(WUE) in response to rising CO2 concentrations. Previous research21 has 

shown that global WUE has saturated in the past two decades because 

of increasing vapour pressure deficit (VPD). The land-surface models 

may not adequately capture this change, potentially increasing the 

uncertainty in the projections of future ecosystem productivity and 

terrestrial C sinks.

Dry and wet regions had divergent changes in drought sen-

sitivity after disturbances. Hyperarid, arid and semi-arid regions 

had increased sensitivity after severe droughts, but dry subhumid 

and humid regions had decreased sensitivity (Fig. 2a and Extended 

Data Fig. 3). The increased sensitivity in arid regions was signifi-

cant at 2.74 ± 0.86 gC m−2 (Fig. 2a and Supplementary Table 1). The 

contrasting changes in sensitivity accounted for the overall muted 

signals of the change in sensitivity at the global scale (Fig. 1a). Sensi-

tivity for fires increased significantly in hyperarid, semi-arid and dry 

subhumid regions by 3.49 ± 1.11, 3.49 ± 1.20 and 4.01 ± 1.64 gC m−2, 

respectively. The results were comparable when separating the five 

remote-sensing-based GPP products. Most GPP products indicated 

significantly increased sensitivity in arid regions after droughts, except 

the near-infrared reflectance of vegetation (NIRv)-based GPP22 (Fig. 2b 

and Supplementary Table 2). Sensitivity also increased significantly in 

semi-arid regions when using the BESS GPP. Sensitivity decreased in 

dry subhumid and humid regions for most products (except the BESS 

GPP), and the decrease was significant when using the P-model GPP for 

humid regions. Sensitivity increased significantly after fires (Fig. 2c) 

in hyperarid regions, except the result from the NIRv GPP. There were 

also some significant increases in sensitivity in arid, semi-arid and dry 

subhumid regions when using the P-model and the BESS GPP. Sensitiv-

ity decreased in humid regions insignificantly when using the global 

land surface satellite (GLASS) GPP23, the revised eddy-covariance model 

of light-use efficiency (EC-LUE) GPP24 and the NIRv GPP.

We found similar results when using remote-sensing GPP and 

SPEI (Extended Data Fig. 4a), where drought sensitivity increased 

significantly by 9.91 ± 2.49 gC m−2 in arid regions after severe droughts. 

For fires, the sensitivity increased significantly in semi-arid and dry 

subhumid regions, at 8.43 ± 2.69 and 9.83 ± 4.49 gC m−2, respectively. 

The changes in sensitivity were negative in humid regions for both 

droughts and fires. When examining GPP simulated by land-surface 

models and using PDSI data, the sensitivity decreased in all aridity 

levels after severe droughts (Extended Data Fig. 4b) and the decrease 

was significant in humid regions, at −2.58 ± 0.93 gC m−2. For fires, the 

sensitivity changes were not significant in all aridity levels in Extended 

Data Fig. 4b. These results were consistent with the changes in sensitiv-

ity after severe droughts and fires at the global scale using model-based 

GPP data (Extended Data Fig. 2c,d).

Drivers of changes in drought sensitivity
Climate was the main driver associated with the changes in drought 

sensitivity after disturbances. We used random forest regression to 

identify the contributions of different variables and removed highly 

correlated variables before training the model (Methods). For severe 

droughts, the random forest regression model explained 60% of the 
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Fig. 2 | Drought sensitivity in dry regions increased significantly after 

disturbances. a, The changes in sensitivity at various aridity levels after severe 

droughts (left to right, n = 34, 2,054, 2,937, 1,093 and 3,871; aggregated by fact = 2) 

and fires (left to right, n = 65, 2,029, 1,891, 560 and 813) using the ensemble of 

remote-sensing GPP products (regressed by PDSI). b,c, The changes in sensitivity 

after severe droughts (b) (left to right, n = 24, 1,767, 2,549, 845 and 3,239 for 

GLASS; n = 25, 1,802, 2,632, 1,009 and 3,940 for EC-LUE; n = 23, 1,577, 2,388, 772 

and 2,243 for NIRv; n = 26, 1,946, 2,897, 1,135 and 3,333 for P-model; n = 29, 1,915, 

2,406, 658 and 3,435 for BESS) and fires (c) (left to right, n = 65, 1,827, 1,543, 400 

and 656 for GLASS; n = 65, 1,866, 1,635, 528 and 844 for EC-LUE; n = 64, 1,587, 

1,449, 296 and 475 for NIRv; n = 65, 2,085, 2,069, 634 and 834 for P-model; n = 65, 

1,962, 1,465, 251 and 521 for BESS) using a single GPP product (regressed by PDSI). 

The height of each bar indicates the mean change in sensitivity derived from 

GLS models and the error bar shows 1 s.e. *P < 0.05 (two-sided) based on the GLS 

models. Multiple comparisons are not applicable.
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variation in the change in sensitivity (Fig. 3a). The importance of cli-

matic, nutrient and biological variables (Fig. 3b) in the random forest 

model was 65%, 21% and 14%, respectively. Water availability (Trend.

PDSI, AI—aridity index and Trend.sm), solar radiation (Mean.Srad 

and Trend.Srad) and CO2 concentration (Trend.CO2) were the main 

climatic drivers affecting the change in drought sensitivity (Fig. 3b). 

A high availability of water, that is increasing trends of PDSI and soil 

moisture content and high AI values, was associated with decreased 

sensitivity (Extended Data Fig. 5a,b,h), consistent with the results 

in Fig. 2a (where dry and wet regions had increased and decreased 

sensitivities, respectively). High downward surface shortwave solar 

radiation was associated with increased sensitivity (Extended Data 

Fig. 5c,f), perhaps due to the increased photosynthetic rate (and 

demand for water) under high levels of solar radiation. A high trend 

of CO2 concentration was initially associated with the decrease in 

sensitivity as shown in Extended Data Fig. 5e and then promoted the 

increase in sensitivity after a rate of ~1.7 ppm yr−1. The nutrient and 

biological variables, such as nitrogen deposition (N.deposition) and 

biodiversity, also affected the change in sensitivity. Drought sensitiv-

ity decreased with the initial increase in N.deposition, but increased 

after ~300 mgN m−2 (Extended Data Fig. 5d). We hypothesize that the 

increases in sensitivity at high levels of N.deposition may be due to 

the constraints of other nutrients, such as phosphorus. High plant 

biodiversity contributed to the decrease in sensitivity (Extended Data 

Fig. 5g), implying that high species diversity helped to increase the 

resistance of ecosystems to disturbances.

The random forest model explained only 37% of the variation in 

the change in drought sensitivity after fires (Fig. 3c). The importance 

of the climatic, nutrient and biological variables (Fig. 3d) was 55%, 24% 

and 21%, respectively. N.deposition was the most important driver, fol-

lowed by the trends of downward surface shortwave solar radiation and 

PDSI (Fig. 3d). The patterns of the change in sensitivity (Extended Data 

Fig. 6), along with these predictors, were less clear than after severe 

droughts. For example, sensitivity first increased with N.deposition, 

then decreased and finally increased again (Extended Data Fig. 6a), 

which reveals the complex and mixed responses to nutrients. Sensitiv-

ity increased with the increasing trend of downward surface shortwave 

solar radiation (Extended Data Fig. 6b), comparable to the results for 

drought. Less clear driving variables may partly explain why the R2 of 

the random forest model in Fig. 3c was low.
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Fig. 3 | Climate is the main driver of the change in drought sensitivity. 

 a,c, Correlations between the observed and the predicted change in sensitivity 

(using random forest models) for severe droughts (a) and fires (c). There are 

9,989 (0.25° pixels aggregated by fact = 2) and 5,358 samples for drought and 

fire, respectively. P values (two-sided) are based on linear regression. Multiple 

comparisons are not applicable. b,d, The importance of drivers affecting the 

change in drought sensitivity for severe droughts (b) and fires (d). The drivers 

are categorized into three groups: climatic, nutrient and biological variables. 

AGB, aboveground biomass; AI, aridity index; Mean.CO2, mean annual CO2 

concentration; Mean.PDSI, mean annual PDSI; Mean.sm, mean annual soil 

moisture; Mean.Srad, mean annual downward surface shortwave solar radiation; 

Mean.T, mean annual temperature; N.deposition, nitrogen deposition; Soil.C, 

soil organic carbon content; Soil.CEC, soil cation exchange capacity; Soil.N, soil 

total nitrogen; Soil.P, soil phosphorus; Trend.CO2, trend of CO2 concentration 

(slope of linear regression); Trend.LAI, trend of leaf area index; Trend.PDSI, trend 

of PDSI; Trend.sm, trend of soil moisture; Trend.Srad, trend of downward surface 

shortwave solar radiation; Trend.T, trend of temperature.
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Recovery time
The drought sensitivity reverted to predisturbance level ~4–5 years 

after disturbances on average. Following severe droughts, the median 

(mean) recovery time of the drought sensitivity was 5 (5.98) years and 

most pixels (>80%) recovered within 9 years after the disturbances 

(Fig. 4a). For context with drought return intervals, historical PDSI 

data from 1982 to 2018 revealed a median drought return interval of 

9.25 years at the global scale (Extended Data Fig. 7a), surpassing the 

5 year recovery time. Therefore, ecosystems would have sufficient 

time to return to predrought sensitivity. Further investigation using 

PDSI data from 1958 to 1981 indicated a median drought return interval 

of 12 years (Extended Data Fig. 7b), suggesting that severe droughts 

became more frequent with shorter return intervals in response to the 

changing climate. At the pixel level, only 6.31% (n = 341) of pixels had a 

recovery time longer than the current drought return intervals (based 

on PDSI data in 1982–2018). However, climate projections indicated 

further decreases in drought return intervals (Extended Data Fig. 8), 

reducing the time period available for ecosystems to restore their sen-

sitivity and potentially causing permanent ecosystem changes and 

degradation. For fires, the median (mean) recovery time of drought 

sensitivity was 4 (4.35) years and most pixels (>80%) recovered within 

6 years. The median fire return interval based on the global fire emission 

database25 (GFED4.1s) burned area data (1997–2016) was 6.67 years 

(Extended Data Fig. 7c), which was longer than the 4 year recovery 

time. At the pixel level, only 0.40% (n = 5) of pixels had a recovery time 

longer than the corresponding fire return intervals.

Discussion
Climate-sensitive disturbances, such as severe droughts and fires, have 

pronounced impacts on the productivity and functioning of terrestrial 

ecosystems. We quantified changes in the sensitivity of ecosystem GPP 

to water stress (that is, drought sensitivity) following severe droughts 

and fires. Globally, changes in drought sensitivity (Δk) exhibited consid-

erable variation across regions, particularly in relation to aridity levels. 

Drought sensitivity tended to increase after disturbances in dry regions 

(hyperarid, arid and semi-arid), whereas it was more likely to decrease 

in wet regions (humid regions). For instance, typical wet regions, such 

as tropical forests, exhibited decreased sensitivity, while dry regions, 

such as western North America, southern Africa and Australia, showed 

increased sensitivity.

Our data revealed a significant positive correlation between arid-

ity index and biodiversity (Supplementary Fig. 1a), capturing that wet 

regions generally have high biodiversity. In dry regions, biodiversity is 

low and Δk is mostly >0 (Supplementary Fig. 1b), signifying increased 
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a,b, Distributional maps of recovery time after severe droughts (a) and fires 

(b). The insets are histograms of the corresponding recovery time. There are 

5,407 and 1,400 pixels available for drought and fire, respectively, to analyse 

the recovery time. The distributional maps are aggregated to 1° for visual 

display. Basemaps from Natural Earth (https://www.naturalearthdata.com/

downloads/110m-physical-vectors).
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sensitivity after disturbances. Conversely, in wet regions with high 

biodiversity, Δk is mostly <0, suggesting decreased sensitivity. We 

hypothesize that this reduced sensitivity in wet regions is due to the 

buffering effect of high species diversity, where the loss of vulnerable 

species is mitigated by the resilience of drought-resistant species. 

Wet regions, such as tropical forests, typically exhibit high species 

diversity26, structural complexity and interspecific competition. After 

disturbances, competition decreases27, allowing surviving plants to 

access more resources, which facilitates faster ecosystem recovery. 

These surviving species are often more drought tolerant28, which could 

further contribute to the decreased sensitivity. Other studies have 

highlighted the buffering effects of biodiversity, showing that high 

biodiversity increases ecosystem resistance to drought29.

In contrast, dry regions, such as Australia and western North Amer-

ica, have relatively low species diversity and the buffering effects are 

minimal. Additionally, plants in these areas are vulnerable to water 

deficits due to their proximity to absolute biogeographic and climatic 

thresholds. For example, dryland ecosystems experience high solar 

radiation and temperatures, low cloud cover and limited water avail-

ability, leading to high potential evapotranspiration and substantial 

water deficits. There is a significant correlation between solar radiation 

and aridity index (Supplementary Fig. 1c), where high solar radiation 

is associated with low water availability. Consequently, dry regions 

with high solar radiation tend to exhibit increased sensitivity after 

disturbances, while wet regions with low solar radiation show mar-

ginal changes in drought sensitivity (Supplementary Fig. 1d). Previous 

research has demonstrated that vegetation greenness in drylands is 

more sensitive to precipitation than in wet regions30. Similarly, the sen-

sitivity of leaf area index to soil moisture is much higher in water-limited 

regions, such as semi-arid and arid areas31. Our random forest models 

(Extended Data Fig. 5) identified low water availability, high solar radia-

tion and low biodiversity as the primary drivers of increased drought 

sensitivity in dry regions. As a result, ecosystems in dry regions are 

highly uncertain32 and susceptible to future water deficits due to this 

increased sensitivity. We also explored the use of ecophysiological and 

hydrological variables to interpret our results; however, their impor-

tance was generally lower (Supplementary Fig. 2). This might be due 

to the coarse spatial resolution of the data we used, which could have 

decreased the significance of ecophysiological and hydrological vari-

ables. Recent research33 also indicates that the conservative–acquisi-

tive trade-off of plant functional traits is strong at the species scale but 

diminishes at the ecosystem scale.

Although drought sensitivity may change after disturbances, it 

can revert to its predisturbance condition ~4–5 years on average after 

the disturbances. Natural ecosystems generally possess the ability to 

repair themselves and recover their functions, which is referred to as 

ecosystem resilience34. Currently, most ecosystems have sufficient 

time to restore their drought sensitivity because the recovery time is 

shorter than the corresponding drought return intervals (~9 years) and 

fire return intervals (~7 years). There are still 6.31% of pixels, however, 

exhibiting a longer recovery time than the corresponding drought 

return intervals, indicating that some ecosystems may not fully recover 

their sensitivity before the occurrence of the next drought. On the 

basis of historical PDSI data and future climate projections, drought 

return intervals are predicted to be shorter. The recovery of drought 

sensitivity will thus become challenging, particularly when the return 

intervals of disturbances are shorter than the required recovery time. 

This could impact the sustainability of terrestrial ecosystems, particu-

larly drylands and the capacity of terrestrial C uptake.

Disturbances sensitive to climate, such as droughts and wildfires, 

play critical roles in regulating ecosystem functioning and sustain-

ability and land C sequestration. Climate change is anticipated to alter 

disturbance regimes and induce more severe and frequent disturbances 

in the following decades. Understanding and quantifying the impacts 

of disturbances on terrestrial ecosystems and C uptake for long-term 

climate change mitigation are imperative. Our findings highlight promi-

nent changes in the sensitivity of ecosystem GPP to water stress after 

disturbances and elucidate meaningful impacts on the recovery of 

the sensitivity in future climates. Increased sensitivity increases the 

vulnerability of ecosystems to subsequent water stress and short-

ened disturbance return intervals impede ecosystem recovery. These 

long-term dynamics are crucial for ecosystem sustainability, land C 

sinks and global C management.
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Methods
Data
Remote-sensing-based GPP data were used to represent the produc-

tivity of ecosystems at the global scale. We used five long-term GPP 

products: GLASS GPP23, the revised EC-LUE-based GPP24, the NIRv-based 

GPP22, the P-model GPP20,35 and the BESS GPP19. The GLASS GPP data-

set provided global annual GPP from 1982 to 2018 at a resolution of 

0.05° using data from the advanced very high resolution radiometer 

(AVHRR). The GLASS GPP product was based on the EC-LUE model36, 

which estimated GPP by multiplying APAR, LUE and downregulation 

scalars based on flux-tower data (constraints of temperature and mois-

ture). The reported accuracy of the EC-LUE model was R2 = 0.61 and 

slope = 0.77. The revised EC-LUE GPP product provided global 8 d GPP 

data in 1982–2018 at a resolution of 0.05° using re-analysed meteoro-

logical data, where APAR and LUE were split on the basis of sunlit and 

shaded leaves, with atmospheric CO2 concentration and VPD included 

in the downregulation scalars. The reported accuracy of the revised 

EC-LUE GPP was R2 = 0.64 and slope = 0.70. The NIRv GPP dataset pro-

vided global monthly GPP (1982–2018) at a resolution of 0.05° based on 

linear correlations between NIRv and GPP using the AVHRR reflectance 

data. The reported accuracy of the NIRv GPP was R2 = 0.74, slope = 0.84 

and root mean squared error (RMSE) = 0.93 gC m−2 d−1. The P-model 

GPP dataset provided global daily GPP (1982–2016) at a resolution of 

0.5° using LUE models, where the LUE was predicted on the basis of 

the environmental conditions (temperature, VPD, CO2 concentration 

and soil moisture content) and optimized stomatal conductance and 

photosynthetic rates. The reported accuracy of the P-model GPP was 

R2 = 0.75, slope = 1.07 and RMSE = 1.96 gC m−2 d−1. The latest BESS GPP 

(v.2.0) product provided global monthly GPP data from 1982 to 2019 

at a resolution of 0.05° using a data-driven process-based model that 

explicitly simulated canopy radiative transfer, energy balance and 

photosynthesis. The reported accuracy of the BESS GPP was R2 = 0.65, 

RMSE = 2.56 and bias = −0.69 gC m−2 d−1. These GPP products were 

resampled to 0.25° and aggregated to the annual temporal resolu-

tion. GPP anomalies were calculated and detrended for each pixel for 

each GPP product. The five detrended anomalies were averaged (to 

an ensemble mean) for each pixel to avoid inconsistencies and biases 

among the GPP products. The following analyses were based on the 

ensemble mean of the five anomalies in 1982–2018. We also separated 

the five GPP products and calculated the change in sensitivity using 

each product (Extended Data Fig. 1), producing comparable results.

As a supplement to remote-sensing-based GPP data, TRENDY-v11 

GPP data1 were used to derive the change in sensitivity. We used 

eight land-surface models in TRENDY (DLEM, ISAM, LPJ, LPJ-GUESS, 

LPX-Bern, ORCHIDEE, VISIT and VISIT-NIES), providing global GPP data 

at a resolution of 0.5° (the closest to the 0.25° resolution we used). We 

downloaded the GPP data under scenario S3 (containing all forcing, 

that is CO2 concentration, climate and land-use change), aggregated 

them to the annual temporal resolution and resampled (bilinear) them 

to 0.25°. GPP anomalies were calculated and detrended for each pixel 

using GPP data from 1982 to 2018. The eight detrended GPP anoma-

lies were averaged at the pixel level to produce an ensemble mean, 

which was used to derive the change in sensitivity after disturbances 

(Extended Data Fig. 2c,d).

We leveraged two widely used drought indices, the PDSI16 and the 

SPEI17, to indicate water stress. PDSI is a standardized metric derived 

from a two-layer soil water balance model, where negative and positive 

values indicate dry and wet conditions, respectively. We downloaded 

monthly 4 km historical PDSI data between 1982 and 2018 from Terra-

Climate37, which were based on potential evapotranspiration (PET) 

derived from the Penman–Monteith equation. Monthly PDSI data were 

averaged to generate annual PDSI and upscaled to a resolution of 0.25°. 

Drought disturbances were defined as annual PDSI values below −3 

(refs. 16,38), which indicated severe drought. Other PDSI thresholds, 

such as −2 and −4, were also tested and the results were comparable to 

those using −3. A threshold of −2 usually indicated moderate droughts, 

which had limited impacts on ecosystems. SPEI is a multiscalar drought 

index that captures atmospheric water deficits by considering the dif-

ference between precipitation and PET. We aggregated monthly 4 km 

precipitation and PET data to 0.25° and calculated monthly SPEI12 

(scale = 12-month) between 1982 and 2018 at a resolution of 0.25° using 

the SPEI package in R (v.4.1.3). SPEI12 was selected because we used 

annual data in this study. Monthly SPEI12 values were averaged to the 

annual level and severe droughts were defined as SPEI12 values below 

−1.5 (refs. 3,39). Other thresholds, such as −1 and −1.2, were also tested 

and the results were comparable to those using −1.5. A threshold of −1 

usually indicated moderate droughts, which had limited effects on 

ecosystems. Global burned area data were obtained from the global 

fire emission database25 (GFED4.1s), which provided monthly fractions 

of burned area in 1997–2016 at a 0.25° grid. We summed the monthly 

data to produce annual burned fractions for each grid. A fire event was 

defined as a burned fraction >10%.

Future PDSI data under the shared socioeconomic pathways 2–4.5 

(SSP245) and 5–8.5 (SSP585)40 were obtained from the National Center 

for Atmospheric Research (NCAR), which provided global PDSI data 

from 1900 to 2100 at a resolution of 2.5° under warming scenarios. 

These PDSI data were interpolated to 0.25° using the thin plate spline 

method implemented in the fields package in R. We also used future 

PDSI data from CarbonPlan41, which provided PDSI data in 2015–2100 

at a resolution of 4 km across the conterminous United States. We used 

this dataset because it had a higher spatial resolution (than the 2.5° 

PDSI data). We aggregated the 4 km PDSI data to 0.25° to match the 

0.25° data we used. The drought return intervals derived from the two 

future PDSI datasets were shown in Extended Data Fig. 8. Land-cover 

maps at a spatial resolution of 0.05° from the Terra and Aqua combined 

moderate resolution imaging spectroradiometer (MODIS) land cover 

climate modelling grid (MCD12C1) v.6 in 2001–2018 were downloaded 

and aggregated to 0.25°. MODIS land-cover data were from Earthdata 

(https://www.earthdata.nasa.gov). We removed cropland and unveg-

etated classes (permanent wetlands, water, snow, urban and barren) 

based on land-cover type 1 in MCD12C1. Pixels with land-cover changes 

in 2001–2018 were also removed and not used.

Derivation of changes in drought sensitivity
We used the slope of a simple linear regression between the GPP anoma-

lies (response variable) and PDSI (predictor) to represent the sensitivity 

of vegetation productivity to water stress. We checked the correlation 

between the GPP anomalies and PDSI for each pixel (Extended Data 

Fig. 9a), where 50% (n = 73,717) of the pixels had significant correlations 

(Extended Data Fig. 9b). We removed the pixels yielding non-significant 

correlations and compared three models (linear, quadratic and logistic 

models) in modelling the GPP anomalies with PDSI for the significant 

pixels. As shown in Extended Data Fig. 9c, linear models were the best 

for 88% of the significant pixels. Hence, we used linear models to derive 

the change in sensitivity for the significant pixels. Pixels that did not 

exhibit significant correlations between the GPP anomalies and PDSI 

were not used in this study. As a complementary analysis, we used 

multiple linear regression (using more variables as predictors) and 

the coefficients of PDSI from the multiple linear regression and the 

simple linear regression were comparable and significantly corre-

lated (Extended Data Fig. 10). The slope of a simple linear regression 

between predrought GPP anomalies and PDSI was calculated to indicate 

predrought sensitivity (k0). Similarly, postdrought sensitivity (k1) was 

calculated using postdrought GPP anomalies and PDSI. The difference 

between the postdrought and predrought slopes was defined as the 

change in sensitivity (Δk). The same strategy was used when using 

SPEI to indicate water stress. To enhance the robustness of our results, 

we performed multiple linear regression on annual data from 1982 to 

2018, modelling GPP as a function of temperature and precipitation 

(GPP ~ temperature + precipitation) for each pixel. We calculated the 

http://www.nature.com/natureclimatechange
https://www.earthdata.nasa.gov


Nature Climate Change

Article https://doi.org/10.1038/s41558-024-02191-z

residuals from this regression model for each GPP product. Next, we 

regressed these residuals against PDSI to determine predrought and 

postdrought sensitivities, as well as changes in sensitivity, using all 

available pixels (excluding those with land-cover changes). The results, 

presented in Supplementary Figs. 3 and 4, were highly consistent with 

those obtained from detrended GPP anomalies.

Δk = k

1

− k

0

(1)

We required at least 8 years of data for regression when calculating the 

change in sensitivity after droughts. Eight was the first break point in 

the drought return intervals based on the histogram in Extended Data 

Fig. 7a. For fires, 5 years were required for regression because five was 

the first break point in fire return intervals (Extended Data Fig. 7c). 

The first drought was checked initially for each pixel, and the change 

in drought sensitivity was calculated using equation (1) when we had at 

least eight data points for the regression analysis before and after the 

first drought. For postdrought regression, only the GPP data between 

the first and the second droughts were used to avoid the interference 

of the second drought. Similarly, only samples between the current 

and the previous droughts were used for predrought regression. The 

length of predisturbance and postdisturbance data could vary, and we 

used 8 years as the minimum for the regression analysis. Otherwise, 

the second drought would be checked. This pixel was discarded if all 

droughts were not qualified for calculating the change in sensitivity. 

Continuous droughts were treated as one drought when deriving the 

changes in sensitivity. We used the first drought when two or more 

droughts were suitable for calculating Δk. The same procedure was 

applied to fires, producing the change in sensitivity after a fire event. 

There were 23,172 and 5,358 pixels available to investigate the change 

in sensitivity after drought and fire, respectively.

To account for spatial autocorrelations in Δk, we used the general-

ized least squares (GLS) model42 to examine the significance. We used 

the gls function from the nlme package in R. The exponential correla-

tion structure, corExp, was selected to assess the significance of mean 

Δk by fitting the GLS models with the formula Δk ~ 1 (regression with 

only the constant term). We tested five correlation structures: exponen-

tial, spherical, Gaussian, ratio and linear. The exponential correlation 

structure was always ranked in the two best correlation structures for 

minimizing Akaike information criterion. We thus decided to use the 

exponential correlation structure throughout the manuscript to save 

computational time (GLS models are extremely time-consuming when 

sample sizes are large). We aggregated the maps of Δk for drought 

disturbances using a factor of two (fact = 2) during the calculation 

due to the intensity of the computation, producing 9,989 samples to 

investigate the significance. The constant term, mean Δk, was consid-

ered significant at P < 0.05 (two-sided) based on the GLS models and 

labelled with an asterisk (*).

Random forest model
Random forest regression18, a widely used data-driven machine-learning 

model, was leveraged to model the change in drought sensitivity and 

to identify the dominant factors driving the change. Random forest 

regression had no statistical assumptions on data and was well-suited 

for analysing high-dimensional data. We used the randomForest pack-

age in R to train the random forest model. The response variable was 

the change in sensitivity, Δk. The predictors included various climatic, 

nutrient and biological variables, namely temperature (T), precipita-

tion (Pr), downward surface shortwave solar radiation (Srad), PDSI, CO2 

concentration43, the aridity index (AI)44, soil moisture (SM), soil total 

nitrogen (Soil.N), soil organic carbon (Soil.C), soil organic phospho-

rous (Soil.P), nitrogen deposition (N.deposition), soil cation exchange 

capacity (Soil.CEC), plant species diversity26 (biodiversity), above-

ground biomass (AGB)45, the leaf area index (LAI)46 and the biome47 

defined by the World Wildlife Fund. Climatic variables such as T, Pr, 

Srad and PDSI in 1982–2018 were obtained from TerraClimate and 

aggregated to a spatial resolution of 0.25° and an annual temporal reso-

lution. The global historical data for CO2 concentration in 1982–2013 at 

a resolution of 1° were resampled (bilinear) to 0.25°. The soil moisture 

data (0–100 cm) at a resolution of 0.1° from the European Center for 

Medium-Range Weather Forecasts Reanalysis v.5 (ERA5) in 1982–2018 

were downloaded and aggregated to 0.25°. The 8 km global inventory 

modelling and mapping studies (GIMMS) LAI4g data (1982–2020) 

were aggregated to 0.25°. The 10 km global AGB data in 2000–2019 

were aggregated to 0.25°. The 8 km Soil.N and Soil.C and 0.5° Soil.P, 

N.deposition and Soil.CEC were obtained from the Oak Ridge National 

Laboratory Distributed Active Archive Center and resampled to 0.25°. 

The 95 km plant species diversity data were normalized by dividing 

the maximum (= N/Nmax × 100%) and resampled (bilinear) to 0.25°. The 

1 km aridity index (high and low values indicate wet and dry conditions, 

respectively) data were aggregated to 0.25°.

We calculated the long-term mean (for example, Mean.T, mean 

annual temperature) and trend (for example, Trend.T; slope of a simple 

linear regression between temperature and year) of variables with 

>30 years of records for each pixel, including T, Pr, Srad, PDSI, CO2, SM 

and LAI. Both the long-term mean and the trend were used as predic-

tors. Average AGB in 2000–2019 was used as a predictor, but no trend 

was calculated because the duration was <30 years. No trends were 

derived for static variables such as AI, Soil.N, Soil.P and biodiversity. 

We established separate random forest models for drought and fire 

disturbances because the drivers varied. Before training the models, 

highly correlated predictors were removed. For example, when mean 

annual precipitation and mean annual soil moisture exhibited a high 

correlation (|r | > 0.7), the predictor presenting a lower correlation with 

Δk was eliminated. We used 500 decision trees in the random forest 

models to save computation time and maintain the accuracy and the 

number of splits was determined as the square root of the number of 

selected predictors (⌊√n⌋), which is commonly used when training 

random forest models. We used Shapley values48 derived from the 

fastshap package in R to illustrate the responses of Δk to the predic-

tors. Shapley values represent the contribution of each predictor by 

subtracting the impacts of other predictors. Shapley values can help 

to explain the predictions from machine-learning models and identify 

the relationships between the response variable and the predictors. 

Predictor importance was determined by the mean absolute Shapley 

value of each predictor, which was normalized by dividing the sum 

of the mean absolute Shapley value from all predictors multiplied by 

100% (Fig. 3). The dependence of Δk (Shapley values) on the predic-

tors was shown in Extended Data Figs. 5 and 6 for drought and fire, 

respectively.

Estimation of recovery time
The recovery time of drought sensitivity was determined as the time 

required for the sensitivity to return to its predisturbance level. Eco-

systems may need years to restore the sensitivity because it could 

increase significantly after disturbance. To derive the recovery time of 

the sensitivity, we selected pixels with a long postdisturbance time, that 

is at least 16 and 10 years for droughts and fires, respectively, ensuring 

a minimum of two independent regression periods. A moving-window 

strategy using 8 year (5 year) intervals for droughts (fires), was used to 

calculate postdisturbance sensitivity for each selected pixel. The sensi-

tivity in each moving window (for example, 1–8, 2–9 and 3–10 years) was 

determined as the slope of a simple linear regression between the GPP 

anomalies and PDSI. For Δk > 0, the sensitivity was considered to have 

recovered when the postdisturbance sensitivity was equal to or lower 

than the predisturbance sensitivity (k0) because the two sensitivities 

may not always be equal exactly. The recovery time was defined as the 

first year in the moving window in which the postdisturbance sensi-

tivity was ≤k0 (Supplementary Fig. 5a). Likewise, when the sensitivity 

decreased (Δk < 0) after disturbances, the recovery time was defined 
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as the first year in the moving window in which the postdisturbance 

sensitivity was ≥k0 (Supplementary Fig. 5b). There were 5,407 and 

1,400 pixels available for drought and fire, respectively, to analyse the 

recovery time (Fig. 4).

Caveats
There are inherent uncertainties associated with the remote-sensing 

GPP products and the projections of future PDSI. The five 

remote-sensing GPP products are developed using different assump-

tions, models and inputs, leading to varied results when calculating 

the change in sensitivity (Fig. 2 and Extended Data Fig. 1). In this study, 

we use the ensemble mean of the five GPP products to mitigate uncer-

tainties, although it may still be insufficient. Furthermore, the future 

PDSI data from NCAR have a coarse spatial resolution (2.5°), which 

does not align with the 0.25° data we use and the future PDSI data 

from CarbonPlan only cover the contiguous United States, limiting 

their applicability. Nevertheless, to our knowledge, these two PDSI 

datasets are the only long-term ones available for future warming 

scenarios (SSP245 and SSP585). Additionally, these future PDSI data 

may not precisely reflect future drought changes because they do not 

account for the effects of increasing CO2 on stomatal conductance 

and WUE49. However, recent research has indicated that the effects 

of CO2 on increasing WUE probably have saturated since 2000 due to 

increased VPD21. These findings highlight the challenges of accurately 

projecting future drought disturbances.

Reporting summary
Further information on research design is available in the Nature 

Portfolio Reporting Summary linked to this article.

Data availability
The GLASS GPP data are from http://www.glass.umd.edu/Down-

load.html. The EC-LUE GPP data are available via figshare at 

https://doi.org/10.6084/m9.figshare.8942336.v3 (ref. 50). The 

NIRv GPP data are available via figshare at https://doi.org/10.6084/

m9.figshare.12981977.v2 (ref. 51). The P-model GPP data are available via 

Zenodo at https://doi.org/10.5281/zenodo.1423483 (ref. 52). The BESS 

(v.2.0) GPP data are from https://www.environment.snu.ac.kr/data. 

The TRENDY-v11 GPP data are from https://blogs.exeter.ac.uk/trendy/. 

The historical PDSI data and the climatic data (temperature, precipita-

tion and downward shortwave solar radiation) are from TerraClimate 

(https://www.climatologylab.org/terraclimate.html). Future PDSI data 

are from NCAR (https://rda.ucar.edu/datasets/ds299.0/) and Carbon-

Plan (https://carbonplan.org/). The GFED4.1s burned area data are 

available at https://www.globalfiredata.org/index.html. Global data for 

the aridity index are available via figshare at https://doi.org/10.6084/

m9.figshare.7504448.v6 (ref. 53). Global soil moisture (0–100 cm) 

data are downloaded from ERA5-land (https://cds.climate.copernicus.

eu/datasets). GIMMS LAI4g data are available via Zenodo at https://

doi.org/10.5281/zenodo.7649107 (ref. 54). CO2 data are available via 

Zenodo at https://doi.org/10.5281/zenodo.5021360 (ref. 55). Global 

data for soil total nitrogen and soil organic carbon (0–100 cm) are 

from https://daac.ornl.gov/SOILS/guides/IGBP-SurfaceProducts.html. 

Soil organic phosphorus (0–50 cm) data are from https://daac.ornl.

gov/SOILS/guides/Global_Phosphorus_Dist_Map.html. Soil cation 

exchange capacity and nitrogen deposition data are from https://daac.

ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html. AGB data 

are available via Zenodo at https://doi.org/10.5281/zenodo.4161693 

(ref. 56). The biodiversity data are from https://anthroecology.org/

anthromes/plantbiodiversity/.

Code availability
All analysis was done in the open-source software R v.4.1.3. The code is 

available via figshare at https://doi.org/10.6084/m9.figshare.25482928 

(ref. 57).
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Extended Data Fig. 1 | Change in drought sensitivity using the five remote 

sensing GPP products separately. The change in drought sensitivity after 

disturbances is derived from each GPP product (a-j) using PDSI to indicate water 

stress. The distributional maps are aggregated to a resolution of 1° for visual 

display. ‘Mean’ is the mean change in sensitivity derived from GLS models. *, 

p < 0.05 (two-sided) based on the GLS models. Multiple comparisons are not 

applicable. Basemaps from Natural Earth (https://www.naturalearthdata.com/

downloads/110m-physical-vectors).
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Extended Data Fig. 2 | Change in drought sensitivity based on SPEI and 

TRENDY GPP data. (a-b) The changes in drought sensitivity after (a) severe 

droughts and (b) fires using SPEI to indicate water stress (remote sensing GPP 

regressed by SPEI). (c-d) The changes in drought sensitivity using TRENDY 

GPP (regressed by PDSI). The distributional maps are aggregated to 1° for 

visual display. ‘Mean’ is the mean change in sensitivity derived from GLS models. 

*, p < 0.05 (two-sided) based on the GLS models. Multiple comparisons are not 

applicable. Basemaps from Natural Earth (https://www.naturalearthdata.com/

downloads/110m-physical-vectors).
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Extended Data Fig. 3 | Distribution of the aridity levels. The aridity levels are defined based on the aridity index (AI): hyperarid (AI < 0.05), arid (AI < 0.2), semi-arid 

(AI < 0.5), dry sub-humid (AI < 0.65), and humid (AI ≥ 0.65). Basemaps from Natural Earth (https://www.naturalearthdata.com/downloads/110m-physical-vectors).
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Extended Data Fig. 4 | Changes in drought sensitivity in the aridity levels 

when using SPEI and TRENDY GPP. (a) The change in drought sensitivity using 

SPEI to indicate water stress (remote sensing GPP regressed by SPEI) (left to 

right, N = 58, 2893, 3194, 1044, 2982 for drought; N = 65, 2077, 1868, 532, 670 for 

fire). (b) The change in drought sensitivity using TRENDY GPP data (regressed by 

PDSI) (left to right, N = 37, 2209, 3291, 1437, 4412 for drought; N = 66, 2133, 2223, 

884, 1171 for fire). The height of each bar indicates the mean change in sensitivity 

derived from GLS models, and the error bar shows one standard error. *, p < 0.05 

(two-sided) based on the GLS models. Multiple comparisons are not applicable.
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Extended Data Fig. 5 | Response of the change in drought sensitivity to the 

most important predictors for severe droughts. The eight most important 

predictors (a-h) are shown, where the smoothing curves are fitted by generalized 

additive models in the ‘ggplot2’ package in R, and the shading represents the 95% 

confidence interval. The Shapley value indicates the response of the change in 

sensitivity to the predictors.
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Extended Data Fig. 6 | Response of the change in drought sensitivity to the 

most important predictors for fires. The eight most important predictors 

(a-h) are shown, where the smoothing curves are fitted by generalized additive 

models in the ‘ggplot2’ package in R, and the shading represents the 95% 

confidence interval. The Shapley value indicates the response of the change  

in sensitivity to the predictors.
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Extended Data Fig. 7 | Return intervals of severe droughts and fires. (a-b) Drought return intervals using historical PDSI data in (a) 1982–2018 and (b) 1958–1981. (c) Fire 

return intervals using the burned area from GFED 4.1 s. The bin width is one year. The median return intervals for panels (a-c) are 9.25, 12.0, and 6.67 years, respectively.
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Extended Data Fig. 8 | Drought return intervals using future PDSI data in 

2061–2100. Boxplots of drought return intervals based on PDSI from (a) NCAR 

(left to right, N = 22976, 76923) and (b) CarbonPlan (left to right, N = 7772, 10166) 

under SSP245 and SSP585. The solid lines indicate the recovery time (five years 

after severe droughts). Box plot lines represent the interquartile range (IQR) 

and median, respectively, whereas the whiskers represent 1.5 times IQR (or the 

minimum/maximum).
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Extended Data Fig. 9 | The best model at the global scale. (a) Correlations 

between the GPP anomalies and PDSI. (b) The distribution of pixels with 

significant correlations (50% of pixels indicating significant correlations). 

There are 146210 and 73717 pixels in panels (a) and (b), respectively. p values 

(two-sided) are based on cor.test in R. Multiple comparisons are not applicable. 

(c) The best model for the significant pixels, where there are three models: linear 

(blue), quadratic (orange), and logistic (red) models. The best model is defined 

as the model with minimum Akaike Information Criterion (AIC) and significant 

regression coefficients (for example the linear model is used when the quadratic 

term in the quadratic model is not significant). The linear model is the best for 88% 

of the pixels. Basemaps from Natural Earth (https://www.naturalearthdata.com/

downloads/110m-physical-vectors).
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Extended Data Fig. 10 | Results of simple linear regression (SLR) and multiple 

linear regression (MLR) are comparable. Scatter plot of the coefficients (that is 

sensitivity) of PDSI from SLR (GPPanomaly ~ PDSI) and MLR (GPPanomaly ~ Sradanomaly + 

Tanomaly + PDSI) based on data in 1982–2018. Each dot is a pixel, and only pixels with 

significant correaltions between GPPanomaly and PDSI are shown. There are 84.85% 

of pixels exhibiting positive correlations between GPP anomalies and PDSI. The 

p value (two-sided) is based on linear regression. Multiple comparisons are not 

applicable.
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