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The concepts of origami and kirigami have often been presented separately. Here, we
put forth a synergistic approach—the folded kirigami—in which kirigami assemblies
are complemented by means of folding, typical of origami patterns. Besides the
emerging patterns themselves, the synergistic approach also leads to topological
mechanical metamaterials. While kirigami metamaterials have been fabricated by
various methods, such as 3D printing, cutting, casting, and assemblage of building
blocks, the “folded kirigami” claim their distinctive properties from the universal
folding protocols. For a target kirigami pattern, we design an extended high-genus
pattern with appropriate sets of creases and cuts, and proceed to fold it sequentially to
yield the cellular structure of a 2D lattice endowed with finite out-of-plane thickness.
The strategy combines two features that are generally mutually exclusive in canonical
methods: fabrication involving a single piece of material and realization of nearly
ideal intercell hinges. We test the approach against a diverse portfolio of triangular
and quadrilateral kirigami configurations. We demonstrate a plethora of emerging
metamaterial functionalities, including topological phase-switching reconfigurability
between polarized and nonpolarized states in kagome kirigami, and availability of
nonreciprocal mechanical response in square-rhombus kirigami.

kirigami | origami | topological mechanics | polarization | reciprocity

Mechanical metamaterials are structural materials that derive their distinctive mechanical
properties from the geometry and connectivity of their internal architecture rather than
from the material composition of its constituent elements (1, 2). They are known
to display an array of unconventional mechanical properties typically unattainable in
conventional continua, such as auxeticity (3, 4), negative effective elastic moduli and
density (5-7) and extreme reconfigurability under loading (8, 9). The key properties of
metamaterials are controlled by the geometry and real-space topology of their geometric
layouts, which, in the case of periodic metamaterials, boils down to the shapes of their
unit cells. Recently, the intersection of topological mechanics and metamaterial design
has led to the discovery of new classes of mechanical metamaterials whose response
is attributable to the topology of their phonon band structure—the so-called k-space
topology. An example of mechanical systems whose properties are heavily dictated by
their £-space topology is topological Maxwell lattices, a subset of Maxwell lattices which,
as a result of broken symmetries in their unit cells, have the ability to be topologically
polarized (10-17). This property, which manifests as the ability to focus floppy modes
and stress-bearing modes on opposite edges of a finite domain, is controlled by the £-space
topology of the lattice band structure and is therefore protected against perturbations
of the local geometric features of the edges, provided that the topological properties of
the bulk remain unchanged. When a floppy edge is loaded by a point force, its softness
allows the onset of localized deformation. In contrast, a similar load applied to the rigid
edge necessarily results in rigid body motion of the entire domain.

While these conditions are formally predicted for ideal lattices, in which the bonds
are connected by perfect hinges, a diluted signature is also observed in structural lattices,
e.g., lattices fabricated via additive or subtractive manufacturing techniques, where the
ideal hinges are replaced by elastic ligaments with finite bending stiffness (18-22). One
can refer to such systems as topological kagome metamaterials. Strictly speaking, the
polarization, as defined above, and its topological character are germane to the linear
elastic regime of deformation. Nevertheless, it has been shown that their signatures carry
over into the nonlinear finite-deformation regime, where their signatures are actually
magnified. Here, the polarization manifests as a profound asymmetry in the deformation
patterns observed on the edges, with the soft edge exhibiting large localized deformation
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akin to the response to an indenter, and the stiff edge activating
a small deformation that leaks deep into the bulk (19, 23-25).
Practically, dealing with soft mechanical metamaterials that are
loaded statically, a geometrical nonlinear response is activated de
facto in most experimental characterizations where a naked-eye
inspection of the deformation is sought.

Kirigami (cutting paper) is an emerging method to program
large deformations of 2D surfaces by perforating slits and dividing
the surfaces into interconnected panels (26). The 2D surfaces
with slits, or called kirigami surfaces, are generally flat, but can
also be curved with zero Gaussian curvature [e.g., cylindrical
surface (27)] or intrinsically with nonzero Gaussian curvature
[e.g., spherical surface (28)]. The following two factors play
vital roles in defining deformations of kirigami surfaces: first,
the distributions of slits; second, the ratio of surface thickness
to hinge width (residual size at intersecting area of slits). The
distributions of slits generally dictate global deformations of
kirigami surfaces, which can be designed by geometrical analysis
with the assumption of ideal hinges (or generally joints) (29, 30).
In this case, the kirigami surfaces are deemed mechanisms
in which the stiffness of joints is much smaller than that
of the panels. However, if the panels are integrated with
compliant hinges of small thickness-to-width ratio, the global
shape changes of kirigami surfaces are largely affected by unstable
local deformations (e.g., nondirectional rotation and unstable
buckling) at the joints (9). Buckling-induced instability can be
utilized to trigger desired deformation modes of thin and soft
kirigami surfaces (31, 32), but is undesirable for thick kirigami
mechanisms aimed for precise control of local deformations (33—
35). Current approaches to fabricating kirigami mechanisms of
finite thickness, which is not as straightforward as cutting thin
sheets, mainly include 3D printing (35), cutting thick plates (29),
casting with molds (34), and assembling building blocks (33). By
the former three approaches, one generally uses materials with
high toughness (say, thermoplastic polyurethane for 3D printing,
rubber for cutting or casting), and obtains an integral piece of
plate with the panels connected by compliant hinges of residual
materials. It is worth noting that one has to seek balance between
stiffness and strength of the residual materials—adequate residual
materials contribute to high strength to avoid damage of the
surfaces, but on the other hand, they cause high stiffness and
induce large restoring forces that may hinder large deformations.
By the assembling approach, one can fabricate (e.g., 3D print or
fold with paper) each panel separately and connect them with
tapes. In this way, one obtains a mechanism with significantly
low rotational stiffness at the hinges. However, the out-of-plane
stiffness of tapes is also extremely low, making the whole system
too soft to maintain its shape without a supporting surface, and
therefore the application scenarios are limited.

Addressing simultaneously the individual limitations of the
kirigami and of the multipart assembly methods, in an effort to
design metamaterials with the proper balance of strength and
stiffness within a unitary design framework, in this work, we put
forth an alternative strategy to realize 2D kirigami via pure folding
of a single high-genus sheet. To this end, we introduce a two-step
fabrication protocol, in which we first prescribe creases and slits
(holes), turning the sheet into a high-genus topological object,
and subsequently we fold it into finite-thickness 2D kirigami
mechanisms with nearly ideal hinges. We call the kirigami
mechanisms resulting from this process “folded kirigami”, to
emphasize the fact that they have the geometric appearance of
conventional kirigami patterns (e.g., the kagome and the rotating-
square patterns), but they are folded from single crease-and-slit-
endowed sheets according to rational folding sequences dictated
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by the desired kirigami patterns. In summary, two key features
characterize a “folded kirigami:” 1) in terms of geometry, the fact
that it is obtained from a single piece of paper; 2) in terms of
mechanics, that its hinges can be essentially regarded as creases
with low rotational stiffness.

In the remainder of the paper, we explore this paradigm
against a variety of kirigami patterns, detailing for each the
required geometric features of the primitive high-genus sheet
and the steps of the folding process. The presented portfolio
includes two patterns that stand out for their geometric and
mechanical complexity and have been put forth in recent years
as prototypical systems in topological mechanics: a topologically
polarized stretched and twisted kagome (Maxwell) lattice, which
is expected to feature a floppy-rigid edge dichotomy (36), and
an undercoordinated quadrilateral lattice that has been shown
to display nonreciprocal response under static loads (37). For
these, we perform mechanical tests to illustrate experimentally
how their unique mechanical properties, which were previously
demonstrated using conventionally fabricated (3D-printed, cut
or cast) prototypes, can be observed with remarkable high-
fidelity and comparable accuracy also in the “folded kirigami”
specimens—a testament to the near-ideal conditions of the folded
hinges.

Results

Regular Kagome Pattern. The classical triangular kirigami
pattern—widely known as the kagome pattern—is composed
of equilateral triangles enclosing hexagonal holes. The planar
kagome mechanism correspondingly has hinged equilateral-
triangular prisms as its building blocks. To show how to make
a planar kagome mechanism from one piece of paper, we start
by folding an equilateral-triangular patch to a prism with hinges
aligning its lateral edges (Fig. 14). The key idea is to fold the
rectangular wings and make the included right-triangular flaps
coincide, such that free hinges are created between the coinciding
flaps and the main prism. The hinges are perpendicular to the base
of the prism, because each of them is perpendicular to two edges
of the base. Upon application of threefold rotational symmetry,
the folding process involves a single degree of freedom (DoF).
Consequently, we have three dependent dihedral angles: the angle
0 between the base and a wing, the angle & between a wing
and a flap, and the angle @ between two flaps. Using spherical
trigonometry, we obtain relationships between 0, &, and ¢ as
follows (SI Appendix, section 1 and Fig. S1):

p=20—r7 [1]

and

» 2]

a y sin a cos 0
& = 7 — arccos (tan 5 tan E) + arccos | ——

siny

in which a is the interior angle of the base triangle, i.e., @ = 7/3;
and y is the included angle between intersecting edges of two
wings, expressed by

y = —2arcsin (cos % cos 9) . [3]

All the three dihedral angles are initially equal to 7. We define
the folding angle p = & — 0 as an independent variable, and plot
curves of @ and £ throughout the folding process (Fig. 1B8). When
p increases from 0 to 7/2 (or equivalently,  decreases from «
to 7/2), the folding finally stops at ¢ = y = 0, which indicates
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Fig. 1. “Folded kirigami” from the regular kagome pattern. (A) Crease pattern for a single equilateral-triangular prism and its folding sequence. (B) Curves of
dihedral angles ¢ and ¢ versus the folding angle = — 6. (C) Crease-slit pattern and its folded configurations for the single-loop kagome mechanism. (D) Paper
sheet with perforated cuts and engraved creases for the multiloop kagome mechanism (Top Left) and its folded configurations. (Scale bars, 3 cm.)

the flaps (or equivalently, their edges) coincide and constitute
the lateral edges of a prism. The coinciding flaps can freely rotate
around the lateral edges, reflected by the two arrows at the end
of the curve of £. In other words, hinges are created along the
three lateral edges. By attaching some of the flaps onto the prism,
i.e., fixing £ = 0 or 27, we can suppress the rotation at the
corresponding hinges on demand (Fig. 1 4, iv).

To fold a kagome mechanism from one piece of paper, we
propose a crease-slit pattern composed of creased equilateral-
triangular patches (Fig. 1C). These creased patches are weakly
connected only at common edges of the flaps that are supposed
to form hinges. For each weak connection, four flaps coincide
by folding and are attached onto a prism. As a result, we create
hinges perpendicular to the base triangles, allowing free in-plane
rotation between the prisms. To validate the proposed folding
approach, we fabricate a paper sheet with perforated cuts and
engraved creases (Fig. 1 D, Top Left). After folding the single
piece of paper and gluing the flaps onto the prisms, we obtain
the “folded kirigami” that can be fully deployed to have regular
hexagonal holes (Fig. 1 D, Top Right) and fully retracted to a
void-free configuration (Fig. 1 D, Bottom Right) via a global soft
mode known as Guest-Hutchinson (GH) mode (38). In practice,
it is not easy to drive the kagome “folded kirigami” deforming
via the GH mode because of its multi-DoF nature. A neutral-
equilibrium state near the GH mode is shown in Fig. 1D (Bozzom
Left). We refer to Movie S1 for the simulated deployment and
retraction of the kagome “folded kirigami” via its GH mode.

PNAS 2024 Vol. 121 No. 46 e2413370121

Irregular Kagome Pattern. Our folding approach creates hinges
by common edges of the coinciding flaps. The weak connections
of the adjacent flaps essentially guide the shape-shifting (folding
and attaching) process. In other words, by folding along the
creases, we align the common edges automatically, which is
efficient and accurate compared to making the prisms separately
and then assembling them together. This principle is universal
and can be easily generalized to make diverse 2D mechanisms.
We exemplify such universality with the irregular kagome pattern
obtained by repeating equilateral triangles and scalene triangles,
which is of special interest by virtue of its applications in
topological metamaterials (36, 39). Fig. 24 shows a single loop
of the irregular kagome pattern, with its GH-mode deformation
controlled by the twist angle 8. Retracting the single loop to
0 = 0, we can obtain a compact configuration, but the enclosed
area cannot be eliminated to zero (Fig. 2 A, Bostom), which
leaves V-shaped gaps between some triangles. This is different
from the regular kagome pattern, which has a complete compact
configuration with no voids. Fig. 2B shows how to design the
crease pattern and to create a hinge between two triangles with
a V-shaped gap: (i) extract the two triangles from the kagome
pattern; (i) add rectangular wings with a unified width 4; (i)
add right-triangular flaps at each vertex; (i) truncate the flaps
to a unified residual side length s () connect the two flaps
where the hinge is supposed to be created; (vi) fill the V-
shaped gap by extending edges of rectangular wings, finalizing
the crease pattern; (vif) fold and attach the flaps onto the
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Fig. 2. Irregular kagome pattern and the “folded kirigami”. (A) Single reconfigurable loop of the irregular kagome pattern. (B) Step-by-step description
for generating the crease pattern that is folded to two triangular prisms with a hinge. (C) Point-connected layout (i), crease-slit pattern (ii), and its folded
configurations (iii and iv) for the irregular kagome “folded kirigami” with a single loop. (D) Paper sheet with perforated cuts and engraved creases for the
irregular kagome “folded kirigami” with multiple loops (Left) and its partially folded (Top Right) and fully folded (Bottom Right) configurations. (Scale bars, 5 cm.)

prisms, thus obtaining the hinge. Throughout the procedure
above, we have preserved the orientations of the base triangles.
In short, for the given base triangles, we determine the crease
pattern by two parameters 4 and s, which can be specified on
demand. The parameter 4 is also the height (or thickness) of the
folded 2D mechanism. The key point that makes the procedure
effective is that we essentially create three bisectors, guiding the
four lateral edges to coincide and to form the desired hinge
(Fig. 2 B, vi and vii).

The patches with truncated flaps can interconnect to a closed
loop with their base triangles oriented in the same way as in
the original kagome pattern (GH mode), because the hole is
essentially enclosed by full boundaries of the two repeating
creased patches (Fig. 2 C, Top Leff). This fact allows folding an
irregular kagome mechanism from one piece of paper forsaking
the need to adjust the orientations of the base triangles. To
finalize the crease pattern, we fill the V-shaped gap at each vertex
by extending edges of rectangular wings (Fig. 2 C, ii). Then
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we can fold from the pattern and attach the coinciding flaps
to prisms, creating the 2D mechanism with multiple hinges
(Fig. 2 G, iii and iv). We refer to SI Appendix, section 2 and
Fig. S2 for detailed formulations and illustrations of the crease-
slit patterns. By replicating the single pattern, we can obtain
the crease-slit patterns for the “folded kirigami” with multiple
loops. For example, we fabricate a paper sheet and fold it (and
attached the flaps) to an irregular kagome mechanism with 5-
by-4 holes (Fig. 2D). The paper sheet also has 5-by-4 holes
and therefore is as high-genus as the “folded kirigami” from
the viewpoint of topology. We note that the crease-slit pattern
of a regular kagome kirigami (e.g., Fig. 1 D, Top Left) is also
high-genus, consistent with the folded mechanism (e.g., Fig. 1
D, Top Right). The discrepancy of the two repeating triangles
gives rise to expanding of slits to holes from regular to irregular
kagome patterns (Movie S2). Finally, the intermediate half-
folded state in Fig. 2D shows how having weak connections
between flaps promotes the folding process—the folding can be
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Fig. 3. Square-rhombus pattern and the “folded kirigami”. (A) Single reconfigurable loop of the square-rhombus pattern. (B) Crease patterns of the extracted
square and rhombus. (C) Point-connected layout with adjusted orientation (i), crease-slit pattern (ii), and its folded configurations (iii-v) for the square-rhombus
“folded kirigami” with a single loop. (D) Paper sheet with perforated cuts and engraved creases for the square-rhombus “folded kirigami” with multiple loops
(Left) and its partially folded (Middle) and fully folded (Right) configurations. (Scale bars, 5 cm.)

done sequentially from cell to cell while the system preserves the
prescribed connections.

Quadrilateral Pattern. Our proposed folding approach is appli-
cable beyond triangles and can be generalized to convex polygonal
bases, because the flaps (that form a hinge) are built based
on local information, i.e., one vertex and two edges for each
of the two adjacent polygonal bases connected by the hinge.
Here, we invoke the folded rotating-square configuration in
SI Appendix, Fig. S3 and Movie S3 as a proxy for a broader
class of quadrilateral kirigami systems. Moreover, we consider
a square-rhombus kirigami pattern that is different from either
the kagome or the rotating-square patterns, in the sense that the
orientations of base polygons have to be properly adjusted when
designing the crease-slit pattern for the “folded kirigami”. This
kirigami pattern has been explored to illustrate nonreciprocity in
mechanical metamaterials (37), using a configuration featuring a
unit composed of four squares and two rhombi that are mirror-
symmetric about a horizontal line (Fig. 3 A, Lef?). The kirigami
unit is reconfigurable by changing the angle 6 between adjacent
edges of squares across the mirror line, and is compact for = 0

PNAS 2024 Vol. 121 No. 46 e2413370121

(Fig. 3 A, Right). To design the crease-slit pattern, first, we extract
a square and a rhombus from the kirigami unit and construct the
creased patches by adding wings and truncated flaps at each of
their vertices with height 4 and residual side length s (Fig. 3B).
However, when we try to connect the creased patches following
the same orientation of the compact kirigami unit (Fig. 3 A4,
Right), we lose one connection on the right end (Fig. 3 C, Top
Left). This fact indicates that connections in the original kirigami
do not guarantee connections of the creased patches—we may
lose some connections when building the crease-slit pattern out
of multiple creased patches. This issue can be solved in two
different ways. The first way is simply by abandoning these
connections in the crease-slit pattern and still attaching the flaps
after folding. This way, however, is not recommended because
it makes the shape shifting (to 2D mechanism) less guided. The
second way, which is more elegant, is by adjusting the orientation
of the creased patches and rebuilding the point connection (Fig. 3
C, 7). For our current approach, we performed the orientation
adjustment by trial and error. Once the full point connection is
obtained, the following step are to build the edge connections
by filling the V-shaped gaps between flaps for hinges (Fig. 3

https://doi.org/10.1073/pnas.2413370121
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C, ii), and to fold the crease-slit pattern into a 2D mechanism
(Fig. 3 C, iii~v). In analogy to the irregular kagome pattern,
we fabricate a high-genus sheet and fold it (and attached the
flaps) to obtain the square-rthombus “folded kirigami” with 5-
by-3 holes (Fig. 3D). Again, the intermediate half-folded state
(Fig. 3 D, Middle) shows that the weak connections between flaps
contribute to the sequential folding. In addition to the low-cost
(using origami paper and glue/tapes) and easy-to-do (folding and
attaching) fabrication process, we show that the “folded kirigami”
(Figs. 2 D, Bottom Right and 3 D, Right) also inherit the unique
mechanical functionalities from the original kirigami patterns
(irregular kagome kirigami and square-rhombus kirigami).

Tunable Topologically Polarized Mechanics of Kagome “Folded
Kirigami”. In the previous section, we have demonstrated the
versatility of the proposed technique by showing that a portfolio
of configurations are achievable by slightly tailoring a shared fold-
ing procedure. We now show that the 2D cellular metamaterials
obtained by folding do not only stand out for the outstanding
accuracy of their geometric details but also feature precise and
reliable mechanical properties. These properties are on par
with solid prototypes fabricated using additive or subtractive
manufacturing and, in some respects, even superior in terms
of versatility and tunability. The experiments described in this
and the next section attest to these attributes by demonstrating
how the prototypes display a mechanical response under loading
that matches precisely theoretical predictions and experimental
results obtained on cast or 3D-printed specimens. To this end, we
consider two lattices that are expected to display an asymmetric
mechanical response between their edges (due to topological
polarization and nonreciprocity, respectively) and we extract the
signature of such asymmetry from laboratory testing.

The first case regards the kagome “folded kirigami” in Fig. 2D,
which is a prototypical example of a configuration featuring
topologically protected polarization, whereby floppy edge modes
localize on one edge, deemed “floppy edge,” while stress-bearing
modes focus on the opposite edge that behaves rigidly. In statics,
the phenomenon manifests as a behavioral edge asymmetry in
which the floppy edge experiences large localized deformation,
while the opposite edge, under the same load, responds as a
stiff boundary. The topological protection proceeds from the
fact that the polarization, while manifesting as an edge effect,
is an intrinsic property of the bulk, and is therefore preserved
as long as the topology of the bulk is not altered. The specific
configuration in Fig. 2D was discussed by Rocklin et al. in their
study on transformable mechanical metamaterials (36). Using
phase diagrams, they showed that, by sweeping the twist angle—
which corresponds to subjecting the lattice to a GH mode—the
lattice can be transformed back and forth between a polarized and
a nonpolarized state. As shown in the /nsets of Fig. 4 Band C, the
two configurations of different twist angles € capture a polarized
(with horizontal parallel edges) and a nonpolarized state (with
inclined parallel edges), respectively.

Our goal is to use a single “folded kirigami” prototype to switch
between two configurations characterized by vastly different twist
angles and verify experimentally the resulting gain and loss of
polarization. To this end, we need to configure the lattice in two
states and, for each state, subject the prototype to two sets of
static compression tests, applying a load on opposite edges and
comparing the local displacement of the loaded edges. These
setup requirements introduce a practical challenge. As stated
above, the reconfiguration involves the application of a GH
mode, which is a global soft mode of the bulk. In practice, it is
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virtually impossible to properly establish a GH mode via simple
traction loads applied at the boundaries. To achieve that, one
needs to prescribe a displacement path to all the edge cells of
the lattice, which would in turn enforce the proper twist pattern
to the cells of the bulk. This strategy was adopted in ref. 24,
where, for a kagome sample mounted on a substrate, the edges
were pinned to moving slits which could slide relatively to the
substrate deforming the lattice according to a desired pattern. For
our problem, we adapta similar approach to the “folded kirigami”
prototype. We design and fabricate holding frames featuring
arrays of triangular protruding elements to which we can anchor
the edge cells of the “folded kirigami” prototype, as shown in
Fig. 44 and ST Appendix, Fig. S4 Aand B. Here, we take advantage
of the hollow nature of the paper cells, which allows constraining
them by simply inserting prismatically the solid triangles of the
frames. We build two interchangeable frames, shown in Fig. 4 B
and C, one for the polarized and one for the nonpolarized case,
and we switch between them through the testing.

The compression tests are conducted using a materials testing
machine, shown in Fig. 44, operating in displacement control.
We probe the edge of the specimen with a loading tip, imposing
a prescribed point displacement while measuring the applied
force with a load cell. We quasi-statically ramp the imposed
displacement from 0 to 5 mm, a range expected to fall within the
linear elastic regime of the metamaterial. A setup detail worth of
notice regards the loading tip used in our experiments. In tests
devoted to assess polarization, it is crucial to discriminate between
the deformation due to the polarization, which does not depend
on the specific geometric features of the edge, from the trivial one
(that any edge naturally exhibits), which is instead dictated by the
edge morphology. Since the trivial deformation is typically dom-
inated by rotations of the protruding edge triangles, an effective
way to filter out this component of the response is by imposing the
load in a way that prevents, as much as possible, such rotations.
This goal can be achieved by endowing the loading tips with
V-notches that rigidly engage the triangular blocks, effectively
forcing them to translate without rotations (24, 40). Here, we
adopt this approach, with an important setup modification: Since
we are testing two configurations (polarized and nonpolarized)
and two edges (A and B) per configuration, for a total of four
distinct edge profiles, we custom-fabricate four tips with shapes
tailored to those profiles (S Appendix, Fig. S4 A and B).

Armed with these considerations, we can inspect and interpret
the results of the tests. Let us begin with the test of the polarized
configuration, shown in Fig. 4D. The Left panel refers to the
loading of edge A (expected to be floppy) and the Right panel
to the loading of edge B (expected to be rigid). In Fig. 4E,
we report the force—displacement curves measured during the
test. For both edges, the behavior is mostly linear, albeit with
a softening region appearing in the 1 to 2 mm displacement
interval in the loading history of edge B, arguably due to some
settlement of the paper connections occurring around that force
value. The macroscopic difference in slope between the curves
provides a quantification of the stiffness gap between the edges
due to polarization, confirming that edge A is indeed floppy. For
each case, the Inser in Fig. 4D shows a close-up detail of the
loaded edge, showing the deformed cells against the undeformed
pattern (black solid lines): Under the same load of 0.37 N, the
displacement #p = 5 mm for edge A is significantly larger than
ug = lmm for edge B. This visual signature of the gap in
compliance further confirms the floppy nature of edge A and
the lattice polarization. We repeat the process for the other
configuration, as shown in Fig. 4 F and G. Here, in sharp contrast
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Fig. 4. Experimental validation of tunable topological polarization in kagome “folded kirigami”. (A) Setup for the compression tests. (B) Polarized and (C)
nonpolarized configurations of the “folded kirigami” shown with the corresponding frame and cover. (D) Floppy and rigid edge deformations of the polarized
configuration with /nsets highlighting the neighborhood of the loading point. (Scale bars, 2 cm.) (E) Force-displacement curves for loads applied at edges A
(floppy) and B (rigid). (F) Edge deformations of the nonpolarized configuration with /nsets highlighting the neighborhood of the loading point. (Scale bars, 2 cm.)

(G) Force-displacement curves for loads applied at edges A and B.

with the previous case, both the naked-eye inspection of the edge
deformations in Fig. 4F and the force—displacement histories in
Fig. 4G suggest that the two edges behave almost identically,
i.e., the lattice is not polarized. To appreciate the entire loading
process, see Movie S4.

PNAS 2024 Vol. 121 No. 46 e2413370121

Nonreciprocal Response of Square-Rhombus “Folded Kirigami”.
Next, we characterize the mechanical behavior of the square-
thombus “folded kirigami” whose fabrication by folding is
described in Fig. 3D. This configuration was one of two systems
discussed by Coulais et al. (37) in a work aimed at demonstrating
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Fig. 5. Experimental validation of nonreciprocity of square-rhombus “folded kirigami”. (A) Setup for the compression and tension tests. (B) Experimental
curves of output displacement ug versus input displacement uj,, for loads applied at points A (magenta) and B (blue). (C) Experimental curves (and polynomial
fit) of output displacement ugyt versus input force i, loaded at points A and B, revealing nonreciprocal behavior for large deformations. Inset: Nonreciprocal
measurement Au = up_,g — Ug_,a, Obtained by plotting the difference of the two polynomials. (D) Snapshots showing lattice deformations for tensile loads
applied at points A (magenta) and B (blue). (Scale bars, 3 cm.) (E and F) Force-displacement curves for tensile loads. (G) Snapshots showing lattice deformations
for compressive loads applied at points A (magenta) and B (blue). (Scale bars, 3 cm.) (H and /) Force-displacement curves for compressive loads.

the realization of static nonreciprocity in mechanical systems.
The kirigami pattern consists of alternating squares and rhombi,
relatively twisted as shown in Fig. 54. A key feature of the
pattern is that, if we consider a two-quad-wide strip of lattice,
the squares meet at a vertex, while the rhombi are isolated, as

shown in the 7op Right of Fig. 5A, making the lattice globally
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undercoordinated and capable of supporting floppy modes in the
bulk. In ref. 37, the purpose of this configuration was to emulate,
in a realistic setting, the behavior of an ideal chain of quadrilateral
elements connected by rods, for which theoretical analysis
predicted a topologically protected nonreciprocal response. Here,
the rhombi were to play the role of the rods, while maintaining
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structural integrity through their ability to be compressed without
buckling.

The peculiar behavior described in ref. 37, which we intend to
replicate in our “folded kirigami”, was elicited in a displacement-
control test by exerting quasi-statically a (tensile or compressive)
input displacement #;, on a point on a selected edge, and by
measuring the corresponding input force Fi, on this point and
the output displacement #qy, experienced by a corresponding
point on the opposite edge, de facto extracting a measure of
“static transmissibility.” It was found that, under proper loads
that induce a regime of finite deformation, the system displays
a nonreciprocal response, characterized by a highly asymmetrical
edge response with #,,, under the same F, varying dramatically
depending on the selected input edge and diverging as the
imposed displacement becomes more nonlinear. Fig. 54 shows
the experimental setup designed ad hoc to establish these loading
conditions to the “folded kirigami”. Again, the prototype is
secured to a support frame that constrains selected boundary
cells (in our case, the two external columns). The load is applied
through an especially designed tip endowed with an anchor to
engage a hinge located between a pair of square cells on the loaded
edge (SI Appendix, Fig. S4C).

The results for tensile loads applied to edge A and B are given
in Fig. 5D (with force—displacement histories shown in £ and
F), and in Fig. 5G (with force—displacement histories shown in
H and I) for compressive loads. Comparing the snapshots in
Fig. 5D, it is easy to appreciate by naked eyes that a load (here
0.35N, measured by the load cell) applied at A causes a small
displacement at B, while the same load applied at B causes a
displacement at A that is nearly double (5.3 mm versus 2.8 mm).
This dichotomy is captured in Fig. 5B, where we plot s,y versus
uin for an input displacement prescribed at A and an output
displacement measured at B (#a_, B, magenta curve), and for an
input displacement prescribed at B and an output displacement
measured at A (up— A, blue curve), aggregating tensile conditions
(#in < 0), and compressive conditions (#, > 0) in the same
plot. The curves reproduce remarkably well the trend measured
in ref. 37 on a silicone rubber specimen made by casting
and curing. Specifically, the conspicuous differences between
the #a—p and up_, o curves highlight the asymmetry between
the edges.

The most telling result is the one in Fig. 5C, which shows
the measured force—displacement relations for loads applied at
A and B, color-coded as described above. This plot captures
the emergence of nonreciprocal behavior in the nonlinear
regime. For sufficiently large tensile or compressive loads (here
approximately |Fi,| > 0.2 N), the curves diverge, implying that
the displacement measured at B due to a force applied at A
differs from the displacement measured at A due to a force
of the same magnitude applied at B. In contrast, the fact that
the curves coalesce in the |Fj,| < 0.2N range confirms that,
in the small deformation regime where linear elasticity can be
reasonably assumed, the behavior is reciprocal, consistent with the
Maxwell-Betti theorem. To appreciate the entire loading process,
see Movie S5.

Discussion

We have proposed the concept of “folded kirigami” and a
systematic approach to designing the crease-slit patterns required
to realize a variety of configurations. The crease-slit patterns
are generated by extending convex polygons with wings and
(truncated) flaps, and inherit the high genus from the original

PNAS 2024 Vol. 121 No. 46 e2413370121

kirigami patterns. The thickness dimension is lifted by folding
up the wings and flaps, creating hinges and featuring a balance
between flexibility from low in-plane stiffness and structural
integrity from moderate out-of-plane stiffness and strength. As
illustrated in S/ Appendix, Fig. S5, the 3D printed rotating squares
with soft hinges can hardly resist bending deformation. On the
other hand, the stiff hinges cause large rotational stiffness that
hinders reconfiguration functionality. In contrast, the “folded
kirigami” possesses superior flexibility at the folds, especially the
extremely low rotational stiffness near the neutral state, while
maintaining out-of-plane stiffness and strength.

We have demonstrated the versatility of the “folded kirigami”
against a diverse array of classical and advanced kirigami
patterns—regular kagome pattern, rotating-square pattern, irreg-
ular kagome pattern, and square-rhombus pattern. In the folding
process, most area of the high-genus surface is consumed to form
the side walls of the “folded kirigami”, causing an area shrinkage
from the initial surface regarding the projecting area of the final
stereoscopic structure. For the classical and advanced “folded
kirigami” mentioned above, the area shrinkage is generally over
80%, as reported in S Appendix, Table S1.

We have fabricated paper models and conduct mechanical test-
ing to verify a repertoire of metamaterial functionalities, includ-
ing reconfigurability, transformability between polarization and
nonpolarization, and nonreciprocity. Experimental results show
that the “folded kirigami” perform on par with metamaterials
fabricated by conventional methods. We thus envision that this
work will open a path for achieving mechanical metamaterials
through the potential of surface cutting and folding, bypass-
ing the conventional requirements of additive or subtractive
manufacturing, by means of the “folded kirigami” approach.

Materials and Methods

Fabrication. We fabricated all the physical models by perforating creases and
cuts on craft paper (Canson Colorline, 150 g/m? to 92Ib) through laser engraving
and cutting (Universal Laser Systems, PLS6.150D). The flaps were attached to the
prisms with superglue (Loctite Ultra Gel Control) for the regular kagome “folded
kirigami” in Fig. 1D and rotating-square "folded kirigami" in SI Appendix,
Fig. S3D, and with double-sided tapes (3M 8153LE-300LSE) for the irregular
kagome "folded kirigami” in Fig. 2D and the square-rhombus “folded kirigami"”
in Fig. 3D. The regular kagome “folded kirigami” in Fig. 1D has equilateral
base triangles of side lengths 30 mm and thickness 17.3 mm. The rotating-
square "folded kirigami” in S/ Appendix, Fig. S3D has base squares of side
lengths 30 mm and thickness 30 mm. The irregular kagome “folded kirigami"
in Fig. 2D has equilateral base triangles of side lengths 20 mm, and irregular
base triangles of side lengths 14.4 mm, 20 mm, and 11.4 mm; the thickness
h = 11.5 mm and flap residual side length s = 9.5 mm. The square-
rhombus "folded kirigami” in Fig. 3D has base squares of diagonal lengths
30mm, and base rhombi of diagonal lengths 30 mm and 15 mm; the thickness
h = 15 mm and flap residual side length s = 7.5 mm. In Figs. 4 and 5,
we fabricated the frames and fixtures by 3D printing (Ultimaker S3 and S7)
with Polylactic Acid; we fabricated the loading tips by 3D printing (Stratasys
J55 Prime) with Vero photopolymers; we fabricated the frame covers by laser
cutting (Universal Laser Systems, PLS6.150D) craft paper (Canson Colorline,
150 g/m? to 92Ib).

simulation. Movies ST and S3 were generated by performing Motion Study in
the commercial software Solidworks (2024). The Movie S2 was generated by
coding formulations in S/ Appendix, section 2 and visualizing the patterns in the
commercial software Matlab (R2023b).

Mechanical Tests and Data Processing. The quasi-static compression and
tension tests in Figs. 4 and 5 were performed on the Instron materials testing
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machine (Model 68SC-05 Single Column Table Mode) at the loading rate of 5
mm/min (displacement control). The force was measured by the Instron static
load cell (2530-5N). The homemade experimental appliances are shown in S/
Appendix, Fig. S4. The output displacements in Fig. 5 Band C were obtained by
tracking the yellow dot(Fig. 5 Dand G)in original video recordings of the testing,
with the function vision.PointTracker in the Computer Vision Toolbox in Matlab
(R2023b). The polynomial curve fitting in Fig. 5C was done with the function
polyfit in the commercial software Matlab (R2023b). We pursued overfitting
with polynomials of degree 50.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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