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Terrestrial ecosystems are major carbon (C) pools, sequestering ~20% of
anthropogenic C emissions. However, increasing frequency and intensity

of climate-sensitive disturbances (for example, drought and wildfire)
threaten long-term C uptake. Although direct effects of disturbances are
well-documented, indirect effects remain unknown. Here we quantify
changes in the sensitivity of terrestrial gross primary production to water
stress before and after severe droughts and fires. We find divergent changes
across the globe, where dry regions have increased sensitivity, while wet
regions have decreased sensitivity. Water availability, solar radiation,
nutrient availability and biodiversity are the main drivers mediating these
changes. Sensitivity takes ~4-5 years to recover after disturbances, but

the increasing frequency of disturbances threatens this recovery. Our
results reveal strong cross-system discrepancies in ecosystem responses to
disturbances, highlighting the vulnerability of dryland ecosystems in future

climates.

Terrestrial vegetation sequesters ~1.9 PgC yr™* (net carbon (C) sink)
and stores 450 PgC (ref. 1) across the globe, counterbalancing ~20%
of human C emissions annually. Disturbances exacerbated by cli-
mate change, such as droughts and wildfires, decrease ecosystem
productivity>?, increase tree mortality* and compromise the capac-
ity of terrestrial C sinks>®. Climate change is projected to drive more
frequentand severe disturbances in the following decades’, which will
cause substantial threats to terrestrial C uptake and dramatically affect
the global C cycle. Terrestrial gross primary production (GPP) directly
measures photosynthetic productivity and vegetation C uptake and
plays akey role in regulating the capacity of terrestrial C sinks, but it
is strongly impacted by climate extremes and disturbances**’. Hence,
monitoring the long-term dynamics of terrestrial GPP and understand-
ing how ecosystem C uptake responds to disturbances may offer critical
insights into how climate change willimpact terrestrial ecosystems, C
uptake and land C sinks

Disturbances have both direct and indirect effects on ecosystem
productivity. GPP tends to decrease substantially during disturbances?,

which is a direct effect. On the other hand, there are indirect effects,
which are defined as the long-term changes in the sensitivity of ecosys-
tem productivity to climate stressors after disturbances. The indirect
effects can persist for several years due to potential physiological
damage, compositional changes and legacy effects'°. The changein the
sensitivity of GPP to water stress after disturbances captures the subse-
quentvulnerability of ecosystems to water deficits. A higher sensitivity
of GPP to water stressimplies a higher vulnerability to drought and less
Cuptake under dry conditions. The sensitivity of ecosystem productiv-
ity (GPP) to water stress can be influenced by many factors" ™, such as
climate, soil, community composition and structure and physiological
traits. A previous study has also found that the sensitivity of GPP to
water stress is notably impacted by disturbances, where the sensitiv-
ity increased significantly after severe droughts and fires across the
conterminous United States”. However, the patterns of the change in
the sensitivity of GPP to water stress at the global scale due to distur-
bances (droughts and fires) remain unknown. Whether GPP becomes
less or more sensitive to water stress globally after disturbances is
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Fig.1|Large spatial heterogeneities in the change in drought sensitivity
after disturbances. a,b, Changesin sensitivity (Ak) after severe droughts (a) and
fires (b) using the ensemble mean of remote-sensing-based GPP data (regressed
by PDSI). Parameters k, and k, are the postdisturbance and predisturbance
sensitivity, respectively. There are 23,172 and 5,358 pixels for drought and fire,
respectively. The distributional maps are aggregated to 1° for visual display,

and red values indicate increases in sensitivity. ‘Mean’ is the mean change in
sensitivity derived from a GLS model, where the asterisk (*) indicates significant
(P<0.05, two-sided) on the basis of the GLS model. Multiple comparisons are
not applicable. The shading in the latitudinal plots represents1s.e. and the thick
black lines show the mean change in sensitivity. Basemaps from Natural Earth
(https://www.naturalearthdata.com/downloads/110m-physical-vectors).

still unclear. Quantifying the indirect effects of disturbances on eco-
system GPP at the global scale isimportant for illuminating the future
of terrestrial ecosystem productivity and C sequestrationin arapidly
changing climate.

Weinvestigated the changesin the sensitivity of GPP to water stress
after disturbances (severe droughts and fires) and quantified the time
needed for the sensitivity to recover. We hypothesized that the sensitiv-
ity of GPP to water stress would increase after disturbances, but high
ecosystem diversity might decrease the sensitivity due to the buffering
effects of trait diversity. This study focused on high severity droughts
because low severity droughts generally had limited impacts on ecosys-
tem functioning and C uptake. We used an ensemble of five long-term
remote-sensing-based GPP products (Methods) and regressed GPP
against drought indices, such as the Palmer drought severity index
(PDSI)** and the standardized precipitation-evapotranspiration index
(SPEI)". We estimated the sensitivity of GPP to water stress (hereafter
‘drought sensitivity’) and compared the sensitivity before and after
disturbances. We also analysed the patterns of the changes in drought
sensitivity at both the global and the regional scales. We leveraged
random forest regression’® to illuminate the contribution of climatic,
nutrient and biological variables (for example, precipitation, tem-
perature, solar radiation, nutrient availability and biodiversity) to the
changein drought sensitivity. We finally quantified the recovery time
for drought sensitivity to revert to the predisturbance condition. We

asked the following three questions. (1) How does drought sensitivity
changeafter disturbances at the global scale? (2) What are the dominant
drivers of the changein drought sensitivity? (3) How long does drought
sensitivity need to revert to the predisturbance level and how does this
compareto current and future disturbance return intervals?

Change in drought sensitivity globally

The drought sensitivity did not change significantly at the global scale
after severe droughts butincreased significantly after fires. Across the
globe, the changes in drought sensitivity were highly heterogeneous
amongregions. The global mean change in sensitivity (Ak) after severe
droughts was —0.23 + 0.55 gC m~2 (mean = s.e.), which was not signifi-
cant (Fig. 1a). Western North America was dominated by increased
sensitivity (Ak > 0) after severe droughts, while South America had
decreased sensitivity (Ak < 0), particularly intropical rainforests. Tropi-
calregionsinAfricaand southeastern Asiaand boreal regionsin Europe
also had decreased sensitivity. Other regions, such as southern Africa,
central Eurasia and Australia, had increased sensitivity. The latitudinal
variation of the change in drought sensitivity in Fig. 1a also indicated
decreased sensitivity in tropical regions and increased sensitivity at
midlatitudes of the Northern and Southern Hemispheres. Sensitivity
in Fig. 1b increased significantly after fires by 1.88 + 0.71gC m2, and
there were also differences in the changes in sensitivity among regions.
We separated the five remote-sensing-based GPP products usedin this
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Fig.2|Drought sensitivity in dry regions increased significantly after
disturbances. a, The changesin sensitivity at various aridity levels after severe
droughts (left to right, n =34,2,054,2,937,1,093 and 3,871; aggregated by fact = 2)
and fires (left toright, n = 65,2,029,1,891, 560 and 813) using the ensemble of
remote-sensing GPP products (regressed by PDSI). b,c, The changes in sensitivity
after severe droughts (b) (left to right, n = 24,1,767, 2,549, 845 and 3,239 for
GLASS; n=25,1,802,2,632,1,009 and 3,940 for EC-LUE; n=23,1,577,2,388,772
and 2,243 for NIRv; n=26,1,946,2,897,1,135and 3,333 for P-model; n = 29,1,915,

Aridity level

2,406, 658 and 3,435 for BESS) and fires (c) (left to right, n = 65,1,827,1,543,400
and 656 for GLASS; n=65,1,866,1,635,528 and 844 for EC-LUE; n = 64,1,587,
1,449,296 and 475 for NIRv; n = 65, 2,085, 2,069, 634 and 834 for P-model; n = 65,
1,962,1,465,251and 521 for BESS) using a single GPP product (regressed by PDSI).
The height of each bar indicates the mean change in sensitivity derived from

GLS models and the error bar shows 1s.e. *P < 0.05 (two-sided) based on the GLS
models. Multiple comparisons are not applicable.

study and obtained similar results (Extended Data Fig. 1), where the
changesinsensitivity were not significant after severe droughts, except
theresult fromthe breathing Earth system simulator (BESS) GPP' data
(Akincreased significantly). The sensitivity for firesincreased in all GPP
products, and the P-model GPP*° and the BESS GPP had significantly
increased sensitivity.

When using remote-sensing GPP and SPEI, the results for the
changein sensitivity (Extended DataFig.2a,b) are comparable to those
showninFig.1, where the sensitivity did not change significantly after
severe droughts butincreased significantly after fires, with changes of
0.18 £1.59 and 3.63 + 1.81 gC m, respectively. Australiaand southern
Africa exhibited increased sensitivity, while tropical forests showed
decreased sensitivity after severe droughts. When using GPP data
derived fromland-surface models in TRENDY"and PDSI, the sensitivity
decreased significantly at the global scale by —2.60 + 0.83 gC m™after
severe droughts (Extended DataFig. 2c), particularly intropical regions,
Africaand Australia. The change in sensitivity after fires was negative
and notssignificant (Extended DataFig.2d),at-0.86 + 0.98 gCm™.The
decreaseinsensitivity in Australiawas evident after fires. The decreased
sensitivity from model-based GPP dataimplied that land-surface mod-
els underestimated the sensitivity of GPP to water stress after distur-
bances, perhaps due to the overestimation of water-use efficiency
(WUE) inresponse torising CO,concentrations. Previous research” has
shown that global WUE has saturated in the past two decades because
ofincreasing vapour pressure deficit (VPD). The land-surface models
may not adequately capture this change, potentially increasing the
uncertainty in the projections of future ecosystem productivity and
terrestrial C sinks.

Dry and wet regions had divergent changes in drought sen-
sitivity after disturbances. Hyperarid, arid and semi-arid regions
had increased sensitivity after severe droughts, but dry subhumid
and humid regions had decreased sensitivity (Fig. 2a and Extended
Data Fig. 3). The increased sensitivity in arid regions was signifi-
cant at 2.74 + 0.86 gC m (Fig. 2a and Supplementary Table 1). The
contrasting changes in sensitivity accounted for the overall muted
signals of the change in sensitivity at the global scale (Fig. 1a). Sensi-
tivity for fires increased significantly in hyperarid, semi-arid and dry

subhumid regions by 3.49 +1.11, 3.49 +1.20 and 4.01 +1.64 gC m2,
respectively. The results were comparable when separating the five
remote-sensing-based GPP products. Most GPP products indicated
significantly increased sensitivity in arid regions after droughts, except
the near-infrared reflectance of vegetation (NIRv)-based GPP? (Fig. 2b
and Supplementary Table 2). Sensitivity also increased significantly in
semi-arid regions when using the BESS GPP. Sensitivity decreased in
dry subhumid and humid regions for most products (except the BESS
GPP), and the decrease was significant when using the P-model GPP for
humid regions. Sensitivity increased significantly after fires (Fig. 2c)
in hyperarid regions, except the result from the NIRv GPP. There were
also somesignificantincreasesin sensitivity inarid, semi-arid and dry
subhumid regions when using the P-model and the BESS GPP. Sensitiv-
ity decreased in humid regions insignificantly when using the global
land surface satellite (GLASS) GPP?, the revised eddy-covariance model
of light-use efficiency (EC-LUE) GPP** and the NIRv GPP.

We found similar results when using remote-sensing GPP and
SPEI (Extended Data Fig. 4a), where drought sensitivity increased
significantly by 9.91 + 2.49 gC m2inarid regions after severe droughts.
For fires, the sensitivity increased significantly in semi-arid and dry
subhumid regions, at 8.43 + 2.69 and 9.83 + 4.49 gC m, respectively.
The changes in sensitivity were negative in humid regions for both
droughts and fires. When examining GPP simulated by land-surface
models and using PDSI data, the sensitivity decreased in all aridity
levels after severe droughts (Extended Data Fig. 4b) and the decrease
was significant in humid regions, at —2.58 + 0.93 gC m™ For fires, the
sensitivity changes were not significant in all aridity levels in Extended
DataFig.4b. These results were consistent with the changesin sensitiv-
ity after severe droughts and fires at the global scale using model-based
GPP data (Extended Data Fig. 2¢,d).

Drivers of changes in drought sensitivity

Climate was the main driver associated with the changes in drought
sensitivity after disturbances. We used random forest regression to
identify the contributions of different variables and removed highly
correlated variables before training the model (Methods). For severe
droughts, the random forest regression model explained 60% of the
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Fig.3 | Climate is the main driver of the change in drought sensitivity.

a,c, Correlations between the observed and the predicted change in sensitivity
(using random forest models) for severe droughts (a) and fires (c). There are
9,989 (0.25° pixels aggregated by fact = 2) and 5,358 samples for drought and
fire, respectively. Pvalues (two-sided) are based on linear regression. Multiple
comparisons are not applicable. b,d, Theimportance of drivers affecting the
change indrought sensitivity for severe droughts (b) and fires (d). The drivers
are categorized into three groups: climatic, nutrient and biological variables.
AGB, aboveground biomass; Al, aridity index; Mean.CO,, mean annual CO,
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concentration; Mean.PDSI, mean annual PDSI; Mean.sm, mean annual soil
moisture; Mean.Srad, mean annual downward surface shortwave solar radiation;
Mean.T, mean annual temperature; N.deposition, nitrogen deposition; Soil.C,
soil organic carbon content; Soil.CEC, soil cation exchange capacity; Soil.N, soil
total nitrogen; Soil.P, soil phosphorus; Trend.CO,, trend of CO, concentration
(slope of linear regression); Trend.LAl, trend of leaf area index; Trend.PDSI, trend
of PDSI; Trend.sm, trend of soil moisture; Trend.Srad, trend of downward surface
shortwave solar radiation; Trend.T, trend of temperature.

variationin the change in sensitivity (Fig. 3a). The importance of cli-
matic, nutrient and biological variables (Fig. 3b) in the random forest
model was 65%,21% and 14%, respectively. Water availability (Trend.
PDSI, Al-aridity index and Trend.sm), solar radiation (Mean.Srad
and Trend.Srad) and CO, concentration (Trend.CO,) were the main
climatic drivers affecting the change in drought sensitivity (Fig. 3b).
A high availability of water, that is increasing trends of PDSI and soil
moisture content and high Al values, was associated with decreased
sensitivity (Extended Data Fig. 5a,b,h), consistent with the results
in Fig. 2a (where dry and wet regions had increased and decreased
sensitivities, respectively). High downward surface shortwave solar
radiation was associated with increased sensitivity (Extended Data
Fig. 5¢c,f), perhaps due to the increased photosynthetic rate (and
demand for water) under high levels of solar radiation. A high trend
of CO, concentration was initially associated with the decrease in
sensitivity as shown in Extended Data Fig. 5e and then promoted the
increase in sensitivity after a rate of ~1.7 ppm yr™. The nutrient and
biological variables, such as nitrogen deposition (N.deposition) and
biodiversity, also affected the change in sensitivity. Drought sensitiv-
ity decreased with theinitialincreasein N.deposition, butincreased

after ~300 mgN m™ (Extended DataFig. 5d). We hypothesize that the
increases in sensitivity at high levels of N.deposition may be due to
the constraints of other nutrients, such as phosphorus. High plant
biodiversity contributed to the decrease in sensitivity (Extended Data
Fig. 5g), implying that high species diversity helped to increase the
resistance of ecosystems to disturbances.

The random forest model explained only 37% of the variation in
the change in drought sensitivity after fires (Fig. 3c). The importance
of the climatic, nutrient and biological variables (Fig. 3d) was 55%, 24%
and 21%, respectively. N.deposition was the mostimportant driver, fol-
lowed by the trends of downward surface shortwave solar radiation and
PDSI (Fig.3d). The patterns of the change in sensitivity (Extended Data
Fig. 6), along with these predictors, were less clear than after severe
droughts. For example, sensitivity first increased with N.deposition,
then decreased and finally increased again (Extended Data Fig. 6a),
whichrevealsthe complex and mixed responses to nutrients. Sensitiv-
ityincreased with the increasing trend of downward surface shortwave
solar radiation (Extended Data Fig. 6b), comparable to the results for
drought. Less clear driving variables may partly explain why the R? of
the random forest model in Fig. 3c was low.

Nature Climate Change


http://www.nature.com/natureclimatechange

Article

https://doi.org/10.1038/s41558-024-02191-z

Proportion

o] 5 10 15 20
Year

0.15

Proportion

=
0O 2 4 6 8 10
Year

Median = 4

Fig. 4 | Drought sensitivity recovers ~4-5 years after disturbances.

a,b, Distributional maps of recovery time after severe droughts (a) and fires
(b). The insets are histograms of the corresponding recovery time. There are
5,407 and 1,400 pixels available for drought and fire, respectively, to analyse

therecovery time. The distributional maps are aggregated to 1° for visual
display. Basemaps from Natural Earth (https://www.naturalearthdata.com/
downloads/110m-physical-vectors).

Recovery time

The drought sensitivity reverted to predisturbance level ~4-5 years
after disturbances on average. Following severe droughts, the median
(mean) recovery time of the drought sensitivity was 5 (5.98) years and
most pixels (>80%) recovered within 9 years after the disturbances
(Fig. 4a). For context with drought return intervals, historical PDSI
data from 1982 to 2018 revealed a median drought return interval of
9.25 years at the global scale (Extended Data Fig. 7a), surpassing the
5year recovery time. Therefore, ecosystems would have sufficient
time to return to predrought sensitivity. Further investigation using
PDSldatafrom1958 to198lindicated amedian drought returninterval
of 12 years (Extended Data Fig. 7b), suggesting that severe droughts
became more frequent with shorter returnintervalsinresponse to the
changing climate. At the pixellevel, only 6.31% (n = 341) of pixelshad a
recovery timelonger than the current drought returnintervals (based
on PDSI data in 1982-2018). However, climate projections indicated
further decreases in drought return intervals (Extended Data Fig. 8),
reducingthe time period available for ecosystemsto restore their sen-
sitivity and potentially causing permanent ecosystem changes and
degradation. For fires, the median (mean) recovery time of drought
sensitivity was 4 (4.35) years and most pixels (>80%) recovered within
6 years. The medianfire returninterval based on the global fire emission

database” (GFED4.1s) burned area data (1997-2016) was 6.67 years
(Extended Data Fig. 7c), which was longer than the 4 year recovery
time. Atthe pixellevel, only 0.40% (n = 5) of pixels had arecovery time
longer than the corresponding fire return intervals.

Discussion

Climate-sensitive disturbances, such as severe droughts and fires, have
pronounced impacts on the productivity and functioning of terrestrial
ecosystems. We quantified changes in the sensitivity of ecosystem GPP
towater stress (thatis, drought sensitivity) following severe droughts
andfires. Globally, changesin drought sensitivity (Ak) exhibited consid-
erable variationacrossregions, particularly inrelationto aridity levels.
Drought sensitivity tended toincrease after disturbancesin dry regions
(hyperarid, arid and semi-arid), whereas it was more likely to decrease
inwetregions (humid regions). Forinstance, typical wet regions, such
astropical forests, exhibited decreased sensitivity, while dry regions,
suchaswestern North America, southern Africaand Australia, showed
increased sensitivity.

Our datarevealed asignificant positive correlation between arid-
ityindex andbiodiversity (Supplementary Fig.1a), capturing that wet
regions generally have high biodiversity. In dry regions, biodiversity is
low and Ak is mostly >0 (Supplementary Fig. 1b), signifying increased
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sensitivity after disturbances. Conversely, in wet regions with high
biodiversity, Ak is mostly <0, suggesting decreased sensitivity. We
hypothesize that this reduced sensitivity in wet regions is due to the
buffering effect of high species diversity, where the loss of vulnerable
species is mitigated by the resilience of drought-resistant species.
Wet regions, such as tropical forests, typically exhibit high species
diversity”, structural complexity and interspecific competition. After
disturbances, competition decreases?, allowing surviving plants to
access more resources, which facilitates faster ecosystem recovery.
These surviving species are often more drought tolerant®®, which could
further contribute to the decreased sensitivity. Other studies have
highlighted the buffering effects of biodiversity, showing that high
biodiversity increases ecosystem resistance to drought®.

Incontrast, dry regions, such as Australiaand western North Amer-
ica, have relatively low species diversity and the buffering effects are
minimal. Additionally, plants in these areas are vulnerable to water
deficits due to their proximity to absolute biogeographic and climatic
thresholds. For example, dryland ecosystems experience high solar
radiation and temperatures, low cloud cover and limited water avail-
ability, leading to high potential evapotranspiration and substantial
water deficits. Thereis asignificant correlation between solar radiation
and aridity index (Supplementary Fig. 1c), where high solar radiation
is associated with low water availability. Consequently, dry regions
with high solar radiation tend to exhibit increased sensitivity after
disturbances, while wet regions with low solar radiation show mar-
ginal changesin drought sensitivity (Supplementary Fig.1d). Previous
research has demonstrated that vegetation greenness in drylands is
more sensitive to precipitation than in wet regions®. Similarly, the sen-
sitivity of leafareaindex to soil moisture ismuch higher in water-limited
regions, such as semi-arid and arid areas®. Our random forest models
(Extended DataFig. 5) identified low water availability, high solar radia-
tion and low biodiversity as the primary drivers of increased drought
sensitivity in dry regions. As a result, ecosystems in dry regions are
highly uncertain® and susceptible to future water deficits due to this
increased sensitivity. We also explored the use of ecophysiological and
hydrological variables to interpret our results; however, theirimpor-
tance was generally lower (Supplementary Fig. 2). This might be due
to the coarse spatial resolution of the data we used, which could have
decreased the significance of ecophysiological and hydrological vari-
ables. Recent research® also indicates that the conservative-acquisi-
tive trade-off of plant functional traitsis strong at the species scale but
diminishes at the ecosystem scale.

Although drought sensitivity may change after disturbances, it
canreverttoits predisturbance condition ~4-5 years on average after
the disturbances. Natural ecosystems generally possess the ability to
repair themselves and recover their functions, which is referred to as
ecosystem resilience®*. Currently, most ecosystems have sufficient
time to restore their drought sensitivity because the recovery time is
shorter thanthe corresponding drought returnintervals (-9 years) and
firereturnintervals (-7 years). There are still 6.31% of pixels, however,
exhibiting a longer recovery time than the corresponding drought
returnintervals, indicating that some ecosystems may not fully recover
their sensitivity before the occurrence of the next drought. On the
basis of historical PDSI data and future climate projections, drought
returnintervals are predicted to be shorter. The recovery of drought
sensitivity will thus become challenging, particularly when thereturn
intervals of disturbances are shorter than therequired recovery time.
This could impact the sustainability of terrestrial ecosystems, particu-
larly drylands and the capacity of terrestrial C uptake.

Disturbances sensitive to climate, such as droughts and wildfires,
play critical roles in regulating ecosystem functioning and sustain-
ability and land C sequestration. Climate change is anticipated to alter
disturbanceregimesandinduce moresevere and frequentdisturbances
inthe following decades. Understanding and quantifying the impacts
of disturbances on terrestrial ecosystems and C uptake for long-term

climate change mitigation areimperative. Our findings highlight promi-
nent changes in the sensitivity of ecosystem GPP to water stress after
disturbances and elucidate meaningful impacts on the recovery of
the sensitivity in future climates. Increased sensitivity increases the
vulnerability of ecosystems to subsequent water stress and short-
ened disturbance returnintervalsimpede ecosystem recovery. These
long-term dynamics are crucial for ecosystem sustainability, land C
sinks and global C management.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
areavailable at https://doi.org/10.1038/s41558-024-02191-z.
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Methods

Data

Remote-sensing-based GPP data were used to represent the produc-
tivity of ecosystems at the global scale. We used five long-term GPP
products: GLASS GPP?, the revised EC-LUE-based GPP*, the NIRv-based
GPP*, the P-model GPP*** and the BESS GPPY. The GLASS GPP data-
set provided global annual GPP from 1982 to 2018 at a resolution of
0.05° using data from the advanced very high resolution radiometer
(AVHRR). The GLASS GPP product was based on the EC-LUE model®,
which estimated GPP by multiplying APAR, LUE and downregulation
scalars based on flux-tower data (constraints of temperature and mois-
ture). The reported accuracy of the EC-LUE model was R*= 0.61 and
slope =0.77.Therevised EC-LUE GPP product provided global 8 d GPP
datain1982-2018 at aresolution of 0.05° using re-analysed meteoro-
logical data, where APAR and LUE were split on the basis of sunlit and
shaded leaves, with atmospheric CO, concentrationand VPD included
in the downregulation scalars. The reported accuracy of the revised
EC-LUE GPPwas R?=0.64 and slope = 0.70. The NIRv GPP dataset pro-
vided global monthly GPP (1982-2018) at aresolution of 0.05° based on
linear correlations between NIRv and GPP using the AVHRR reflectance
data. The reported accuracy of the NIRv GPP was R*= 0.74, slope = 0.84
and root mean squared error (RMSE) =0.93 gCm2d™. The P-model
GPP dataset provided global daily GPP (1982-2016) at a resolution of
0.5° using LUE models, where the LUE was predicted on the basis of
the environmental conditions (temperature, VPD, CO, concentration
and soil moisture content) and optimized stomatal conductance and
photosynthetic rates. The reported accuracy of the P-model GPP was
R?>=0.75, slope =1.07 and RMSE =1.96 gC m™ d ™. The latest BESS GPP
(v.2.0) product provided global monthly GPP data from 1982 to 2019
ataresolution of 0.05° using a data-driven process-based model that
explicitly simulated canopy radiative transfer, energy balance and
photosynthesis. The reported accuracy of the BESS GPP was R* = 0.65,
RMSE =2.56 and bias = -0.69 gC m2d™. These GPP products were
resampled to 0.25° and aggregated to the annual temporal resolu-
tion. GPP anomalies were calculated and detrended for each pixel for
each GPP product. The five detrended anomalies were averaged (to
an ensemble mean) for each pixel to avoid inconsistencies and biases
among the GPP products. The following analyses were based on the
ensemble mean of the five anomaliesin 1982-2018. We also separated
the five GPP products and calculated the change in sensitivity using
each product (Extended DataFig. 1), producing comparable results.

Asasupplement toremote-sensing-based GPP data, TRENDY-v11
GPP data' were used to derive the change in sensitivity. We used
eight land-surface models in TRENDY (DLEM, ISAM, LPJ, LPJ-GUESS,
LPX-Bern, ORCHIDEE, VISIT and VISIT-NIES), providing global GPP data
ataresolution of 0.5° (the closest to the 0.25° resolution we used). We
downloaded the GPP data under scenario S3 (containing all forcing,
that is CO, concentration, climate and land-use change), aggregated
them to the annual temporal resolution and resampled (bilinear) them
to 0.25°. GPP anomalies were calculated and detrended for each pixel
using GPP data from 1982 to 2018. The eight detrended GPP anoma-
lies were averaged at the pixel level to produce an ensemble mean,
which was used to derive the change in sensitivity after disturbances
(Extended Data Fig. 2¢,d).

We leveraged two widely used drought indices, the PDSI** and the
SPEI", to indicate water stress. PDSI is a standardized metric derived
from atwo-layer soil water balance model, where negative and positive
valuesindicate dry and wet conditions, respectively. We downloaded
monthly 4 km historical PDSI databetween1982 and 2018 from Terra-
Climate”, which were based on potential evapotranspiration (PET)
derived from the Penman-Monteith equation. Monthly PDSI data were
averaged to generate annual PDSIand upscaled toaresolution of 0.25°.
Drought disturbances were defined as annual PDSI values below -3
(refs.16,38), which indicated severe drought. Other PDSI thresholds,
suchas-2and -4, were also tested and the results were comparable to

those using —3. A threshold of -2 usually indicated moderate droughts,
which had limited impacts on ecosystems. SPElis amultiscalar drought
index that captures atmospheric water deficits by considering the dif-
ference between precipitation and PET. We aggregated monthly 4 km
precipitation and PET data to 0.25° and calculated monthly SPEI12
(scale=12-month) between 1982 and 2018 at aresolution of 0.25° using
the SPEI package in R (v.4.1.3). SPEI12 was selected because we used
annual datain this study. Monthly SPEI12 values were averaged to the
annual level and severe droughts were defined as SPEI12 values below
-1.5(refs. 3,39). Other thresholds, suchas-1and -1.2, were also tested
and the results were comparable to those using -1.5. A threshold of -1
usually indicated moderate droughts, which had limited effects on
ecosystems. Global burned area data were obtained from the global
fire emission database” (GFED4.1s), which provided monthly fractions
of burned areain1997-2016 at a 0.25° grid. We summed the monthly
datato produce annualburned fractions foreach grid. A fire event was
defined as aburned fraction >10%.

Future PDSI data under the shared socioeconomic pathways 2-4.5
(SSP245) and 5-8.5 (SSP585)*° were obtained from the National Center
for Atmospheric Research (NCAR), which provided global PDSI data
from 1900 to 2100 at a resolution of 2.5° under warming scenarios.
These PDSI data were interpolated to 0.25° using the thin plate spline
method implemented in the fields package in R. We also used future
PDSI data from CarbonPlan*, which provided PDSI data in 2015-2100
ataresolution of 4 km across the conterminous United States. We used
this dataset because it had a higher spatial resolution (than the 2.5°
PDSI data). We aggregated the 4 km PDSI data to 0.25° to match the
0.25°datawe used. The drought returnintervals derived from the two
future PDSI datasets were shown in Extended Data Fig. 8. Land-cover
maps at aspatial resolution of 0.05° from the Terra and Aqua combined
moderate resolutionimaging spectroradiometer (MODIS) land cover
climate modelling grid (MCD12C1) v.6 in2001-2018 were downloaded
and aggregated to 0.25°. MODIS land-cover datawere from Earthdata
(https://www.earthdata.nasa.gov). We removed cropland and unveg-
etated classes (permanent wetlands, water, snow, urban and barren)
based onland-cover type1in MCD12Cl. Pixels with land-cover changes
in2001-2018 were also removed and not used.

Derivation of changes in drought sensitivity

We used the slope of asimplelinear regression between the GPP anoma-
lies (response variable) and PDSI (predictor) to represent the sensitivity
of vegetation productivity to water stress. We checked the correlation
between the GPP anomalies and PDSI for each pixel (Extended Data
Fig.9a), where 50% (n = 73,717) of the pixels had significant correlations
(Extended Data Fig. 9b). We removed the pixels yielding non-significant
correlations and compared three models (linear, quadratic and logistic
models) in modelling the GPP anomalies with PDSI for the significant
pixels. As shownin Extended Data Fig. 9¢, linear models were the best
for 88% of the significant pixels. Hence, we used linear models to derive
the change in sensitivity for the significant pixels. Pixels that did not
exhibit significant correlations between the GPP anomalies and PDSI
were not used in this study. As a complementary analysis, we used
multiple linear regression (using more variables as predictors) and
the coefficients of PDSI from the multiple linear regression and the
simple linear regression were comparable and significantly corre-
lated (Extended Data Fig. 10). The slope of a simple linear regression
between predrought GPP anomalies and PDSI was calculated toindicate
predrought sensitivity (k,). Similarly, postdrought sensitivity (k;) was
calculated using postdrought GPP anomalies and PDSI. The difference
between the postdrought and predrought slopes was defined as the
change in sensitivity (Ak). The same strategy was used when using
SPEltoindicate water stress. To enhance the robustness of our results,
we performed multiple linear regression on annual data from 1982 to
2018, modelling GPP as a function of temperature and precipitation
(GPP -~ temperature + precipitation) for each pixel. We calculated the
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residuals from this regression model for each GPP product. Next, we
regressed these residuals against PDSI to determine predrought and
postdrought sensitivities, as well as changes in sensitivity, using all
available pixels (excluding those withland-cover changes). The results,
presented in Supplementary Figs. 3 and 4, were highly consistent with
those obtained from detrended GPP anomalies.

Ak = kl - ko (1)

Werequired atleast 8 years of datafor regression when calculating the
change in sensitivity after droughts. Eight was the first break pointin
thedroughtreturnintervals based onthe histogramin Extended Data
Fig.7a.Forfires, 5 years wererequired for regression because five was
the first break point in fire return intervals (Extended Data Fig. 7c).
The first drought was checked initially for each pixel, and the change
indroughtsensitivity was calculated using equation (1) when we had at
least eight data points for the regression analysis before and after the
first drought. For postdrought regression, only the GPP databetween
the first and the second droughts were used to avoid the interference
of the second drought. Similarly, only samples between the current
and the previous droughts were used for predrought regression. The
length of predisturbance and postdisturbance data could vary, and we
used 8 years as the minimum for the regression analysis. Otherwise,
the second drought would be checked. This pixel was discarded if all
droughts were not qualified for calculating the change in sensitivity.
Continuous droughts were treated as one drought when deriving the
changes in sensitivity. We used the first drought when two or more
droughts were suitable for calculating Ak. The same procedure was
applied tofires, producing the change in sensitivity after afire event.
There were 23,172 and 5,358 pixels available to investigate the change
insensitivity after drought and fire, respectively.

Toaccount for spatial autocorrelationsin Ak, we used the general-
ized least squares (GLS) model** to examine the significance. We used
the gls function from the nime package in R. The exponential correla-
tionstructure, corExp, was selected to assess the significance of mean
Ak by fitting the GLS models with the formula Ak ~ 1 (regression with
only the constantterm). We tested five correlation structures: exponen-
tial, spherical, Gaussian, ratio and linear. The exponential correlation
structure was always ranked in the two best correlation structures for
minimizing Akaike information criterion. We thus decided to use the
exponential correlation structure throughout the manuscript to save
computational time (GLS models are extremely time-consuming when
sample sizes are large). We aggregated the maps of Ak for drought
disturbances using a factor of two (fact = 2) during the calculation
due to the intensity of the computation, producing 9,989 samples to
investigate the significance. The constant term, mean Ak, was consid-
ered significant at P < 0.05 (two-sided) based on the GLS models and
labelled with an asterisk (*).

Random forest model

Randomforestregression'®,awidely used data-driven machine-learning
model, was leveraged to model the change in drought sensitivity and
to identify the dominant factors driving the change. Random forest
regression had nostatistical assumptions on data and was well-suited
for analysing high-dimensional data. We used the randomForest pack-
age in R to train the random forest model. The response variable was
the changeinsensitivity, Ak. The predictors included various climatic,
nutrient and biological variables, namely temperature (7), precipita-
tion (Pr), downward surface shortwave solar radiation (Srad), PDSI, CO,
concentration®, the aridity index (Al)**, soil moisture (SM), soil total
nitrogen (Soil.N), soil organic carbon (Soil.C), soil organic phospho-
rous (Soil.P), nitrogen deposition (N.deposition), soil cation exchange
capacity (Soil.CEC), plant species diversity* (biodiversity), above-
ground biomass (AGB)*, the leaf area index (LAI)*® and the biome*’
defined by the World Wildlife Fund. Climatic variables such as T, Pr,

Srad and PDSI in 1982-2018 were obtained from TerraClimate and
aggregated toaspatial resolution of 0.25° and an annual temporal reso-
lution. The global historical data for CO, concentrationin1982-2013 at
aresolution of 1° wereresampled (bilinear) to 0.25°. The soil moisture
data (0-100 cm) at aresolution of 0.1° from the European Center for
Medium-Range Weather Forecasts Reanalysis v.5 (ERAS) in1982-2018
were downloaded and aggregated to 0.25°. The 8 km global inventory
modelling and mapping studies (GIMMS) LAl4g data (1982-2020)
were aggregated to 0.25°. The 10 km global AGB data in 2000-2019
were aggregated to 0.25°. The 8 km Soil.N and Soil.C and 0.5° Soil.P,
N.deposition and Soil.CEC were obtained from the Oak Ridge National
Laboratory Distributed Active Archive Center and resampled to 0.25°.
The 95 km plant species diversity data were normalized by dividing
the maximum (= N/Ng, x 100%) and resampled (bilinear) to 0.25°. The
1kmaridity index (high and low values indicate wet and dry conditions,
respectively) datawere aggregated to 0.25°.

We calculated the long-term mean (for example, Mean.T, mean
annual temperature) and trend (for example, Trend.T; slope of asimple
linear regression between temperature and year) of variables with
>30 years of records for each pixel, including T, Pr, Srad, PDSI, CO,, SM
and LAl Both the long-term mean and the trend were used as predic-
tors. Average AGBin2000-2019 was used as a predictor, but no trend
was calculated because the duration was <30 years. No trends were
derived for static variables such as Al, Soil.N, Soil.P and biodiversity.
We established separate random forest models for drought and fire
disturbances because the drivers varied. Before training the models,
highly correlated predictors were removed. For example, when mean
annual precipitation and mean annual soil moisture exhibited a high
correlation (Jr| > 0.7), the predictor presenting alower correlation with
Ak was eliminated. We used 500 decision trees in the random forest
models to save computation time and maintain the accuracy and the
number of splits was determined as the square root of the number of
selected predictors (|vn]), which is commonly used when training
random forest models. We used Shapley values*® derived from the
fastshap package in R to illustrate the responses of Ak to the predic-
tors. Shapley values represent the contribution of each predictor by
subtracting the impacts of other predictors. Shapley values can help
to explainthe predictions from machine-learning models and identify
the relationships between the response variable and the predictors.
Predictorimportance was determined by the mean absolute Shapley
value of each predictor, which was normalized by dividing the sum
of the mean absolute Shapley value from all predictors multiplied by
100% (Fig. 3). The dependence of Ak (Shapley values) on the predic-
tors was shown in Extended Data Figs. 5 and 6 for drought and fire,
respectively.

Estimation of recovery time

The recovery time of drought sensitivity was determined as the time
required for the sensitivity to return to its predisturbance level. Eco-
systems may need years to restore the sensitivity because it could
increase significantly after disturbance. To derive the recovery time of
the sensitivity, we selected pixels with along postdisturbance time, that
isatleast16 and 10 years for droughts and fires, respectively, ensuring
aminimum of two independent regression periods. A moving-window
strategy using 8 year (5 year) intervals for droughts (fires), was used to
calculate postdisturbance sensitivity for each selected pixel. The sensi-
tivityineachmoving window (for example, 1-8,2-9 and 3-10 years) was
determined as the slope of asimple linear regression between the GPP
anomalies and PDSI. For Ak > 0, the sensitivity was considered to have
recovered when the postdisturbance sensitivity was equal to or lower
than the predisturbance sensitivity (k,) because the two sensitivities
may not always be equal exactly. Therecovery time was defined as the
first year in the moving window in which the postdisturbance sensi-
tivity was <k, (Supplementary Fig. 5a). Likewise, when the sensitivity
decreased (Ak < 0) after disturbances, the recovery time was defined
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as the first year in the moving window in which the postdisturbance
sensitivity was >k, (Supplementary Fig. 5b). There were 5,407 and
1,400 pixels available for drought andfire, respectively, to analyse the
recovery time (Fig. 4).

Caveats

There are inherent uncertainties associated with the remote-sensing
GPP products and the projections of future PDSI. The five
remote-sensing GPP products are developed using different assump-
tions, models and inputs, leading to varied results when calculating
the change in sensitivity (Fig. 2 and Extended Data Fig. 1). In this study,
we use the ensemble mean of the five GPP products to mitigate uncer-
tainties, although it may still be insufficient. Furthermore, the future
PDSI data from NCAR have a coarse spatial resolution (2.5°), which
does not align with the 0.25° data we use and the future PDSI data
from CarbonPlan only cover the contiguous United States, limiting
their applicability. Nevertheless, to our knowledge, these two PDSI
datasets are the only long-term ones available for future warming
scenarios (SSP245 and SSP585). Additionally, these future PDSI data
may not precisely reflect future drought changes because they do not
account for the effects of increasing CO, on stomatal conductance
and WUE®. However, recent research has indicated that the effects
of CO, onincreasing WUE probably have saturated since 2000 due to
increased VPD?. These findings highlight the challenges of accurately
projecting future drought disturbances.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The GLASS GPP data are from http://www.glass.umd.edu/Down-
load.html. The EC-LUE GPP data are available via figshare at
https://doi.org/10.6084/m9.figshare.8942336.v3 (ref. 50). The
NIRv GPP data are available via figshare at https://doi.org/10.6084/
m9.figshare.12981977.v2 (ref. 51). The P-model GPP dataare available via
Zenodo at https://doi.org/10.5281/zenodo0.1423483 (ref. 52). The BESS
(v.2.0) GPP data are from https://www.environment.snu.ac.kr/data.
The TRENDY-v11 GPP dataare from https://blogs.exeter.ac.uk/trendy/.
The historical PDSI data and the climatic data (temperature, precipita-
tion and downward shortwave solar radiation) are from TerraClimate
(https://www.climatologylab.org/terraclimate.html). Future PDSI data
arefrom NCAR (https://rda.ucar.edu/datasets/ds299.0/) and Carbon-
Plan (https://carbonplan.org/). The GFED4.1s burned area data are
available at https://www.globalfiredata.org/index.html. Global data for
thearidity index are available via figshare at https://doi.org/10.6084/
mo.figshare.7504448.v6 (ref. 53). Global soil moisture (0-100 cm)
dataare downloaded from ERA5-land (https://cds.climate.copernicus.
eu/datasets). GIMMS LAl4g data are available via Zenodo at https://
doi.org/10.5281/zenodo.7649107 (ref. 54). CO, data are available via
Zenodo at https://doi.org/10.5281/zenod0.5021360 (ref. 55). Global
data for soil total nitrogen and soil organic carbon (0-100 cm) are
from https://daac.ornl.gov/SOILS/guides/IGBP-SurfaceProducts.html.
Soil organic phosphorus (0-50 cm) data are from https://daac.ornl.
gov/SOILS/guides/Global_Phosphorus_Dist_Map.html. Soil cation
exchange capacity and nitrogen deposition dataare from https://daac.
ornl.gov/NACP/guides/NACP_MsTMIP_Model_Driver.html. AGB data
are available via Zenodo at https://doi.org/10.5281/zenodo0.4161693
(ref. 56). The biodiversity data are from https://anthroecology.org/
anthromes/plantbiodiversity/.

Code availability

Allanalysiswas donein the open-source software Rv.4.1.3. The code s
available viafigshare at https://doi.org/10.6084/m9.figshare.25482928
(ref.57).
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Extended Data Fig.1| Change in drought sensitivity using the five remote display. ‘Mean’ is the mean change in sensitivity derived from GLS models. *,
sensing GPP products separately. The change in drought sensitivity after p <0.05 (two-sided) based on the GLS models. Multiple comparisons are not
disturbancesis derived from each GPP product (a-j) using PDSI to indicate water applicable. Basemaps from Natural Earth (https://www.naturalearthdata.com/
stress. The distributional maps are aggregated to a resolution of 1° for visual downloads/110m-physical-vectors).
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Extended Data Fig. 2| Change in drought sensitivity based on SPEl and visual display. ‘Mean’ is the mean change in sensitivity derived from GLS models.
TRENDY GPP data. (a-b) The changes in drought sensitivity after (a) severe * p <0.05 (two-sided) based on the GLS models. Multiple comparisons are not
droughts and (b) fires using SPEI to indicate water stress (remote sensing GPP applicable. Basemaps from Natural Earth (https://www.naturalearthdata.com/
regressed by SPEI). (c-d) The changes in drought sensitivity using TRENDY downloads/110m-physical-vectors).
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Extended DataFig. 3| Distribution of the aridity levels. The aridity levels are defined based on the aridity index (Al): hyperarid (Al < 0.05), arid (Al < 0.2), semi-arid
(A1<0.5), dry sub-humid (Al < 0.65), and humid (Al > 0.65). Basemaps from Natural Earth (https://www.naturalearthdata.com/downloads/110m-physical-vectors).
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Extended Data Fig. 4 | Changes in drought sensitivity in the aridity levels
when using SPEI and TRENDY GPP. (a) The change in drought sensitivity using
SPEIto indicate water stress (remote sensing GPP regressed by SPEI) (left to
right, N = 58,2893, 3194,1044, 2982 for drought; N = 65,2077,1868, 532, 670 for
fire). (b) The change in drought sensitivity using TRENDY GPP data (regressed by
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PDSI) (left to right, N = 37,2209, 3291, 1437, 4412 for drought; N = 66, 2133, 2223,
884, 1171 for fire). The height of each bar indicates the mean change in sensitivity
derived from GLS models, and the error bar shows one standard error.*, p < 0.05
(two-sided) based on the GLS models. Multiple comparisons are not applicable.
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Extended Data Fig. 5| Response of the change in drought sensitivity to the additive modelsin the ‘ggplot2’ package in R, and the shading represents the 95%
most important predictors for severe droughts. The eight mostimportant confidence interval. The Shapley value indicates the response of the change in
sensitivity to the predictors.
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Extended Data Fig. 7| Returnintervals of severe droughts and fires. (a-b) Drought returnintervals using historical PDSI datain (a) 1982-2018 and (b) 1958-1981. (¢) Fire
returnintervals using the burned area from GFED 4.1 s. The bin width is one year. The median return intervals for panels (a-c) are 9.25,12.0, and 6.67 years, respectively.
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Extended Data Fig. 8 | Drought returnintervals using future PDSIdatain

2061-2100. Boxplots of drought return intervals based on PDSI from (a) NCAR
(lefttoright, N = 22976, 76923) and (b) CarbonPlan (left to right, N =7772,10166)
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after severe droughts). Box plot lines represent the interquartile range (IQR)
and median, respectively, whereas the whiskers represent 1.5 times IQR (or the
minimum/maximum).
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Extended DataFig. 9| The best model at the global scale. (a) Correlations (blue), quadratic (orange), and logistic (red) models. The best model is defined
between the GPP anomalies and PDSI. (b) The distribution of pixels with as the model with minimum Akaike Information Criterion (AIC) and significant
significant correlations (50% of pixels indicating significant correlations). regression coefficients (for example the linear model is used when the quadratic
There are 146210 and 73717 pixelsin panels (a) and (b), respectively. p values termin the quadratic modelis not significant). The linear model is the best for 88%
(two-sided) are based on cor.testin R. Multiple comparisons are not applicable. ofthe pixels. Basemaps from Natural Earth (https://www.naturalearthdata.com/
(c) The best model for the significant pixels, where there are three models: linear downloads/110m-physical-vectors).
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Extended Data Fig. 10 | Results of simple linear regression (SLR) and multiple significant correaltions between GPP,,,,, and PDSl are shown. There are 84.85%
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Study description The increasing frequency and intensity of climate-sensitive disturbances, such as droughts and wildfires, are threatening long-term
terrestrial carbon (C) uptake. Although direct effects of disturbances (e.g. decreasing C uptake during droughts) are well-
documented, indirect effects such as long-term changes in the sensitivity of ecosystem productivity to climate variation remain
unknown. In this study, we quantify the changes in the sensitivity of terrestrial gross primary production (GPP) to water stress before
and after severe droughts and fires. We find divergent changes in sensitivity among different regions across the globe, where dry
regions, such as Australia and western North America, have increased sensitivity, while wet regions like tropical forests have
decreased sensitivity. Water availability, solar radiation, nutrient availability, and biodiversity are the main drivers mediating the
changes in sensitivity. It takes approximately 4~5 years for the sensitivity to recover after disturbances, but the increasing frequency
of disturbances with climate change threatens the recovery of ecosystem sensitivity. Our results reveal strong cross-system
discrepancies in ecosystem responses to disturbances.

Research sample This study investigated the changes in the sensitivity of global terrestrial ecosystem GPP to water stress after disturbances, such as
droughts and wildfires. We used five remotely sensed GPP products (GLASS, EC-LUE, NIRv, P-model, and BESS GPP) and two widely
recognized drought indices (PDSI and SPEI) to represent ecosystem productivity and drought stress, respectively.
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Data collection All data (GPP and drought indices) are publicly available from online resources, which were provided in the Data Availability
statement. Meng Liu obtained these data and processed them with R.

Timing and spatial scale  Annual GPP data and drought indices (PDSI and SPEI) in 1982-2018 across the globe were used to derive the long-term dynamics of
the sensitivity change.

Data exclusions No data were excluded. We used all available samples, i.e. pixles, to conduct the analysis.
Reproducibility All attempts to repeat the experiment were successful.
Randomization The samples were not allocated randomly in this study. Samples used to derive the sensitivity change were separated by the

disturbance year. For a disturbance like drought, pre-drought and post-drought data were separated by the drought year and further
used to calculate pre-drought sensitivity and post-drought sensitivity, respectively. The sensitivity change was the difference
between post-drought and pre-drought sensitivity.
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