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Abstract. In this article, we show that there exist discrete isometry groups of the 2-
and 3-dimensional complex hyperbolic spaces with critical exponents arbitrarily close to
but strictly smaller than the maximum possible value. This result shows no gap in the
values of critical exponents for complex hyperbolic Kleinian groups.

1. Introduction

The study of discrete subgroups of semisimple Lie groups has been very fruitful in the
last 50 years due to a series of rigidity results, starting with the Mostow rigidity theorem for
finite volume hyperbolic manifolds of dimensions at least 3 [20] and its extension to other
finite volume locally symmetric spaces [21, 23]. A deep consequence of the Margulis super-
ridigity theorem [19], Corlette archimedean superrigidity theorem [7], and Gromov–Schoen
nonarchimedean superrigidity theorem [14] is that the irreducible lattices in semisimple Lie
groups (of noncompact type and whose Lie algebras do not contain so(m, 1) and su(m, 1)
simple factors) are arithmetic. To the contrary, due to Gromov and Piatetski-Shapiro’s
[13] hybrid constructions, nonarithmetic lattices exist in the isometry groups of real hy-
perbolic spaces of all dimensions. In the complex hyperbolic case, nonarithmetic lattices
also exist, but only a handful of examples are known, primarily due to Deligne–Mostow
[9]. It is a central open question in the field whether complex hyperbolic nonarithmetic
lattices exist in all dimensions. This question gives evidence that the complex hyperbolic
geometry is a somewhat elusive demarcation line between the relatively flexible structures
of real hyperbolic geometries and the super-rigid structures of the quaternionic hyperbolic,
Cayley, and higher-rank side.

Another rigidity principle that the semisimple Lie groups of noncompact type (whose
Lie algebras do not contain so(m, 1) and su(m, 1) factors) share is Kazhdan’s Property
(T) [17, 2]. From this point of view, PO(m, 1) and PU(m, 1), the isometry groups of the
m-dimensional real and complex hyperbolic spaces, respectively, are flexible, i.e., they do
not have Property (T). For the isometry groups of the quaternionic hyperbolic spaces and
Cayley plane, Corlette [6] noted that Property (T) restricts the possible “sizes” of the limit
sets of discrete subgroups �. Appealing to the classical Patterson-Sullivan theory [22, 24],
Corlette showed that the critical exponent �, denoted by ��, gives a measurement for the
size of its conical limit set. He discovered a surprising gap phenomenon:
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Theorem (Corlette).

(i) If � is a discrete isometry group of the m-dimensional quaternionic hyperbolic space,
then either �� = 4m + 2 or ��  4m. The subgroup � is a lattice if and only if
�� = 4m+ 2.

(ii) If � is a discrete isometry group of the hyperbolic Cayley plane, then �� = 22 or
��  16. The subgroup � is a lattice if and only if �� = 22.

There are some striking consequences of this result: For instance, in the quaternionic
hyperbolic or Cayley geometry, geometrically infinite isometry groups are small in the sense
of the critical exponents. Such phenomenon does not occur in real hyperbolic spaces; see
[3, Theorem 1.2]. Furthermore, the gap itself is absent for real hyperbolic spaces as Sullivan
[25] constructed a sequence of convex cocompact isometry groups of the real hyperbolic
space of dimension 3 whose critical exponents are arbitrarily close to 2. See also [16, Section
4] for such examples in real hyperbolic spaces of all dimensions.

In this article, we focus on the somewhat more mysterious complex hyperbolic spaces.
Since the Lie group PU(m, 1), which is the group of holomorphic isometries of the complex
hyperbolic m-space Hm

C , does not have Property (T), the analog of Corlette’s gap theorem
stated above has no immediate support. On the other hand, Sullivan’s construction is
hard to perform in the complex hyperbolic geometry, as there are no totally geodesic (real)
codimension-one submanifolds of the complex hyperbolic spaces.

Complex hyperbolic geometry, however, shares the rich features of Kähler geometry. In
this article, we show that if there exists a compact complex hyperbolic m-manifold, which
admits a non-constant holomorphic map to a compact hyperbolic Riemann surface, then
one can construct discrete subgroups of PU(m, 1) with critical exponents arbitrarily close
to but strictly smaller than the maximum possible value, 2m. See §3 and §4 for more
details. Since examples of such manifolds are known in dimensions m = 2, 3 ([18, 10]), we
obtain the following result:

Theorem A. Let m = 2 or 3. Then, there exists a sequence (�n) of finitely generated
discrete isometry groups of Hm

C such that:

(i) For all n 2 N, the critical exponent ��n is strictly lesser than 2m, and
(ii) limn!1 ��n = 2m.

A consequence of this result is that Corlette’s gap theorem stated above has no analog
in the complex hyperbolic geometry, at least in dimensions 2 and 3. In this regard, we
highlight a related conjecture of Yue [27], which was inspired by Corlette’s gap theorem:

Conjecture (Yue). Suppose that � is a convex cocompact isometry group of Hm
C . Then �

is either a uniform lattice (thus, �� = 2m), or ��  2m� 1.

However, Theorem A does not disprove this conjecture, as the discrete groups �n we
construct here are all geometrically infinite. See Remark 4.1.
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2. Preliminaries

Let Bm denote the unit ball in the m-dimensional complex vector space Cm. The group
of biholomorphic automorphisms of Bm is naturally identified with the projective unitary
group PU(m, 1). It carries a natural PU(m, 1)-invariant Hermitian metric of constant holo-
morphic sectional curvature, called the Bergman metric. The ball Bm equipped with the
real part of the Bergman metric is called the n-dimensional complex hyperbolic space,
denoted by Hm

C . Although Hm
C is a negatively-curved space, unlike the real hyperbolic

case, the real sectional curvature is variable. Under a suitable normalization, which we use
throughout this article, the real sectional curvature varies between �4 and �1. We refer to
Goldman’s book [12] and Kapovich’s survey [15] for a detailed discussion of complex hy-
perbolic geometry. Furthermore, Kapovich’s survey [15] contains a collection of important
open questions in this field.

Discrete subgroups � of PU(m, 1) act properly discontinuously on Hm
C . To each discrete

subgroup �, one associates a numerical invariant, called the critical exponent, as follows:
Fixing a base point x0 2 Hm

C , consider the Poincaré series

P (s) =
X

�2�
exp(�s dHm

C (x0, �x0)).

The critical exponent of �, denoted by ��, is

�� = inf{s 2 [0,1) : P (s) converges}.
A fundamental fact is that the number �� defined above is independent of the choice of
the base point x0 2 Hm

C . For details, see for example [15, Section 7].
The critical exponent is deeply connected with other invariants associated with �: for

instance, Corlette [6] showed that the critical exponent of a geometrically finite group �
equals the Hausdor↵ dimension of limit set of � equipped with the restriction of certain
natural sub-Riemannian metric (called a Carnot metric) on the visual boundary of Hm

C .
More generally, Corlette–Iozzi [8] showed that for general discrete groups �, �� coincides
with the Hausdor↵ dimension (w.r.t. the Carnot metric) of the conical part of the limit
set of �.

Another invariant that the critical exponent has deep connection with, which plays a
central role in this article, is the spectrum of the Laplace-Beltrami operator. For a discrete
subgroup � < PU(m, 1), let M� := Hm

C /�, and let �0(M�) denote the infimum of the
spectrum of the Laplace-Beltrami operator �M� on L2(M�).

Theorem 2.1 (Elstrodt-Patterson-Sullivan-Corlette; see [6, Theorem 4.2]). Let � < G =
PU(m, 1) be torsion-free a discrete group. Then

�0(M�) =

(
m2 if �� 2 [0,m],

��(2m� ��) if �� 2 [m, 2m].
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A direct consequence, which is useful for our purpose, is the following:

Corollary 2.2. Let (�n) be a sequence of torsion-free discrete subgroups of PU(m, 1),
and let Mn := Hm

C /�. If �0(Mn) > 0 and limn!1 �0(Mn) = 0, then ��n < 2m and
limn!1 ��n = 2m.

3. Main construction

In this section, we present a general construction of m-dimensional complex hyperbolic
Kleinian groups whose critical exponents approach to arbitrarily close to 2m, the maximum
possible value. However, to start the construction, one needs a compact complex hyperbolic
m-manifold M admitting a non-constant holomorphic map  : M ! S to a compact
hyperbolic Riemann surface S.

Let m � 2 and suppose that we are given such an example  : M ! S. We observe that
the image of the induced homomorphism  ⇤ : ⇡1(M) ! ⇡1(S) is a finite index subgroup
of ⇡1(S); hence the image  ⇤(⇡1(M)) is the fundamental group of a closed real hyperbolic
surface (i.e., a surface group): Indeed, if, to the contrary,  ⇤(⇡1(M)) had an infinite index
in ⇡1(S), then we could lift  : M ! S to a non-constant holomorphic map M ! S0,
where S0 ! S is the infinite degree covering space corresponding to the infinite index
subgroup  ⇤(⇡1(M)) < ⇡1(S). However, since M is compact and S0 is noncompact, such
non-constant holomorphic maps cannot exist.

Since ⇡1(M) admits an epimorphism to a surface group, by Siu–Beauville theorem (see
[1, Theorem 2.11]), M admits a surjective holomorphic map with connected fibers to a
hyperbolic Riemann surface, which we again denote by

(3.1)  : M ! S.

In particular, we obtain a short exact sequence

(3.2) 1 ! K ! ⇡1(M)
 ⇤�! ⇡1(S) ! 1,

where K is the kernel of  ⇤. By definition, ⇡1(M) is realized as a cocompact lattice
in PU(m, 1). Then, K, as a subgroup of ⇡1(M), also embeds in PU(m, 1) as a discrete
subgroup. Since K is an infinite normal subgroup of ⇡1(M),

(3.3) ⇤(K) = @Hm
C .

(Here and in what follows, for � < PU(m, 1), ⇤(�) denotes the limit set of �.) Let M̃
denote the regular covering of M corresponding to the normal subgroup K < ⇡1(M).
Then (3.1) induces a ⇡1(S)-equivariant surjective holomorphic map

(3.4)  ̃ : M̃ ! H2
R

with connected fibers. We observe that there is a uniform upper-bound for the diameter
of the fibers of  ̃.

We now pick a non-separating simple closed geodesic c in S. Cutting S along c, we
obtain a connected hyperbolic Ŝ surface with geodesic boundary @Ŝ. Note that @Ŝ has
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two connected components c� and c+ and there is a natural identification f : c� ! c+.
Let

Ŝn := Ŝ tf Ŝ tf · · · tf Ŝ
| {z }

n�times

,

where the symbol tf above is used to mean that two consecutive copies of Ŝ appearing on
the left and right of the symbol tf are glued along their boundaries c� (for the left one) and

c+ (for the right one) by the homeomorphism f . Also, Ŝn is a compact hyperbolic surface
with geodesic boundary. The natural map Ŝn ! S induces an injective homomorphism
⇡1(Ŝn) ,! ⇡1(S); we will identify ⇡1(Ŝn) as a subgroup of ⇡1(S) under this homomorphism.
The universal cover of Ŝn is isometric to a convex domainDn ⇢ H2

R with geodesic boundary;

the fundamental group ⇡1(Ŝn), which is the deck-transformation group of the covering
Dn ! Ŝn, acts on Dn as a subgroup of ⇡1(S). Taking quotients by ⇡1(Ŝn), (3.4) induces a
surjective holomorphic map

 n : Mn ! Sn,

where

(3.5) Mn = M̃/⇡1(Ŝn) and Sn = H2
R/⇡1(Ŝn).

Lemma 3.1. The map  n : Mn ! Sn is a quasi-isometry.

Proof. Since ⇡1(S) acts isometrically and cocompactly on M̃ and H2
R, by the Milnor-

Schwarz theorem (see [11, Theorem 8.37]), the ⇡1(S)-equivariant map  ̃ : M̃ ! H2
R in

(3.4) is an (L,A)-quasi-isometry, for some L,A � 1. That is, for all points x, y 2 M̃ ,

(3.6) L�1 dM̃ (x, y)�A  d
H

2
R
( ̃(x),  ̃(y))  LdM̃ (x, y) +A.

We claim that the map  n : Mn ! Sn is also an (L,A)-quasi-isometry. Since  n is
surjective, it su�ces to prove that for all p, q 2 Mn, we have

(3.7) L�1 dMn(p, q)�A  dSn( n(p), n(q))  LdMn(p, q) +A.

Let P,Q (resp. P 0, Q0) be the preimage of p, q (resp.  n(p), n(q)) under the covering map
M̃ ! Mn (resp. H2

R ! Sn). Observe that

dMn(p, q) = inf
x2P, y2Q

dM̃ (x, y), dSn( n(p), n(q)) = inf
x02P 0, y02Q0

d
H

2
R
(x0, y0).

Moreover, P 0 =  ̃(P ) and Q0 =  ̃(Q). Hence, (3.7) follows from (3.6) by taking the
infimum over x 2 P, y 2 Q. ⇤
Lemma 3.2. Let hn denote the Cheeger’s isoperimetric constant of Mn. Then, hn ! 0,
as n ! 1. Consequently, �0(Mn) ! 0, as n ! 1.

Proof. Let M̂n denote the preimage of Ŝn ⇢ Sn under  n. Note that the volume of M̂n

equals n volM . Moreover, the boundary of the Mn, which is the preimage of @Ŝn under  n,
has two connected components, each one is isometrically identified with  �1(c). Therefore,

hn  area @M̂n

vol M̂n

=
2area �1(c)

n volM
! 0,
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as n ! 1. Then, by Buser’s inequality [4, Theorem 7.1], �0(Mn) ! 0, as n ! 1. ⇤

Lemma 3.3. For all n 2 N, �0(Mn) > 0.

Proof. Since Mn and Sn are (nonregular) covers of M and S, respectively, the injectivity
radii of Mn and Sn are uniformly bounded from below by that of M and S, respectively.
Since Sn and Mn are quasiisometric (see Lemma 3.1), by [11, Corollary 18.17],

�0(Mn) > 0 () �0(Sn) > 0.

Finally, Sn is a convex cocompact (real) hyperbolic surface of infinite area. Thus, the
critical exponent of ⇡1(Sn) < PSL(2,R) is strictly smaller than 1. Applying the Elstrodt-
Patterson-Sullivan theorem, we obtain that �0(Sn) > 0; see [26, Theorem 2.17]. Therefore,
by above, �0(Mn) > 0. ⇤

Remark 3.4. We show that, up to passing to a finite degree cover of M , one may choose S
and  in (3.1) so that the group K = ker ⇤ in (3.2) is finitely generated:

Let f : X ! C be a surjective holomorphic map with connected fibers, where X is a
compact Kähler manifold and C is a compact Riemann surface. Following Catanese [5,
§4], we obtain that f induces an exact sequence

⇡1(F ) ! ⇡1(X)
f⇤�! ⇡orb1 (f) ! 1,

where F is a smooth fiber of f and ⇡orb1 (f) is the orbifold fundamental group of an asso-
ciated orbifold structure on C. Since F is compact, ⇡1(F ) and hence its image in ⇡1(M),
which we denote by K, is finitely generated. Assuming C has genus at least 2, we can re-
alize ⇡orb1 (f) as a uniform lattice in PSL(2,R). After passing to a finite index torsion-free
subgroup ⌃ of ⇡orb1 (f), we thus have a short exact sequence

1 ! K ! ⇧
 ⇤�! ⌃ ! 1,

where ⇧ = f�1
⇤ (⌃) is a finite index subgroup of ⇡1(X). Let X 0 be the finite degree cover of

X corresponding to the subgroup ⇧ of ⇡1(X). Since K is finitely generated, it follows from
[5, Theorem 4.3] that the epimorphism  ⇤ above is induced by a surjective holomorphic
map (with connected fibers) from X 0 to a compact hyperbolic Riemann surface.

4. Proof of the main result

We prove our main result:

Proof of Theorem A. Existence of compact complex hyperbolic 2-manifolds fibering over a
hyperbolic Riemann surface was first shown by Livne [18]. Moreover, Deraux [10, Theorem
3.1(iv,v)] showed that many Deligne–Mostow 2-ball quotients admit non-constant holomor-
phic maps onto some hyperbolic Riemann surfaces, and so does one of the Deligne-Mostow
3-ball quotients. Therefore, for m = 2, 3, there exists a compact complex hyperbolic m-
manifold M admitting a surjective holomorphic map with connected fibers to a hyperbolic
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Riemann surface; see §3. Let Mn, n 2 N, be the complex hyperbolic m-manifold con-
structed in the previous section (see (3.5)). Define �n := ⇡1(Mn) < PU(m, 1). Combining
Lemmata 3.2, 3.3, and Corollary 2.2, we obtain that,

��n < 2m, for all n 2 N,
and

lim
n!1

��n = 2m.

Finally, it follows from the discussion in §3 that for all n 2 N, the group �n fits into a short
exact sequence,

1 ! K ! �n ! ⇡1(Ŝn) ! 1,

cf. (3.5). Note that ⇡1(Ŝn) is finitely generated. Moreover, by Remark 3.4, we may (and
will) also assume that K is finitely generated. Therefore, �n is finitely generated. ⇤
Remark 4.1. As a final remark, we verify that the subgroups �n < PU(m, 1) in the proof
above are not geometrically finite: Indeed, each �n contains a copy of the group K. Since
⇤(K) = @Hm

C (see (3.3)), ⇤(�n) = @Hm
C . However, we also obtained above that ��n < 2m.

Geometrically finite subgroups of PU(m, 1) cannot satisfy both properties simultaneously;
see [6].
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