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Learning structural heterogeneity from 
cryo-electron sub-tomograms with 
tomoDRGN

Barrett M. Powell    1   & Joseph H. Davis    1,2 

Cryo-electron tomography (cryo-ET) enables observation of 
macromolecular complexes in their native, spatially contextualized cellular 
environment. Cryo-ET processing software to visualize such complexes 
at nanometer resolution via iterative alignment and averaging are well 
developed but rely upon assumptions of structural homogeneity among 
the complexes of interest. Recently developed tools allow for some 
assessment of structural diversity but have limited capacity to represent 
highly heterogeneous structures, including those undergoing continuous 
conformational changes. Here we extend the highly expressive cryoDRGN 
(Deep Reconstructing Generative Networks) deep learning architecture, 
originally created for single-particle cryo-electron microscopy analysis, to 
cryo-ET. Our new tool, tomoDRGN, learns a continuous low-dimensional 
representation of structural heterogeneity in cryo-ET datasets while also 
learning to reconstruct heterogeneous structural ensembles supported by 
the underlying data. Using simulated and experimental data, we describe 
and benchmark architectural choices within tomoDRGN that are uniquely 
necessitated and enabled by cryo-ET. We additionally illustrate tomoDRGN’s 
efficacy in analyzing diverse datasets, using it to reveal high-level 
organization of human immunodeficiency virus (HIV) capsid complexes 
assembled in virus-like particles and to resolve extensive structural 
heterogeneity among ribosomes imaged in situ.

An array of large, dynamic macromolecular complexes carry out essential 
cellular functions. The conformational flexibility and compositional 
variability in these complexes allow cells to mount targeted molecular 
responses to various stresses and stimuli. Structural biology has long 
aimed to visualize these diverse structures with the goals of gaining 
mechanistic insights into these responses and testing hypotheses related 
to macromolecular structure–function relationships. In pursuit of this 
goal, cryo-electron microscopy (cryo-EM) has proven to be a powerful 
tool for visualizing purified complexes with high resolution1,2. In cryo-EM, 
~104–107 individual particles are imaged, each from a single unknown 

projection angle. Single-particle analysis (SPA) is then used to simul-
taneously estimate the most likely projection angle for each particle 
image and the k ≥ 1 distinct three-dimensional (3D) volumes of the target 
complex, which, when projected to two dimensions (2D), are most likely 
to have produced the source dataset3. More recently, a number of tools 
have leveraged SPA datasets to deeply explore structural heterogeneity 
within these complexes4–8, dramatically expanding the range of insights 
and testable biological hypotheses that can be derived from cryo-EM9.

Cryo-ET is a related imaging modality in which a sample is repeat-
edly imaged from several known projection angles, enabling the 
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To handle tilt series data, we employed a variational autoencoder 
(VAE) framework38 and constructed a purpose-built two-part encoder 
network feeding into a coordinate-based decoder network39,40 (Fig. 1b).  
For each particle, the encoder network first uses encoder A (per tilt 
image) as a ‘feature extractor’ to generate a unique intermediate 
embedding for each tilt image in a manner directly analogous to that 

reconstruction of a 3D tomogram10. As such, cryo-ET disentangles 
particles that overlap along any single projection axis and enables 
nanometer-scale 3D visualization of highly complex samples, including 
subcellular volumes. Thus, cryo-ET affords the opportunity to inspect 
macromolecular structures in their native cellular context11–14, in  
contrast with cryo-EM’s typical requirement that particles be isolated 
from cells and purified.

Sub-tomogram averaging (STA), a particle averaging approach 
analogous to SPA, is often employed in cryo-ET data processing. In 
STA, individual 3D volumes, each a sub-tomogram corresponding 
to a unique particle, are extracted from the back-projected tilt series 
and are iteratively aligned to produce an average particle volume with 
increased signal-to-noise ratio (SNR) and resolution15–25. Recent devel-
opments in STA processing have dramatically improved the attainable 
resolution through more detailed and robust modeling of physical and 
optical parameters, even for in situ samples26–29. Critically, STA can 
therefore offer insights into native protein complexes and generate 
new hypotheses for molecular mechanisms by identifying unknown 
associated factors or new complex ultrastructure. For example, STA 
has very recently been employed to extensively characterize numerous 
structural states of the ribosome life cycle in situ12–14,30–32.

Similar to SPA, several tools have been developed to characterize 
heterogeneity among individual particles relative to the global aver-
age, either during or after STA17,19,29,33–35. Although these approaches 
have proven fruitful in answering specific biological questions about, 
for example, nucleosome flexibility33,34 and ribosome heterogene-
ity12,29, each approach has specific constraints that limit its generality. 
For example, sub-tomogram principal-component analysis (PCA)29 
assumes that heterogeneity can be modeled as a linear combination of 
voxel intensity, normal mode analysis34 requires a priori knowledge of 
an atomic model or density map to compute normal modes, and opti-
cal flow33 is inherently limited to conformational changes of the target 
particle in which the total voxel intensity across each sub-tomogram 
remains approximately constant. An unbiased and expressive tool to 
analyze heterogeneity is therefore highly desirable, particularly for 
in situ discovery of unexpected cofactors for which the identity, bind-
ing site and occupancy may be unknown.

Here, we introduce tomoDRGN, a deep learning framework designed 
to learn a continuously generative model of per-particle conformational 
and compositional heterogeneity from cryo-ET datasets. TomoDRGN is 
related to our well-characterized cryoDRGN software4,8 and therefore 
shares many overall design, processing and analysis philosophies. As 
input, tomoDRGN uses 2D particle projection images and corresponding 
metadata from upstream STA tools (Fig. 1a), a data type used in a number 
of recently developed approaches26,27–29,36,37. It then learns to simultane-
ously embed each particle within a continuous low-dimensional latent 
space and to reconstruct the corresponding unique 3D volume (Fig. 1b).  
We have additionally developed and integrated software tools to visu-
alize and interpret these outputs and to prepare them for subsequent 
analyses with external processing software, including contextualizing 
the tomoDRGN-generated volumes within the tomographic data.

Results
Network design for heterogeneous cryo-ET reconstructions
TomoDRGN was designed to efficiently train a neural network capable 
of (1) embedding a collection of particles, which are each represented by 
multiple images collected at different stage-tilt angles, into a learned, 
continuous, low-dimensional latent space informed by structural het-
erogeneity and (2) generating a 3D volume for each particle using these 
embeddings. By design, cryoDRGN is unsuited for this task as it maps 
individual images to unique latent embeddings, which is expected for 
cryo-EM single-particle datasets. Thus, cryoDRGN is not constrained 
to map differentially tilted images of the same particle to consistent 
regions of latent space, leading to uninterpretable learned latent spaces 
and generated volumes (‘Discussion’).
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Fig. 1 | A neural network architecture to analyze structurally heterogeneous 
particles imaged by cryo-ET. a, A typical sample and data processing workflow 
to produce tomoDRGN inputs. The sample (for example, a bacterial cell) is 
applied to a grid, plunge frozen and optionally thinned. A series of transmission 
electron microscopy images of a target region are collected at different stage 
tilts. A tomographic volume is reconstructed using weighted back projection 
of all tilt images. Instances of the target particle are identified (blue boxes) and 
extracted as 3D voxel arrays. Iterative STA is used to reconstruct a consensus 
density map. Per-particle 2D tilt images are then re-extracted from the source 
tilt series images, and parameters (for example, pose, defocus, etc.) estimated 
from STA are associated with the images. b, TomoDRGN network architecture 
and training design. Each particle’s set of tilt images are independently passed 
through encoder (Enc) A and then jointly passed through encoder B, thereby 
mapping all tilt images of a particle to one embedding (z) in a low-dimensionality 
latent space. The decoder network (Dec) uses the latent embedding and a 
featurized voxel coordinate to decode a corresponding set of images pixel by 
pixel. Note that the decoder can learn a homogeneous structure by excluding 
the encoder module (green). The network is trained using a loss function 
(gray arrows) that depends on input images, reconstructed images and z (red 
arrows). c, Graphical signposts for volumes generated or analyzed by different 
reconstruction tools. These signposts are used throughout this text when 
volumes are displayed to clarify how they were generated.
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of cryoDRGN’s encoder network. Encoder B then integrates these inter-
mediate embeddings into a single latent embedding for the particle. 
The decoder network is supplied with this integrated latent embed-
ding and a featurized voxel coordinate to reconstruct the signal at 
that coordinate. As in cryoDRGN, these operations are performed in 
reciprocal space. With this design, we expected that repeatedly evalu-
ating the decoder network at multiple coordinates would allow for a 
rasterized reconstruction of the set of tilt images originally supplied 
to the encoder. Following a standard VAE38, we designed the network 
to be trained by minimizing a reconstruction loss between input and 
reconstructed images and a latent loss quantified by the Kullback– 
Leibler (KL) divergence of the latent embedding from a standard nor-
mal distribution, with a hyperparameter β controlling the relative 
contributions of these two loss terms41.

Once trained, we expected a tomoDRGN network to enable detailed 
and systematic interrogation of structural heterogeneity within the 
input dataset. For example, similar to cryoDRGN, we expected that 
tomoDRGN’s learned latent space could be visualized either directly 
along any sets of latent dimensions or using a dimensionality-reduction 
technique such as uniform manifold approximation and projection 
(UMAP)42, with which we have empirically found that distinct clusters 
often correspond to compositionally heterogeneous states and dif-
fuse, unfeatured distributions correspond to continuous structural 
variation8. Latent embeddings, sampled individually or following 
a well-populated path in latent space, could then be passed to the 
decoder to generate corresponding 3D volumes for direct visualiza-
tion. We predicted that additional analysis could then be performed 
in 3D voxel space using standard cryoDRGN tools9. Finally, we further 
developed methods to isolate particle subsets of interest for subse-
quent refinement with traditional STA software (Fig. 1c) as an iterative 
approach to maximize the value of a tomographic dataset.

Sub-tomogram-specific image processing approaches
Having conceived the general tomoDRGN framework, we next consid-
ered additional image processing procedures that we hypothesized 
might improve model quality and computational performance. First, 
we noted that STA software tools commonly implement weighting 
schemes to model the SNR of each image as a function of the image tilt 
angle and of the accumulated electron dose27,43,44. Thus, we followed 
standard formulations for tilt weighting as the cosine of the stage tilt 
and dose weighting using fixed exposure curves, and we incorporated 
such weights into the reconstruction error calculated in tomoDRGN’s 
decoder network (Extended Data Fig. 1a,b). We expected that such 
an approach would effectively downweigh the reconstruction loss 
of highly tilted and radiation-damaged images, particularly at high 
frequencies.

Second, tomoDRGN’s coordinate-based decoder is trained by 
evaluating a set of spatial frequencies per tilt image that, by default, is 
identical for all tilt images and thus independent of cumulative dose 
imparted at each tilt. However, prior work has shown that the SNR at 
a given spatial frequency can be maximized at an optimal electron 
dose45 and that, during cryo-EM movie alignment, filtering spatial fre-
quencies in each frame by their optimal dose can improve the aligned 
micrograph quality43,46. We therefore implemented a scheme applying 
optimal dose filtering to Fourier coordinates evaluated by the decoder 
during model training (Extended Data Fig. 1a,b). We expected that 
such filtering would restrict the set of spatial frequencies evaluated 
during decoder training without sacrificing 3D reconstruction accu-
racy, thereby decreasing the computational burden of model training, 
particularly for high-resolution datasets at large box sizes.

Finally, real-world datasets frequently contain particles miss-
ing some tilt images, often due to upstream micrograph filtering 
(Extended Data Fig. 2a). To flexibly handle such nonuniform input 
data, we implemented an approach that surveys the dataset for the 
fewest tilt images associated with a single particle (n) and then randomly 

sampled n tilt images from each particle during model training and 
evaluation (Extended Data Fig. 2b and Methods). Because this approach 
subsets and permutes tilt images at random, encoder B must learn a 
permutation-invariant function mapping from encoder A’s output (per 
tilt image) to the final latent space (per particle), and we hypothesized 
that this permutation-invariant learning goal might provide added 
regularization that could decrease overfitting by our model.

TomoDRGN recovers simulated structural heterogeneity
To judge the efficacy of these architectural choices, we simulated47 
cryo-ET particle stacks corresponding to four assembly states (B–E) 
of the bacterial ribosome large subunit (LSU)48,49 (Fig. 2a). We initially 
tested the ability of the isolated decoder network to perform a homo-
geneous reconstruction of the class E particles on which no encoder 
was trained, and no latent space was learned. We observed rapid con-
vergence of the decoder network, with it reproducing the ground truth 
density maps within ten epochs of training (Fig. 2b).

To assess tomoDRGN’s ability to faithfully embed and reconstruct 
structurally heterogeneous 3D volumes, we next trained the full VAE 
network using particle stacks containing a mixture of all four LSU 
structural classes. After training for 24 epochs, we observed four dis-
tinct clusters of latent embeddings by PCA and UMAP (Fig. 2c). Fur-
thermore, the decoder network generated volumes from the center of 
each latent cluster that were consistent with the ground truth volumes 
(Fig. 2d). Finally, we quantified the fidelity of the embeddings to their 
corresponding ground truth volume classes on a per-particle basis. We 
observed a nearly one-to-one mapping between tomoDRGN particle 
embeddings and the correct ground truth class (Fig. 2e), indicating 
that the tomoDRGN network effectively learned discrete structural 
heterogeneity without supervision.

We next tested whether tomoDRGN’s continuous latent represen-
tation allowed it to reconstruct continuous conformational changes. 
Specifically, we applied the particle simulation approach used for the 
LSU assembly dataset to a series of atomic models describing confor-
mational changes of yeast mitochondrial ATP synthase undergoing con-
tinuous ATP hydrolysis-driven rotary and bending motions (Fig. 2f)50.  
After training a tomoDRGN model on this dataset, analysis of 500 
tomoDRGN-generated volumes9 revealed a smooth and continuous 
trajectory (Fig. 2g). Sampling volumes along this trajectory recapitu-
lated the complex combination of conformational changes present in 
the ground truth dataset (Fig. 2h and Supplementary Video 1).

Architectural choices improve tomoDRGN performance
Having tested tomoDRGN’s ability to learn compositional and confor-
mational heterogeneity, we next assessed the benefits of our afore-
mentioned reconstruction loss weighting, lattice coordinate filtering 
and random tilt sampling approaches. In applying the weighting and 
filtering schemes on the homogeneous reconstruction of LSU class E 
ribosomes, we observed that either scheme in isolation or both schemes 
combined led to an improvement in the final resolution, presumably 
due to each approach’s ability to minimize the impact of lower-quality 
data. Additionally, whereas all schemes decreased the wall clock runt-
ime required to obtain the best-resolution reconstruction, the lattice 
coordinate-filtering scheme led to more substantial reductions in both 
wall clock runtime and graphics processing unit memory utilization 
(Extended Data Fig. 1c–e and Supplementary Table 1), likely due to its 
wholesale exclusion of calculations with lower-quality data.

To assess the efficacy of the random sampling scheme, we com-
pared heterogeneous networks trained on the four-class LSU dataset 
with and without random tilt sampling. We observed higher aver-
age volume correlation coefficients (CC) for tomoDRGN volumes 
against ground truth volumes when using random sampling. Ran-
dom sampling also provided our hypothesized improved robustness 
to model overfitting compared to sequential tilt sampling, as evi-
denced by the more stable and elevated average CCs during further 
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model training (Extended Data Fig. 2c). Finally, using the random 
sampling scheme, we observed an interpretable and well-featured 
latent space, even when using as few as 11 of the 41 available tilt images 
for each particle (Extended Data Fig. 2d,e). We additionally measured 
the accuracy and consistency of volumes generated from each such 
latent embedding to the corresponding ground truth volume, per 
particle per epoch, again observing robust performance with the 
random sampling scheme (Extended Data Fig. 2f). Notably, each of 
these metrics exhibited a dramatic drop in quality when only using 
a single tilt sampled per particle, consistent with the poor observed 
performance of cryoDRGN’s unconstrained approach of mapping one 

image to one latent embedding being unsuitable for tilt series data  
(‘Discussion’).

Combined, these strategies allowed efficient and flexible analy-
sis of diverse input datasets, and we have benchmarked tomoDRGN 
performance for a range of network architectures (Supplementary 
Tables 2–4). We observed that tomoDRGN performance is robust 
to encoder network architecture hyperparameters and that larger 
decoder networks support learning of higher-resolution features as 
the expense of slower model training (Supplementary Figs. 1 and 2).  
From these experiments, we noted that evidence of mild overfitting 
remained even with tomoDRGN’s random tilt sampling, and thus 
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Fig. 2 | TomoDRGN recovers compositional and conformational 
heterogeneity in simulated datasets. a, Illustration of the method used to 
simulate tilt series particle stacks corresponding to four assembly states (B–E) 
of the bacterial large ribosomal subunit48. b, Left: a tomoDRGN homogeneous 
network reconstruction of the simulated class E dataset after 50 epochs of 
training using simulated images with a Nyquist resolution limit of 7.1 Å. Right: FSC 
between the tomoDRGN reconstruction and the ground truth volume at each 
of 50 epochs of training (purple to yellow). c, First two principal components 
(l-PC; left) and UMAP embeddings (l-UMAP; right) of tomoDRGN latent space 
(l) when trained on the simulated four-class dataset, colored by k = 4 k-means 
classification of latent space. d, Ground truth ribosomal volumes (top) and 
corresponding tomoDRGN-reconstructed volumes (bottom) sampled from the 
median latent encoding of each of the k = 4 k-means classes in c. e, Confusion 

matrix of k-means clustering class labels from c against ground truth class labels. 
f, Superposition of yeast mitochondrial ATP synthase structures undergoing 
conformational changes during ATP hydrolysis50. Maps are colored purple to 
yellow along the simulated reaction coordinate. g, Voxel-based PCA (v-PC)9 of 
500 tomoDRGN-generated volumes sampled from a tomoDRGN model trained 
on the simulated ATP synthase dataset from f. Points corresponding to each of 
the 500 tomoDRGN-generated volumes are colored according to their position 
along the simulated ground truth reaction coordinate (color scale). A subset 
of 30 such maps are sampled along the trajectory and outlined with a pink-to-
purple color gradient, and these maps are presented in Supplementary Video 
1. h, Superposition of six tomoDRGN-generated volumes sampled down the 
continuous coordinate visualized in g and colored accordingly.
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from multispecies refinement in M with C1 symmetry using tomoDRGN’s particle 
classifications, rendered at constant isosurface as in c. e, Gold standard (GS) FSC 
curves between half-maps from the final round of M refinement with C1 symmetry 
for unfiltered apoferritin particles (Apo-F unfilt.; blue) and filtered apoferritin 
(Apo-F filt.; yellow) and iron-loaded ferritin particles (Holo-F filt.; green) (left). 
Example of local density quality before (blue) and after (yellow) tomoDRGN 

particle filtering of apoferritin particles (right). f, Consensus STA HIV Gag 
structure refined with C1 symmetry (EMPIAR-10164, n = 18,325 particles). g, UMAP 
dimensionality reduction of tomoDRGN latent encodings from training on the 
HIV Gag dataset. h, Four illustrative volumes generated from tomoDRGN latent 
encodings sampled as indicated in g. Note the increasing density corresponding 
to the lower NC layer in the yellow and cyan maps relative to that in gray.  
i, Weighted back-projection reconstructions of isolated structural classes using 
tomoDRGN’s particle classifications (from left to right, n = 11,449 particles, 3,546 
particles, 1,444 particles and 1,674 particles), rendered at constant isosurface. 
j, An EMPIAR-10164 tomogram reconstructed with tomoDRGN. Volumes 
were generated for each Gag hexamer using tomoDRGN, colored as in h,i and 
positioned correspondingly in the source tomogram. Inset highlights two 
representative VLPs.
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we encourage users to guard against such overfitting by checking 
for model convergence8 at regular intervals using the provided ‘ 
analyze_convergence’ tool.

Identifying hidden structural states in experimental datasets
We next asked how tomoDRGN would behave with experimental tomo-
graphic datasets, including those of particles expected to be structur-
ally homogeneous, such as apoferritin (EMPIAR-10491)27. Reprocessing 
this dataset using standard STA approaches in C1 (Methods) resulted in 
a high-resolution consensus structure and the metadata required to 
train a tomoDRGN model (Fig. 3a). After training such a model, we were 
surprised to observe a featured latent space (Fig. 3b) that bore three 
primary structural classes: well-formed apoferritin particles (~65%); 
uninterpretable maps, which likely corresponded to errant particle 
picks (~33%); and a minor population of apparently iron-loaded fer-
ritin, which comprised ~2% of the total particles (Fig. 3c). Isolating the 
apoferritin and holoferritin particles with tomoDRGN and re-refining 
each set with C1 symmetry in M reproduced the structural features 
identified with tomoDRGN (Fig. 3d). Moreover, the apoferritin structure 
refined using the tomoDRGN-filtered particle stack exhibited improved 
resolution by both Fourier shell correlation (FSC) and inspection of 
local density quality compared with our original particle stack’s C1 
refinement (Fig. 3e).

Another class of particles frequently analyzed by STA are those that 
assemble into massive structures using a large, semi-regular lattice. To 
assess tomoDRGN performance on such samples, we reprocessed the 
well-characterized immature HIV capsid (CA) dataset EMPIAR-10164 
with a final symmetry relaxation step51, recapitulating clearly resolved 

CA N-terminal domain (CA-NTD) and CA C-terminal domain (CA-CTD) 
layers (Fig. 3f). Training a tomoDRGN model on this C1 dataset revealed 
a largely unfeatured latent space (Fig. 3g), with primary structural 
classes varying in their organization and extent of observed density 
of the nucleocapsid (NC) layer underneath the CA layers (Fig. 3h,i). 
Application of MAVEn8,9 using a mask encompassing the presumed 
location of the NC domain revealed a continuum of differentially occu-
pied NC layers, consistent with extensive flexibility of this domain 
(Extended Data Fig. 3). At this resolution, we could not clearly attribute 
the density seen in the NC layer to NC protein, nucleic acid used dur-
ing sample reconstitution or a combination thereof, a challenge that 
others have noted52. However, by reconstructing volumes correspond-
ing to all particles with the trained tomoDRGN model and arranging 
them in the spatial context of the source tomogram, we observed 
groups of Gag hexamers with increased NC layer density co-clustering 
within the virus-like particles (VLPs) (Fig. 3j). We postulate that this 
VLP-level patterning of NC layer organization may reflect regions 
where the nucleic acid cargo is avidly bound by a local neighborhood  
of NC domains.

Uncovering structurally heterogeneous ribosomes in situ
As a final test, we applied tomoDRGN to the dataset EMPIAR-10499  
(ref. 27), using it to analyze heterogeneity among chloramphenicol- 
treated ribosomes imaged in the bacterium Mycoplasma pneumoniae. 
Following published STA methods27, we reproduced a reconstruction 
of the 70S ribosome at a Nyquist-limited resolution of ~3.5 Å (Fig. 4a,b).  
We subsequently extracted corresponding ribosome images from 
the aligned tilt micrographs and used this particle stack to train a 
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in a, lowpass filtered to 3.5 Å. d, Map-to-map FSC of three tomoDRGN 
homogeneous reconstructions of the particle stack in a at the indicated box and 
pixel sizes against the corresponding STA volumes. Circles denote the Nyquist 
limit for each particle stack. e, Local density maps, lowpass filtered at 3.5 Å, 
resulting from the tomoDRGN homogeneous reconstruction in c.
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homogeneous tomoDRGN model. The tomoDRGN-reconstructed 
volume recapitulated high-resolution features observed in the STA 
map including density for bulky side chains and for the bound chloram-
phenicol molecule (Fig. 4c–e), highlighting the tomoDRGN decoder 
network’s ability to accurately represent high-resolution structures in 
a dataset acquired in situ.

Encouraged by this result, we trained a heterogeneous tomoDRGN 
model on a downsampled version of the particle stack and observed 
several distinct clusters in the resulting latent space (Fig. 5a, left). Gen-
erating volumes from these populated regions of latent space revealed 
that the majority of latent encodings corresponded to 70S ribosomes, 
as expected, while one subset corresponded to 50S ribosomal subu-
nits, and another subset corresponded to apparent nonribosomal 
particles (Fig. 5a, right). The nonribosomal particles were further 
characterized by localizing them within each tomogram and provid-
ing them to RELION for ab initio reconstruction. Doing so revealed 
that these particles were predominantly false positive particle picks 
(Extended Data Fig. 4), highlighting tomoDRGN’s efficacy in sorting 
particles by structural heterogeneity even in situ. We additionally 
explored complementary filtering approaches that directly used the 
trained tomoDRGN model to generate unique volumes correspond-
ing to every particle’s latent embedding. Specifically, we computed 
either each volume’s similarity to the 70S STA map (Fig. 5b) or per-
formed PCA on the set of resulting volumes (Fig. 5c). These approaches 
produced results consistent with the clusters identified in latent 
space, highlighting the robustness of our initial latent space-based 
filtering. As we expect the performance of these latent space- and 
volume-based filtering approaches to vary on a per-dataset basis, users 
are encouraged to compare the efficacy of each approach on their  
own datasets.

Guided by the latent embeddings, we next filtered out nonribo-
somal particles and used this ‘clean’ subset to train a new heteroge-
neous tomoDRGN model. The resulting latent space and generated 
volumes revealed an array of structurally heterogeneous ribosomes 
(Fig. 5d). Prior analyses of this dataset have quantified translation 
cycle heterogeneity12, with most (~75%) particles bearing transfer 
RNA (tRNA) in the A and P sites (state 4) and a minority of particles 
with elongation factor thermo unstable (EF-Tu) bound to the A site 
with the E site either occupied by tRNA (~10%, state 2e) or unoccupied 
(~10%, state 3). We observe broadly similar decoding and peptidyl 
transfer populations, with the majority (93%) of particles adopting 
state 4, and smaller populations in state 2e (0.5%) and state 3 (6%). 
Moreover, we observed additional conformational and compositional 
heterogeneity throughout the ribosome (Supplementary Video 2). 
For example, we observed conformational changes of 16S riboso-
mal RNA (rRNA) helix 17 consistent with small subunit (SSU) rotation 
for a set of particles lacking EF-Tu in the A site. In other volumes, we 
observed pronounced motions of the L1 stalk. We also observed vol-
umes with clear density for r-proteins L7/L12 in the expected 1:4 ratio 
of L10CTD:L7NTD/L12NTD dimer of dimers, which was notable, as this struc-
tural element is often unresolved in cryo-EM density maps53,54, likely 
due to its dynamic nature and L7/L12’s ability to exchange off of the 
particle during purification55. Observing this structure highlighted 
tomoDRGN’s ability to identify low-abundance classes and emphasized 
the promise of purification-free in situ structural analyses afforded by  
cryo-ET.

We next applied MAVEn8,9, which has previously been used to 
systematically interrogate the structural heterogeneity of volume 
ensembles guided by atomic models. Here, we observed a broadly 
uniform distribution of occupancies for all queried structural elements 
(that is, rRNA helices and r-proteins), with a notable exception of the 
50S particle block, which lacks occupancy for any SSU structural ele-
ments but is largely unfeatured in LSU structural elements (Fig. 5e), 
which led us to conclude that compositionally heterogeneous assembly 
intermediates are rare in this sample.

Exploring intermolecular heterogeneity in situ
A grand promise of in situ cryo-ET is its potential to structurally char-
acterize interactions between individual macromolecular complexes 
and their local environment27,56. We hypothesized that tomoDRGN 
might perform well in this regard, specifically if provided images 
cropped loosely to the particle of interest. Indeed, our initial analy-
sis revealed volume classes containing apparent intermolecular 
density truncated by the extracted box borders (Fig. 5d, green vol-
ume). To test tomoDRGN’s ability to analyze intercomplex structural 
heterogeneity, we extracted each ribosomal particle at a larger box 
size, effectively surveying the molecular neighborhood of each ribo-
some in the imaged cell. Training a new ‘intermolecular’ tomoDRGN 
model with these images revealed a similarly featured latent space 
with correspondingly diverse volumes (Fig. 6a). Many of the struc-
tures appeared to be disomes and trisomes, as previously reported12, 
with measures of interparticle distance and angular distribution to 
each ribosome’s nearest neighbor consistent with this interpretation 
(Fig. 6b). Detailed inspection of these particles revealed instances of 
disomes bearing resolved messenger RNA (mRNA) density bridging 
the particles (Extended Data Fig. 5 and Methods). Notably, in a subset 
of such cases, the ribosomes adopted a relative orientation stereotypi-
cal of stalled or collided particles, and each such particle bore addi-
tional density on the bridging mRNA at a location recently reported 
to be targeted by an RNase associated with the stalled ribosome  
rescue pathway57.

When analyzing particles using the intermolecular tomoDRGN 
model, we additionally observed a ribosome structure previously 
unreported in this dataset with additional density correspond-
ing to a lipid bilayer (Fig. 6a). We mapped this set of apparently 
membrane-associated ribosomes to their original tomograms and 
observed that they exclusively corresponded to particles at the 
cell’s surface (Fig. 6d). To identify residual heterogeneity within this 
group, we trained a new tomoDRGN model on this particle subset and 
observed a relatively unfeatured latent space, with the majority (~80%, 
as quantified by MAVEn) of sampled volumes bearing a flexible extra-
cellular density protruding from the membrane (Fig. 6e). Notably, we 
observed substantial motion between the ribosome and the adjacent 
membrane, indicating that the ribosome was not held in rigid align-
ment with the membrane and holotranslocon during translocation 
(Supplementary Video 3). Traditional STA on this extracellular-positive 
subpopulation of ribosomes further resolved the extracellular density 
as well as smaller arches of density connecting the ribosome to the 
membrane (Fig. 6f and Extended Data Fig. 6c). Rigid body docking 
using atomic models of likely transmembrane protein complexes 
into this density supported the presence of SecDF, a subcomplex of 
the Sec holotranslocon with a relatively large extracellular globular 
domain encoded by M. pneumoniae (Fig. 6f). This result highlighted 
the efficacy of tomoDRGN’s iterative particle curation and refinement 
approach in unveiling new structures buried in highly heterogeneous  
in situ datasets.

Discussion
In this work, we introduce tomoDRGN, which is a neural network 
framework capable of simultaneously modeling compositional and 
conformational heterogeneity from cryo-ET data on a per-particle 
basis. TomoDRGN achieves this using a bespoke deep learning archi-
tecture and numerous accelerations designed to exploit redundan-
cies inherent to cryo-ET data collection. We note that several analyses 
explored in this study were originally tested with cryoDRGN4. However, 
cryoDRGN ultimately did not match tomoDRGN’s performance on 
cryo-ET data as it incorrectly classified simulated data, predominantly 
learned nonbiological structural heterogeneity and produced highly 
variable latent embeddings and volumes for different tilt images of 
the same particle (Extended Data Figs. 7–9), ultimately motivating 
development of tomoDRGN. We note that an alternative approach of 
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volumetric cross-correlation (CC) between the 70S STA map and these volumes 
was calculated. Histograms of CC values are shown for volumes assigned as 70S 
(top), 50S (middle) and nonribosomal (bottom) particles as in a. c, Volumes 
from b were subjected to PCA. UMAP dimensionality reduction of the first 128 
principal components is plotted as a KDE with a scatterplot corresponding to 

assignments of 70S, 50S or nonribosomal from a superimposed. d, UMAP of 
tomoDRGN latent embeddings (n = 20,981, nonribosomal particles excluded). 
Colored volumes sampled from the correspondingly colored points on the UMAP 
plot are shown with red asterisks and insets highlighting regions of notable 
structural variability. A transparent gray volume corresponding to a tomoDRGN 
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analysis9 of 500 volumes sampled from the tomoDRGN model in d plotted as a 
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corresponding to 50S and 70S particles as identified by a row-wise threshold on 
this clustermap are also shown.
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mapping single sub-tomogram volumes to single latent coordinates 
would theoretically function within the cryoDRGN framework but  
(1) would be less computationally tractable due to cubic scaling of the 
number of voxel coordinates to be evaluated per particle and (2) may be 

predisposed toward learning heterogeneity driven by missing wedge 
artifacts common to sub-tomogram volumes. Finally, during revision 
of this paper, a related approach that uses a subset of the low-tilt images 
within the cryoDRGN framework was proposed58. We expect that this 
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tomoDRGN with a docked atomic model of M. pneumoniae SecDF predicted 
using AlphaFold (A0A0H3DPH3).
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method will perform similarly to tomoDRGN when analyzing ribo-
somes, which, because of their high abundance and lack of preferred 
orientation, do not require high-tilt angle information to generate  
isotropic maps.

TomoDRGN’s data inputs, as projection images with associated 
pose and contrast transfer function (CTF) parameters, pose two poten-
tial limitations. First, inaccuracies in pose estimation during upstream 
STA processing could limit tomoDRGN reconstruction and classifica-
tion accuracy. We explored this effect on our EMPIAR-10499 unfiltered 
ribosomes by treating the poses derived through STA as ‘ground truth’ 
and progressively perturbing each particle’s rotation and translation 
to greater extents. In homogeneous reconstructions, we observed 
that tomoDRGN’s decoder-only network produced nearly equivalent 
reconstructions up to around 0.8° of rotation and a shift perturba-
tion of 0.8 Å, with greater perturbations producing progressively 
worse reconstructions (Extended Data Fig. 10a,b). Heterogeneous 
tomoDRGN models captured meaningful structural heterogeneity 
even up to 1.6° and a perturbation of 1.6 Å, particularly through PCA of 
tomoDRGN-generated volume ensembles (Extended Data Fig. 10c–e). 
The second limitation of tomoDRGN’s approach derives from the pos-
sibility for other ‘background’ signals that superimpose with a particle’s 
projection at particular stage-tilt angles, potentially misdirecting the 
latent encoding for this particle. We expect that such superimposition 
is common, particularly for in situ samples. However, tomoDRGN’s 
random tilt subsampling per particle decreases the likelihood that 
multiple images bearing the same confounding signal will be sampled 
and encoded in the same pass. Additionally, tomoDRGN’s pooling of 
intermediate latent encodings in encoder B adds further robustness 
against a minor fraction of such images. Indeed, we observed that 
volumes of a particular class co-localize in the structured latent space 
and produce similar volumes, even for in situ data (Fig. 5a–c), and we 
note that such robustness has been similarly observed in EMAN2’s use 
of 2D tilt images for STA refinement28.

An additional consideration for prospective users is the types of 
particles to which tomoDRGN is best suited. As with most SPA and STA 
tools, we expect that tomoDRGN will perform best with large, abundant 
particles. The analyses of experimental data presented here have typi-
cally used between 15,000 and 25,000 particles of mass ranging from 
~200 kDa to 2.5 MDa. In a notable exception (Fig. 6e), however, we dem-
onstrated that as few as 482 ribosomes were sufficient to train de novo 
a tomoDRGN model capable of distinguishing the presence or absence 
of SecDF. While most SPA and STA tools can employ symmetry-based 
averaging to further increase the effective particle count, tomoDRGN’s 
decoder module is best suited to particles posed in C1, and we there-
fore recommend symmetry relaxation or expansion of symmetric 
complexes before tomoDRGN analysis. In all demonstrated analyses, 
the input particles were aligned by STA without imposed symmetry to 
resolutions of ~4 Å, and, while such resolutions will enable the greatest 
insights from tomoDRGN, we also often use tomoDRGN substantially 
earlier in data processing to aid upstream particle filtering and guide 
general particle classification.

Other tools to explore conformational heterogeneity from a 
cryo-ET dataset have been recently introduced17,19,29,33,34,35. However, 
they each rely on some degree of imposed prior structural knowl-
edge, either in the form of ‘mass conservation’ to describe continuous 
changes from a consensus structure, which is often derived from a pro-
vided atomic model33,34; assumptions of linear relationships between 
structures29; or the assertion that a small number of discrete structures 
exist17. By contrast, tomoDRGN’s approach provides a greater degree of 
generality, which we have found enables a largely unsupervised analysis 
of datasets with highly complex combinations of compositional and 
continuous conformational heterogeneity. Given the extent of struc-
tural heterogeneity observed with cryoDRGN in single-particle datasets 
using purified samples59,60, we expect tomoDRGN to uncover similar 
structural variation within a rapidly expanding set of samples imaged 

in situ with cryo-ET. For tomoDRGN, as with all of these heterogeneity 
analysis tools, we emphasize that observed structural variation should 
be validated, including by reconstruction of the particles bearing the 
structural feature of interest by an alternative approach (for example, 
weighted back projection), by comparison with known biology and, 
ideally, by orthogonal experimental approaches.

As is true with other STA processing pipelines, we expect that 
using tomoDRGN to reanalyze particle stacks at different spatial scales 
(that is, different real-space box sizes) will prove useful in correlating 
intramolecular structural changes with adjacent macromolecules 
(Extended Data Fig. 5). Of particular note, leveraging tomoDRGN’s 
expressivity to generate a unique 3D volume corresponding to each 
particle’s latent embedding enables users to populate low-SNR cel-
lular tomograms with individualized density maps at approximately 
nanometer resolution and explore the resultant spatial distributions 
of heterogeneous structures. Here, we used this approach to resolve 
meso-scale patterning of NC layer organization among Gag hexamers 
(Fig. 3j) and to directly identify disomes in situ (Extended Data Fig. 5a,b).  
By combining multiscale analysis and tomoDRGN’s per-particle volume 
generation, we were able to further identify distinct structural classes 
of these disomes, including direct visualization of mRNA threading 
within and between individualized monosome structures (Extended 
Data Fig. 5c–f and Supplementary Video 4).

Finally, the analyses enabled by tomoDRGN are inherently iterable. 
Our initial tomoDRGN analysis of EMPIAR-10499 revealed a population 
of nonribosomal particles that we had failed to filter with traditional 
classification-based approaches. Excluding such particles and retrain-
ing at multiple spatial scales resolved intramolecular and intermolecu-
lar structural heterogeneity, and retraining exclusively on a subset of 
membrane-associated ribosomes identified extracellular density that 
likely corresponded to the SecDF subcomplex. Given that tomoDRGN 
has the potential to identify many such distinct classes, we encourage 
users to embrace this branching and iterative approach. Some recently 
introduced software packages27,61 explicitly support such ‘molecular 
sociology’ where co-refinement of multiple distinct structures derived 
from a common data source globally enhances the quality of individual 
maps. We anticipate that tomoDRGN will form a virtuous cycle when 
interfacing with such software.
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Methods
TomoDRGN design and software implementation
General architecture. TomoDRGN is forked from cryoDRGN. Thus, we 
summarize the core aspects of the method here and direct readers to 
related cryoDRGN publications for further details4,8,39,40. Briefly, 
tomoDRGN is a VAE38 with encoder and decoder networks composed of 
multilayer perceptrons. TomoDRGN’s encoder learns a function (E) to 
map a set of j tilt images (size of D × D px) of particle i to a low-dimensional 
latent encoding zi of dimension z; that is, E ∶ ℝj×D×D → ℝz. The encoder 
multilayer perceptron comprises two subnetworks that process j tilt 
images for each particle as follows. First, the 2D Hartley transform of 
each tilt image is passed separately through encoder A to produce a set 
of j intermediate encodings. These j intermediate encodings are then 
pooled and passed together through encoder B to output the particle’s 
final latent embedding zi. The pooling step concatenates intermediate 
encodings along the tilt image axis by default but also supports opera-
tions such as ‘max’ and ‘mean’, which are inherently permutation invari-
ant. All experiments presented here concatenate the intermediate 
encodings.

TomoDRGN’s decoder follows from that of cryoDRGN4 and uses a 
Gaussian featurization scheme for positional encoding in Fourier 
space62 as follows. Spatial coordinates are normalized to span [−0.5, 0.5] 
in each dimension, and a (fixed) positional encoder transforms each 
spatial coordinate to a basis set of D sinusoids with frequencies sampled 
from a scaled standard normal feat_sigma ×𝒩𝒩(0, 1)  for each spatial 
coordinate axis, where D is the box size of an input image and feat_sigma 
is set to 0.5. These positionally encoded coordinates, concatenated 
with the z–D latent coordinate, are then passed to the decoder, that is, 
in totality, D ∶ ℝ3+z → ℝ . Unless otherwise specified, models were 
trained for 50 epochs with batch size 1 (particle) using the AdamW 
optimizer with a learning rate of 0.0002 and a weight decay of 0.

Training system. Input images are modeled as 2D projections of 3D 
volumes, convolved by the CTF, with externally provided rotation, 
translation and CTF parameters. Heterogeneity among volumes is 
modeled via a continuous latent space sampled by a latent variable z 
per particle. Following standard VAE nomenclature, the latent encoding 
for a given image X is taken as the maximum a posteriori of a Gaussian 
distribution parameterized by outputs from the encoder network, μz|X  
and Xz|X , whereas the prior on the latent distribution is a standard 
normal distribution, 𝒩𝒩 (0, III). Thus, the variational encoder qξ (z|X) pro-
duces a variational approximation of the true posterior p (z|X). The 
coordinate-based decoder models structures in reciprocal space: given 
a spatial frequency k ∈ ℝ3 and a latent variable z, the decoder predicts 
the corresponding voxel intensity as pθ(V|k, z).

Applying the Fourier slice theorem63, 3D Fourier coordinates cor-
responding to 2D projection image Xi are derived by rotating a 2D lattice 
by the orientation of the volume Vi during imaging. Given a fixed latent 
coordinate sampled from qξ (zi|Xi) and the posed coordinate lattice, 
the reciprocal space image is reconstructed pixel by pixel via the 
decoder pθ(V|k, zi). The reconstructed image is then translated in plane 
and multiplied by the CTF. The negative log likelihood of the image is 
then computed as the mean squared error between the input and the 
reconstructed image. The optimization function is the sum of the image 
reconstruction error and the KL divergence of the latent encoding:

ℒ (X;ξ,Θ) = Eqξ(z|X ) (logpΘ (X|z)) − βKL(qξ(z|X )||pΘ (z)).

In this equation, the regularizing KL divergence term is weighted 
by β, which is set to 1

|z|×t×D2
, where D is the box size, t is the number of 

tilts, and |z| is the dimensionality of the latent space.

Lattice masking and reconstruction weighting. The critical 
dose is calculated for each spatial frequency using an empirical 
exposure-dependent amplitude attenuation curve derived for cryo-EM 

data43. The optimal dose is approximated to 2.51284 × (critical dose) 
as in the original study43,45. Spatial frequencies (coordinates) of a tilt 
image exceeding the corresponding optimal doses are excluded from 
decoder network evaluation and loss calculation by a lattice mask dur-
ing network training. Following error calculation of the input image 
against the reconstructed and CTF-weighted voxels, the squared dif-
ferences are weighted (1) per frequency by the exposure-dependent 
amplitude attenuation curve (a function of tilt image index and spatial 
frequency) and (2) globally by the cosine of the stage-tilt angle in radi-
ans (a function of tilt image index). This weighted reconstruction error 
is backpropagated accordingly.

Random tilt sampling. During dataset initialization, the number of tilt 
images per particle is parsed via the ‘rlnGroupName’ star file column 
using the syntax in Warp and M of ‘tomogramID_particleID’. The mini-
mal number of tilt images present for any particle (n) is then stored as 
the number of images to be sampled from each particle during network 
training and evaluation (this value also sets the input dimensionality of 
encoder B when using concatenation pooling). The value n is reported 
by tomoDRGN during training initialization, and we recommend users 
to exclude tilt series for which this value is below 11. By default, sam-
pling is performed randomly without replacement per particle, and the 
subset and ordering of sampled tilts is updated each time a particle is 
retrieved during training or evaluation.

Simulated dataset generation
Cryo-ET data simulation was performed using scripts in the cryoSRPNT 
(cryo-EM simulation of realistic particles via noise terms) GitHub 
repository. Source data for the bacterial ribosome LSU dataset were 
obtained as density maps of four assembly states of the bacterial 50S 
ribosome (classes B–E) (EMD-8440, EMD-8441, EMD-8445 and EMD-
8450, respectively)48. For the yeast ATP synthase dataset, atomic mod-
els (7TK6, 7TK7, 7TK8, 7TK9, 7TKA, 7TKB, 7TKC, 7TKD)50 were obtained 
from the Protein Data Bank (PDB). ChimeraX’s morph functionality 
was used to interpolate between each state, resulting in 400 atomic 
models smoothly sampling the conformational changes underlying 
the experimental model ensemble. Each atomic model was then con-
verted to a volume using ChimeraX’s molmap functionality at 3 Å px−1 
sampling and a resolution of 6 Å.

The ‘project3d.py’ script was used to create noiseless projections 
of each volume as follows. For the LSU dataset, 5,000 random particle 
poses were sampled over SO(3) for each volume; for the ATP synthase 
dataset, this number was 50 poses per volume. Thus, each dataset 
totals 20,000 uniquely posed particles. Each posed particle was then 
rotated following a dose-symmetric tilt series scheme from 0° to ±60° 
with 3° steps in groups of two over 41 tilts, and each tilted volume was 
projected along the z axis to create noiseless images.

The ‘acn.py’ script was used to corrupt the noiseless projections 
using a standard cryo-EM image formation model47 augmented by 
tilt series-specific subroutines as follows. First, noiseless projec-
tions were Fourier transformed, dose weighted following an empiri-
cal exposure-dependent amplitude attenuation curve at 3 e− Å−2 per 
tilt to simulate SNR decrease due to radiation damage43 and inverse 
Fourier transformed. Structural noise was added with an SNR of 1.4, 
and particles were then weighted by cosine (tilt_angle) to simulate 
SNR decrease due to increased sample thickness. Projections were 
then convolved with the 2D CTF with defocus values sampled from a 
mixture of Gaussian-distributed defoci with means between −1.5 µm 
and −3.5 µm in 0.5-µm steps and an s.d. of 0.3 µm. Other CTF param-
eters included no astigmatism; accelerating voltage, 300 kV; spherical 
aberration, 2.7 mm; amplitude contrast ratio, 0.1; and phase shift, 0°. 
Finally, shot noise was added with an SNR of 0.1, for a final SNR of 0.05, 
a level consistent with that of other simulation approaches used in the 
field4,20,22,64,65. For the LSU dataset, particle stacks of each class were 
Fourier cropped to box sizes of 256 px (3 Å px−1, bin 1), 128 px (bin 2) 
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and 64 px (bin 4). For the ATP synthase dataset, only the original 114-px 
(3 Å px−1) dataset was generated.

TomoDRGN network training and analysis of the simulated 
LSU dataset
TomoDRGN homogeneous network training was performed on the 
5,000 simulated class E particles. TomoDRGN heterogeneous net-
work training was performed on all 20,000 simulated particles from 
classes B–E. Unless otherwise specified, figures illustrate results on 
the bin 2 datasets, with network architectures summarized as nodes_
per_layer × layers as follows: 128 × 3 (encoder A), 128 × 3 (encoder B) 
and 256 × 3 (decoder). The dimensionality of the A–B intermediate 
encoding was 32, and that of the final latent encoding was 128. Each 
model was trained using dose and tilt loss weighting, dose frequency 
masking and random tilt sampling, unless specified otherwise. Clas-
sification was performed directly on the latent embeddings with k = 4 
k-means clustering as implemented in scikit-learn. The dataset’s latent 
value nearest each k-means cluster center was used to generate a 3D 
volume representative of that cluster.

TomoDRGN network training and analysis of the simulated 
ATP synthase dataset
TomoDRGN heterogeneous network training was performed on all 
20,000 simulated ATP synthase particles. The network architec-
ture, summarized as nodes_per_layer × layers, was as follows: 256 × 3 
(encoder A), 256 × 3 (encoder B) and 256 × 3 (decoder). The dimen-
sionality of the intermediate encoding was 128, and that of the final 
latent encoding was 128. The model was trained using dose and tilt 
loss weighting, dose frequency masking and random tilt sampling for 
50 epochs. Following model training, 500 latent embeddings were 
sampled via k = 500 k-means classification; volumes were generated 
at each sampled embedding using the trained tomoDRGN model and 
subjected to unmasked real-space PCA.

Sub-tomogram averaging of EMPIAR-10491 (apoferritin)
Raw tilt movie data were downloaded from EMPIAR-10491. Movies 
were aligned, and initial CTF estimation was performed in Warp66 as 
previously reported27, modified by binning movies to 1.668 Å px−1 in 
Warp. Automated patch-based tilt series alignment was performed 
using Aretomo version 1.3.4 (ref. 67). Alignment parameters were then 
used to generate tomograms at 10 Å px−1 in Warp. Template matching 
was performed in Warp using a lowpass-filtered apoferritin volume of 
40 Å generated from manually picked particles, keeping particles with a 
minimum separation of 20 Å. The top 700 of particles by figure-of-merit 
per tomogram were kept (25,900 particles). Sub-tomograms were 
extracted in Warp at 1.668 Å px−1. Ab initio model generation and 3D 
refinement were performed in RELION 3.1.3 (ref. 17) with octahedral 
symmetry applied, resulting in a reconstruction with a resolution 
of ~3.9 Å. Particles were deduplicated with a cutoff distance of 50 Å 
(removing 519 particles). RELION 3D classification was performed with 
pose alignment in C1 or O symmetry with varying numbers of classes, 
but no non-apoferritin classes were detected for removal. All particles 
were imported into M to improve tomogram-level parameters while 
taking advantage of octahedral symmetry during iterative refinement 
of particle poses, tilt geometry, image warp, volume warp and defocus, 
resulting in a reconstruction resolution of ~3.4 Å. Sub-tomograms were 
re-extracted in M at 1.668 Å px−1 for further RELION 3D refinement in 
C1, which resulted in a reconstruction resolution of 4.6 Å. These parti-
cles were imported into M in C1 and subjected to the same iterative M 
refinements to produce a final resolution map of 3.6 Å. Particles were 
then exported as image series sub-tomograms from M at 1.668 Å px−1 
and a box size of 132 px for tomoDRGN training. Particles were also 
exported as volume series sub-tomograms using M at 132 px and 
1.668 Å px−1 for generation of requisite metadata for mapping particles 
to tomogram-contextualized locations and particle re-extraction and 

filtering in M. Note that, for this dataset, this metadata was used only 
for particle re-extraction and filtering.

TomoDRGN network training on EMPIAR-10491 (apoferritin)
TomoDRGN heterogeneous network training was performed on all 
25,381 apoferritin particles. The network architecture was as follows: 
256 × 3 (encoder A), 256 × 3 (encoder B) and 256 × 3 (decoder). The 
dimensionality of the intermediate encoding was 128, and that of the 
final latent encoding was 128. The model was trained using dose and 
tilt loss weighting, dose frequency masking and random tilt sampling 
for 15 epochs. Following model training, 100 latent embeddings were 
sampled via k = 100 k-means classification; volumes were generated 
at each sampled embedding using the trained tomoDRGN model 
and visually classified into apoferritin, holoferritin or junk particles.  
A randomly selected representative of each class is shown in Fig. 3c. 
The M volume series sub-tomogram star file was filtered according 
to tomoDRGN classification indices for new multispecies population 
creation and further iterative C1 refinement in M.

Sub-tomogram averaging of EMPIAR-10164 (HIV Gag capsid 
CA layer)
Processing broadly followed the walkthrough guide provided at  
https://teamtomo.org. Raw tilt movie data for the standard subset 
of five tilt series used in benchmarking cryo-ET software were down-
loaded from EMPIAR-10164. Movies were aligned, and initial CTF esti-
mation was performed in Warp66. Automated fiducial-based tilt series 
alignment was performed using ‘dautoalign4warp’ (ref. 68) within 
the Dynamo package running in a MATLAB environment19. Tomo-
grams were reconstructed in Warp at 10 Å px−1. Dynamo was used to 
oversample manually annotated spherical lattices corresponding 
to each VLP, and subsequent spherical lattice geometry filtering was 
applied to filter particles. An initial model was generated and refined 
in Dynamo, and duplicate particles from oversampling were removed 
(keeping n = 18,325 particles). Sub-tomograms were extracted in Warp 
at 5 Å px−1 for 3D refinement performed in RELION 3.1 (ref. 17) with 
C6 symmetry applied. Sub-tomogram extraction and RELION refine-
ment were repeated at 1.6 Å px−1 with C6 symmetry (a resolution of 
~4.2 Å was achieved). All particles were imported into M to improve 
tomogram-level parameters while taking advantage of C6 symmetry 
during iterative refinement of particle poses, tilt geometry, image 
warp, volume warp, defocus, Zernike orders 2–5 and tilt movies  
(a resolution of ~3.3 Å was achieved). Sub-tomograms were re-extracted 
in M at 1.6 Å px−1 for further RELION 3D refinement in C1 via symme-
try relaxation (a resolution of~4.8 Å was achieved). The final 18,325 
particles were imported into M and subjected to the same iterative M 
refinements to produce a map of 3.9 Å. Particles were then exported 
as image series sub-tomograms from M at 1.6 Å px−1 and a box size of 
128 px for tomoDRGN training. Particles were also exported as volume 
series sub-tomograms using M at 64 px and 3.2 Å px−1 for generation of 
requisite metadata for mapping particles to tomogram-contextualized 
locations and particle re-extraction and filtering in M.

TomoDRGN network training on EMPIAR-10164 (HIV Gag 
capsid CA layer)
TomoDRGN heterogeneous network training was performed on all 
18,325 Gag hexamers. The network architecture was as follows: 256 × 3 
(encoder A), 256 × 3 (encoder B) and 256 × 3 (decoder). The dimen-
sionality of the intermediate encoding was 128, and that of the final 
latent encoding was 128. The model was trained using dose and tilt 
loss weighting, dose frequency masking and random tilt sampling 
for 25 epochs. Following model training, 100 latent embeddings were 
sampled via k = 100 k-means classification; volumes were generated 
at each sampled embedding using the trained tomoDRGN model and 
visually classified into Gag with only the CA layer resolved, the same 
with moderate NC layer density, the same with larger NC layer density 
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or junk particles. A randomly selected representative of each class is 
shown in Fig. 3h. Weighted back projection and lowpass filtering of the 
particles’ image series sub-tomograms were performed in tomoDRGN 
using particle classifications derived from the tomoDRGN k = 100 
classification labels.

Sub-tomogram averaging of EMPIAR-10499 ribosomes
Raw tilt movie data were downloaded from EMPIAR-10499. Movies 
were aligned, and initial CTF estimation was performed in Warp66 as 
previously reported27. Automated fiducial-based tilt series alignment 
was performed using ‘dautoalign4warp’ (ref. 68) within the Dynamo 
package running in a MATLAB environment19. Alignment parameters 
were then used to generate tomograms at 10 Å px−1 in Warp. Template 
matching was performed in Warp using a lowpass-filtered ribosome 
volume of 40 Å generated from manually picked particles, keeping 
particles with a minimum separation of 80 Å (974,804 particles). The 
top 3% of particles by figure of merit across all tomograms were kept 
(29,245 particles). Sub-tomograms were extracted in Warp at 10 Å px−1. 
Ab initio model generation and 3D refinement were performed in 
RELION 3.1 (ref. 17), resulting in a density map with Nyquist-limited 
resolution. Sub-tomograms were re-extracted in Warp at 4 Å px−1 for 
further RELION 3D refinement and 3D classification with k = 4 classes 
to remove false positive particle picks. The remaining 22,291 ribo-
somal particles were refined to a resolution of ~8.1 Å. Between each 
round of refinement and classification, particles were deduplicated in 
RELION with a cutoff distance of 80 Å (removing a total of 360 particles 
throughout processing). The final 22,291 particles were imported into 
M and processed to produce a resolution map of ~3.5 Å as reported pre-
viously27. Particles were then exported as image series sub-tomograms 
from M at several pixel and box sizes for tomoDRGN training, including 
three ‘single-ribosome-diameter’ scales: 96 px at 3.71 Å px−1, 210 px at 
1.71 Å px−1, 352 px at 1.71 Å px−1 and one ‘multiple-ribosome-diameter’ 
scale: 200 px at 3.71 Å px−1. Particles were also exported as volume 
series sub-tomograms using M at 64 px, 6 Å px−1 and 192 px, 4 Å px−1 for 
validation of tomoDRGN heterogeneity analysis with traditional STA 
tools and for generation of requisite metadata for mapping particles 
to tomogram-contextualized locations in the tomoDRGN analysis 
Jupyter notebook.

TomoDRGN network training on EMPIAR-10499 ribosomes
TomoDRGN homogeneous network training was performed on the 
22,291 image series particles extracted at each of the ‘single-ribosome- 
diameter’ image series sub-tomograms described above or on select 
subsets at 96 px and 3.71 Å px−1 for homogeneously reconstructing 
subsets of the heterogeneous population. Unless specified otherwise, 
the network architecture was 512 × 3 (decoder). Each model was trained 
using dose and tilt loss weighting, dose frequency masking and random 
tilt sampling.

TomoDRGN heterogeneous network training was performed on 
the same stack of 22,291 image series particles at a box of 96 px and 
3.71 Å px−1. Unless specified otherwise, the network architecture was 
256 × 3 (encoder A), 256 × 3 (encoder B) and 256 × 3 (decoder) with 
the dimensionality of the intermediate encoding set to 128 and that 
of the final latent encoding set to 128. Each model was trained using 
dose and tilt loss weighting, dose frequency masking and random tilt 
sampling. Classification was performed directly on the latent embed-
dings with either k = 20 (used for general visualization) or k = 100 (used 
for detailed visualization and particle filtering) k-means clustering as 
above. The dataset’s latent value nearest each k-means cluster center 
was used to generate a 3D volume representative of that cluster. Fol-
lowing exclusion of 1,310 nonribosomal particles by separation of such 
volumes from k-100 classification, the remaining 20,981 particles were 
used to train new tomoDRGN models at box sizes of 96 and 200 px with 
3.71 Å px−1 sampling. Membrane-associated ribosomes (482) identi-
fied by k-100 classification of the 200-px trained dataset were further 

isolated to train a new tomoDRGN model with the parameters noted 
as above.

Visualization and validation
Python scripts. A number of Python scripts were generated to quantify 
various properties of tomoDRGN outputs. Classification accuracy 
of tomoDRGN latent encodings learned for simulated datasets was 
evaluated by generating a confusion matrix (Fig. 2e). Classification 
reproducibility was evaluated for 100 randomly initialized classifica-
tions by calculating the adjusted Rand index (ARI)69 (Extended Data 
Fig. 7f). The ARI measures a label-permutation-invariant similarity 
between two sets of clusterings and scales from 0 (random labeling) 
to 1 (identical labeling). Here, we used the ARI to measure the similar-
ity between tomoDRGN or cryoDRGN latent clusters and the ground 
truth class labels.

Volumes generated by tomoDRGN were analyzed by either 
real-space map–map CC70 or map–map FSC metrics. Map–map FSC 
was used to assess the accuracy of a tomoDRGN homogeneous net-
work reconstruction to a reference volume, whereas map–map CC 
was used to validate consistency of volume ensembles produced by 
tomoDRGN heterogeneous networks, either to themselves or to a 
reference volume. Calculations were performed using Python scripts 
available within the tomoDRGN software. Before calculating map–map 
FSC curves, a soft mask was calculated and applied in real space. Masks 
were defined by binarizing the map at half of the 99th voxel intensity 
percentile, dilating the mask by 3 px and softening the mask using a 
falling cosine edge applied over 10 px.

Heterogeneity of a set of EMPIAR-10499 pre-filtered ribosome 
volumes generated by tomoDRGN was quantified by generating all 
volumes from the final epoch of the training’s latent values and either  
(1) calculating the map–map CC to the STA 70S map for each tomoDRGN 
volume (Fig. 5b) or (2) performing PCA on the array of all volume’s vox-
els (shape nvolumes × D3), followed by UMAP dimensionality reduction of 
the first 128 principal components (Fig. 5c).

Finally, Python scripts were used to identify each particle’s near-
est neighbor in each tomogram, calculate the distance to the nearest 
neighbor and calculate the angle to the nearest neighbor after rotating 
to the STA consensus reference frame (Fig. 6c).

Volume subset validation for EMPIAR-10499 ribosomes. Subsets 
of ribosomes from EMPIAR-10499 were identified by tomoDRGN as 
nonribosomal (n = 1,310), 50S (n = 852), 70S (n = 20,129) or associ-
ated with membrane (n = 482). Nonribosomal particles were repro-
cessed in RELION 3.1 using ab initio volume generation with k = 5 
volume classes and all other parameters at their defaults. The 50S, 
70S and membrane-associated ribosome populations were repro-
cessed in RELION 3.1 using 3D refinement against a corresponding 
real-space-cropped 70S volume lowpass filtered to 60 Å. The same 
three particle subsets were also used to train tomoDRGN homogeneous 
networks as an additional validation, with training parameters identical 
to those of the full particle stack training detailed above.

Visualization of tomoDRGN volumes in situ. The ‘subtomo2chi-
merax’ script (https://zenodo.org/record/6820119) was adapted to 
handle tomoDRGN’s unique sub-tomogram volumes per particle and 
is implemented in tomoDRGN. This script places each particle’s vol-
ume at its source location and orientation in the tomogram context 
using ChimeraX for visualization71,72. All volumes corresponding to 
EMPIAR-10164 tomogram 43 were generated by tomoDRGN at a box 
size of 32 px and 6.4 Å px−1 using latent coordinates from the tomoDRGN 
model in Fig. 3g and placed in tomogram 43 with coordinate and angle 
values extracted from the STA refinement in M. Similarly, all volumes 
corresponding to EMPIAR-10499 tomogram 00256 were generated 
by tomoDRGN at various box and pixel sizes using the corresponding 
latent coordinates from tomoDRGN models in Figs. 5d and 6a and 
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placed in tomogram 00256 with coordinate and angle values extracted 
from the STA refinement in M.

Atomic model-guided analyses of EMPIAR-10499 ribosomes
To aid interpretation of tomoDRGN density maps, atomic models of 
the 70S ribosome (PDB 7PHA, 7PHB and 4V89, which highlight the 
L7/L12 dimers) were docked into density maps as rigid bodies using 
ChimeraX. The rRNA of PDB 7PHB was segmented into distinct chains 
corresponding to rRNA helices73 following the MAVEn protocol8 for 
model-based analysis of volume ensembles (https://github.com/
lkinman/MAVEn). Translation state populations were identified by 
generating maps from the ten-state translation cycle previously iden-
tified in this dataset (PDB 7PAH, 7PAI, 7PAJ, 7PAK, 7PAL, 7PAM, 7PAN, 
7PAO, 7PAQ, 7PAR) at a resolution of 8 Å, aligning with the consensus 
EMPIAR-10499 70S STA reconstruction and calculating the best-scoring 
state by map–map CC for each of the 20,981 ribosomal volumes gener-
ated by tomoDRGN. The predicted atomic model for M. pneumoniae 
SecDF was downloaded from AlphaFold (A0A0H3DPH3) and docked 
into the membrane-associated ribosome STA map in ChimeraX as a 
rigid body. Other genes encoding components of the canonical Sec hol-
otranslocon and oligosaccharyltransferases were either absent in the 
M. pneumoniae genome or lacked the observed extracellular domain.

CryoDRGN network training on simulated LSU and 
EMPIAR-10499 ribosome datasets
CryoDRGN version 0.3.4 was used to train models for both the simu-
lated ribosome dataset (n = 20,000) and the unfiltered EMPIAR-10499 
dataset (n = 22,291) using corresponding simulated or STA-derived 
poses and CTF parameters. Because cryoDRGN treats each input 
image independently, each dataset was reshaped to collapse the tilt 
axis dimension, resulting in particle stacks of size n = 820,000 and 
n = 913,931, respectively. Networks were trained with architecture 
128 × 3 or 128 × 6 (encoder), latent dimensionality 8 or 128 and 256 × 3 
(decoder), as annotated. All models were trained with hyperparameters 
intended to maximize similarity to the respective tomoDRGN analysis: 
batch size of 40, Gaussian positional featurization, 50 epochs of train-
ing, automatic mixed precision enabled and all other parameters adopt-
ing default values. Latent space classification and volume sampling 
were performed as described for tomoDRGN above.

Pose perturbations of EMPIAR-10499 ribosomes
Our final RELION 3D refinement for the tomoDRGN-unfiltered stack of 
22,291 ribosomes reported an angular accuracy of 0.3° and a transla-
tional accuracy of 0.5 Å in the final iterations; thus, we titrated perturba-
tions around values of similar magnitude. Particle poses (rotation and 
translation) for these particles were extracted from the M refinement 
at a resolution of 3.5 Å described above and treated as ground truth. 
Each particle’s rotation was further rotated over an axis randomly 
sampled from the unit sphere by a magnitude (in degrees) sampled 
from a Gaussian distribution parameterized by identical mean and 
standard deviations of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 or 6.4. Each particle’s 
projection images were further translated independently in x and y by 
a shift sampled uniformly such that the average perturbation would be 
0.1 Å, 0.2 Å, 0.4 Å, 0.8 Å, 1.6 Å, 3.2 Å or 6.4 Å. This approach produced a 
total of seven datasets with increasing levels of rotation and translation 
perturbation. Each dataset was used to train a tomoDRGN homogene-
ous network (decoder architecture of 512 × 3) and a heterogeneous 
network (architectures for encoder A, encoder B and decoder of 256 × 3, 
with encoder A intermediate dimensionality and latent dimensionality 
of 128). Each model was trained using dose and tilt loss weighting, dose 
frequency masking and random tilt sampling for 50 epochs.

Performance benchmarking
All tomoDRGN and cryoDRGN models were trained on a cluster with 
nodes each using 2× Intel Xeon Gold 6242R CPU (3.10 GHz, 512 GB of 

RAM) and 2× Nvidia GeForce RTX 3090. Reported training times may 
in some cases be overestimates, as up to two jobs were allowed to 
train or evaluate simultaneously on the same node. TomoDRGN VRAM 
requirements are tabulated in Supplementary Tables 1–4. TomoDRGN 
training and analysis requires sufficient disk storage to hold extracted 
particle stacks (around 50 GB for a 20,000-particle dataset with 41 tilts 
per particle extracted with a 128-px box). We recommend that worksta-
tions running tomoDRGN have ~1.5× the particle stack’s size on disk in 
available RAM for most performant execution, although this can be 
circumvented if needed with the ‘--lazy’ flag. Finally, as total time spent 
performing tomoDRGN analysis will vary tremendously based on the 
extent of training, tomoDRGN model analysis and iterative process-
ing, the wall clock times tabulated in Supplementary Tables 1–4 are 
intended only to guide data processing choices.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Extracted particle sub-tomograms from reprocessing of EMPIAR-10499 
have been deposited under EMPIAR-11843. Requisite EMDB volumes 
and PDB models to generate synthetic data using cryoSRPNT as 
described in Methods are deposited at https://zenodo.org/doi/10.5281/
zenodo.10076628. The trained models, latent embeddings and particle 
classifications used to analyze all datasets presented have been depos-
ited at https://zenodo.org/doi/10.5281/zenodo.10076628 for simulated 
datasets and at https://zenodo.org/doi/10.5281/zenodo.10093310 for 
experimental datasets. Maps corresponding to C1 holoferritin and C1 
apoferritin from EMPIAR-10491 generated in M have been deposited 
under EMD-43285 and EMD-43286. The map of the SecDF-associated 
70S ribosome from EMPIAR-10499 generated in RELION has been 
deposited under EMD-43287. Source data are provided with this paper.

Code availability
TomoDRGN source code, installation instructions and example usage 
are available at https://github.com/bpowell122/tomodrgn. Version 
0.2.2 was used in this study. Scripts used to generate simulated data 
are available at https://github.com/bpowell122/cryoSRPNT. Version 
0.1.0 was used in this study.

References
62.	 Tancik, M. et al. Fourier features let networks learn high  

frequency functions in low dimensional domains. In Advances 
in Neural Information Processing Systems 7537–7547 (NeurIPS, 
2020).

63.	 Bracewell, R. N. Strip integration in radio astronomy. Aust. J. Phys. 
9, 198–217 (1956).

64.	 Moebel, E. et al. Deep learning improves macromolecule 
identification in 3D cellular cryo-electron tomograms. Nat. 
Methods 18, 1386–1394 (2021).

65.	 Luo, Z., Ni, F., Wang, Q. & Ma, J. OPUS-DSD: deep structural 
disentanglement for cryo-EM single-particle analysis. Nat. 
Methods 20, 1729–1738 (2023).

66.	 Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data 
preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

67.	 Zheng, S. et al. AreTomo: an integrated software package 
for automated marker-free, motion-corrected cryo-electron 
tomographic alignment and reconstruction. J. Struct. Biol. X 6, 
100068 (2022).

68.	 Burt, A., Gaifas, L., Dendooven, T. & Gutsche, I. A flexible 
framework for multi-particle refinement in cryo-electron 
tomography. PLoS Biol. 19, e3001319 (2021).

69.	 Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 
(1985).

http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7PHA/pdb
https://doi.org/10.2210/pdb7PHB/pdb
https://doi.org/10.2210/pdb4V89/pdb
https://doi.org/10.2210/pdb7PHB/pdb
https://github.com/lkinman/MAVEn
https://github.com/lkinman/MAVEn
https://doi.org/10.2210/pdb7PAH/pdb
https://doi.org/10.2210/pdb7PAI/pdb
https://doi.org/10.2210/pdb7PAJ/pdb
https://doi.org/10.2210/pdb7PAK/pdb
https://doi.org/10.2210/pdb7PAL/pdb
https://doi.org/10.2210/pdb7PAM/pdb
https://doi.org/10.2210/pdb7PAN/pdb
https://doi.org/10.2210/pdb7PAO/pdb
https://doi.org/10.2210/pdb7PAQ/pdb
https://doi.org/10.2210/pdb7PAR/pdb
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://alphafold.ebi.ac.uk/entry/A0A0H3DPH3
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://www.ebi.ac.uk/empiar/EMPIAR-11843/
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10093310
https://www.ebi.ac.uk/empiar/EMPIAR-10491/
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43285
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43286
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43287
https://github.com/bpowell122/tomodrgn
https://github.com/bpowell122/cryoSRPNT


Nature Methods

Article https://doi.org/10.1038/s41592-024-02210-z

70.	 Afonine, P. V. et al. New tools for the analysis and validation of 
cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol. 
74, 814–840 (2018).

71.	 Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for 
researchers, educators, and developers. Protein Sci. 30, 70–82 
(2021).

72.	 Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges 
in visualization and analysis. Protein Sci. 27, 14–25 (2018).

73.	 Petrov, A. S. et al. Secondary structures of rRNAs from all three 
domains of life. PLoS ONE 9, e88222 (2014).

Acknowledgements
We thank L. Kinman and E. Zhong for helpful discussion and the 
MIT-IBM Satori team and the MIT SuperCloud and Lincoln Laboratory 
Supercomputing Center for HPC computing resources and support. 
This work was supported by NIH grants R01-GM144542 (J.H.D.) and 
5T32-GM007287 (B.M.P.), NSF-CAREER grant 2046778 (J.H.D.) and 
awards from the Sloan Foundation (J.H.D.) and the MIT Jameel Clinic 
(J.H.D.). The funders had no role in study design, data collection and 
analysis, decision to publish or preparation of the paper.

Author contributions
B.M.P. and J.H.D. conceived the work. B.M.P. implemented the 
tomoDRGN method. B.M.P. and J.H.D. designed experiments.  

B.M.P. performed and analyzed experiments. B.M.P. and J.H.D. wrote 
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41592-024-02210-z.

Supplementary information The online version contains 
supplementary material available at https://doi.org/10.1038/s41592-
024-02210-z.

Correspondence and requests for materials should be addressed to 
Barrett M. Powell or Joseph H. Davis.

Peer review information Nature Methods thanks the anonymous 
reviewers for their contribution to the peer review of this work.  
Peer reviewer reports are available. Primary Handling Editor:  
Arunima Singh, in collaboration with the Nature Methods team.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
http://www.nature.com/reprints


Nature Methods

Article https://doi.org/10.1038/s41592-024-02210-z

Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Efficient model training on a weighted subset of pixels 
improves reconstruction quality and compute performance. (a) Graphical 
overview of the dose filtering scheme (applied upstream of the decoder) and 
dose and tilt weighting scheme (applied during reconstruction error calculation) 
for a single representative tilt image. Filtering: the fixed optimal exposure curve 
is used to determine which spatial frequencies will be considered as a function 
of dose; the decoder processes only Fourier lattice coordinates within this 
mask (green lattice circle). Weighting: the squared error of the reconstructed 
Fourier slice is weighted per-frequency by the exposure-dependent amplitude 
attenuation curve and per-slice by the cosine of the corresponding stage tilt 
angle, before backpropagation of the mean squared error (red arrows).  
(b) Relative weight of each tilt image assigned to a particle’s reconstruction 

error during model training as a function of spatial frequencies (x-axis), and tilt 
and dose, which are colored yellow to blue from low-to-high dose and tilt angle, 
assuming a dose symmetric tilt scheme (Hagen, Wan et al. 2017). Note that dose-
filtering is applied upstream of the illustrated reconstruction weights.  
(c) Map-map FSC of simulated class E large ribosomal subunit volumes (Davis, 
Tan et al. 2016) compared to tomoDRGN homogeneous network reconstructions 
in the presence or absence of the weighting or masking schemes at varying box 
and pixel sizes. (d) Spatial frequencies corresponding to FSC = 0.5 map-map 
correlation with the ground truth volume plotted against wall time for model 
training. (e) Final tomoDRGN reconstructed volumes (left and center) and 
ground truth volumes (right) in the presence or absence of the weighting or 
masking schemes at box and pixel sizes assessed in panels (c) and (d).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Random selection of tilts per epoch allows flexible 
and robust model training for datasets with non-uniform numbers of 
tilt-images per particle. (a) Graphical summary of a dataset with non-uniform 
numbers of tilt images per particle. Here, the minimum number of tilt images 
for any particle is 3. (b) Corresponding tomoDRGN network architecture for 
random sampling and ordering of 3 tilt images per particle. (c) Mean per-class 
volumetric correlation coefficient for identical tomoDRGN models trained 
on 41 sequentially sampled tilts (top) or 41 randomly sampled tilts (bottom). 
At 5 epoch intervals, 25 random volumes were generated from each class 
for correlation coefficient calculation to ground truth ribosome assembly 
intermediate volumes (classes B-E). Error bars denote standard error of the mean 
CC. (d) Nine tomoDRGN models with identical architectures were trained with 
the indicated number of tilts sampled per particle (total available tilts = 41).  
PCA (left) and UMAP (right) dimensionality reduction of each final epoch’s 
latent embeddings. Once trained, up to 10 randomly sampled and permuted tilt 
images for one representative particle from each volume class were embedded 
using the corresponding pretrained tomoDRGN model and are superimposed 

as colored points. Note increased dispersion of colored points as number of tilts 
sampled during training decreased. (e) For each ribosomal large subunit class 
(B-E), 25 particles were randomly selected and up to 10 subsets of their tilt images 
were randomly sampled and permuted as in (d). In the heatmap, row indices 
refer to models trained in (d) using different numbers of sampled tilts (1-41), and 
columns denote epochs of training with that model. For each particle, each tilt 
subset was evaluated with the corresponding tomoDRGN model and the ratio of 
standard deviations of each particle’s 10 latent embeddings to all particles’ latent 
embeddings was calculated. The mean ratio across all particles, which measures 
the dispersion of encoder embeddings, is plotted per ribosomal LSU class. Here, 
lower dispersion indicates better performance. (f ) Particles and tilt subsets 
were selected as in (e). At each indicated epoch of training, the corresponding 
tomoDRGN model was used to generate volumes for each particle’s tilt subsets. 
For each such volume, the correlation coefficient was calculated between 
that volume and the corresponding ground truth volume. The mean across all 
particles at each epoch for each model is shown as a heatmap per ribosomal LSU 
class. Here, higher CC indicates improved performance.
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Extended Data Fig. 3 | TomoDRGN and MAVEn identify structural variations 
within HIV Gag lattice. (a) Mask used for MAVEn-based occupancy analysis of 
NC layer density (gray, translucent). PDB: 5L93 is shown for reference, with CA-
NTD colored salmon, CA-CTD colored green, and CA-SP1 helix colored purple. 
(b) Histogram and kernel density estimate of NC layer occupancy across 500 

volumes sampled from the trained tomoDRGN model, excluding junk particles 
(see Fig. 3g). (c) Representative volumes sampling along the NC occupancy 
histogram, colored as indicated in (b). Volumes are rendered at constant 
isosurface and same pose as in (a).
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Extended Data Fig. 4 | TomoDRGN identifies non-ribosomal particles picked 
from EMPIAR-10499 tomograms. (a) Latent UMAP and corresponding sampled 
volumes from tomoDRGN heterogeneous network training from Fig. 5a. Eight 
representative non-ribosomal particles identified through manual inspection of 
k = 100 k-means clustering of latent space are rendered at a constant isosurface 

and pose. (b) Two tomograms are shown in slice view using Cube (https://github.
com/dtegunov/cube) with locations of particles labeled as non-ribosomal 
annotated within each tomogram. (c) RELION3-based multiclass (k = 5) ab initio 
sub-tomogram volume generation using particles annotated as non-ribosomal 
via tomoDRGN (n = 1,310).
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Extended Data Fig. 5 | TomoDRGN visualizes structurally heterogeneous 
disomes. (a) An EMPIAR-10499 tomogram reconstructed with tomoDRGN 
intermolecular volumes. Volumes were generated for each ribosome using the 
trained intermolecular tomoDRGN model, colored as in Fig. 6a, and positioned 
correspondingly in the source tomogram. Transparent ribosomes correspond to 
free 50S and 70S ribosomes as annotated in Fig. 6a. (b) The same tomogram as in 
panel (a) reconstructed with tomoDRGN intramolecular volumes. Volumes were 
generated for each ribosome using the trained intramolecular tomoDRGN model 
(Fig. 5d). Pairs of volumes that were colored as disomes or trisomes and that 
exhibited mutually overlapping main and adjacent monosomes when mapped 
back to the tomogram in panel (a) were combined in ChimeraX (n = 21 disomes).  

Disomes are colored by manual classification into three classes with 
representative volumes indicated with asterisks and shown in panels (c-e).  
(c) A representative tightly packed disome exhibiting continuous mRNA density 
between the two monosomes (n = 7 disomes). Density of each monosome fit by 
the indicated atomic model, excluding tRNA, mRNA, and elongation factors, has 
been removed using ChimeraX’s zone functionality (Inset). (d) A representative 
loosely packed disome exhibiting continuous mRNA density between the two 
monosomes (n = 9 disomes). Inset as in panel (c). (e) A representative  
ribosome pair with no apparent structural contact between the two monosomes 
(n = 5 disomes).
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Extended Data Fig. 6 | Comparison of tomoDRGN-generated volumes to 
traditional sub-tomogram averaged volumes. Comparison of volumes 
generated by a full tomoDRGN network (row 1), an isolated decoder neural 
network (row 2), or traditional sub-tomogram averaging (row 3). A full 
tomoDRGN network was trained on the heterogeneous ribosomal particle stack 

(row 1, n = 20,981, see Figs. 5d and 6a) and representative volumes are depicted. 
Separate tomoDRGN homogeneous decoder networks were trained on one of 
three homogeneous substacks corresponding to (a) 70S particles (n = 20,129); 
(b) 50S particles (n = 852); or (c) SecDF-positive ribosomes (n = 380). Traditional 
STA was also performed on each of these three particles stacks.

http://www.nature.com/naturemethods


Nature Methods

Article https://doi.org/10.1038/s41592-024-02210-z

Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CryoDRGN fails to consistently encode structural 
heterogeneity using a simulated tilt series dataset. (a) Schematic of two 
cryoDRGN network architectures that were tested, and the tomoDRGN 
architecture used in Fig. 2c–e. Each model was trained using the same simulated 
dataset of ribosome large subunit assembly classes B-E (Davis, Tan et al. 2016) 
consisting of 41 tilt images for each of 5,000 particles for each of the four 
assembly states and thus the dataset was treated by cryoDRGN as n = 820,000 
images (see Methods). (b) UMAP of final epoch latent embeddings of each 
particle image, with kernel density estimates independently estimated and 
plotted for each of the four ground truth assembly states. (c) UMAP of final 
epoch latent embedding with k = 4 k-means latent classification of the resulting 

latent space. KDEs were independently estimated and plotted for each of the 
four k-means classes. The predicted labels are annotated by both the k-means 
class index (0-3) and corresponding ground truth class label (B-E) of the central 
particle within each k-means class. (d) Confusion matrix of ground truth class 
labels versus k = 4 k-means latent classification. (e) Volumes sampled at the k = 4 
k-means cluster centers illustrated in (c). Volumes are annotated by the k-means 
class index and ground truth class label and colored by the ground truth class 
label. (f ) Violin plot of consistency of k = 4 k-means clustering of each model 
by Adjusted Rand Index (Hubert and Arabie 1985) (n = 100 randomly seeded 
initializations, higher values correspond to greater fidelity to ground truth 
classification).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | CryoDRGN learns errant structural heterogeneity in an 
exemplar tomographic dataset. Two cryoDRGN models (a, b) were trained on 
the unfiltered particle stack of Mycoplasma pneumoniae ribosomes from  
Fig. 5a (n = 22,291 particles, treated as n = 913,931 images). The latent space 
is shown as a KDE plot following UMAP dimensionality reduction, with k = 20 

k-means class center particles annotated (left) and corresponding volumes 
visualized (right). Note that many putative 70S particles lack density in the 
particle core. A reference 70S volume sampled from tomoDRGN’s model in Fig. 5a 
is shown in the same pose for comparison.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | CryoDRGN’s learned latent space embeddings 
exhibit undesirable correlations with tilt image index. (a) Two cryoDRGN 
models were tested on the unfiltered particle stack of Mycoplasma pneumoniae 
ribosomes from Fig. 5a. The latent space is shown as a KDE plot following UMAP 
dimensionality reduction. The latent embeddings were binned by the tilt image 

index, and the median value across each bin is annotated. (b) KDEs from panel A 
replotted after binning by tilt image index quartiles. (c) KDEs from panel A with 
annotated positions corresponding to three representative particles evaluated 
using their 5th, 15th, 25th, or 35th tilt images. (d) Volumes generated from cryoDRGN 
using the latent embeddings highlighted in panel C.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Assessment of tomoDRGN sensitivity to pose 
accuracy. (a) The unfiltered stack of EMPIAR-10499 ribosomes in situ from  
Fig. 5a was used to train a series of tomoDRGN decoder-only models with 
increasing levels of random perturbations from STA-derived, ‘ground truth’ 
rotation and translation poses (see Methods). The resulting map-map FSC 
curves against the STA ribosomal reconstruction are shown. (b) Final tomoDRGN 
decoder-only reconstructed volumes corresponding to the FSC curves shown  

in (a). Volumes are lowpass filtered to the resolution where their map-map FSC to 
the STA ribosomal reconstruction crossed 0.5. (c, d, e) UMAP of first 128 principal 
components of volume ensembles consisting of volumes generated for every 
particle, using tomoDRGN models trained on EMPIAR-10499 unfiltered ribosome 
stacks with indicated levels of pose perturbation. Particles annotated as 70S, 50S, 
and NR are colored as in Fig. 5c, with representative volumes of each class shown 
below. Note that NR particles are expected to be structurally diverse.
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