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Conformal Prediction for Time Series
Chen Xu and Yao Xie , Member, IEEE

Abstract—We present a general framework for constructing
distribution-free prediction intervals for time series. We establish
explicit bounds on the conditional and marginal coverage gaps
of estimated prediction intervals, which asymptotically converge
to zero under additional assumptions. We also provide similar
bounds on the size of set differences between oracle and estimated
prediction intervals. To implement this framework, we introduce
an efficient algorithm called EnbPI, which utilizes ensemble pre-
dictors and is closely related to conformal prediction (CP) but does
not require data exchangeability. Unlike other methods, EnbPI
avoids data-splitting and is computationally efficient by avoiding
retraining, making it scalable for sequentially producing prediction
intervals. Extensive simulation and real-data analyses demonstrate
the effectiveness of EnbPI compared to existing methods.

Index Terms—Time series predictive inference, conformal
prediction.

I. INTRODUCTION

MODERN applications, including energy and supply
chains [1], [2], require sequential prediction with un-

certainty quantification for time-series observations with highly
complex dependency. In addition to point prediction, it is typical
to construct prediction intervals for uncertainty quantification,
a fundamental task in statistics and machine learning.

Constructing accurate prediction intervals for time series is
highly challenging yet crucial in many high-stakes applica-
tions. In power systems, as outlined in the National Renewable
Energy Lab report [2], solar and wind power generation data
are non-stationary, exhibit significant stochastic variations, and
have spatial-temporal correlations among regions. The inherent
randomness of renewable energy sources presents significant
challenges for prediction and inference. To overcome these
challenges, it is essential to use historical data to accurately
predict energy levels from wind farms and solar roof panels and
establish prediction intervals. These prediction intervals provide
critical information for power network operators, enabling them
to understand the uncertainty of the power generation and make
necessary arrangements. Incorporating renewable energy into
existing power systems requires the prediction of power genera-
tion with uncertainty quantification [3], [4]. Although there are

Manuscript received 14 July 2022; revised 13 February 2023; accepted 26
April 2023. Date of publication 8 May 2023; date of current version 5 September
2023. This work was supported in part by the NSF CAREER under Grant
CCF-1650913, and in part by the NSF under Grants DMS-2134037, CMMI-
2015787, CMMI-2112533, DMS-1938106, and DMS-1830210. Recommended
for acceptance by S. C. H. Hoi. (Corresponding author: Yao Xie.)

The authors are with the School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail:
cx9711@gatech.edu; yao.xie@isye.gatech.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2023.3272339, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2023.3272339

various neural-network based quantile prediction models [5],
[6], the resulting prediction intervals frequently lack theoretical
guarantees, causing concern about their reliability in high-stakes
situations. Currently, there is a need for a distribution-free frame-
work that produces prediction intervals for time-series data,
along with provable guarantees for interval coverage, which
remains an open question in the field.

In addition to the difficulties posed by the inherent stochas-
ticity of time-series, constructing prediction intervals for user-
specified predictive models also presents further challenges. For
example, complex prediction models such as random forest [7]
and deep neural networks [8] are often employed for accurate
predictions. Unlike classical linear regression models, these
prediction algorithms do not have straightforward methods for
calculating prediction intervals. To construct prediction intervals
for such models, practitioners often resort to heuristics like
bootstrapping, which lack guarantees. In practice, ensemble
methods [9] are also frequently used to enhance prediction
performance by combining multiple prediction algorithms, fur-
ther complicating the model. Despite this, constructing efficient
prediction intervals for time-series data using general prediction
methods, which can be arbitrarily complex, remains an under-
explored area.

A. Contributions

In this paper, we develop distribution-free prediction intervals
for time series data with a coverage guarantee, inspired by recent
works on conformal prediction. Our proposed method, EnbPI,
can provide prediction intervals for ensemble algorithms. The
main contributions of this paper are summarized as follows.! We present a general framework for constructing prediction

intervals for time series, which can be asymmetrical. We
theoretically upper-bound the conditional and marginal
coverage gaps, which converge to zero under mild as-
sumptions on the dependency of stochastic errors and the
quality of estimation. We also obtain similar bounds on the
size of the set difference between the oracle and estimated
prediction intervals.! We develop EnbPI, a robust and computationally effi-
cient algorithm for constructing prediction intervals around
ensemble estimators. The algorithm is designed to avoid
expensive model retraining during prediction and requires
no data splitting, thanks to a carefully constructed bootstrap
procedure.EnbPI is particularly suitable for small-sample
problems, and its versatility makes it applicable in various
practical settings, such as network prediction and anomaly
detection.
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! We present extensive numerical experiments to study the
performance of EnbPI on simulated and real-time series
data. The results show that EnbPI can maintain a target
coverage when other competing methods fail to do so, and
it can yield shorter intervals. Additionally, the experiments
demonstrate that EnbPI is robust to missing data.

The rest of this paper is organized as follows. Section II
describes the problem setup and introduces the oracle prediction
interval, which motivates our proposed method. Section III
presents asymptotic guarantees for the interval coverage and
width and highlights the generality of such guarantees. Sec-
tion IV presents EnbPI. Section V contains numerical exam-
ples with simulated and real data that compare EnbPI with
competing methods to demonstrate its good performance in
various scenarios. Section VI extends the use of EnbPI when
a change point exist. Section VII concludes the paper with
discussions. Appendix A, (available online), contains proofs and
B contains experiments. Code for this paper can be found at
https://github.com/hamrel-cxu/EnbPI.

B. Literature Review

Conformal Prediction (CP) is a popular method for construct-
ing distribution-free prediction intervals. It was formally intro-
duced in [10], and it assigns ”conformity scores” to both training
and test data. By inverting hypothesis tests using these scores,
prediction intervals can be obtained for the test data. It has been
shown that under the assumption of exchangeability in data, this
procedure generates valid marginal coverage for the test point.
Many CP methods have been developed to quantify uncertainty
in predictive models. To efficiently compute the conformity
scores, a data-splitting method is developed in [11], which
computes the scores on a hold-out set of the training data. [12]
builds on this data-splitting idea for quantile regression models.
To avoid data splitting which affects the accuracy of trained
predictive model, “leave-one-out“ (LOO) CP methods are devel-
oped to use the entire training samples for computing prediction
residuals, a particular choice of conformity scores [13]. Sub-
sequent works develop more computationally efficient way of
training LOO models [14] and generalize the approach to other
conformity scores [15]. Comprehensive surveys and tutorials
can be found in [10], [16]. Although no assumption other than
data exchangeability is required for marginally exact coverage,
the exchangeability assumption is hardly reasonable for time
series, making works above not directly applicable to our setting.

Adapting CP methods beyond exchangeable data has also
been gaining significant interest. A widely popular type of ap-
proach assumes unknown distribution shifts in the test data and
weighs the past conformity scores to restore valid coverage. For
instance, the work by [17] uses weighted conformal prediction
intervals when the test data distribution is proportional to the
training distribution. The work by [18] builds on this idea when
the shifted test distribution lies in an f -divergence ball around
the training distribution. However, both works still assume i.i.d.
or exchangeable training data, making them not directly ap-
plicable for time series. A concurrent work [19] considers a

general set-up for bounding coverage gap using total variation
distances. It then proposes to use fixed weights to correct for
the coverage gap. In retrospect, we consider a more specific
setting involving time series, and the upper bounds are captured
differently and explicitly using the quality of the estimator and
the noise characteristics. Meanwhile, a recent work for non-
exchangeable data sequentially adjusts the significance level
α during prediction. For instance, [20] provides approximately
valid coverage on sequential data by re-weighting the value α
based on online coverage values on test data. The subsequent
work [21] proposes more sophisticated re-weighting techniques
of α. However, whether such adjustments are applicable to
data with general dependency remain unclear, and we compare
with [20] in experiments to show the improved performance of
EnbPI.

Meanwhile, there are many non-CP prediction interval meth-
ods. In the traditional time series literature [22], there have
been abundant work for prediction interval construction, such
as ARIMA(p, d, q) [23], exponential smoothing [24], dynamic
factor models [25] and so on. However, they rely on strong
parametric distributional assumptions that limit their applica-
bility. On the other hand, recent works have notably lever-
aged the predictive power of deep neural networks for neural
quantile regression. Two of the most popular approaches are
MQ-CNN [6] and DeepAR [5]; additional approaches can be
found in [26]. More precisely, MQ-CNN [6] leverages the
power of sequence-to-sequence neural networks to predict the
multi-horizon quantile value of future response variables di-
rectly. The framework can also incorporate various temporal and
static features and remains scalable to large-scale forecasting.
Meanwhile, DeepAR [5] models the conditional distribution of
future response using an autoregressive recurrent network. The
network is trained by maximizing the log-likelihood of data,
assuming Gaussian likelihood for real-valued data and negative-
binomial for positive count data. Extensive experiments show its
improvement over state-of-the-art methods. Although both MQ-
CNN and DeepAR have promising performances for a variety of
time-series data, they have limitations in requiring special net-
work architecture (not model-free) and providing no theoretical
guarantees on coverage. In addition, [5] imposes distributional
assumptions on data through the parametric likelihood models
(not distribution-free). In contrast,EnbPI leverages the benefits
of conformal prediction to present a general framework for
an arbitrary point-prediction model (model-free), with provable
guarantees on coverage and without distributional assumption
on data (distribution-free).

Finally, we remark that our assumptions and proof techniques
avoid data exchangeability and differ significantly from existing
CP works. Most CP methods ensure the finite-sample marginal
coverage and distribution-free conditional coverage is impos-
sible at a finite sample size [27]. In contrast, we achieve an
asymptotic conditional coverage guarantee. Such theoretical
analyses are inspired by [28], [29], yet we refine the proof
techniques to improve the convergence rates and extend results
under different assumptions. We further analyze the convergence
of prediction interval widths. We would also like to remark that
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our work is titled “conformal prediction” because EnbPI builds
on the conformal prediction framework in this more general
context—in terms of construction, EnbPI intervals closely re-
semble intervals by existing CP methods (especially J+aB [14]).
Meanwhile, the theoretical results in this work can hold for
prediction intervals produced by other conformal prediction
methods, such as split conformal [11], J+aB [14], and so on (see
Remark 1). Thus, the theoretical tools presented in this work are
general for analyzing CP methods for time series.

II. PROBLEM SETUP

Given an unknown model f : Rd → R, where d is the dimen-
sion of the feature vector, we observe data (xt, yt) generated
according to the following model

!Yt = f(Xt) + εt, t = 1, 2, . . . (1)

where εt is distributed following a continuous cumulative dis-
tribution function (CDF) Ft. Note that we do not need εt to be
independent and Ft needs not be the same across all t. Features
Xt can contain exogenous time series sequences that predict Yt

and/or the history of Yt. We assume that the first T samples
{(xt, yt)}Tt=1 are training data or initial state of the random
process that are observable. Above, upper case Xt, Yt denote
random variables and lower case xt, yt denote data.

Our goal is to construct a sequence of prediction intervals as
narrow as possible with a certain coverage guarantee. Given a
user-specified prediction algorithm, using T training samples,
we obtain a trained model represented by f̂ . Then we construct
s ≥ 1 prediction intervals {Ĉα

T+i}si=1 for {YT+i}si=1, where α
is the significance level, and the batch size s is a pre-specified
parameter for how many steps we want to look ahead. Once
new samples {(xT+i, yT+i)}si=1 become available, we deploy
the pre-trained f̂ on new samples and use the most recent T
samples to produce prediction intervals for Yj , j = T + s+ 1
onward without re-training the model on new data.

The meaning of significance levelα is as follows. We consider
two types of coverage guarantees. The conditional coverage
guarantee ensures that each prediction interval Ĉα

t , t > T satis-
fies:

P (Yt ∈ Ĉα
t |Xt = xt) ≥ 1− α. (2)

The second type is the marginal coverage guarantee:

P (Yt ∈ Ĉα
t ) ≥ 1− α. (3)

Note that (2) is much stronger than (3), which is satisfied
whenever data are exchangeable using split conformal predic-
tion [11]. For instance, suppose a doctor reports a prediction
interval for one patient’s blood pressure. An interval satisfying
(3) averages over all patients in different age groups, but may
not satisfy (2) for the current patient precisely. In fact, satisfying
(2), even for exchangeable data, is impossible without further
assumptions [27]. In general, it is challenging to ensure either
(2) or (3) under complex data dependency without distributional
assumptions. Despite such difficulty, our theory provides a way
to bound the worst-case gap in conditional coverage (2) and
marginal coverage (3), under certain assumptions on the error

process {εt}t≥1 and f̂ . From now on, we call a prediction
interval conditionally or marginally valid if it achieves (2) or
(3), respectively.

A. Oracle Prediction Interval

To motivate the construction of Ĉα
t , we first consider the

oracle prediction interval Cα
t , which contains Yt with an exact

conditional coverage at 1− α and is the shortest among all
possible conditionally valid prediction intervals. The oracle
prediction assumes perfect knowledge of f andFt in (1). Denote
Ft,Y as the CDF of Yt conditioning on Xt = xt, then we have

Ft,Y (y) = P (Yt ≤ y|Xt = xt)

= P (εt ≤ y − f(xt)) = Ft(y − f(xt)).

For any β ∈ [0,α], we also know that

P (Yt ∈ [F−1
t,Y (β), F

−1
t,Y (1− α+ β)]|Xt = xt) = 1− α,

where F−1
t,Y (β) := inf{y : Ft,Y (y) ≥ β}. Assume F−1

t,Y (α) is
attained for each α ∈ [0, 1], and let yβ = F−1

t,Y (β). Clearly,

yβ = f(xt) + F−1
t (β),

which allows us to find Cα
t – the oracle prediction interval with

the narrowest width:

Cα
t = [f(xt) + F−1

t (β∗), f(xt) + F−1
t (1− α+ β∗)],

β∗ := argmin
β∈[0,α]

(
F−1
t (1− α+ β)− F−1

t (β)
)
. (4)

A similar oracle construction to (4) appeared in [30]. Thus, if
we can approximate unknown f(xt), F−1

t (x), x ∈ [0, 1], and β∗

reasonably well, the prediction intervals Ĉα
t should be close to

the oracle Cα
t .

B. Proposed Prediction Interval

We now construct Ĉα
t based on ideas above. Recall that the

first T data {(xt, yt)}Tt=1 are observable. Denote f̂−i as the i-th
“leave-one-out” (LOO) estimator of f , which is not trained on
the i-th datum (xi, yi) and may include the remaining T − 1
points. Then,

Ĉα
t := [f̂−t(xt) + β̂ quantile of {ε̂i}t−T

i=t−1,

f̂−t(xt) + (1− α+ β̂) quantile of {ε̂i}t−T
i=t−1], (5)

where the LOO prediction residual ε̂i and the corresponding β̂
are defined as

ε̂i := yi − f̂−i(xi)

β̂ := argmin
β∈[0,α]

((1− α+ β) quantile of {ε̂i}t−T
i=t−1

− β quantile of {ε̂i}t−T
i=t−1).

Thus, the interval centers at the point prediction f̂−t(xt) and the
width is the difference between the (1− α+ β̂) and β̂ quantiles
over the past T residuals.
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Note that we have to split the training data into two parts:
one part is used to estimate f , and the second part is used to
obtain prediction residuals for the prediction interval. There is
a trade-off. On the one hand, we desire the estimator f̂ to be
trained on as much data as possible. On the other hand, the
quantile of prediction residuals should well approximate the tails
of F−1

t . These two objectives contradict each other. If we train
f̂ on all training data, then we overfit; if we train on a subset of
training data and obtain prediction residuals on the rest [11], the
approximation f̂ to f is poorer. The LOO estimator is known
to achieve a good trade-off in this regard. When obtaining the
i-th residual, the i-th LOO estimator trains on all except the
i-th training datum so that the LOO estimator is not overfitted
on that datum. Then repeating over T training data yields T
LOO estimators with good predictive power and T residuals to
calibrate the prediction intervals well. The LOO idea is related
to the Jackknife+ procedure [13], but it is known to be costly
due to the retraining of the model. To address this issue, we
will develop a computationally efficient method called EnbPI
in Section IV, which constructs the LOO estimators as ensemble
estimators of pre-trained models.

III. THEORETICAL ANALYSIS

We first present theoretical results for bounding the worst-case
coverage gap in conditional and marginal coverage. We then
establish similar bounds on the difference between estimated
and oracle intervals. The results are general for methods beyond
EnbPI (for example, the split conformal method [11]). Without
loss of generality and for notation simplicity, we only show
guarantees when t = T + 1, i.e., the one-step-ahead prediction.
We will explain how guarantees naturally extend to all prediction
intervals from t = T + 2 onward in Remark 1. In particular,
our proof removes the assumptions on data exchangeability by
replacing them with general and verifiable assumptions on the
error process and estimation quality. All proofs can be found in
Appendix A, available in the online supplemental material.

A. Coverage Guarantees

Following notations in Section II-A, we first define the em-
pirical p-value at T + 1:

p̂T+1 :=
1

T

T∑

i=1

1{ε̂i ≤ ε̂T+1}.

As a result, we see the following equivalence between events:

YT+1 ∈ Ĉα
T+1

∣∣∣∣XT+1 = xT+1

⇐⇒ ε̂T+1 ∈ [β̂ quantile of {ε̂i}Ti=1,

(1− α+ β̂) quantile of {ε̂i}Ti=1]

∣∣∣∣XT+1 = xT+1

⇐⇒ β̂ ≤ p̂T+1 ≤ 1− α+ β̂,

where A|B means that the event A conditions on event B.
Therefore, our method covers YT+1 given XT+1 = xT+1 with

probability 1− α, hence, being conditionally valid if the distri-
bution of p̂T+1 is uniform. More precisely, we aim to ensure
that |P (β ≤ p̂T+1 ≤ 1− α+ β)− (1− α)| is small for any
β ∈ [0,α].

Due to the fact that FT+1(εT+1) ∼ Unif[0, 1] [31], P (β ≤
FT+1(εT+1) ≤ 1− α+ β) = 1− α. Define

F̂T+1(x) :=
1

T

T∑

i=1

1{ε̂i ≤ x},

whereby we have p̂T+1 = F̂T+1(ε̂T+1). As a consequence:

|P (β ≤ p̂T+1 ≤ 1− α+ β)− (1− α)|

= |P (β ≤ F̂T+1(ε̂T+1) ≤ 1− α+ β)

− P (β ≤ FT+1(εT+1) ≤ 1− α+ β)|.

Thus, intuitively, we can bound gap in conditional cover-
age using the worst-case difference between F̂T+1(ε̂T+1) and
FT+1(εT+1). Notice the following coupling between ε̂T+1 and
εT+1 under model (1) when XT+1 = xT+1:

ε̂T+1 = εT+1 + (f(xT+1)− f̂−(T+1)(xT+1)). (6)

Therefore, the pointwise function estimation error f(xT+1)−
f̂−(T+1)(xT+1) should be small for ε̂T+1 to be a good estimate
for εT+1. We will impose this condition when analyzing differ-
ence in interval width.

For the analyses, we now introduce another empirical CDF
using unknown “true” errors εi, i ≥ 1, denoted as F̃T+1:

F̃T+1(x) :=
1

T

T∑

i=1

1{εi ≤ x}.

Note that F̂T+1(ε̂T+1) is close in distribution to F̃T+1(εT+1)
under the same pointwise estimation assumption of f by f̂ , due
to (6). Meanwhile, the convergence of F̃T+1(x) to FT+1(x)
is well-studied in the literature, which addresses the rate of
convergence of an empirical distribution to the actual CDF [32],
[33], [34]. Building on notations and ideas above, we now
state the precise assumptions with discussions and present the
following results: we first bound the worst deviation between
F̃T+1(x) andFT+1(x) in Lemma 1. We then bound that between
F̂T+1(x) and F̃T+1(x) in Lemma 2. These lemmas are essential
to proving our main theoretical results in Theorem 1, which has
several useful corollaries under slightly modified assumptions
on error dependencies.

Assumption 1 (Errors are short-term i.i.d.): Assume{εt}T+1
t=1

are independent and identically distributed (i.i.d.) according
to a common CDF FT+1, which is Lipschitz continuous with
constant LT+1 > 0.

Lemma 1: Under Assumption 1, for any training size T ,
there is an event AT which occurs with probability at least
1−

√
log(16 T )/T , such that conditioning on AT ,

sup
x

|F̃T+1(x)− FT+1(x)| ≤
√
log(16 T )/T .

Discussion on Assumption 1: We call it the short-term i.i.d.
assumption, since it only requires the past T + 1 errors to be
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independent. It is a reasonably mild assumption on the original
process {(Xt, Yt)}t≥1, because the process can exhibit arbitrary
dependence and be highly non-stationary but still have i.i.d.
errors. Later on we can relax this assumption for more general
cases, for instance, when errors follow linear processes (see
Corollary 1) or are strongly mixing (see Corollary 2). We can
empirically examine whether or not the assumptions on residuals
hold by using the LOO residuals as surrogates. The procedure
is similar to examining the autocorrelation function after fitting
a time series model.

Assumption 2 (Estimation quality): There exists a real se-
quence {δT }T≥1 such that

1

T

T∑

t=1

(f̂−t(xt)− f(xt))
2 ≤ δ2T and

|f̂−(T+1)(xT+1)− f(xT+1)| ≤ δT .

Lemma 2: Under Assumptions 1 and 2, we have

sup
x

|F̂T+1(x)− F̃T+1(x)|

≤ (LT+1 + 1)δ2/3T + 2 sup
x

|F̃T+1(x)− FT+1(x)|.

Discussion on Assumption 2: There are two situations af-
fecting asymptotic guarantees: δT never decays as T grows or
converges to zero as T → ∞. The first situation can happen due
to data overfitting, which leads to f̂−t(xt) ≈ yt and therefore,∑T

t=1(f̂−t(xt)− f(xt))2 ≈
∑T

t=1 ε
2
t . If

∑T
t=1 ε

2
t ∈ Ω(T ), the

same order holds for the sequence {δT }T≥1, so that the worst-
case coverage gap always exists (see Theorem 1). On the other
hand, there are examples in the second situation where {δT }T≥1

converges to zero. Note that assumptions for estimating un-
known f are necessary due to the well-known No Free Lunch
Theorem [35]. The decay rate of δT is explicit for two classes of
f and the following A:

(Example 1) If f is sufficiently smooth, δT = oP (T−1/4) for
general neural networks sieve estimators [36, see Corollary
3.2].

(Example 2) If f is a sparse high-dimensional linear model,
δT = oP (T−1/2) for the Lasso estimator and Dantzig selector.
[37, see 7.7].

In general, one needs to analyze the convergence rate of
estimators f̂ to the unknown true f . This task is different
from analyzing the Mean Squared Error (MSE) of ensemble
estimators [9] and likely requires case-by-case analyses, which
we leave for future work.

Our main theoretical result is the following Theorem 1, which
establishes the asymptotic conditional coverage as a conse-
quence of Lemmas 1 and 2.

Theorem 1 (Conditional coverage gap; errors are short-term
i.i.d.): Under Assumption 1 and 2, for any training size T , α ∈
(0, 1), and β ∈ [0,α], we have:

|P (YT+1 ∈ Ĉα
T+1|XT+1 = xT+1)− (1− α)|

≤ 12
√

log(16 T )/T + 4(LT+1 + 1)(δ2/3T + δT ). (7)

Furthermore, if {δT }T≥1 converges to zero, the upper bound
in (7) converges to 0 when T → ∞, and thus the conditional
coverage is asymptotically valid.

We briefly comment on the proof techniques and the role
of Assumption 1. The term

√
log(16 T )/T on the right-hand

side directly relates to how quickly the empirical CDF F̃T+1

converges to the actual CDFFT+1. In general, we find sequences
{sT }T≥1 and {g(sT )}T≥1, both of which converge to zero, such
that

P (sup
x

|F̃T+1(x)− FT+1(x)| > sT ) ≤ g(sT ).

The optimal rate of decay reduces to finding sT such that
sT = g(sT ). Then, the event AT is chosen to happen with
probability at least 1− sT , where conditioning on this event,
supx |F̃T+1(x)− FT+1(x)| ≤ sT . As a result, there are decay
rates different from

√
log(16 T )/T under more relaxed assump-

tions on {εt}T+1
t=1 . We summarize two possible results in Corol-

laries 1 and 2; certain technical assumptions, precise statements,
and definitions are presented in the appendix, available in the
online supplemental material.

Corollary 1 (Conditional coverage gap; errors follow linear
processes): Under Assumption 2, suppose that {εt}T+1

t=1 satisfy
εt =

∑∞
j=1 δjzt−j , with regularity conditions on δj and zt−j .

There exists a constant K so that for any training size T , α ∈
(0, 1), and β ∈ [0,α], we have:

|P (YT+1 ∈ Ĉα
T+1|XT+1 = xT+1)− (1− α)|

≤ 12 K log T/
√
T + 4(LT+1 + 1)(δ2/3T + δT ). (8)

To introduce the last corollary, we first define the strong mix-
ing coefficient between two σ−fields A and B, which measures
the dependence between them:

α(A,B)=2 sup{|P (A ∩B)−P (A)P (B)| : (A,B) ∈ A×B}.

This definition is equivalent to that in [38] up to a multiplicative
factor of 2. For the sequence {εt}t≥1, let Ak := σ(εt : t ≤ k)
and Bc := σ(εt : t ≥ l). The coefficients {αn}n≥1 are defined
as

α0 = 1/2 and αn = sup
k∈N

α(Ak,Bk+n) for any n > 0.

The sequence is said to be strongly mixing if lim
n→∞

αn = 0.

Corollary 2 (Conditional coverage gap; errors are strongly
mixing): Under Assumption 2, suppose {εt}T+1

t=1 are stationary
and strongly mixing, where mixing coefficients are summable
with 0 <

∑
k≥0 αk < M . For any training size T , α ∈ (0, 1),

and β ∈ [0,α], we have:

|P (YT+1 ∈ Ĉα
T+1|XT+1 = xT+1)− (1− α)|

≤ 12(M/2)1/3(log T )2/3/T 1/3 + 4(LT+1 + 1)(δ2/3T + δT ).
(9)

Lastly, the following asymptotic marginal validity guarantee
holds as a consequence of earlier results by the tower law
property (proof omitted):

Theorem 2 (Marginal coverage gap): Under Assumption 1
and 2, for any training size T , α ∈ (0, 1), and β ∈ [0,α], we
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have:

|P (YT+1 ∈ Ĉα
T+1)− (1− α)|

≤ 12
√

log(16 T )/T + 4(LT+1 + 1)(δ2/3T + δT ). (10)

Moreover, the right-hand side decay rate in (10) is
O(log T/

√
T + δ2/3T ) if {εt} follow a linear process as in

Corollary 1, andO((log T )2/3/T 1/3 + δ2/3T ) if{εt} are strongly
mixing with summable mixing coefficients as in Corollary 2.

We make two final comments for the above theorems and
corollaries. First, to build prediction intervals that have at least
1− α coverage, one needs to incorporate the upper bounds
on the right-hand side of (7)—(10) into the prediction inter-
val construction. However, we will not do so in EnbPI (our
proposed algorithm), which is a general wrapper that can
be applied to most regression models A. Second, The rate
O(

√
log(16 T )/T + δ2/3T ) is a worst-case analysis for both

marginal and conditional coverage; empirical results show that
even at a small training data size T , EnbPI can achieve both
marginal and conditional validity.

B. Width Guarantees

Our next goal is to bound the gap between the estimated
prediction interval Ĉα

T+1 and the oracle Cα
T+1 in (4). Define

set difference ∆ : N → R such that ∆(T ) = Ĉα
T+1/Cα

T+1,
where for any two subsets A,B ⊂ R under the Lebesgue
measure µ, A/B := µ({x ∈ R : x ∈ A, x /∈ B}) + µ({x ∈
R : x ∈ B, x /∈ A}). Theorem 3 below bounds ∆(T ) under
Assumptions 1, 2, and other regularity conditions; the bound
is similar to that in Theorem 1.

Theorem 3 (Width gap bound; errors are i.i.d.): Under As-
sumption 1 and 2, further assume F−1

T+1 is Lipschitz con-
tinuous with constant KT+1. With probability at least 1−√
log(16 T )/T ,

∆(T ) ≤ δT + αK ′
T+1/m+ 2(KT+1 +MT+1)·

×
(
3
√
log(16 T )/T + (LT+1 + 1)(δ2/3T + δT )

)
,

where m is the number of grids for line-search of β̂ based on
the past T LOO residuals, K ′

T+1 := max
j=1,...,T−1

ε̂j+1 − ε̂j using

sorted LOO residuals indexed from the smallest to the largest,
and MT+1 is a constant that depends only on LT+1, KT+1, and
K ′

T+1.
When {εt}Tt=1 are not i.i.d., results similar to Corollaries 1

and 2 can be established for Theorem 3 using similar proof
techniques. More precisely, the rate

√
log(16 T )/T will be

replaced by log T/
√
T when errors follow linear processes,

and by (log T )2/3/T 1/3 when errors are strongly mixing with
summable mixing coefficients.

Remark 1 (Theorem applicability and caveats): All theoreti-
cal results hold for t > T + 1, as long as Assumptions 1 and 2
hold at indices t− T, . . . , t. The same proof techniques apply.
Meanwhile, as long as the same assumptions hold, all previous
results apply to other conformal prediction methods, such as
split conformal [11]. However, unlike our EnbPI that requires

no data-splitting, split conformal and its variants require data
splitting by treating a subset of training data as the “calibra-
tion data.” As a result, the value T on the right-hand side of
Theorem 1 and all subsequent corollaries become the size of
the calibration data, not that of the full training data. This is
because prediction residuals ε̂ are only computed on calibration
data, whose empirical distribution is used to approximate that
of the true distribution of errors ε. In such cases, the worst-case
coverage gap becomes larger.

IV. ENBPI ALGORITHM

We now present a general conformal prediction algorithm
for time series in Algorithm 1, which is named EnbPI. On
a high-level, EnbPI has a training phase and the prediction
phase. In the training phase, EnbPI first fits a fixed number
of bootstrap estimators from subsets of the training data. Then,
it aggregates predictions from these bootstrap estimators on the
training data in an efficient leave-one-out (LOO) fashion, result-
ing in both LOO predictors and LOO residuals for prediction.
In the prediction phase, EnbPI aggregates predictions from
LOO predictors on each test datum to compute the center of
the prediction interval. Then, it builds the prediction interval
using the past LOO residuals, where the interval width is also
optimized through a simple one-dimensional line search. Lastly,
residuals are slid forward as soon as actual response variables
in test data are observed to ensure adaptiveness in the prediction
intervals.

In the algorithm description, f̂ b is the b-th bootstrap esti-
mator, the superscript φ denotes variables with dependence
on the aggregation function φ. The block bootstrap with T
non-overlapping blocks is used in line 2, which is a popular
method for bootstrapping dependent data [39]. The basic idea is
to split the T training samples into l (non-)overlapping blocks,
each with a size 2T/l3. Then, sample from l blocks randomly
with replacement.

We comment on the choice of hyperparameters as follows. (1)
In general,A can be a family of (parametric and non-parametric)
prediction algorithms. (2) Different choices of aggregation func-
tions φ bring different benefits, such as reducing the MSE under
mean, avoiding sensitivity to outliers under median, or achieving
both under trimmed mean. (3) As the number of pre-trained
bootstrap models B increases, interval widths may be narrower.
Empirically, we find that choosing B between 20 and 50 is suffi-
cient, especially for computationally intensive methods such as
neural networks. (4) Larger s requires prediction further in the
future without feedback; however, as s increases, the prediction
becomes harder, which is reflected in that intervals become wider
and the coverage deteriorates; how large s can be is determined
by the dynamics of the data.

A. Properties of EnbPI

Computational Efficiency: Note that inEnbPI, the prediction
models in the ensemble are pre-trained once and stored; when
deploying EnbPI for prediction, residuals are computed from
T pre-trained models on the fly, and the interval is constructed
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Algorithm 1: Ensemble batch prediction intervals (EnbPI).

Require: Training data {(xi, yi)}Ti=1, prediction algorithm
A, significance level α, aggregation function φ, number of
bootstrap models B, batch size s, and test data
{(xt, yt)}T+T1

t=T+1; yt is revealed as feedback only after
prediction at t is done.

Ensure: Ensemble prediction intervals {Cφ,α
t (xt)}T+T1

t=T+1
1: for b = 1, . . . , B do
2: Sample with replacement an index set

Sb = (i1, . . . , iT ) from indices (1, . . . , T ).
3: Compute f̂ b = A((xi, yi), i ∈ Sb).
4: end for
5: Initialize ϵ̂ = {} as an ordered set.
6: for i = 1, . . . , T do
7: f̂φ

−i(xi) = φ(f̂ b(xi), i /∈ Sb)

8: Compute ε̂φi = yi − f̂φ
−i(xi)

9: ϵ̂ = ϵ̂ ∪ {ε̂φi }
10: end for
11: for t = T + 1, . . . , T + T1 do
12: f̂φ

−t(xt) = φ(f̂φ
−i(xt), i = 1, . . . , T )

13: Compute β̂ as

argminβ∈[0,α](1−α+β) quantile of ϵ̂−β quantile of ϵ̂)

14: wφ,α
t,lower = β̂ quantile of ϵ̂

15: wφ,α
t,upper = (1− α+ β̂) quantile of ϵ̂.

16: Return
Cφ,α

t (xt) = [f̂φ
−t(xt) + wφ,α

t,lower, f̂
φ
−t(xt) + wφ,α

t,upper]
17: if t− T ≡ 0 mod s then
18: for j = t− s, . . . , t− 1 do
19: Compute ε̂φj = yj − f̂φ

−j(xt)

20: ϵ̂ = (ϵ̂− {ε̂φ1}) ∪ {ε̂φj } and reset index of ϵ̂.
21: end for
22: end if
23: end for

based on quantile values of T residuals. Thus, the main compu-
tation of EnbPI for obtaining the prediction interval is tolerable
in calling the prediction algorithmAB times. In comparison, the
Jackknife+ approach [13] requires requires B times training of
A on each leave-i-out sample {(xj , yj)}Tj=1,j 6=i. This requires
BT training of A, which can be computationally intensive for
complex prediction algorithms such as deep neural networks.

No Overfitting or Data Splitting: Traditional CP methods such
as split conformal [11] use data-splitting to avoid overfitting.
In contrast, inspired by the J+aB procedure in [14], EnbPI
trains LOO ensemble models on full data and avoids overfitting
through thoughtful aggregations in lines 6-10. In particular, to
construct the i-th LOO ensemble predictor, EnbPI aggregates
all B bootstrap models that are not trained on the training datum
(xi, yi). Thus, the actual number of aggregated models is a Bi-
nomial random variable with parametersB and (1− 1/T )T ; the
Chernoff bound ensures that each ensemble predictor aggregates
a balanced number of pre-trained models.

Leverage New Data Without Model Retraining: EnbPI con-
structs sequential prediction intervals without retraining A. In-
stead, it leverages feedback by updating past residuals through
a sliding window of size T , which adapts the interval widths
to data and can better adapt to data non-stationarity. In practice,
we acknowledge the benefits of retraining, especially in reducing
the widths of the prediction intervals. However, retraining can be
costly for certain models, and one should consider the trade-off
between interval widths and computation involved in retraining.

B. EnbPI on Challenging Tasks

We comment that EnbPI is flexible and can handle various
challenging tasks. In Appendix B.4, available in the online sup-
plemental material, we also discuss how EnbPI can construct
prediction intervals for outputs from each node of a network.

Handle missing data: We suggest a heuristic approach to
handle missing data byEnbPI, which is verified in Section V-C.
When training and/or test data have missing entries, we can
properly increase the size of bootstrap samples being drawn
from the rest available training data— this is appropriate since
a common data model f is assumed. On test data, when EnbPI
encounters a missing index t′, we impute the feature xt′ if it is
missing to compute f̂t(xt′), the interval center, and use the most
recent T residuals to compute the interval width. The sliding
window would skip over the residual εφt′ when yt′ is unobserved.
Section V-C considers the solar dataset with missing data.

Unsupervised Anomaly Detection: Suppose there is an
anomalous point yt∗ at time t∗, due to either a change in model
f at t∗ or an unusually large stochastic error εt∗ . As a result, yt∗
tends to lie far outside the interval (equivalently, εφt∗ is well below
or above the β̂ or (1− α+ β̂) quantile of past T residuals) and
thus can be detected using the prediction interval. An example
applying EnbPI to detect anomalous traffic flows appears in
Section V-D.

V. EXPERIMENTAL RESULTS

The experiments are organized as follows. In Section V-A,
we provide extensive simulations to examine the coverage and
width of EnbPI intervals. In Section V-B, we show that EnbPI
attains valid marginal coverage on real data, whereas competing
methods may fail. In Section V-C, we present real-data exper-
iments to examine the conditional coverage of EnbPI against
other methods when missing data are present. In Section V-D,
we present an example for anomaly detection in traffic flow
using EnbPI. In Appendix B.4 and B.5, available in the online
supplemental material, we present more time-series data exam-
ples to demonstrate that EnbPI has valid coverage and shorter
intervals than the competing methods.

A. Simulation Results

We first conduct three simulated examples based on the
assumption Yt = f(Xt) + εt to examine the performance of
EnbPI. We then consider a more complex example based on a
noisy helix trajectory.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 14,2025 at 00:10:02 UTC from IEEE Xplore.  Restrictions apply. 



11582 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 10, OCTOBER 2023

Fig. 1. Helix colored by Yt. We observe that the predicted colors closely match the actual color on the bottom row because values of Yt colored in orange are
contained in prediction intervals colored in shaded blue with high probability, and intervals are very narrow, as shown on the top row.

Three simulated examples: We construct these examples with
increasing levels of model sophistication in the design of f(Xt)
and under more complex error dependency in εt. The detailed
data-generating procedures and additional details are described
in Appendix B.1, available in the online supplemental material.
The results shown in Fig. 5 of Appendix B.1, available in the on-
line supplemental material indicate the satisfactory performance
of EnbPI to maintain valid coverage. The interval widths also
converge to the oracle width as the training sample size grows,
validating Theorem 3.

Simulation With a Noisy Helix Trajectory: Consider
Yt given by a nonlinear mapping of components of
a helix in three-dimensional space contaminated by
noise: Xt = [r cos(θt), r sin(θt), Hθt], f(Xt) = r cos(θt) ·
(|r sin(θt)|)1/2 · (Hθt + ε)−1/2, ε = 10−3, and εt = ρεt−1

+ et where ρ = 0.6 and et are i.i.d. normal random variables
with zero mean and unit variance. The color map of the helix
is proportional to Yt. We fix H = 3, r = 10 and generate
1000 samples parametrized by θt, which are uniformly spaced
between 0 and 8π. The first 500 data points are used for training
EnbPI with random forest regression (RF) and the rest 500
are used for testing. The RF setup is described in Appendix
B.2, available in the online supplemental material. In Fig. 1, we
see that in the test phase intervals by EnbPI tightly cover the
unknown response Yt. Moreover, the blue and orange curves
corresponding to Ŷt and Yt are very close, which indicates that
LOO ensemble predictors approximate the unknown model f
very well.

B. Real-Data: Marginal Validity and the Interval Width

In this section, we consider predictions for renewable en-
ergy generation. In this setting, the prediction and uncertainty
quantification is critical due to their high stochasticity and
non-stationarity.

Data Description: The renewable energy data are from the
National Solar Radiation Database and the Hackberry wind farm
in Austin.1 We use 2018 hourly solar radiation data from Atlanta
and nine cities in California and 2019 hourly wind energy data.
We remove recordings before 6 a.m. and after 8 p.m. for the solar

1NSRDB: https://nsrdb.nrel.gov/. Wind farm: https://github.com/Duvey314/
austin-green-energy-predictor

radiation data due to zero radiation levels during the period.
In total, there are 11 time series from 11 sensors (one from
each sensor), and each time series contain other features such as
temperature, humidity, wind speed, etc. In particular, California
solar data constitute a network, where each node is a sensor.
From now on, we call Xt univariate if it is the history of Yt and
multivariate if it contains other features that predict Yt.

Comparison Methods: We compare EnbPIwith traditional
time series and other conformal prediction methods. The time
series methods are ARIMA(10,1,10), Exponential Smoothing
(ExpSmoothing), and Dynamic Factor model (DynamicFac-
tor). The CP methods are split/inductive conformal predictor
(ICP) [11] and, weighted ICP (WeightedICP) [17], quantile
out-of-bag method (QOOB) [15], adaptive conformal inference
(AdaptCI) [20], and jackknife+-after-bootstrap (J+aB) [14]. For
the former two CP methods (resp. AdaptCI), we split the training
data into 50% (resp. 75%) proper training set for training a
predictor and 50% (resp. 25%) calibration set for computing
non-conformity scores. Appendix B.2, available in the online
supplemental material describes more detailed setup.

Prediction Algorithm A: We choose four prediction algo-
rithms: ridge regression, random forest (RF), neural networks
(NN), and recurrent neural networks (RNN) with LSTM layers.
The first two are implemented in the Python sklearn library,
and the last two are built using the keras library. See Appendix
B.2, available in the online supplemental material for their
specifications.

Other Hyperparameters: Since the three CP methods are
trained on random subsets of training data, we repeat all ex-
periments below for ten trials with an independent random
split in each trial. The time series methods are only applied
once on training data because they do not use random subsets.
Throughout this subsection, we fix s = 1. Let α = 0.1 and
use the first 20% of the total hourly data for training unless
otherwise specified. This creates small training samples for a
challenging long-term predictive inference task. We use EnbPI
under B = 25 and φ as taking the sample mean.

Results: All results in Section V-B and V-C come from using
the Atlanta solar data. Similar results using California solar data
and Hackberry wind data are in Appendix B.4, available in the
online supplemental material. We first compare EnbPIwith the
conformal prediction methods at a fixedα = 0.1.EnbPI results
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TABLE I
SOLAR POWER PREDICTION IN ATLANTA, COMPARISON OF EnbPI WITH ADAPTCI, J+AB, QOOB, ICP, AND WEIGHTED ICP

TABLE II
SOLAR POWER PREDICTION IN ATLANTA

TABLE III
SOLAR POWER PREDICTION IN ATLANTA, COMPARISON OF EnbPI WITH ADAPTCI, ARIMA, EXPONENTIAL SMOOTHING, AND DYNAMIC FACTOR MODELS

are based on one of the four prediction algorithms that yield the
narrowest interval when reaching valid 1− α coverage. Table I
shows that out of all the CP methods, EnbPI is the only choice
that consistently yields valid coverage at 0.9 regardless of the
amount of training data. In contrast, the baseline CP methods
may yield narrower intervals than EnbPI, yet their intervals
often have a high coverage gap with respect to the 0.9 target
level. Hence, this indicates that EnbPI is the most suitable
method for this dataset. To better compare EnbPI with the
baselines, we adjust the α parameter for each baseline method
so that they yield approximately the same interval widths as
EnbPI. Table II compares the performance of all methods under
adjusted α, where we see that baseline methods often fail to
reach valid 1− α coverage as EnbPI. In addition, we often
need to use extremely conservative values of α to reach the
same interval widths as EnbPI (e.g., reduce to 0.03 for QOOB
under 0.28 train ratio). Furthermore, EnbPI intervals also have
the smallest standard deviation in width, indicating more stable
interval construction by our proposed method.

In addition, Table III compares EnbPI with commonly used
time-series methods, where we also include AdaptCI as the best-
performing CP baseline method. Compared toEnbPI, the time-
series baseline methods either yield conservative intervals under
valid coverage or narrower intervals which nevertheless fail to
cover at target 1− α levels.

Remark 2 (Computational challenges of quantile-based con-
formal inference methods): Quantile regression models aim
to predict quantiles of the response distribution accurately
and capture the unknown distribution during inference. Such
benefit can be reflected in the narrow prediction intervals by

quantile-based conformal inference methods [12], [15], [20].
However, one should be cautious with the following subtle
computational concern.

To fit a quantile regression model, one uses the empirical risk
minimization under the following loss, which depends on the
quantile α and the sign of the residual ε̂i := yi − f̂(xi):

L(ε̂i,α) =
{
αε̂i if ε̂i ≥ 0,
(α− 1)ε̂i if ε̂i < 0.

(11)

Therefore, producing intervals at different desired 1− α cov-
erage levels requires fitting the baseline algorithm A inside a
quantile-based conformal method multiple times.

In comparison, EnbPI trains the LOO estimators only once
to compute all LOO residuals, during which one needs not to
specify the desired α value (see Algorithm 1, line 1-10). Then,
constructing intervals at a particular 1− α only requires making
a point prediction using fitted LOO estimators and evaluating the
empirical quantiles of LOO residuals. The whole procedure is
computationally efficient when different target coverage levels
are specified.

C. Real-Data: Missing Data, Conditional Coverage

In this section, we move beyond marginal coverage with two
particular goals. First, we aim to show conditional validity of
EnbPI as it looks ahead beyond one step to construct multiple
prediction intervals before receiving feedback (that is, s > 1).
Second, we show that EnbPI can handle time series with
missing data, which commonly exist in reality. We compare
EnbPI against QOOB and AdaptCI in this setting.
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Fig. 2. Solar power prediction in Atlanta, when EnbPI looks ahead beyond
one step. At each hour (i.e., a two-row subfigure), the top figure visualizes
observations in black, estimates in red, and prediction intervals in blue for three
months (April-June). The bottom subfigures compute coverage using a sliding
window of 30 days. The sliding coverage is much poorer near summertime (for
example, August), when the data distribution may differ. Conditional coverage
at each hour is always near 0.9 (cf. Table 5).

Setup: The same setup applies to all three conformal inference
methods, so we only describe the general setup. All hyperparam-
eters except choices of s are kept the same unless otherwise
specified. We fit each CP method separately on subsets of
hourly data, given that radiation data exhibit significant periodic
variations (for example, recordings near noon have much larger
magnitudes than the rest). More precisely, we fit each CP method
once on data between 10 AM —2 PM and once on data from
the rest 5 hours. Then, we let s = 5 hours, so EnbPI constructs
five-hour ahead prediction intervals every day, after which the
conditional coverage is computed separately at each hour. To
create a more challenging missing data situation, we randomly
drop 25% of both training and test data. As Xt may contain
the history of Yt for prediction, we impute missing entries as
independent random samples from a normal distribution, whose
mean and variance parameters are empirical mean and standard
error of the most recent s observations. We assume exogenous
features (temperature, humidity, wind speed, etc.) are readily
available and perform no imputation on them. The training data
come from the first 92 days of observation (January-March),
and intervals always lie within [0,∞), as solar radiation value
cannot be negative. For clarity, we only show results under one
typical trial.

Results: Fig. 2 shows conditional coverage of EnbPI under
RF. We title each subfigure by the hour, in which the bottom
row visualizes the coverage over a sliding window to illustrate
howEnbPI performance evolves. Several things are noticeable.
First, despite not being shown, empirical distributions of LOO
residuals in the rightmost figures are asymmetric around 0,
justifying the need to build asymmetric intervals in EnbPI.
Second, EnbPI can nearly obtain conditional coverage at all
these hours (see the first row of Table 5) even with missing data.
We note that the sliding coverage can be much poorer near the
summer (for example, in August), likely because radiation data
near the summer experience unknown shifts in the model f and
violate our assumption for the data-generating process. Lastly,
applying EnbPI separately onto group training data that are
more “similar” (for example, by morning and afternoon) can
be essential, especially when the data-generating processes are
heterogeneous over subgroups. In general, we believe EnbPI

Fig. 3. Traffic flow anomaly detection. Precision, Recall, andF1 scores versus
different amounts of training data (as percentages of total data) for different
detectors. EnbPI under RNN and NN outperforms the other methods.

can obtain conditionally valid coverage on real data even in
missing data. In Appendix B.3, available in the online supple-
mental material, we show more results when no feedback is
available to EnbPI (that is, s = ∞), illustrating the necessity
to slide past residuals for a dynamic interval calibration. Ta-
ble 5 in Appendix B.3, available in the online supplemental
material reports the conditional coverage and width for EnbPI,
QOOB, and AdaptCI. We see that QOOB can lose coverage
at all hours, but AdaptCI can maintain conditional validity. In
particular, AdaptCI prediction intervals for radiation levels in
the morning are almost identical in width to those by EnbPI.
However, those for radiation levels in the afternoon are wider
than those by EnbPI. In Appendix B.3, available in the online
supplemental material, we also visualize the sliding coverage
and prediction intervals by QOOB and AdaptCI as in Fig. 2 for
EnbPI.

D. Real Data: Unsupervised Anomaly Detection

In this section, we use EnbPI to detect anomalies in traffic
flow observations with missing data. In this setting, it is im-
portant to dynamically update decision thresholds (for example,
upper and lower ends of prediction intervals) based on spatial and
temporal information in the traffic sensor network because traffic
data are highly correlated and non-stationary. Data description,
setup, and comparison methods are described in Appendix B.6,
available in the online supplemental material

Results: Fig. 3 compares all methods on a particular traffic
sensor as we vary the size of training data. It is clear that EnbPI
consistently obtains the highest F1 scores when RNN is used as
the prediction model; F1 scores by EnbPI also are consistent
across over training sample sizes. In addition, Table IV shows
the results with more sensors, from which EnbPI under NN or
RNN still outperforms the other competitors by a large margin.
In the future, we will consider multiple testing corrections to
improve the performance [40], [41], [42], where the critical
step is to examine the dependency of p-value as a correction
step.

VI. EnbPI UNDER CHANGE POINTS

In real applications, there can exist abrupt changes in the un-
derlying data distribution, which are called change points [43],
[44]. In this section, we present numerical experiments to
demonstrate the performance of EnbPI in the presence of
change points. We also discuss the potential adaption of EnbPI
for change point detection.
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TABLE IV
TRAFFIC FLOW ANOMALY DETECTION. F1 SCORES, PRECISION, AND RECALL BY 12 METHODS ON SELECTED SENSORS. BOLD CELLS INDICATE THE HIGHEST

SCORES. EnbPI RNN OR NN ARE BETTER ON THIS TASK IN TERMS OF F1 SCORES

Fig. 4. Simulation with a change point at index 50. We overlay prediction
intervals in shaded blue on top of the actual data. In particular, we collect 60
post-change data points to refit A at index 110. We expect that collecting more
post-change data to fit EnbPI will yet better estimation with tighter prediction
intervals.

We conider a change point happening during the testing phase
and follow the setup in Section V-A. Assume a change point
at T ∗ = 0.6(T + T1), which alters the underlying model f for
the last 40% test data. As a result, the post-change responses
Yt are very different from the pre-change ones. We call the
post-change model f1. For the linear model, let f1(Xt) = β1Xt

and β1 be entry-wise i.i.d. U [0, 5]. Recall the pre-change β is
entry-wise i.i.d. U [0, 1]. For the high-dimensional sparse linear
model, β1 has twice many non-zero components as that of β
and the components are drawn from U [0, 1] independently. For
the nonlinear model, we keep the same β but square the value
f(Xt). Choices of Xt and εt remain the same in each case.

Recall T is the length of the pre-change training data; let
T = 0.3(T + T1) = 600. To adapt to post-change dynamics as
quickly as possible, we retrain the prediction algorithm on 0.1 T
data after the change point T ∗. We assume the T ∗ is known
to us (for instance, we can be detected and estimated using a
change point detection algorithm [43]). To quickly detect change
points that highly correlate with differences in interval widths,
we only take the empirical quantile of the most recentT ′, T ′ < T
residuals and fix T ′ = 100.

Fig. 4 plots prediction intervals on top of actual data for
three cases. First, except for data indexed between T ∗ and
T ∗ + 0.1 T (that is, between index 50 and 110 in the figure),
most prediction data from both pre-change and post-change
models are covered by EnbPI intervals. Second, prediction
intervals built with pre-change models on post-change data
tend to have much wider widths than others, reflecting a
poor estimation of f̂ by the pre-change models. Nevertheless,
such a dramatic increase in width can enable change point
detection, as we elaborate on below. Third, we observe that
AdaptCI intervals are non-adaptive in this setting, as they
fail to contain the true observations before retraining the pre-
dictive model. In Fig. 6, we further compare EnbPI with
the ETS model [45], which shows similar performance as
AdaptCI.

One can potentially adapt EnbPI to detect change points as
follows. From Fig. 4, we observe that the change point leads
to unusually wide post-change prediction intervals. As a result,
one should monitor both the evolution of interval widths and
coverage performances. On the one hand, when only f changes
but the distribution of errors remains the same, the interval tends
to be wider, but the coverage is worse. On the other hand,
if f remains the same but the distribution changes, intervals
may also become wider. However, coverage may not be as
greatly affected because estimators by EnbPI can approximate
f well. Due to a sliding window over residuals, one can adapt to
the post-change distribution. These ideas resonate with several
other works: [20] construct prediction sets under distribution
shifts sequentially and prove that when shifts are small, the
marginal coverage is approximately maintained. As a result,
when coverage is significantly less than 1− α, it can indicate
an abrupt shift in distribution. Such ideas may also be used to
test whether the test distribution lies in an f -divergence ball of
the training distribution, given i.i.d. training and test data from
the corresponding distribution [18]; extensions to time series
remain unexplored. On the other hand, a line of works [46],
[47], [48] builds martingales to detect change points which
however, violates data exchangeability. The lower bound for
the average-run-length is established for the Shiryaev–Roberts
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procedure using such martingale [46, Proposition 4.1]. How to
extend the ideas beyond testing exchangeable data remains an
open question.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we present a predictive inference method for
time series. Theoretically, we can show that the constructed
intervals are asymptotically valid without assuming data ex-
changeability: relaxing this requirement is crucial for time series
data, and the interval width converges to the oracle one. We
also present a simple, computationally friendly, and interpretable
algorithm called EnbPI, which is an efficient ensemble-based
wrapper for many prediction algorithms, including deep neural
networks. Empirically, it works well on time series from various
applications, including network data and data with missing
entries, and maintains validity when other predictive inference
methods fail. Furthermore, one can useEnbPI for unsupervised
sequential anomaly detection. While the theoretical guarantee
of EnbPI requires consistent estimation of the true model,
empirical results are valid even under potentially misspecified
models, and coverage is almost always valid.

Future work includes several possible directions. We may
adapt EnbPI for classification problems [49], [50], [51] by
defining conformity scores other than residuals. It can also be
interesting to further develop EnbPI for online change point
detection and adaptation for time series, extending the idea of
sequential testing of data exchangeability [52] based on the
Shiryaev-Roberts procedure.
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