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While research has shown that students benefit from student-centered pedagogies, few studies have considered
the benefits of this pedagogical approach for educators as they learn through teaching. In response to this need,
we analyzed interviews, lesson plans, and video observations from five teachers in elementary schools across the
United States who varyingly engaged student-centered and teacher-centered pedagogies. Our analyses revealed
that the participating teachers developed a wide breadth of teacher knowledge regardless of their pedagogical

approach. However, the teachers who employed student-centered teaching reported more pedagogical content
knowledge gains for themselves than the teachers who used direct teaching.

1. Introduction

Within mathematics education research, scholars have repeatedly
shown that allowing students to solve well-designed mathematics
problems on their own (rather than teachers frontloading solution pro-
cesses for students) leads to deep and meaningful student learning
related to both mathematical content knowledge and socioemotional
skills (see Ali et al., 2021). However, less is known about the benefits
open ended pedagogical approaches hold for teachers. Thinking spe-
cifically through the theoretical lens of learning through teaching (LTT),
or the process of teachers developing content and pedagogical knowl-
edge as they lead students through learning experiences, Leikin and
Zazkis (2010) contend that studies have repeatedly shown LTT repre-
sents an essential component of teacher professional growth and
knowledge construction. Leikin (2010) also argues that the design of
classroom activities can produce significant influence on what educators
learn when teaching. While researchers could build on this assertion by
exploring what teachers learn when designing and implementing lessons
that position students as agentic problem solvers (in comparison to
lessons revolving around direct instruction), studies have yet to explore
this particular aspect of LTT. Similarly, extant literature on LTT within
mathematics education disproportionately centers teaching in or
alongside professional development contexts, highlighting processes of
LTT that involve external support or collaboration (e.g., Hart et al.,
2011). In other words, LTT research needs to explore what teachers
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learn when both students and they themselves work independently in
learning contexts.

In response, we attend to the following research question: how does
the use of student-centered vs teacher-centered pedagogies affect the
development of teacher knowledge through LTT on their own? In asking
this question, we consider the process of LTT as a multi-step cycle that
includes planning, implementing, and reflecting on classroom practices
and activities (see Schon, 1987). We also rely on Sengupta-Irving and
Enyedy’s (2015) definitions of student- and teacher-centered teaching.
By either presenting students with open-ended problems to solve and
allowing them the freedom to solve them on their own or presenting
students with restrictive questions and the specific solution paths to
answer them, teachers can potentially construct highly divergent
learning environments for not only students but themselves as well.
Finally, we specifically name “LTT on their own” to consider the kinds of
learning that occur as teachers go about their daily practice, one where
educators act in relative isolation compared to those currently enrolled
in professional development contexts. Attending to this research ques-
tion can therefore contribute to ongoing research into LTT, even when
teachers have no external professional development support.

To conduct this research, we draw on Simon and Tzur’s (1999) ac-
counts of practice methodology and present findings from a broader
study into early-career elementary and middle school mathematics
teachers in the US. Through a qualitative analysis of teacher interviews,
video observations, and lesson plans that track teachers across multiple

Received 16 March 2023; Received in revised form 10 August 2023; Accepted 13 November 2023

Available online 2 December 2023

0742-051X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-

nc/4.0/).


mailto:copurgen@usc.edu
www.sciencedirect.com/science/journal/0742051X
https://www.elsevier.com/locate/tate
https://doi.org/10.1016/j.tate.2023.104415
https://doi.org/10.1016/j.tate.2023.104415
https://doi.org/10.1016/j.tate.2023.104415
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tate.2023.104415&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

P.J. Woods and Y. Copur-Gencturk

implementations of various two-day instructional modules, we show
that teachers develop a broad set of skills and knowledge areas that align
with Grossman’s (1990) model of teacher knowledge and frameworks of
mathematical knowledge for teaching (Ball et al., 2008) through LTT
regardless of whether educators enable student agency in their class-
room activities. However, our analysis also reveals that teachers who
relied on student-centered teaching developed a more robust under-
standing of pedagogical content knowledge (PCK) in comparison to
those teachers who took a more prescriptive approach. These findings
therefore provide a deeper understanding of LTT, revealing the benefits
of engaging well designed, open-ended mathematics for teachers
(including those working in relative isolation) and not just students.

2. Theoretical framework
2.1. Teacher knowledge

The knowledge base for teaching specific disciplines has long been of
interest to scholars (e.g., Ball et al., 2008; Blomeke et al., 2016; Cop-
ur-Gencturk & Tolar, 2022; Grossman, 1990; Shulman, 1986; Tatto
et al., 2008). Although researchers differ in their conceptualizations (cf.
Blomeke et al., 2016; Fennema & Franke, 1992; Grossman, 1990), they
seem to agree that the knowledge needed for teaching has four main
domains: subject matter knowledge (SMK), general pedagogical
knowledge (GPK), pedagogical content knowledge (PCK), and knowl-
edge of context (KOC) (see Ben-Peretz, 2011; Grossman, 1990; Kereluik,
Mishra, Fahnoe, & Terry, 2013; Mishra & Koehler, 2006). Our concep-
tualization of these four domains was informed by various models and
frameworks (see Fig. 1). Focusing on mathematics education, we
conceptualized SMK as the robust knowledge of school mathematics that
teachers need to know and that is grounded in the National Research
Council’s (2001) definition of what mathematical proficiency looks like.
In particular, mathematical knowledge has four important components:
procedural understanding, or knowing and carrying out mathematical
rules flexibly and appropriately (National Research Council (NRC),
2001; Rittle-Johnson et al., 2015); conceptual understanding, which
includes knowledge of the conceptual underpinnings of mathematical
rules and definitions (Copur-Gencturk, 2021; Kilpatrick et al., 2015;
Krauss et al., 2008); mathematical reasoning, defined as the logical
thinking needed to investigate and evaluate the relationships among
mathematical concepts and given situations (NRC, 2001); and word
problem-solving skills, which requires translating information given in a
word problem into a mathematical expression and being able to solve
that problem (Copur-Gencturk & Doleck, 2021). Outside of a math
specific context, our conceptualization of GPK was inspired by Gross-
man’s (1990) model of teacher knowledge, which consists of three
components: knowledge of learners and learning, which encompasses
general knowledge concerning how children learn and how learning
occurs; knowledge of classroom management, which entails the general
knowledge and skills needed to maintain student engagement and
manage the classroom; and knowledge of instruction, or knowledge of
the general principles of instruction, such as using wait time.

Combining these two foundational components, PCK represents the
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Fig. 1. The component parts of teacher knowledge.
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third domain of teachers’ knowledge. Since its introduction by Shulman
(1986), scholars in mathematics education in particular have explored
what constitutes PCK by identifying the knowledge that teachers draw
on when teaching mathematics (e.g., Ball et al., 2008; Copur-Gencturk &
Tolar, 2022; Copur-Gencturk et al.,, 2019; Tatto et al., 2008). The
conceptualization that guided this work has focused on three compo-
nents that seem to be common elements across various conceptualiza-
tions: knowledge of students’ mathematical thinking, knowledge of
mathematics teaching, and knowledge of mathematics curriculum. The
first component, knowledge of students’ mathematical thinking, in-
cludes teachers’ knowledge of how students learn a particular concept,
their patterns of learning, and the struggles students demonstrate when
learning such concepts (e.g., Ball et al., 2008; Baumert et al., 2010;
Copur-Gencturk & Tolar, 2022; Krauss et al., 2008) For instance,
grasping students’ overgeneralization of the operation rules for trans-
lating whole numbers to fractions, such as adding across numerators and
denominators, requires knowledge of students’ mathematical thinking.
The second component, knowledge of mathematics teaching, encom-
passes knowing how to make the content accessible to students through
the use of instructional strategies, mathematical tasks, and representa-
tions (Ball et al., 2008; Baumert et al., 2010; Copur-Gencturk & Tolar,
2022; Tatto et al., 2008). As an example, knowing to use fraction rect-
angles instead of circles when comparing fractions is an indicator of the
teacher’s knowledge of mathematics teaching because students have
difficulties with partitioning equally when using fraction circles. The
final component of PCK, knowledge of the mathematics curriculum,
encompasses a knowledge of the horizontal and vertical curricula of
mathematics in a given curricular framework (Ball et al., 2008; Gross-
man, 1990). Examples of such knowledge components are how the
mathematical concepts that students are expected to learn at a particular
grade level are mathematically connected (horizontal knowledge) as
well as how these concepts are connected to the mathematical concepts
that students learned in prior grades and will learn in later grades
(vertical knowledge) (Ball et al., 2008). As numerous studies have
shown, the development of PCK represents a crucial part of teacher
knowledge development across disciplines that directly relates to stu-
dent learning (see Baumert et al., 2010; Chang et al., 2020; Ogletree,
2007; Olfos et al., 2014; Purwoko et al., 2019; Thadani et al., 2017),
although a need still exists for further analysis in this area (see Jacob
et al., 2020). To this end, understanding how teachers develop PCK
represents a valuable focus within LTT research and teacher education
research more broadly.

In defining the last category of teacher knowledge, knowledge of
context (KOC), we center our definition on the specifics of the learning
ecology teachers and students find themselves in. KOC involves learning
about students (their sociocultural backgrounds, their interests, etc.),
the school environment, the local community, and how all of the aspects
that compose the learning environment influence (and define) teaching
and learning (see Waite & Pratt, 2015). But, as Thomas and Berry (2019)
attest, generalizing KOC in a practical or implementable way remains
difficult because of the inherent differences that exist between the so-
ciocultural elements of all classrooms. Yet despite the complexity in
defining KOC, researchers have employed multiple frameworks that
highlight this aspect of teacher knowledge to further develop pedagog-
ical practices rooted in the lives of students. Notions such as funds of
knowledge (Gonzalez et al., 2006), culturally relevant pedagogy (Lad-
son-Billings, 2021), and culturally responsive teaching (Gay, 2018) all
amplify the necessity of developing a thorough understanding of and
interaction with the lives of students within effective teaching strategies.
This applies to mathematics education, as scholars have shown that
understanding the lives of students contributes to effective pedagogy in
terms of helping students construct mathematics skills, knowledges, and
identities (Lampert, 2001; Ma, 2016; Mukhopadhyay et al., 2009). Yet
despite the importance placed on context within these studies, Thomas
and Berry (2019) also recognize the tension that teachers often face in
navigating mathematical and contextual knowledge, arguing that “more
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work is needed to understand and unpack the interactions of teachers’
KOC and culture with knowledge of mathematics and teaching mathe-
matics” (p. 29).

2.2. Learning through teaching

Within extant literature (and especially mathematics teacher edu-
cation literature), a subset of scholars have explored and advocated for
an approach to developing teacher knowledge via LTT. Beyond merely
acknowledging this value, Sherin (2002) contends that LTT exists as a
critical and at times intractable aspect of developing as a teacher: as
education reforms move through the formal education landscape,
teachers often need to adjust their practice to accommodate these shifts
without explicit guidance from professional development experiences or
teacher educators. Fortunately, previous studies have uncovered a
wealth of value within LTT as teachers have developed both discipline
specific SMK (see Bausell & Moody, 1974; Elmendorf, 2006; Leikin,
2006; Leikin et al., 2000) and PCK (see Copur-Gencturk & Li, 2023; Cobb
& Mcclain, 2001; Dyer, 2016; Lampert et al., 2013; Leikin & Rota, 2006;
Perkins et al., 2015; Zazkis & Mamolo, 2018) through LTT. Beyond
merely investigating its efficacy, Schon (1987) describes a simple
three-part process for the act of teaching that provides a framework for
unpacking and further analyzing LTT: planning some sort of lesson or
learning experience, implementing that plan with students, and then
reflecting on the results. Learning then occurs through the iteration of
this process (see Okita & Schwartz, 2013), taking things learned through
reflection and applying that knowledge while planning and imple-
menting future lessons. This assertion positions the recursive feedback
of seeing students using what teachers taught as a crucial part of
developing through LTT.

Building on this framing, extant research has uncovered opportu-
nities for LTT within each phase of the plan/implement/reflect cycle (e.
g., Hart et al., 2011). Simon (1997), for instance, describes the planning
stage as one in which teachers produce prospective learning trajectories
for students that involve learning goals, proposed tasks, and hypotheses
as to how the learning process will unfold. Teachers then develop PCK
by creating new lessons and anticipating students’ responses (Leikin,
2006). These two practices within the planning process enable teachers
to deeply engage with content in often unexpected ways. To use Lilje-
dahl’s (2007) terminology, planning enables a process of reification
wherein teachers pull knowledge from the subconscious into the
conscious through the enactment of that knowledge (here in the form of
lesson plans or pedagogical tasks). In doing so, teachers also engage a
process of negotiation as they adapt existing content knowledge to new
contexts (Sherin, 2002). Sherin (2002) expands this point, asserting that
teachers also develop new content knowledge through implementation.
However, LTT will fail to occur if teachers do not routinely embrace
what multiple scholars define as teacher noticing (see Mason, 2002;
Sherin et al., 2011; Zazkis & Mamolo, 2018). Within LTT, this involves
actively looking for and recognizing student thinking as a valuable part
of education, a contention that highlights the fact that teachers learn
from students as well (Franke et al., 2001; Jacobs & Empson, 2016).
Beyond planning and implementing, many researchers studying teacher
education position reflecting on one’s practice as the primary means for
LTT to occur (see Mason, 2002; Salmon et al., 2020; Santagata et al.,
2018; Zaslavsky & Leikin, 2004). According to Tzur (2010), the pla-
n/implement/reflect cycle of teaching provides a “wealth of opportu-
nities to be perturbed, that is, to identify gaps between what they meant
their teaching activities to engender and what students actually learned,
” (p. 51) even if teachers overlook these opportunities due to feeling
threatened by unexpected outcomes or situations.

All told, LTT provides a valuable learning tool for both learners and
educators, including novice and veteran teachers (see Landt, 2003), to
engage. Yet what remains unknown is the extent to which teachers can
learn on their own through their teaching when there is no support or
guidance from external sources. This gap exists because the vast
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majority of research explores (and overemphasizes) LTT within the
context of teacher education programs and other professional develop-
ment communities (McDonald et al., 2014; Salmon et al., 2020; Scanlon
et al., 2022). Within math education research in particular, “little is
known about the teacher’s learning of mathematics in their own class-
room” (Leikin & Zazkis, 2010, p. 3), especially when unaccompanied by
additional professional development support from instructional
coaches, cooperating teachers, university professors, or other profes-
sional educators. Still, this body of work holds great value for those
creating learning opportunities for pre-service and active teachers.
Teacher education curriculum designers, for example, have developed
intentional and scaffolded approaches to LTT, including teaching re-
hearsals (Lampert et al., 2013), co-teaching (Hiebert et al., 2007) and
lesson studies (Hart et al., 2011) that engage pre-service teachers and
current educators in intentional LTT opportunities. But research that
builds on this work by centering the learning of teachers in their
day-to-day teaching can help educators more intentionally develop their
practice and knowledge when they do not have access to professional
development opportunities. For instance, Jackiw and Sinclair (2010)
and Leikin (2010) note that not all pedagogical tasks embody the same
potential for LTT. Instead, some lessons, especially those that create
space for students to respond in new and unexpected ways, create
significantly more opportunities for teachers to learn through the act of
teaching. According to Lai et al. (2012), “teachers learn about students’
thinking when their curricula is conceptually oriented, allows for stu-
dent creativity, and encourages student contributions” (p. 167). Stated
differently, teachers learn through exposure to student thinking and
inserting opportunities to come in contact with student-developed ap-
proaches to solving mathematics problems creates space for teachers to
construct that knowledge, an assertion teachers themselves can employ
in their classroom to support their own learning and the learning of
students simultaneously.

A greater understanding of LTT outside of professional development
opportunities can provide further opportunities for self-directed
learning by teachers, especially because not all teachers have access to
professional learning communities or initiatives. To this end, we use this
paper to explore how LTT occurs for teachers acting in relative isolation
(or, at the very least, teaching without having regular contact with or
support from teacher educators or conducting formal collaborations
with teachers outside of their immediate school context).

2.3. Student-centered pedagogies versus teacher-centered pedagogies

Despite the potential shown by Leikin (2010) in her exploration of
pedagogical tasks, extant research has also largely overlooked the in-
fluence of pedagogical approaches on teacher knowledge acquisition
through LTT on their own. Although an endless number of pedagogical
frameworks exist, we rely here on Sengupta-Irving and Enyedy’s (2015)
definitions of student- and teacher-centered pedagogies. Representing
more of a spectrum than a dichotomy, the authors frame the distinction
between student- and teacher-centered pedagogies through the lens of
student agency in ways that align with Eysink et al.’s (2009) notions of
observational learning (guided) and inquiry learning (open). At the core
of a teacher-centered approach, the teacher leads students “to and
through the math concepts” (Sengupta-Irving and Enyedy, 2015, p. 561)
needed to solve a problem chosen by the teacher. While the students
have some agency in describing the problem and its solution in their own
words or justifying the use of a solution strategy in new problems, the
teacher still provides the students with a solution strategy and asks them
to replicate that strategy in new settings. A student-centered approach,
on the other hand, involves students inventing a unique solution path,
discussing and refining this path with other students before justifying
both their solutions and their process for arriving at an answer. Impor-
tantly, as both Sengupta-Irving and Enyedy (2015) and Hmelo-Silver
et al. (2007) attest, student-centered teaching does not imply that stu-
dents have no guidance at all. Instead, teacher interventions occur less
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frequently and the nature of these scaffolding moments shifts to focusing
on targeted problem solving and questioning strategies rather than
correcting student mistakes.

Exploring math education through this lens, existing research has
shown that students develop a wide range of mathematical skills and
knowledges when engaging well designed (and effectively imple-
mented) open pedagogical tasks. In choosing not to show students how
to produce a solution to a given problem and instead asking them to
develop their own solution process, student-centered pedagogical ap-
proaches create the context necessary for students to develop rich,
conceptual understandings of mathematics beyond procedural knowl-
edge (Mackrell & Pratt, 2017; Papert, 1980) and find connections within
and across specific concepts (Noss & Hoyles, 1996). In doing so,
student-centered teaching creates the context necessary for students to
develop creative problem-solving skills (Ali et al., 2021; Jasien & Horn,
2018; Levav-Waynberg & Leikin, 2012) and promote new ways of
thinking about mathematics (Bland, 2019).

What teachers learn on their own when employing student-centered
teaching in comparison to prescriptive approaches, however, remains
largely absent from the literature since prior work has mainly explored
LTT in the context of professional development and teacher collabora-
tion. In Leikin’s (2010) study of teaching experiments focused on mul-
tiple solution tasks (or classroom activities where students provide
multiple novel ways for solving a single problem), the author found that
teachers intertwined and developed their PCK and SMK, with both as-
pects of teacher knowledge reinforcing and informing the other. Placing
this experience within Schon’s (1987) framework for LTT, this knowl-
edge development specifically emerges from teachers’ interactions with
student problem solving strategies in the implementation phase. Addi-
tionally, as Yeh (2016) shows, teachers also bring student problem
solving strategies into the reflection phase as they consider not only the
choices they made when implementing the lesson but the choices stu-
dents made as well. In terms of the planning stage, Chapman (2007)
recognizes that teachers draw on and subsequently develop an inter-
twined set of SMK and PCK related to inquiry-based approaches to
learning, similar to the kinds of knowledge described by Leikin (2010).
Put into conversation, this body of research shows that teachers learn
the kinds of SMK and PCK needed to design open ended tasks when
engaging students through this pedagogical approach and then reflect
on those experiences (when supported by teacher educators or profes-
sional learning communities), thus mapping this process onto Schon’s
(1987) three-part cycle. How this experience compares to LTT when
employing teacher-centered pedagogical approaches, however, remains
under-explored. While these studies indicate that exposure to student’s
invented problem-solving methods, or what Sengupta-Irving and Eny-
edy (2015) describe as the invention of solution paths, represents a
unique LTT affordance of open pedagogical tasks that does not exist in
more guided approaches, studies directly comparing these two methods
have not been conducted. With this oversight in mind, we now turn
towards new empirical evidence comparing LTT through
student-centered and teacher-centered approaches.

3. Methods

To explore the influence of pedagogical approaches on LTT for math
teachers working on their own, we draw on what Simon and Tzur (1999)
describe as an “accounts of practice” methodology. In this approach,
researchers construct a trajectory of development related to teacher
practice, a term that encapsulates both what teachers do and “every-
thing teachers think about, know, and believe about what they do”
(Simon & Tzur, 1999, p. 254), thus capturing the development of
teacher knowledge. To engage this approach, the locus of research shifts
from a teacher’s perspective of what they do to the researcher’s
perspective. This shift addresses the notion that teachers may hold an
understanding of their own developing practice that, while highly
valuable, does not fully illustrate their learning trajectory due to their
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embedded perspective.

Broadly speaking, an accounts of practice methodology involves four
stages that we adhered to in the following ways. First, researchers
develop a conceptual framework to define a teacher’s trajectory before
data collection begins. As described in our overview of LTT research, we
rely on Schon’s (1987) model of teaching where educators iteratively
learn as they plan, implement, and reflect on classroom activities. Sec-
ond, researchers collect data that speaks to a teacher’s practice over
time. To do so, we gathered evidence of teacher learning at all three
stages of Schon’s (1987) model and through multiple iterations of this
process, thus providing temporal insight into the development LTT.
Third, researchers develop an account of an educator’s professional
practice through data analysis. Due to our particular focus in this study,
we engaged this aspect of an accounts of practice methodology by
tracing the categories of knowledge that our teachers developed
throughout our iterative data collection process. Finally, an accounts of
practice methodology ends with producing a hypothetical trajectory for
that teacher. Diverging somewhat from the original intention of the
literature, we reimagined this aspect of Simon and Tzur’s (1999) model
as a comparison between student-centered and teacher-centered peda-
gogies, proposing a possible and broad trajectory of LTT within both
pedagogical models. With a conceptual argument for the influence of
pedagogical approach on LTT established in the previous section, we
now turn towards the final three stages of data collection and empirical
analysis to produce a deeper understanding of teacher knowledge
development within pedagogical interactions.

3.1. Study context

The data utilized for this work comes from a large-scale, longitudinal
study designed to investigate teachers’ development of content-specific
expertise from their own teaching (Copur-Gencturk & Li, 2023). We
recruited participating teachers in 2018 from across the United States
and then scheduled online, individual meetings with teachers who
expressed an interest in participating in the study regarding data
collection procedures. In particular, we asked teachers to create lesson
plans that documented their plan for instruction over two consecutive
days and interviewed them three separate times during each series
(before teaching the first lesson, between teaching the first and second
lesson, and then after teaching both). This cycle of data collection
occurred three times for each teacher whenever a new concept was
taught. Our data therefore consists of three series of 2-day lesson plans
(6 lessons total) and nine interviews per teacher (see Fig. 2). Thus, if
learning occurred from teaching any of these lessons specifically, we
were able to capture it through our interviews. In addition, teachers
videotaped their instruction while teaching one of these planned lessons.
We therefore triangulate the data between the lesson plans, interviews,
and video observations to ensure validity (see Denzin, 2012).

As shown in Table 1, five teachers participated in the study. Two self-
identified as white, two as multiracial, and one as Black. Three of the
teachers self-identified as women and the other two as men. All five
teachers held a credential in teaching multiple subjects and had grad-
uated from teacher education programs, with three graduating from a 4-
year program and the other two attending a 5-year program. Even
though all the teachers were new to the teaching profession, all except
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Fig. 2. Illustration of the data collection process.
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Table 1
Teachers’ personal and educational backgrounds information.
Name Undergrad major Gender  Race Route to the profession Teaching Grade  Years of teaching Years of math State
credential experience teaching experience
Linda Elementary F White Traditional 4-year teacher Generalist 5 3 1 AK
education education program
Mike Elementary M White Traditional 4-year teacher Generalist 4 2 2 IN
education education program
Hannah Education F Multi- 5-year teacher education program  Generalist 5 0 0 CA
racial with a master’s degree
Xavier Early childhood M Black Traditional 4-year teacher Generalist 3 2 2 TX
education education program
Daniella ~ Native American F Multi- 5-year teacher education program  Generalist 6 3 2 CA
studies racial with a master’s degree

Note. All names used are pseudonyms.

Hannah had taught mathematics as full-time teachers in K12 settings
before the data collection period. Importantly for this study, none of the
teachers were currently enrolled in professional development initiatives
and this study did not involve any teacher education processes. Instead,
we merely asked teachers to share their experience of teaching lessons
they would have designed and taught regardless of their involvement in
this study.

3.2. Data collection

3.2.1. Lesson plan tasks

We used teachers’ lesson plans as a means to gauge the extent to
which participants learned from their teaching. Lesson plans provide
insights not only into how the teachers teach a lesson, but also into the
knowledge and skills they apply to teaching subject matter. Our main
interest in this study involved exploring whether and to what extent
teachers developed PCK from their teaching. We chose this because of
the role that PCK plays in students’ disciplinary learning (see Chang
et al., 2020; Ogletree, 2007; Olfos et al., 2014; Purwoko et al., 2019;
Thadani et al.,, 2017), its position within our teacher knowledge
framework, and its relationship to both GPK and SMK. We therefore
focused on the areas of teaching in which participants needed to draw on
their PCK. In particular, teachers’ task selections and their choices of
representations and instructional strategies provided important in-
dicators of their knowledge of mathematics teaching (i.e., their PCK).
Similarly, teachers’ knowledge of what strategies students would use
and what struggles students might have when learning a particular
concept represent manifestations of their knowledge of students’
mathematical thinking, an element of PCK.

Thus, the lesson plan task we adapted from prior work (Morris &
Hiebert, 2017) included specific questions aimed to reveal their PCK.
Teachers were asked (1) to provide a learning goal and the key concepts
they planned on targeting in each lesson, along with the main task they
designed or chose, and (2) to explain why and how this particular task
would lead them to accomplish the learning goal. They were also asked
questions in the lesson plan document itself about what particular
strategies and struggles they anticipated their students having, how their
instructional plans addressed these struggles, and their rationale for
these plans. The lesson plan included sections to (1) describe the specific
things they would be on the lookout for to ensure that their students
were making progress toward the learning goal; (2) their organization of
solution paths (if predetermined) and their rationale for that particular
order in terms of developing students’ understanding of the key ideas
targeted in the lesson; and (3) the specific questions they would ask
students to help them make use of mathematical ideas. In addition, we
asked participants to provide another task (a formative assessment or
exit ticket) they planned to employ in assessing students’ learning at the
end of the lesson and their rationale for selecting this problem in terms
of why students’ work on the problem would help them gain information
regarding whether they had achieved their learning goal.

3.2.2. Interviews

The three-part interview series conducted with target teachers
represent the second main data source. Initially, we interviewed par-
ticipants after they had prepared their 2-day lesson plans but before they
had taught them to help us understand their lesson plan tasks more
accurately. We then interviewed teachers twice thereafter, once imme-
diately after they had taught the first day of their 2-day lesson but before
they had taught the second day to capture whether they had learned
anything from teaching the first lesson, and once after they had taught
the second day of their 2-day lesson. Thus, each teacher was interviewed
three times per cycle for a total of nine interviews. We adapted interview
questions from prior literature (Smith et al., 2008) and drafted our
protocol to explicitly explore teachers’ thinking and learning through
the lesson. The first interview conducted for each lesson cycle centered
on understanding teachers’ lesson plans by asking elaborating questions
about five key topics: why they chose the main task, why they antici-
pated the strategies they listed, why they thought students would
struggle in particular ways, why they chose the specific items to be on
the lookout for, and why they selected a particular task to assess stu-
dents’ mastery of the learning goal. The interviews conducted after the
teachers’ first and second days of teaching focused on what the teachers
learned from teaching in the following areas (that were intentionally
similar to the initial interview): the main activity they chose to introduce
the concept, the students’ strategies they anticipated, the students’
struggles they anticipated, their responses to the students’ struggles,
points they wanted to be on the lookout for to achieve the learning goals
of the lesson, their assessment of students’ learning (including exit
tickets), and any changes they planned to make in their lesson plan
based on their implementation of the lesson. In framing the interviews in
this way, we position ourselves as outside observers developing an ac-
count of teacher practice rather than researchers merely capturing
teacher’s conceptualization of their own work. All the interviews were
conducted online, videotaped, and transcribed verbatim.

3.2.3. Collection procedure

Because we aimed to study the knowledge teachers acquired from
teaching, we collected data as frequently as possible to detect potential
learning. To do so, the researchers scheduled a one-on-one online
meeting with each teacher in the study and decided on three units in the
same content area for which teachers created their 2-day lesson plans (i.
e., fractions if they were teaching Grades 3-5 and ratios if they were
teaching Grades 6-7). Teachers then created a 2-day lesson plan for the
first week of each unit in which they were introducing a new concept
(see Fig. 2). We focus on this introductory week because teachers would,
hypothetically, have more opportunity to learn during the introduction
of a new concept as opposed to later in the unit after they had settled into
certain pedagogical routines, potentially revealing unexpected out-
comes and creating room for them to gain knowledge and skills. The
rationale behind focusing on a single content area (i.e., fractions or ra-
tios) was to investigate the extent to which teachers would generalize
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the PCK of the relevant content area: because PCK is content specific, it is
unlikely that students would show similar mathematical struggles and
understandings across concepts or content areas.

We then contacted teachers when the time to start a new unit
approached and scheduled an online meeting. The teachers were
instructed to send their 2-day lesson plans in advance of the interview so
that the research team could peruse the plan and ask additional clari-
fying questions. The first interview of each lesson plan cycle generally
occurred a day before teaching the first lesson. The second interview was
usually conducted on the same day teachers taught the lesson, and the
third interview was conducted either on the same day the lesson was
implemented or the day after they taught.

3.3. Data analysis

To analyze the data generated from interviews, lesson plans, and
videos, we began by employing an open and iterative approach to what
Saldana (2015) defines as descriptive coding, linking the topics being
discussed and choices made by each teacher with a specific code. We
generated this set of codes through an emic process, allowing the codes
to emerge from the data itself rather than applying a pre-established
coding scheme. After both research team members coded the data
from each individual teacher, we engaged the consensus building pro-
cess described by Harry et al. (2005). Rather than determining interrater
reliability measures to determine validity, this process involves re-
searchers coding data independently and then comparing all emergent
codes and the application of both new codes and established ones from
previous analyses of other interviews. From there, we combined our new
codes that had significant theoretical overlap and any divergent appli-
cations were “debated and clarified until the group agreed on appro-
priate usage” (Harry et al., 2005, p. 6). In doing so, we eventually came
to agreement on all codes and code applications.

After this first round of coding and the subsequent consensus
building process, we completed another coding cycle that employed a
similarly open and iterative approach to emic, descriptive coding.
During this cycle, we centered on moments in the interviews where
teachers described what they learned from teaching using their lesson
plans (while also continuing to analyze the videos and lesson plans to
find evidence or counter-evidence of the teachers’ self-reported
learning). Beyond this emic approach, however, we also looked for ev-
idence of open and guided approaches to teaching. Drawing on Sen-
gupta-Irving and Enyedy (2015), this part of the analysis distinguished
between teachers who provided problems that students would solve on
their own or with their colleagues using pre-existing knowledge and
problem-solving skills (student-centered teaching) and teachers that not
only provided problems but the exact process for solving that problem
they expected students to use (teacher-centered). In doing so, this aspect
of our coding process specifically focused on Sengupta-Irving and Eny-
edy’s (2015) distinction between the guided seeing (“Students are led to
and through the math concepts™) and invention (“Students invent the
solution path”) components of direct and student-centered instruction,
respectively (p. 561). We focus on these aspects of teaching because they
provide a stark contrast between the two pedagogical approaches while
other elements of student- and teacher-centered teaching (such as
formalization and best inference) exist in both. Once we completed our
second-round coding, we again undertook the same consensus building
process to verify our results. With these codes and their applications
established, we completed our qualitative analysis by shifting to an etic
approach to pattern coding (Saldana, 2015) that relied on an extant
coding scheme. More specifically, we organized our initial descriptive
codes that illustrated the breadth of how teachers conceptualized their
own LTT into the model of teacher knowledge shown in Fig. 1 (i.e.,
subject matter knowledge [SMK], general pedagogical knowledge
[GPK], pedagogical content knowledge [PCK], and knowledge of
context [KOC]). In organizing the coded data in this way, we produced
the scope of learning that occurred through LTT by these teachers.
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To further analyze our codes and characterize their LTT more ho-
listically, we created a variable to explore the distribution of the
different kinds of knowledge teachers reported gaining from their own
teaching experience. To do so, we divided the frequency of codes
belonging to each knowledge dimension by the total number of code
applications for each individual teacher. Thus, a higher percentage score
in one knowledge area indicates teachers reported gaining more
knowledge in the corresponding knowledge domain. To explore how
their teaching style might affect their LTT, we explored the patterns in
the development of various kinds of knowledge according to how the
teachers structured their mathematics teaching (i.e. through student- vs.
teacher-centered pedagogical approaches). We accomplished this by
capturing whether they allowed their students to solve a mathematics
problem on their own first or whether the teacher solved the problem
before giving students a chance to work on it. We coded every instance
in which an individual teacher mentioned that the students or the
teacher solved the problem first. We then considered which of these two
types of instances occurred more often and compared all codes to the
specifics of the lesson plans and videos to determine whether the teacher
employed a primarily open or guided approach. Finally, we returned to
the results from our analysis of teacher learning by looking at these
findings in relation to this pedagogical categorization.

4. Findings

Through our analysis of pre, mid, and post interviews, video re-
cordings, and lesson plans, we constructed a broad and encompassing
collection of codes that thoroughly documented the breadth of teacher
learning that occurred through LTT. These codes connected to all four
categories of teacher knowledge but emphasized learning GPK and PCK
with only a few codes related to KOC and SMK. In this section, we will
more thoroughly discuss these categories and codes before connecting
our categories to the pedagogical approaches employed by teachers. In
Tables 2 through 4, we list 39 of the 40 codes we developed through our
analysis (with a description of the one code related to SMK presented in
the main text of the next section), an example of each code taken from
one of the teacher interviews, and the total number of lessons where we
found evidence of a teacher learning this specific skill or piece of
knowledge (both in terms of evidence existing in the interview and in
the video observations). The frequency count therefore ranges from 0 (a
teacher never mentioned or showed evidence of learning related to this
code across the entire study) to 6 (a teacher mentioned and showed
evidence of this learning during every single lesson in the study).

4.1. Developing teacher knowledge through teaching

In terms of GPK, our analysis produced eighteen separate skills or
ideas related to this category (see Table 2). Within this categorization,
we specifically describe moments where the teacher developed a skill or
understanding related to teaching that was not specific to mathematics
education or mathematical thinking. Broadly speaking, the codes within
this category centered on aspects of teaching such as time use and
classroom management, reframing classroom activities, or adjusting
their overall teaching practice. For instance, some teachers learned that
they needed to break up a specific concept from one of their lessons into
a multi-day lesson the next time they had to teach that same concept.
However, some of this general pedagogical knowledge did not neces-
sarily equate to learning best practices. For instance, some lessons
resulted in teachers thinking that they needed to restrict students’ ability
to creatively explore new concepts or solve problems through invented
methods. While this does relate to the development of general peda-
gogical knowledge (these teachers did develop a new understanding of
teaching), it illustrates that this learning may not always equate to an
improved teaching practice in certain instances.

Additionally, our analysis uncovered seventeen codes related to the
knowledges and skills teachers gained related to PCK (see Table 3). PCK
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Table 2

General pedagogical knowledge codes.
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Code Definition Example Frequency of code applications per teacher
Hannah  Linda  Danielle = Mike Xavier
Activity and Problem Teacher discusses the need to be clearer or more  If I were to teach it again, I would figure out a 1 1 0 2 1
Directions detailed in reference to the instructions for a way to give better instructions for the hands-on
problem or activity. activity. The instructions kind of confused them,
which I think, in turn, made them feel like they
were confused about how to find those
denominators. Once we kind of cleaned up how
to put the chain together, then they realized, “oh,
I can do this.” But I think that took away from
their confidence a little bit at first. So I would
come up with better instructions for that activity.
(Linda)
Allowing for Student Teacher learns the value of allowing students to  I've always been scared to let my kids do things 0 2 0 0 0
Exploration and try problems on their own and also making and the wrong way. I'm afraid that is going to get it
Mistakes learning from their mistakes. stuck in their head and I'll never be able to get
them away from doing it the wrong way. But
letting them do it their way even though it’s
wrong, letting them see that doesn’t work, it was
actually a really good thing for us. (Linda)
Assessment Practices Teacher learns something about how they are And then, for the exit tickets, I just gave a graded 1 1 0 1 0
assessing students/giving feedback. assignment and they were struggling with it. But
when we would go over the practice, I just
realized I wasn’t fully assessing them. And so
that was a big change I made. (Linda)
Breaking Up Lesson Teacher discusses the need to break up It was successful, but it’s just something I 0 1 0 0 0
instruction on a specific concept or an activity realized is a two-day lesson. It’s not a one-day
over multiple class periods. This is differentiated  lesson. (Linda)
from the “need for more time” code by
considering the structure of the unit as opposed
to a specific lesson.
Clarity of Content Teacher discusses the need to more clearly I would be very slow and methodical when Iwas 0 0 0 2 0
Delivery deliver content to students. This can involve doing that last example. “This is what I'm
wording concepts better, changing what they thinking as a student, this is what I need to see.”
write on the whiteboard, etc. This code is generic ~ That’s the biggest one. (Mike)
and does not actually connect to the
mathematical concept being referenced.
Formatting and Teacher discusses the need to either support or Making sure that they are being very clear about 1 0 0 2 0
Communication ask for students to communicate their work or how they should be showing their work so that
Strategies their answers differently. This does not actually maybe I won’t have to go around to ask them
refer to teaching content or concepts differently, = what they did. They can just show me what they
just writing out the work. did based off of what they wrote. (Hannah)
Generic Pedagogical Teacher reports plans to change the pedagogical I have to ask questions and not say things, 2 3 1 4 2
Change approach in the lesson. This change is not related ~ because this is when they start to get really good
to the content of the lesson, just the mode of at reading your body language to know if they
delivery or structure of the student action (i.e. have the right answer and repeating exactly
changing a discussion method). what you say so that you think they were paying
attention or that they understood what you said.
They have those defense mechanisms already, so
I can’t do those things or I can’t get a good
assessment on where they are. So, that’s the
hardest part of teaching in general, it’s just
figuring out how you can get your students to
show you what they know without you giving
away the answer without trying to. (Linda)
Increasing Classroom Teacher discusses the need to increase classroom  It’s more of a classroom management problem 0 1 0 2 0
Management management structures (i.e. limiting the amount  than an outline problem. I just have to do a better
Structure students are able to talk to each other). job of making sure I got everybody’s attention
first before we keep going. Because I feel like I
lost some students here and there, and that
affected the outcome of the lesson. (Mike)
Limiting Thinking Teacher explicitly states they want to limit the I don’t feel like it’s the best way to teach, but for 0 1 0 1 1
range of opportunities the students have to think ~ some of them, they’re going to have to have a set
mathematically or limit the possible choices, strategy. A step one, a step two, a step three that I
values, or operations students can use when probably have to sit down and teach them how to
solving problems. do. I don’t think that they’re going to make that
leap on their own. This is the time where I
intervene and do some direct teaching and direct
modeling rather than letting them figure it out.
(Linda)
Monitoring Student Teacher discusses the need to increasingly I'm going to give them the main problem and let 0 1 0 0 0

Work

monitor what students are doing during class
time (i.e. following and checking in on every step
of a problem they are working on).

them start working on it independently, even
with all the misconceptions that they have today.
But have them show me the first step, show me

(continued on next page)
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Table 2 (continued)
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Code Definition Example Frequency of code applications per teacher
Hannah  Linda  Danielle = Mike  Xavier
the second step. Put it like step by step by step.
(Linda)
Need for Teacher discusses the need to differentiate I'm going to have three groups. I'm goingtohave 0 1 1 0 0
Differentiation aspects of the lesson in future classes. the one that is not regrouping correctly. I'm
going to have the one that didn’t subtract
correctly at all, either problem. And then I do
have a few that got the correct answers. So I will
probably put together something for them to
start estimating and then put the other two
separately. So I'll have three different lessons
going on tomorrow. (Linda)
Need for More Teacher explains that they want to add more I know this is part of their homework, butifThad 0 1 1 2 0
Assessment assessments to upcoming lessons or that they a separate exit ticket that they could give tome, a
would add more assessments to previous lessons  shorter one that they can just give to me on their
when teaching them again. way out to recess or something, that might be the
only thing I'd change. (Daniella)
Need for More Time Teacher discusses the need for more time to I would try to make it where I have more time 0 0 2 2 1
teach a concept or do an activity properly before this. I mean, I guess it depends on the class
that I have. But if I were to re-teach this same
class, I would give myself more time to go over
the conversions and the scary percents.
(Daniella)
Need for Practice Teacher reports learning that future lessons need I think today, just the idea of how to subtract 0 1 0 0 0
to involve more opportunities for students to mixed numbers was achieved. I don’t think it
practice skills they have already learned. was necessarily mastered but I do think they
know how. We still need more practice, but the
learning part of it has been accomplished.
(Linda)
Need to Reteach Teacher states that they need to reteach a lesson ~ I'm just going to go back tomorrow and kind of 0 2 1 1 0
without indicating the need to change the lesson  try it again. Maybe after they’ve sat with it for a
in any way. This is different than “revisiting little bit they can see what I'm talking about
concepts” because it is a generic approach to tomorrow. (Linda)
reteaching content. It is not targeted and doesn’t
include considerations of student knowledge.
Problem Solving Teacher learns about the strategies that students I was kind of surprised at some of them and some 3 1 1 0 0
Strategies already use to solve problems. These strategies of [their approaches to] solving the problems,
are not necessarily related to what is being which is really cool. I really liked that there were
taught in the class and not necessarily connected ~ multiple ways of solving each of these problems.
to a specific mathematics concept. (This code is (Daniella)
different than “Subject Matter Knowledge:
Problem Solving Strategies” because the teacher
doesn’t report learning these strategies
themselves. They may already know them, they
just didn’t expect students to use them.)
Reduced Student Teacher discusses the need to reduce the amount I could’ve probably made the exit ticket two 0 0 0 1 0
Work of work students do (i.e. giving less practice problems [instead of three]. We seem to have it
problems) as a class, so I probably could’ve left that [extra
problem] out. (Mike)
Revisiting Concepts Teacher discusses that they should revisit topics I think that I would just review. We already 0 2 2 3 1

already covered in previous lesson in more detail
(a.k.a. a refresher). This involves a targeted
approach to reteaching concepts that students
showed a certain misconception with.

reviewed the skills we learned the day before,
but I think I would increase the review. They
needed a little bit more of a review of what we
did yesterday before we went into this. (Linda)

as a category extends beyond GPK by specifically relating to the teaching
of mathematics. These codes covered a wide range of knowledges and
skills under the PCK umbrella, including how to better write pedagogi-
cally valuable problems for students to engage, deeper understandings
of their students’ curricular knowledge and misconceptions, and tech-
niques to help students connect to mathematical reasoning and previous
concepts. Our code “attention to problem details” provides a clear
example of what teachers learned related to PCK through teaching. In
this code, the teachers recognized specific details within a problem they
asked students to solve (such as number selection or wording of the
problem) that reduced the complexity of thinking needed to solve the
problem or the range of mathematical concepts that students could
encounter (i.e., a fraction addition problem would not engage students
in finding a common denominator if all of the values had the same
denominator).

Lastly, the participants in this study constructed KOC (see Table 4)
and SMK. However, the analysis related to these codes proved far less in

depth than both GPK and PCK. In terms of KOC, where teachers learned
about their individual students and their school environment or learning
ecology (the district, etc.), our analysis only produced four different
codes: learning how their students think about or relate to learning (not
connected to mathematical thinking explicitly), learning about their
student’s socioemotional knowledge or skills, learning about issues
students grappled with outside of the classroom environment, and
learning about how to more deeply engage with student data. Regarding
their learning related to SMK, our analysis only produced one code.
Specifically, Danielle learned new methods for solving a problem she
had not considered before, as some of her students framed this learning
through a new metaphor (specifically, using money as a means to
grapple with proportional reasoning). She describes this moment as
follows: “I also learned that they think of such amazing ways to solve
problems that I never would have thought of, ever. It was just really cool
to see the way that their brains are working. I'm like, ‘What, wait, what?
I never thought of that!”” Danielle showed evidence of learning SMK
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Pedagogical content knowledge codes.
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Code

Definition

Example

Frequency of code applications per teacher

Hannah

Linda Danielle = Mike  Xavier

Attention to Problem
Details

Attention to
Vocabulary

Breaking Down
Problems

Clarity of
Mathematical
Concepts

Concept-specific
Pedagogical Content
Knowledge

Conceptual
Mathematical
Knowledge

Connecting to
Mathematical
Reasoning

Teachers discuss learning how certain details in
a problem or activity (i.e. number selection,
wording) can either help or hinder student
learning.

Teacher discusses learning how student’s use of
academic vocabulary leads to helping or
hindering mathematical understanding.

Teacher learns that students have a problem
with breaking down a problem into different
parts and completing those parts in order.

Teacher discusses the need to clarify or be more
detailed when describing new mathematical
concepts to students.

Teacher discusses the intersection of specific

mathematical concepts and teaching, or how to
use or structure mathematical concepts to help
students learn a specific mathematical concept
(rather than an overarching teaching practice).

Teacher learns about students’ conceptual
knowledge or the development of their
conceptual knowledge that they did not expect
to see in the lesson.

Teacher learns that they need to help students
connect to mathematical reasoning beyond the
practice of solving problems.

Another thing I felt like I learned was the way
that each part of the problem is so important and
can change how the kids solve it. Whether it’s
the number pairs or how the problem is phrased,
changing something small about it or not
wording it the right way, you can get different
answers from the kids. So I think just being more
careful and more thoughtful about the numbers
I'm selecting and how I want that to support the
learning goal. (Hannah)

The one thing that I did learn was that students
seem to respond better to numerator and
denominator than being told to multiply the top
and the bottom of the fraction. Because the word
top and bottom gives them a location
automatically where they feel like they can
directly apply it. But then when I say numerator
or denominator, even though they know where
it is, their response to the question is not as
urgent. They have to think about it a little bit
more. (Mike)

The only thing that I might do differently,
depending on the students, is I might give them
the main problem just as “how many hot dogs
did the vendor sell?” And then after they solved
that go, “okay, if I asked you how many were
left, could you figure that out?” to make it where
they focused on one part at a time rather than
giving them both. (Linda)

I just need to spend more time on the number
line. It’s just because we don’t have enough time
to go into more depth. I would like to extend
their learning to go past one. If T had more time, I
would have gone a little over one. And maybe
showed them one-fourth, and one and one-
fourth and one and one-half. Just to get them
ready. (Xavier)

So I really didn’t know if that would be the way
to go, to start with the more complex concept
and then focus down into area, because it’s a
more concrete and easier way to understand
multiplying fractions. But it works really, really
well, especially for my low-level learners. So I'll
probably always do that, use that area
relationship until we’ve gone as far as we can
showing that we’re trying to find one-half of
two-thirds or two-thirds of one-half. (Linda)
They didn’t need the model, which was really
awesome. I did see them multiply by the
reciprocal but then I saw a few that realized if I
need half of something, that’s divided by two. So
they just divided the whole number. Because
they were like, “it’s easier to divide by two than
multiply.” And I was like, “well, whatever’s
easier for you.” So that was the only strategy I
saw that I didn’t list. (Linda)

So, multiplying decimals by 10, 100, powers of
10: I would draw the number with the decimal
and then we would practice moving the decimal.
Then I would notice on their work that they
could draw that, but then when they wrote their
answer they wrote the original number. And 1
realized they were just making this drawing
because that’s what I had done without
understanding what they were doing. They
didn’t realize they were moving the place value.
So, I had to go back and reteach that, taking
away the drawing part, because they were
getting so hung up on what I drew on the board.
We would go back and do it with our bodies and
we would have a ball be the decimal point. And
we would practice moving ourselves to move
our place value. And then we would say, “Okay,

4 2 0 1 0

(continued on next page)
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Code

Definition

Example

Frequency of code applications per teacher

Hannah

Linda Danielle Mike  Xavier

Curricular Knowledge

Knowledge Transfer

Need for Manipulatives

New/Revised Main
Activity- Decreased
Difficulty

New/Revised Main
Activity- Increased
Difficulty

New/Revised Main
Activity- Increased
Student Choice

New/Revised Main
Activity- Reframed
Problem Details

Problem Solving
Barriers

Students’
Mathematical
Misconceptions

Teacher learns about what students learned in
previous years.

Teacher learns about how students use previous
mathematical learning to do new tasks or
activities, both in terms of their ability and
inability to do so.

Teacher reports learning that future lessons need
to involve more or different manipulatives or
that they need to adjust the lesson to fit with
manipulatives more fluidly.

Teacher discusses the need to reduce the
difficulty of the main activity or problem.

Teacher discusses the need to increase the
difficulty associated with the main problem or
activity.

Teacher discusses how they would revise the
main activity to include more student choice in
responding to the main activity.

Teacher discusses the need to change the details
of a problem to focus on certain mathematical
concepts.

Teacher learns about the barriers students have
when solving problems and the thinking behind
that process.

Teacher learns about specific misconceptions
students have related to content.

what does that look like?" just making those
connections without me giving them something
to do. Because if I did that, then they would just
focus on that, even if it didn’t make sense to
them. (Linda)

I didn’t know that my students had some
experience with converting measurement last
year. I kind of knew it was in 5th grade, but one
of my students had his math journal from last
year and showed me that they actually did a lot
of work with converting measurements. And I
just wasn’t expecting that. So I feel like they did
so well today because of that prior experience
that I didn’t know they had. (Daniella)

That’s where, even if they know it, they’ve got to
learn it again before they can use it. I didn’t
realize it would be like reteaching all the parts of
fractions. Even though they know what to do
and what it means, they just don’t hold those
connections together. (Linda)

I'm going to use the fraction circles and I'm
going to have those out. I have them on the side
of the room. For this lesson, I'm going to just put
them on the tables and say, “Oh, take these,
everyone take these. If you need it, you need it.
If you don’t, just leave it.” (Hannah)

I felt like, after seeing them do it, I don’t think it
was necessary to use such a big number. I could
have started off with one and one-third and one
half instead of eight and one-third. So I feel like
those kind of just got in the way. And I think that
became confusing, so they weren’t able to think
about the mixed number and changing it to an
improper fraction because it was a little too big
of a number. (Hannah)

I would make the fraction not one fourth.
Because when you hear one fourth, anything
multiplied by one is pretty easy to find out. And
the multiples of eight are kind of hard to
remember for a lot of students. So, I would’ve
picked three eighths. And then I would’ve had
another question on there. It would’ve been a
different scenario where Lina’s floor is 20 square
feet: “If one fourth of that floor is covered in tile,
how many square feet is that floor covering?”
Because then they could’ve multiplied a whole
number by a fraction and we could have talked
about that. (Mike)

I think if I were to teach it again, I like the idea of
adding different number sets that they can
choose for the fraction. So they can choose what
to solve. (Hannah)

I think I'm going to manipulate that main
problem so that we can actually use the fraction
bars. I only have enough of each fraction to
make one whole. So when you regroup and you
make that improper fraction, I don’t have
enough pieces for each group to show that.
(Linda)

I didn’t realize that there would be that big of a
misconception with the phrasing. I don’t know if
it was the phrasing or just having the two
denominators where they had to change both of
them. I didn’t think that the amount would
hinder their ability to think about it. (Hannah)
Regrouping is really hard for 5th graders. I just
learned that. I'm still learning how difficult it is
for them to connect the same concept across
different types of numbers. They can explain
regrouping with whole numbers brilliantly. And
they can even do that with decimals. But I think
just because it’s not a set place- like the
fractional part- it’s not a tenths place, it’s not a
ones place. It’s whatever that denominator says

10

(continued on next page)
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Code

Definition

Example

Frequency of code applications per teacher

Hannah Linda Danielle Mike  Xavier

Translating and
Understanding
Problems

Teacher discusses a student’s inability to either
read and understand a problem or translate it
into mathematical notation.

it is. They’re just not making that connection.
It’s not that I didn’t know it before, I keep
learning it over and over again that they can
understand something and just not apply it.
(Linda)

I guess with fractions and thinking of dividing
fractions, it’s hard for them to really see a
problem and know the equation. That’s a little
bit more of a struggle for them. They can solve it,
but they can’t necessarily apply the equation or
figure out what the equation is that matches this
problem as easily. (Hannah)

Table 4

Knowledge of context codes.

Code

Definition

Example

Frequency of code applications per teacher

Hannah  Linda  Danielle = Mike  Xavier

Learning from
Data

Learning
Dispositions

Outside Issues

Socioemotional
Knowledge

Teacher discusses using student data to improve
their teaching practice.

Teacher discusses learning something about how
their students think about or conceptualize
learning. This code is specifically in reference to
their students and not students in general.

Teacher discusses learning about issues outside of
the classroom that affect student learning (i.e. the
time of year being a distraction).

Teacher learns something about their students’
behavior or socioemotional knowledge. This
includes understanding more about students’ self-
management skills or their classroom behaviors that
they feel need managing.

I'm really big on student data. I go through
everything that they do, to see am I teaching it
enough to where they’re able to reflect it back to
me so I can see that I'm doing my job. And not just
with summative assessments but formative
assessments as well. I base a lot of stuff on student
data in addition to my own reflections of “oh, I
could have said that differently.” (Danielle)

I thought for them it might be like a bit scary. I
thought they might have a problem if it was a
fraction that didn’t have a denominator of 100,
but they were like all for it. And I was just like,
“this is so cool.” Like I thought they’d be like a bit
intimidated by it, but they weren’t at all. They
were just totally ready for it. (Danielle)

I would do it on a day that they didn’t have Living
History. They were just so hard to keep on task
because they were so excited. It’s our thematic
unit project, so they’ve been working on it for
months. And it’s like their exhibition of learning
for the whole community. So they were just really
anxious and excited. I'd just try to do it on a day
when they’re not so antsy. (Danielle)

Something I learned was that I need to do more in
terms of what an accountable partner looks like.
So having more modeling on what partner work
should look like. Because sometimes they do great
with it and then other times it will get off-task.
And so I think having more lessons on what
efficient partner work looks like. (Danielle)

0 0 1 0

during two separate lessons. This aspect of our analysis therefore shows
that teachers engaged KOC and SMK with far less frequency. For
instance, only one teacher (Danielle) discussed the code related to stu-
dent data and only did so during one of her interviews.

4.2. Teacher knowledge development in relation to student-centered
versus teacher-centered pedagogical approaches

So far, we have provided a detailed description of what teachers
learned while teaching these series of lessons. To better understand the
relationship between approaches to teaching and teachers’ LTT, we first
characterized individual teachers’ learning by reporting the frequency
of codes applied per teacher knowledge category (PCK, GPK, KOC, or
SMK). As shown in Fig. 3, the kinds of knowledge teachers gained from
teaching varied from teacher to teacher. For example, Hannah and Linda
reported learning more about students’ mathematical thinking and what
strategies and representations to use to teach mathematics (i.e., PCK).
On the other hand, Danielle, Mike, and Xavier gained less PCK from
teaching mathematics.
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Building on this categorization, we then organized the participants
into two categories: (1) those who situated students as problem solvers
(student-centered) and (2) those who showed students exactly how to
solve problems in their classrooms (teacher-centered). As an example of
the first category, students might have needed to use their understand-
ing of how to reduce fractions and add whole numbers to solve an un-
familiar word problem related to adding fractions without receiving
instruction in how to do so. Linda exemplifies the open approach when
she says, “I like them to see what they know on their own and really
investigate before I tell them how to do it. It just kind of lets them make
connections on their own.” While Linda may eventually show students
an efficient way to solve the problem, they still initially solve the
problem on their own (and, in this case, share their solutions with their
colleagues) without being shown a solution process. As an example of
the guided approach, the teacher might instruct students in how to add
fractions or solve other problems and then ask students to replicate those
steps verbatim in practice problems. Mike strongly aligns his pedagogy
with this approach when he says, “The biggest thing is the process. Are
they following the process? Are they doing it exactly the way we have it
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Fig. 3. Frequency of Codes by Teacher
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Mike

mPCK SKOC

Xavier

Note, SMK = subject matter knowledge, GPK = general pedagogical knowledge, PCK = pedagogical content knowledge, and KOC = knowledge of context.

Provide a brief outline or overview describing how you will introduce students to the Main

Problem and facilitate their work on the activity. What would you do first, second, third, etc.,
and what would your students be doing at each point? (Add as many rows as youneed.)

What | will do

During this time, my students will be...

Read the problem to the students. Answer
clarifying questions (i.e. not sharing the same
burita, burritos are the same size).

Look for common strategies used by
students. Look for misconceptions. Sort
students by similar strategies.

Choose student work to share with the class

Ask clarifying questions.

Students will independently work on problem.

Students will be listening and commenting on
each other's strategies

What | will do

During this time, my students will be...

Pass 10 skitfles to each student in the
class
The teacher will ask the student how
many total skittles they have.
The teacher will ask each student fo
give them half of their skittles
Teacher will ask students how they
knew that 5 skittles were half of 10
Teacher will infroduce the words part
and total.
Teacher will introduce the word
fraction, remember to use the
academic language of part and total.
Teacher will introduce video on
Fractions
Teacher wil have students discuss with a
partner about 3-5 facts they leamed from.

Student will observe what materials they
have and the material at their desk
Students will answer approximately
Students will give teacher possibly 5
skittles

Students answers will vary
Students will remember the terms part a
total
students will write down all vocabulary
in vocabulary book
Students will actively watch video on
fractions

Students will recall facts

Teacher will introduce fraction anchor chart

The teacher will allow students to practice
with more skittles with terms such as whole,
fourth, half.

Students will copy anchor chart

Teacher will present the main problem as a
closer

Fig. 4. Sample excerpts from lesson plans.
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Students will work alone to label the parts of a
fraction
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on our note sheet? When we reference those notes, those notes are going
to be laid out in a way that all they have to do is put in their numbers.” In
this approach, the teacher shows the student exactly how to solve
problems and expects students to follow that process without deviation
(or input on divergent approaches). We can also see a clear distinction in
the lesson plans from the teachers. Fig. 4, for instance, provides a side-
by-side comparison between the same section of a lesson plan from
Hannah and Xavier. In Hannah’s lesson (the table on the left), the
teacher clearly demonstrates an open approach to teaching in describing
what students will do, stating that “students will independently work on
[the] problem” and “students will be listening and commenting on each
other’s strategies” as opposed to the strategy provided by the teacher. In
contrast, Xavier clearly provides students with the solution path they are
expected to follow, even going so far as to describe the activity as simply
copying curriculum materials for themselves.

In our analysis of the data for each lesson, we found that two of the
teachers (Linda and Hannah) employed student-centered teaching every
time and structured their lessons pedagogically so that the students
would have to invent methods of solving novel problems based on their
existing mathematical knowledge. In contrast, three of the teachers
(Danielle, Mike, and Xavier) provided students with solution paths
before allowing them to find a solution during each lesson and thus
applied a direct approach. Our analyses showed a relationship between
the approach to teaching employed by each teacher and the kinds of
knowledge teachers gained from teaching that lesson. As shown in
Fig. 3, Linda and Hannah, the two teachers who designed their in-
struction so that their students could solve the mathematics problems
before discussing how to solve those problems with the teacher, reported
more PCK learning than any other category of teacher knowledge. In
contrast, the other three teachers, who limited opportunities to hear
their students’ ideas by not letting them solve mathematics problems
through their own processes, did not report gaining as much PCK. On
average, the teachers who used student-centered teaching reported an
average of 20 PCK codes per teacher, 4.62 times as many as the average
PCK codes reported by the three teachers who used direct teaching
(1.44). When comparing the average frequencies of the other three
categories, a far less distinct comparison emerged. On average, teachers
who employed student-centered pedagogies reported and showed evi-
dence of 4.33 GPK codes, 0.5 KOC codes, and 0 SMK codes (i.e., no
evidence was shown) while teachers using teacher-centered pedagogies

100%
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reported and showed evidence of 4.22 GPK codes, 0.89 KOC codes, and
0.22 SMK codes.

Comparing the percentages and frequencies of each category applied
to the teacher’s total reported knowledge gain illustrates how the de-
cision to employ a student-centered approach over a teacher-centered
one played a salient role in teachers’ development of PCK. As shown
in Fig. 5, the teachers who used student-centered teaching had a much
higher percentage of codes related to PCK (60.10%) when compared
with the teachers who employed a teacher-centered approach (23.12%).
Taken together, these findings suggest that allowing students to agent-
ically work on problems appears to create room for teachers to develop
knowledge and skills specific to the work of mathematics teaching. In
line with and building on previous research into learning through the
application of open approaches to teaching (Leikin, 2010; Yeh, 2016),
these findings both reassert that teachers who employ an open peda-
gogical approach (without the support of professional development
initiatives) learn through their encounters with student thinking and
reveal that the added exposure to student’s novel solution paths during
an open approach to teaching provides a significant advantage over
direct instruction (in terms of developing PCK).

5. Discussion

Drawing on the importance of reflection in LTT described by multi-
ple scholars (Leikin, 2006; Santagata et al., 2018; Schon, 1987), we
build on previous research by recognizing the breadth of knowledge that
teachers can recognize and acquire through the act of teaching on their
own. In constructing 40 different codes that covered all four areas of
teacher knowledge (Grossman, 1990), we provide evidence in this study
of the multitude of skills and types of knowledge that teachers can
recognize in their own LTT processes. However, it is important to call
attention to the fact that this qualitative study is based on the learning
patterns of only five teachers. Thus, the generalizability of our findings
is limited and requires future work with a nationally representative
sample of teachers to explore the replicability of our findings. Our study
is explorative in nature in that we collected rich and extensive data from
a small group of teachers to identify areas where teacher learning
occurred, as opposed to broadly distributed data from a large population
that may lack the same depth.

Turning towards the details of our analysis, our findings indicate that

90%

80%

70%

60%

50%

40%

30%

Percentage of reported Learning by Category

20%

10%

AT Y

Student-centered teaching

0%
KOC

Fig. 5. Percentage of Code Applications by Pedagogical Approach

OGPK ASMK

Teacher-centered teaching

7/

BPCK

Note: Smk = subject matter knowledge, GPK = general pedagogical knowledge, PCK = pedagogical content knowledge, and KOC = knowledge of context.
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participating teachers discussed their learning of GPK and PCK more
often than their learning of SMK and KOC. This finding therefore raises
questions about the efficacy of LTT in attending to all aspects of teacher
knowledge when divorced from the support of teacher educators,
particularly SMK and KOC (both of which appeared at an extremely low
frequency in the data we collected). While previous studies by Leikin
(2006, 2010) and Leikin et al. (2000) have shown that teachers can learn
about SMK through LTT processes, these studies have relied on devel-
oping interventions for teachers that intentionally and specifically
engage teachers in the process of developing SMK. In terms of using LTT
to develop KOC, the small number of codes and code applications reit-
erate the call for researchers to more thoroughly explore multiple ap-
proaches to LTT (see Fishman & Davis, 2006; Monte-Sano & Budano,
2013), producing frameworks for researchers and tools for teachers to
recognize, analyze, and explore this specific aspect of teacher learning in
practice. Left to their own devices (as is the case in this study), teachers
may not have opportunities to develop these aspects of their own
knowledge or recognize their own development of SMK or KOC. In turn,
this study implies the need for continued and targeted interventions
with teachers that build various forms of teacher knowledge through
LTT. Alternately, future research should consider designing and imple-
menting studies that specifically attend to this form of teacher knowl-
edge (as opposed to the broad and open methodology taken here).

Additionally, our findings indicate that the kinds of knowledge
teachers developed were contingent on the structure of the lesson.
Teachers who employed a guided approach and centered their lessons
on solely communicating prescripted solution strategies to students
largely developed GPK, representing 59.73% of code applications for the
teachers employing a teacher-centered approach (compared to 23.12%
of code applications relating to PCK). In contrast, participants who used
a student-centered approach recognized a similar amount of GPK
development (with the open approach teachers averaging 4.33 GPK
code applications per cycle compared to 4.22 code applications for the
guided approach teachers) along with a wider breadth of PCK devel-
opment as well (6.67 code applications per cycle compared to 1.44 ap-
plications). These findings therefore build on Leikin (2010) and Yeh's
(2016) assertions that learning experiences where students can respond
to problems in unique and novel ways provide a greater opportunity for
LTT by creating opportunities for teachers to encounter and reflect on
examples of student thinking or problem solving. More than developing
a broad set of decontextualized teaching practices (such as classroom
management skills or how to structure a lesson), teachers in this study
who embraced an open approach to teaching reported developing
mathematics-specific teaching knowledge through LTT. Although this
data remains correlational, future research with a nationally represen-
tative sample of teachers can build on this and previous studies to
further explore this alignment between open approaches to teaching and
both GPK and PCK.

Moreover, these findings build on the work of scholars that assert the
value of student problem solving within mathematics education (see
Ainley et al., 2006; Mackrell & Pratt, 2017; Noss & Hoyles, 1996; Papert,
1980) by recognizing and amplifying the value this pedagogical
approach holds for teachers as well. By shifting the focus onto teacher
knowledge development, our findings show that LTT occurs as teachers
join in on this discourse and work with students as they develop solu-
tions to problems themselves. According to Leikin (2010), this process
not only engages teachers PCK but their SMK as well, with teachers
relying on their mathematical knowledge to explore new mathematical
ideas proposed by students. This creates a mutually beneficial process
where teachers construct PCK in response to SMK and vice versa. While
our findings did not reveal the same depth of SMK knowledge being
developed through teaching, the fact that teachers did develop a sig-
nificant breadth of PCK related knowledges and skills when allowing
students to solve problems on their own reinforces the argument made
by Leikin (2010) and asserts the value of student-centered teaching for
teachers and not just students, as reported by Sengupta-Irving and
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Enyedy (2015). Future research can build on these findings by exploring
the details of interactions between students and teachers within this
pedagogical approach and unearthing how these details contribute to
LTT.

6. Conclusion

If, as Sherin (2002) argues, learning through teaching represents a
vital process through which teachers develop content and pedagogical
knowledge, then researchers and educators need to understand both
what teachers learn when they teach and the practices through which
teachers develop this knowledge outside of professional development
contexts and teacher education initiatives. But just as different peda-
gogical experiences result in different kinds of learning for students,
different approaches to teaching also result in teachers learning different
kinds of knowledge as well. Stated differently, “expertise grows through
personal experience, even if different experiences lead to different levels
of expertise” (Leikin & Zazkis, 2010, p. 5). This study contributes to this
research initiative by exploring the differences in LTT. In doing so, we
argue for the value of student-centered teaching over direct instruction,
providing evidence that teachers develop a broader range of pedagogical
content knowledge when encountering student’s novel problem solving
approaches and mathematical thinking within learning contexts. In turn,
we not only call on researchers to continue exploring the value of
student-centered teaching within LTT but also encourage mathematics
educators to structure their pedagogy around allowing students to solve
mathematics problems through their own invented solution paths. We
do so not only because of the benefits for teachers but because of the
previously established benefits for students as well. Although the find-
ings of this study should be interpreted with caution because of the small
number of participants, the fact that the majority of these teachers (three
out of five) still relied on teacher-centered pedagogical approaches il-
lustrates the importance of not only understanding the value of
student-centered pedagogies for teachers but also finding ways to help
teachers embrace and engage with this approach to teaching. While
future research should explicitly explore how to support the develop-
ment of teacher’s KOC and SMK within these contexts, our findings
reveal that student-centered teaching inherently provides a fruitful
context for teachers to develop pedagogical content knowledge, creating
space for teachers to continue to develop their craft within their class-
room while students construct their own knowledge in parallel.
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