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Cryo-electron tomography (cryo-ET) enables observation of
macromolecular complexes in their native, spatially contextualized cellular
environment. Cryo-ET processing software to visualize such complexes

atnanometer resolution viaiterative alignment and averaging are well
developed but rely upon assumptions of structural homogeneity among
the complexes of interest. Recently developed tools allow for some
assessment of structural diversity but have limited capacity to represent
highly heterogeneous structures, including those undergoing continuous
conformational changes. Here we extend the highly expressive cryoDRGN
(Deep Reconstructing Generative Networks) deep learning architecture,
originally created for single-particle cryo-electron microscopy analysis, to
cryo-ET. Our new tool, tomoDRGN, learns a continuous low-dimensional
representation of structural heterogeneity in cryo-ET datasets while also
learning to reconstruct heterogeneous structural ensembles supported by
the underlying data. Using simulated and experimental data, we describe
and benchmark architectural choices within tomoDRGN that are uniquely
necessitated and enabled by cryo-ET. We additionally illustrate tomoDRGN'’s
efficacyinanalyzing diverse datasets, using it to reveal high-level
organization of humanimmunodeficiency virus (HIV) capsid complexes
assembled in virus-like particles and to resolve extensive structural
heterogeneity among ribosomesimaged in situ.

Anarray oflarge, dynamic macromolecular complexes carry out essential
cellular functions. The conformational flexibility and compositional
variability in these complexes allow cells to mount targeted molecular
responses to various stresses and stimuli. Structural biology has long
aimed to visualize these diverse structures with the goals of gaining
mechanisticinsightsintothese responses and testing hypotheses related
to macromolecular structure-functionrelationships. In pursuit of this
goal, cryo-electron microscopy (cryo-EM) has proven to be a powerful
toolforvisualizing purified complexes with high resolution'?. Incryo-EM,
~10*-10’ individual particles are imaged, each from a single unknown

projection angle. Single-particle analysis (SPA) is then used to simul-
taneously estimate the most likely projection angle for each particle
image and the k > 1distinct three-dimensional (3D) volumes of the target
complex, which, when projected to two dimensions (2D), are most likely
tohave produced the source dataset’. More recently, anumber of tools
have leveraged SPA datasets to deeply explore structural heterogeneity
within these complexes*®, dramatically expanding the range of insights
and testable biological hypotheses that can be derived from cryo-EM’.

Cryo-ETisarelated imaging modality inwhich asampleisrepeat-
edly imaged from several known projection angles, enabling the
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reconstruction of a 3D tomogram™. As such, cryo-ET disentangles
particles that overlap along any single projection axis and enables
nanometer-scale 3D visualization of highly complex samples, including
subcellular volumes. Thus, cryo-ET affords the opportunity toinspect
macromolecular structures in their native cellular context™ ™, in
contrast with cryo-EM’s typical requirement that particles be isolated
from cells and purified.

Sub-tomogram averaging (STA), a particle averaging approach
analogous to SPA, is often employed in cryo-ET data processing. In
STA, individual 3D volumes, each a sub-tomogram corresponding
to aunique particle, are extracted from the back-projected tilt series
and areiteratively aligned to produce an average particle volume with
increasedsignal-to-noise ratio (SNR) and resolution', Recent devel-
opmentsin STA processing have dramaticallyimproved the attainable
resolution through more detailed and robust modeling of physical and
optical parameters, even for in situ samples®*?. Critically, STA can
therefore offer insights into native protein complexes and generate
new hypotheses for molecular mechanisms by identifying unknown
associated factors or new complex ultrastructure. For example, STA
has very recently been employed to extensively characterize numerous
structural states of the ribosome life cycle in situ'> 430732,

Similar to SPA, several tools have been developed to characterize
heterogeneity among individual particles relative to the global aver-
age, either during or after STA''%?%**73_Although these approaches
have proven fruitful inanswering specific biological questions about,
for example, nucleosome flexibility**** and ribosome heterogene-
ity'>*, each approach has specific constraints that limit its generality.
For example, sub-tomogram principal-component analysis (PCA)*
assumes that heterogeneity can be modeled as alinear combination of
voxel intensity, normal mode analysis* requires a priori knowledge of
anatomic model or density map to compute normal modes, and opti-
cal flow* isinherently limited to conformational changes of the target
particle in which the total voxel intensity across each sub-tomogram
remains approximately constant. An unbiased and expressive tool to
analyze heterogeneity is therefore highly desirable, particularly for
insitu discovery of unexpected cofactors for which the identity, bind-
ing site and occupancy may be unknown.

Here, weintroducetomoDRGN, adeep learning framework designed
tolearnacontinuously generative model of per-particle conformational
and compositional heterogeneity from cryo-ET datasets. TomoDRGN is
related to our well-characterized cryoDRGN software*® and therefore
shares many overall design, processing and analysis philosophies. As
input,tomoDRGN uses 2D particle projectionimages and corresponding
metadatafromupstream STA tools (Fig.1a),adata type usedinanumber
of recently developed approaches®*2>**¥ It then learns to simultane-
ously embed each particle within a continuous low-dimensional latent
spaceandtoreconstruct the corresponding unique 3D volume (Fig. 1b).
We have additionally developed and integrated software tools to visu-
alize and interpret these outputs and to prepare them for subsequent
analyses with external processing software, including contextualizing
the tomoDRGN-generated volumes within the tomographic data.

Results

Network design for heterogeneous cryo-ET reconstructions
TomoDRGN was designed to efficiently train a neural network capable
of (1) embeddinga collection of particles, which are each represented by
multipleimages collected at different stage-tilt angles, intoalearned,
continuous, low-dimensional latent space informed by structural het-
erogeneity and (2) generating a 3D volume for each particle using these
embeddings. By design, cryoDRGN is unsuited for this task as it maps
individualimages to unique latent embeddings, whichis expected for
cryo-EM single-particle datasets. Thus, cryoDRGN is not constrained
to map differentially tilted images of the same particle to consistent
regions of latent space, leading to uninterpretable learned latent spaces
and generated volumes (‘Discussion’).
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Fig.1| A neural network architecture to analyze structurally heterogeneous
particlesimaged by cryo-ET. a, A typical sample and data processing workflow
to produce tomoDRGN inputs. The sample (for example, a bacterial cell) is
applied to agrid, plunge frozen and optionally thinned. A series of transmission
electron microscopy images of a target region are collected at different stage
tilts. A tomographic volume is reconstructed using weighted back projection

of alltiltimages. Instances of the target particle are identified (blue boxes) and
extracted as 3D voxel arrays. Iterative STA is used to reconstruct a consensus
density map. Per-particle 2D tiltimages are then re-extracted from the source
tilt series images, and parameters (for example, pose, defocus, etc.) estimated
from STA are associated with the images. b, TomoDRGN network architecture
and training design. Each particle’s set of tilt images are independently passed
through encoder (Enc) A and then jointly passed through encoder B, thereby
mapping all tiltimages of a particle to one embedding (z) in alow-dimensionality
latent space. The decoder network (Dec) uses the latent embedding and a
featurized voxel coordinate to decode a corresponding set of images pixel by
pixel. Note that the decoder can learn ahomogeneous structure by excluding
the encoder module (green). The network is trained using aloss function

(gray arrows) that depends on input images, reconstructed images and z (red
arrows). ¢, Graphical signposts for volumes generated or analyzed by different
reconstruction tools. These signposts are used throughout this text when
volumes are displayed to clarify how they were generated.

To handle tilt series data, we employed a variational autoencoder
(VAE) framework>® and constructed a purpose-built two-part encoder
network feeding into a coordinate-based decoder network**° (Fig.1b).
For each particle, the encoder network first uses encoder A (per tilt
image) as a ‘feature extractor’ to generate a unique intermediate
embedding for each tilt image in a manner directly analogous to that
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of cryoDRGN’s encoder network. Encoder B thenintegrates theseinter-
mediate embeddings into a single latent embedding for the particle.
The decoder network is supplied with this integrated latent embed-
ding and a featurized voxel coordinate to reconstruct the signal at
that coordinate. As in cryoDRGN, these operations are performed in
reciprocal space. With this design, we expected that repeatedly evalu-
ating the decoder network at multiple coordinates would allow for a
rasterized reconstruction of the set of tilt images originally supplied
to the encoder. Following a standard VAE*, we designed the network
to be trained by minimizing a reconstruction loss between input and
reconstructed images and a latent loss quantified by the Kullback-
Leibler (KL) divergence of the latent embedding from a standard nor-
mal distribution, with a hyperparameter § controlling the relative
contributions of these two loss terms™.

Oncetrained, we expected atomoDRGN network to enable detailed
and systematic interrogation of structural heterogeneity within the
input dataset. For example, similar to cryoDRGN, we expected that
tomoDRGN’s learned latent space could be visualized either directly
alongany sets of latent dimensions or using a dimensionality-reduction
technique such as uniform manifold approximation and projection
(UMAP)*, with which we have empirically found that distinct clusters
often correspond to compositionally heterogeneous states and dif-
fuse, unfeatured distributions correspond to continuous structural
variation®. Latent embeddings, sampled individually or following
a well-populated path in latent space, could then be passed to the
decoder to generate corresponding 3D volumes for direct visualiza-
tion. We predicted that additional analysis could then be performed
in 3D voxel space using standard cryoDRGN tools’. Finally, we further
developed methods to isolate particle subsets of interest for subse-
quentrefinement with traditional STA software (Fig. 1c) as aniterative
approach to maximize the value of atomographic dataset.

Sub-tomogram-specificimage processing approaches

Having conceived the general tomoDRGN framework, we next consid-
ered additional image processing procedures that we hypothesized
mightimprove model quality and computational performance. First,
we noted that STA software tools commonly implement weighting
schemes to model the SNR of eachimage as afunction of the image tilt
angle and of the accumulated electron dose”****, Thus, we followed
standard formulations for tilt weighting as the cosine of the stage tilt
and dose weighting using fixed exposure curves, and we incorporated
suchweightsintothe reconstruction error calculated intomoDRGN'’s
decoder network (Extended Data Fig. 1a,b). We expected that such
an approach would effectively downweigh the reconstruction loss
of highly tilted and radiation-damaged images, particularly at high
frequencies.

Second, tomoDRGN’s coordinate-based decoder is trained by
evaluating aset of spatial frequencies per tiltimage that, by default, is
identical for all tilt images and thus independent of cumulative dose
imparted at each tilt. However, prior work has shown that the SNR at
a given spatial frequency can be maximized at an optimal electron
dose* and that, during cryo-EM movie alignment, filtering spatial fre-
quenciesineach frameby their optimal dose canimprove the aligned
micrograph quality*>*%. We therefore implemented a scheme applying
optimal dose filtering to Fourier coordinates evaluated by the decoder
during model training (Extended Data Fig. 1a,b). We expected that
such filtering would restrict the set of spatial frequencies evaluated
during decoder training without sacrificing 3D reconstruction accu-
racy, thereby decreasing the computational burden of model training,
particularly for high-resolution datasets at large box sizes.

Finally, real-world datasets frequently contain particles miss-
ing some tilt images, often due to upstream micrograph filtering
(Extended Data Fig. 2a). To flexibly handle such nonuniform input
data, we implemented an approach that surveys the dataset for the
fewest tiltimages associated with asingle particle (n) and thenrandomly

sampled n tilt images from each particle during model training and
evaluation (Extended Data Fig.2b and Methods). Because this approach
subsets and permutes tilt images at random, encoder B must learn a
permutation-invariant function mapping fromencoder A’s output (per
tiltimage) to the final latent space (per particle), and we hypothesized
that this permutation-invariant learning goal might provide added
regularization that could decrease overfitting by our model.

TomoDRGN recovers simulated structural heterogeneity

To judge the efficacy of these architectural choices, we simulated*’
cryo-ET particle stacks corresponding to four assembly states (B-E)
of the bacterial ribosome large subunit (LSU)***’ (Fig. 2a). We initially
tested the ability of the isolated decoder network to performahomo-
geneous reconstruction of the class E particles on which no encoder
was trained, and no latent space was learned. We observed rapid con-
vergence of the decoder network, with it reproducing the ground truth
density maps within ten epochs of training (Fig. 2b).

To assess tomoDRGN’s ability to faithfully embed and reconstruct
structurally heterogeneous 3D volumes, we next trained the full VAE
network using particle stacks containing a mixture of all four LSU
structural classes. After training for 24 epochs, we observed four dis-
tinct clusters of latent embeddings by PCA and UMAP (Fig. 2¢). Fur-
thermore, the decoder network generated volumes fromthe center of
eachlatentcluster that were consistent with the ground truth volumes
(Fig. 2d). Finally, we quantified the fidelity of the embeddings to their
corresponding ground truth volume classes ona per-particle basis. We
observed a nearly one-to-one mapping between tomoDRGN particle
embeddings and the correct ground truth class (Fig. 2e), indicating
that the tomoDRGN network effectively learned discrete structural
heterogeneity without supervision.

We next tested whether tomoDRGN’s continuous latent represen-
tation allowed it to reconstruct continuous conformational changes.
Specifically, we applied the particle simulation approach used for the
LSU assembly dataset to a series of atomic models describing confor-
mational changes of yeast mitochondrial ATP synthase undergoing con-
tinuous ATP hydrolysis-driven rotary and bending motions (Fig. 2f)*.
After training a tomoDRGN model on this dataset, analysis of 500
tomoDRGN-generated volumes’ revealed a smooth and continuous
trajectory (Fig. 2g). Sampling volumes along this trajectory recapitu-
lated the complex combination of conformational changes presentin
the ground truth dataset (Fig. 2h and Supplementary Video 1).

Architectural choices improve tomoDRGN performance
Having tested tomoDRGN’s ability to learn compositional and confor-
mational heterogeneity, we next assessed the benefits of our afore-
mentioned reconstruction loss weighting, lattice coordinatefiltering
and random tilt sampling approaches. In applying the weighting and
filtering schemes on the homogeneous reconstruction of LSU class E
ribosomes, we observed that either schemeinisolation or both schemes
combined led to animprovement in the final resolution, presumably
dueto eachapproach’s ability to minimize the impact of lower-quality
data. Additionally, whereas all schemes decreased the wall clock runt-
imerequired to obtain the best-resolution reconstruction, the lattice
coordinate-filtering scheme led to more substantial reductions in both
wall clock runtime and graphics processing unit memory utilization
(Extended DataFig. 1c-e and Supplementary Table 1), likely due to its
wholesale exclusion of calculations with lower-quality data.

To assess the efficacy of the random sampling scheme, we com-
pared heterogeneous networks trained on the four-class LSU dataset
with and without random tilt sampling. We observed higher aver-
age volume correlation coefficients (CC) for tomoDRGN volumes
against ground truth volumes when using random sampling. Ran-
dom sampling also provided our hypothesized improved robustness
to model overfitting compared to sequential tilt sampling, as evi-
denced by the more stable and elevated average CCs during further
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Fig.2| TomoDRGN recovers compositional and conformational
heterogeneity in simulated datasets. a, lllustration of the method used to
simulate tilt series particle stacks corresponding to four assembly states (B-E)
of the bacterial large ribosomal subunit*®. b, Left: atomoDRGN homogeneous
network reconstruction of the simulated class E dataset after 50 epochs of
training using simulated images with a Nyquist resolution limit of 7.1 A. Right: FSC
between the tomoDRGN reconstruction and the ground truth volume at each
of 50 epochs of training (purple to yellow). ¢, First two principal components
(I-PC; left) and UMAP embeddings (I-UMAP; right) of tomoDRGN latent space
(I) when trained on the simulated four-class dataset, colored by k = 4 k-means
classification of latent space. d, Ground truth ribosomal volumes (top) and
corresponding tomoDRGN-reconstructed volumes (bottom) sampled from the
median latent encoding of each of the k = 4 k-means classes in c. e, Confusion

v-PC1

matrix of k-means clustering class labels from ¢ against ground truth class labels.
f, Superposition of yeast mitochondrial ATP synthase structures undergoing
conformational changes during ATP hydrolysis*. Maps are colored purple to
yellow along the simulated reaction coordinate. g, Voxel-based PCA (v-PC)° of
500 tomoDRGN-generated volumes sampled from atomoDRGN model trained
on the simulated ATP synthase dataset from f. Points corresponding to each of
the 500 tomoDRGN-generated volumes are colored according to their position
along the simulated ground truth reaction coordinate (color scale). A subset

of 30 such maps are sampled along the trajectory and outlined with a pink-to-
purple color gradient, and these maps are presented in Supplementary Video
1. h, Superposition of sixtomoDRGN-generated volumes sampled down the
continuous coordinate visualized in g and colored accordingly.

model training (Extended Data Fig. 2¢). Finally, using the random
sampling scheme, we observed an interpretable and well-featured
latent space, even when using as few as 11 of the 41 available tilt images
for each particle (Extended Data Fig.2d,e). We additionally measured
the accuracy and consistency of volumes generated from each such
latent embedding to the corresponding ground truth volume, per
particle per epoch, again observing robust performance with the
random sampling scheme (Extended Data Fig. 2f). Notably, each of
these metrics exhibited a dramatic drop in quality when only using
asingle tilt sampled per particle, consistent with the poor observed
performance of cryoDRGN'’s unconstrained approach of mapping one

image to one latent embedding being unsuitable for tilt series data
(‘Discussion’).

Combined, these strategies allowed efficient and flexible analy-
sis of diverse input datasets, and we have benchmarked tomoDRGN
performance for a range of network architectures (Supplementary
Tables 2-4). We observed that tomoDRGN performance is robust
to encoder network architecture hyperparameters and that larger
decoder networks support learning of higher-resolution features as
the expense of slower model training (Supplementary Figs.1and 2).
From these experiments, we noted that evidence of mild overfitting
remained even with tomoDRGN'’s random tilt sampling, and thus
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Fig. 3| TomoDRGN finds residual heterogeneity within primarily
homogeneous purified particles. a, Consensus STA apoferritin structure
refined with C; symmetry (EMPIAR-10491, n = 25,381 particles). b, UMAP
dimensionality reduction of tomoDRGN latent encodings from training on

the apoferritin dataset. ¢, Three volumes generated from tomoDRGN latent
encodings sampled as indicated inb and rendered in their entirety (left) or
clippedin plane (right). d, Consensus STA reconstructions of apoferritin
(n=16,576 particles, top) and iron-loaded ferritin (n = 542 particles, bottom)
from multispecies refinementin M with C; symmetry using tomoDRGN’s particle
classifications, rendered at constant isosurface as in c. e, Gold standard (GS) FSC
curves between half-maps from the final round of M refinement with C, symmetry
for unfiltered apoferritin particles (Apo-F unfilt.; blue) and filtered apoferritin
(Apo-Ffilt.; yellow) and iron-loaded ferritin particles (Holo-F filt.; green) (left).
Example of local density quality before (blue) and after (yellow) tomoDRGN

particle filtering of apoferritin particles (right). f, Consensus STAHIV Gag
structure refined with C, symmetry (EMPIAR-10164, n = 18,325 particles). g, UMAP
dimensionality reduction of tomoDRGN latent encodings from training on the
HIV Gag dataset. h, Four illustrative volumes generated from tomoDRGN latent
encodings sampled as indicated in g. Note the increasing density corresponding
to thelower NClayer in the yellow and cyan maps relative to thatin gray.

i, Weighted back-projection reconstructions of isolated structural classes using
tomoDRGN’s particle classifications (from left to right, n = 11,449 particles, 3,546
particles, 1,444 particles and 1,674 particles), rendered at constantisosurface.

Jj, An EMPIAR-10164 tomogram reconstructed with tomoDRGN. Volumes

were generated for each Gag hexamer using tomoDRGN, colored asinh,iand
positioned correspondingly in the source tomogram. Inset highlights two
representative VLPs.
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Fig. 4| TomoDRGN resolves high-resolution features from sub-tomograms
collected insitu. a, M. pneumoniae ribosomal volume obtained from traditional
STA processing (n = 22,291 particlesimaged in situ). b, Gold standard FSC

curve between half-maps for the volume shown in a. The second y axis depicts
ahistogram (hist.) of local resolution (res.) throughout the map. c, TomoDRGN
homogeneous reconstruction of the particles used for the reconstruction
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ina, lowpass filtered to 3.5 A. d, Map-to-map FSC of three tomoDRGN
homogeneous reconstructions of the particle stack ina at the indicated box and
pixel sizes against the corresponding STA volumes. Circles denote the Nyquist
limit for each particle stack. e, Local density maps, lowpass filtered at 3.5 A,
resulting from the tomoDRGN homogeneous reconstructionin c.

we encourage users to guard against such overfitting by checking
for model convergence® at regular intervals using the provided ‘
analyze_convergence’ tool.

Identifying hidden structural states in experimental datasets
We next asked how tomoDRGN would behave with experimental tomo-
graphic datasets, including those of particles expected to be structur-
ally homogeneous, such as apoferritin (EMPIAR-10491)”. Reprocessing
this dataset using standard STA approachesin C, (Methods) resulted in
a high-resolution consensus structure and the metadata required to
trainatomoDRGN model (Fig. 3a). After training such amodel, we were
surprised to observe a featured latent space (Fig. 3b) that bore three
primary structural classes: well-formed apoferritin particles (-65%);
uninterpretable maps, which likely corresponded to errant particle
picks (-33%); and a minor population of apparently iron-loaded fer-
ritin, which comprised -2% of the total particles (Fig. 3c). Isolating the
apoferritin and holoferritin particles with tomoDRGN and re-refining
each set with C; symmetry in M reproduced the structural features
identified with tomoDRGN (Fig.3d). Moreover, the apoferritin structure
refined using the tomoDRGN-filtered particle stack exhibited improved
resolution by both Fourier shell correlation (FSC) and inspection of
local density quality compared with our original particle stack’s C,
refinement (Fig. 3e).

Another class of particles frequently analyzed by STA are those that
assembleinto massive structures using alarge, semi-regular lattice. To
assess tomoDRGN performance onsuchsamples, we reprocessed the
well-characterized immature HIV capsid (CA) dataset EMPIAR-10164
with afinal symmetry relaxationstep™, recapitulating clearly resolved

CAN-terminal domain (CA-NTD) and CA C-terminal domain (CA-CTD)
layers (Fig. 3f). Training atomoDRGN model on this C, dataset revealed
alargely unfeatured latent space (Fig. 3g), with primary structural
classes varying in their organization and extent of observed density
of the nucleocapsid (NC) layer underneath the CA layers (Fig. 3h,i).
Application of MAVEn®® using a mask encompassing the presumed
location of the NC domain revealed a continuum of differentially occu-
pied NC layers, consistent with extensive flexibility of this domain
(Extended DataFig. 3). At thisresolution, we could not clearly attribute
the density seen in the NC layer to NC protein, nucleic acid used dur-
ing sample reconstitution or a combination thereof, a challenge that
others have noted*’. However, by reconstructing volumes correspond-
ing to all particles with the trained tomoDRGN model and arranging
them in the spatial context of the source tomogram, we observed
groups of Gag hexamers withincreased NC layer density co-clustering
within the virus-like particles (VLPs) (Fig. 3j). We postulate that this
VLP-level patterning of NC layer organization may reflect regions
where the nucleic acid cargois avidly bound by a local neighborhood
of NC domains.

Uncovering structurally heterogeneous ribosomes in situ

As afinal test, we applied tomoDRGN to the dataset EMPIAR-10499
(ref.27), using it to analyze heterogeneity among chloramphenicol-
treated ribosomesimaged in the bacterium Mycoplasma pneumoniae.
Following published STA methods?, we reproduced a reconstruction
ofthe 70S ribosome at a Nyquist-limited resolution of -3.5 A (Fig. 4a,b).
We subsequently extracted corresponding ribosome images from
the aligned tilt micrographs and used this particle stack to train a
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homogeneous tomoDRGN model. The tomoDRGN-reconstructed
volume recapitulated high-resolution features observed in the STA
map including density for bulky side chains and for the bound chloram-
phenicol molecule (Fig. 4c-e), highlighting the tomoDRGN decoder
network’s ability to accurately represent high-resolution structuresin
adataset acquired insitu.

Encouraged by this result, we trained a heterogeneous tomoDRGN
model on a downsampled version of the particle stack and observed
several distinct clustersin the resulting latent space (Fig. 5a, left). Gen-
erating volumes from these populated regions of latent space revealed
that the majority of latent encodings corresponded to 70S ribosomes,
as expected, while one subset corresponded to 50S ribosomal subu-
nits, and another subset corresponded to apparent nonribosomal
particles (Fig. 5a, right). The nonribosomal particles were further
characterized by localizing them within each tomogram and provid-
ing them to RELION for ab initio reconstruction. Doing so revealed
that these particles were predominantly false positive particle picks
(Extended Data Fig. 4), highlighting tomoDRGN’s efficacy in sorting
particles by structural heterogeneity even in situ. We additionally
explored complementary filtering approaches that directly used the
trained tomoDRGN model to generate unique volumes correspond-
ing to every particle’s latent embedding. Specifically, we computed
either each volume’s similarity to the 70S STA map (Fig. 5b) or per-
formed PCA onthe set of resulting volumes (Fig. 5¢). These approaches
produced results consistent with the clusters identified in latent
space, highlighting the robustness of our initial latent space-based
filtering. As we expect the performance of these latent space- and
volume-based filtering approaches to vary ona per-dataset basis, users
are encouraged to compare the efficacy of each approach on their
own datasets.

Guided by the latent embeddings, we next filtered out nonribo-
somal particles and used this ‘clean’ subset to train a new heteroge-
neous tomoDRGN model. The resulting latent space and generated
volumes revealed an array of structurally heterogeneous ribosomes
(Fig. 5d). Prior analyses of this dataset have quantified translation
cycle heterogeneity'?, with most (-75%) particles bearing transfer
RNA (tRNA) in the A and P sites (state 4) and a minority of particles
with elongation factor thermo unstable (EF-Tu) bound to the A site
with the Esite either occupied by tRNA (-10%, state 2e) or unoccupied
(-10%, state 3). We observe broadly similar decoding and peptidyl
transfer populations, with the majority (93%) of particles adopting
state 4, and smaller populations in state 2e (0.5%) and state 3 (6%).
Moreover, we observed additional conformational and compositional
heterogeneity throughout the ribosome (Supplementary Video 2).
For example, we observed conformational changes of 16S riboso-
mal RNA (rRNA) helix 17 consistent with small subunit (SSU) rotation
for a set of particles lacking EF-Tu in the A site. In other volumes, we
observed pronounced motions of the L1 stalk. We also observed vol-
umes with clear density for r-proteins L7/L12 in the expected 1:4 ratio
of L10™:L7N™/L12N™ dimer of dimers, which was notable, as this struc-
tural element is often unresolved in cryo-EM density maps®**, likely
due to its dynamic nature and L7/L12’s ability to exchange off of the
particle during purification®. Observing this structure highlighted
tomoDRGN’s ability to identify low-abundance classes and emphasized
the promise of purification-freein situ structural analyses afforded by
cryo-ET.

We next applied MAVENn®’, which has previously been used to
systematically interrogate the structural heterogeneity of volume
ensembles guided by atomic models. Here, we observed a broadly
uniform distribution of occupancies for all queried structural elements
(that is, rRNA helices and r-proteins), with a notable exception of the
50S particle block, which lacks occupancy for any SSU structural ele-
ments but is largely unfeatured in LSU structural elements (Fig. 5e),
whichled usto conclude that compositionally heterogeneous assembly
intermediates are rare in this sample.

Exploring intermolecular heterogeneity in situ

A grand promise of in situ cryo-ET is its potential to structurally char-
acterize interactions between individual macromolecular complexes
and their local environment**°, We hypothesized that tomoDRGN
might perform well in this regard, specifically if provided images
cropped loosely to the particle of interest. Indeed, our initial analy-
sis revealed volume classes containing apparent intermolecular
density truncated by the extracted box borders (Fig. 5d, green vol-
ume). To test tomoDRGN’s ability to analyze intercomplex structural
heterogeneity, we extracted each ribosomal particle at a larger box
size, effectively surveying the molecular neighborhood of each ribo-
some in the imaged cell. Training a new ‘intermolecular’ tomoDRGN
model with these images revealed a similarly featured latent space
with correspondingly diverse volumes (Fig. 6a). Many of the struc-
tures appeared to be disomes and trisomes, as previously reported”,
with measures of interparticle distance and angular distribution to
eachribosome’s nearest neighbor consistent with this interpretation
(Fig. 6b). Detailed inspection of these particles revealed instances of
disomes bearing resolved messenger RNA (mRNA) density bridging
the particles (Extended Data Fig. 5and Methods). Notably, in a subset
of such cases, theribosomes adopted arelative orientation stereotypi-
cal of stalled or collided particles, and each such particle bore addi-
tional density on the bridging mRNA at a location recently reported
to be targeted by an RNase associated with the stalled ribosome
rescue pathway”.

When analyzing particles using the intermolecular tomoDRGN
model, we additionally observed a ribosome structure previously
unreported in this dataset with additional density correspond-
ing to a lipid bilayer (Fig. 6a). We mapped this set of apparently
membrane-associated ribosomes to their original tomograms and
observed that they exclusively corresponded to particles at the
cell’s surface (Fig. 6d). To identify residual heterogeneity within this
group, wetrained anew tomoDRGN model on this particle subset and
observedarelatively unfeatured latent space, with the majority (-80%,
as quantified by MAVEn) of sampled volumes bearing a flexible extra-
cellular density protruding from the membrane (Fig. 6e). Notably, we
observed substantial motion between the ribosome and the adjacent
membrane, indicating that the ribosome was not held in rigid align-
ment with the membrane and holotranslocon during translocation
(Supplementary Video 3). Traditional STA on this extracellular-positive
subpopulation of ribosomes further resolved the extracellular density
as well as smaller arches of density connecting the ribosome to the
membrane (Fig. 6f and Extended Data Fig. 6¢). Rigid body docking
using atomic models of likely transmembrane protein complexes
into this density supported the presence of SecDF, a subcomplex of
the Sec holotranslocon with arelatively large extracellular globular
domain encoded by M. pneumoniae (Fig. 6f). This result highlighted
the efficacy of tomoDRGN's iterative particle curation and refinement
approachinunveiling new structures buried in highly heterogeneous
insitu datasets.

Discussion

In this work, we introduce tomoDRGN, which is a neural network
framework capable of simultaneously modeling compositional and
conformational heterogeneity from cryo-ET data on a per-particle
basis. TomoDRGN achieves this using a bespoke deep learning archi-
tecture and numerous accelerations designed to exploit redundan-
ciesinherenttocryo-ET data collection. We note that several analyses
explored in this study were originally tested with cryoDRGN*. However,
cryoDRGN ultimately did not match tomoDRGN'’s performance on
cryo-ET dataasitincorrectly classified simulated data, predominantly
learned nonbiological structural heterogeneity and produced highly
variable latent embeddings and volumes for different tilt images of
the same particle (Extended Data Figs. 7-9), ultimately motivating
development of tomoDRGN. We note that an alternative approach of
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Fig. 5| TomoDRGN uncovers structural heterogeneity in ribosomes imaged
insitu. a, UMAP of tomoDRGN latent embeddings (n = 22,291 particles) shown as
agray kernel density estimate (KDE), overlaid with a scatterplot depicting latent
embedding locations of large-ribosomal-subunit-only (yellow) or nonribosomal
(blue) particlesidentified via k =100 k-means classification of latent space and
manualinspection of the 100 related volumes. Representative volumes generated
from latent embeddings annotated as 70S, 50S or nonribosomal (NR) are also
depicted. b, Volumes were generated from every particle’s latent embedding, and
volumetric cross-correlation (CC) between the 70S STA map and these volumes
was calculated. Histograms of CC values are shown for volumes assigned as 70S
(top), 50S (middle) and nonribosomal (bottom) particles asina. c, Volumes

from b were subjected to PCA. UMAP dimensionality reduction of the first 128
principal componentsis plotted as a KDE with a scatterplot corresponding to

10 nm

LSuU SSuU Lsu

assignments of 70S, 50S or nonribosomal from a superimposed. d, UMAP of
tomoDRGN latent embeddings (n =20,981, nonribosomal particles excluded).
Colored volumes sampled from the correspondingly colored points on the UMAP
plotare shown with red asterisks and insets highlighting regions of notable
structural variability. A transparent gray volume corresponding to atomoDRGN
reconstruction of a70S-EF-Tu volume is provided for visual reference. e, MAVEn
analysis’ of 500 volumes sampled from the tomoDRGN model ind plotted as a
clustered heatmap with columns corresponding to proteins and rRNA structural
elements (Ward linkage, Euclidean distance) and rows corresponding to the 500
sampled volumes (Ward linkage, correlation distance). Distinct volume classes
corresponding to 50S and 70S particles as identified by a row-wise threshold on
this clustermap are also shown.
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of tomoDRGN latent embeddings (n =20,981 particles re-extracted with box size
~3x the particle radius). Colored volumes sampled from correspondingly colored
pointsin UMAP are shown.b, Violin plot of the distance from each particle in
theindicated classes fromato its nearest-neighbor ribosome. The right bound
of thexaxis corresponds to the box diameter, and the red interval on the x axis
corresponds to typical inter-ribosome distances in a prokaryotic polysome.
Mollweide projection histograms for each class highlighted ina, showing
directions to each ribosome’s nearest-neighbor ribosome, following rotation to
the consensus pose. ¢, Distribution of primary structural classes per tomogram.
Column widthis proportional to each tomogram’s particle count. Withina
column, the height of each color is proportional to the population of that
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structural class within that tomogram. Classes are colored asin a. d, Screenshot
from tomoDRGN’s interactive tomogram viewer showing all ribosomes for a
single tomogram (blue cones) with ribosomes corresponding to membrane-
associated classes further annotated as red spheres. e, UMAP of tomoDRGN
latent embeddings (n =482) of membrane-associated ribosomes. Colored
volumes are sampled from correspondingly colored pointsin latent space.
Relative occupancy of the globular extracellular density (n = 482) is plotted
as ahistogram with ared line noting a manually assigned threshold, defining
particles bearing the extracellular density (n = 380). f, STA reconstruction of
membrane-associated ribosomes bearing extracellular density identified by
tomoDRGN with a docked atomic model of M. pneumoniae SecDF predicted
using AlphaFold (AOAOH3DPH3).

mapping single sub-tomogram volumes to single latent coordinates
would theoretically function within the cryoDRGN framework but
(1) would be less computationally tractable due to cubicscaling of the
number of voxel coordinates to be evaluated per particle and (2) may be

predisposed toward learning heterogeneity driven by missing wedge
artifacts common to sub-tomogram volumes. Finally, during revision
of this paper, arelated approach that uses a subset of the low-tiltimages
within the cryoDRGN framework was proposed*®. We expect that this
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method will perform similarly to tomoDRGN when analyzing ribo-
somes, which, because of their high abundance and lack of preferred
orientation, do not require high-tilt angle information to generate
isotropic maps.

TomoDRGN'’s data inputs, as projection images with associated
pose and contrast transfer function (CTF) parameters, pose two poten-
tial limitations. First, inaccuracies in pose estimation during upstream
STA processing could limit tomoDRGN reconstruction and classifica-
tionaccuracy. We explored this effect on our EMPIAR-10499 unfiltered
ribosomes by treating the poses derived through STA as ‘ground truth’
and progressively perturbing each particle’s rotation and translation
to greater extents. In homogeneous reconstructions, we observed
that tomoDRGN’s decoder-only network produced nearly equivalent
reconstructions up to around 0.8° of rotation and a shift perturba-
tion of 0.8 A, with greater perturbations producing progressively
worse reconstructions (Extended Data Fig. 10a,b). Heterogeneous
tomoDRGN models captured meaningful structural heterogeneity
evenuptol.6°andaperturbation of 1.6 A, particularly through PCA of
tomoDRGN-generated volume ensembles (Extended Data Fig.10c-e).
The secondlimitation of tomoDRGN’s approach derives from the pos-
sibility for other ‘background’ signals that superimpose with a particle’s
projection at particular stage-tilt angles, potentially misdirecting the
latent encoding for this particle. We expect that such superimposition
is common, particularly for in situ samples. However, tomoDRGN’s
random tilt subsampling per particle decreases the likelihood that
multipleimages bearing the same confounding signal will be sampled
and encoded in the same pass. Additionally, tomoDRGN’s pooling of
intermediate latent encodings in encoder B adds further robustness
against a minor fraction of such images. Indeed, we observed that
volumes of a particular class co-localizein the structured latent space
and produce similar volumes, even for in situ data (Fig. 5a-c), and we
note thatsuchrobustness hasbeensimilarly observedinEMAN2’s use
of 2D tiltimages for STA refinement®,

An additional consideration for prospective users is the types of
particlesto whichtomoDRGN is best suited. As with most SPA and STA
tools, we expect that tomoDRGN will performbest with large, abundant
particles. The analyses of experimental data presented here have typi-
cally used between 15,000 and 25,000 particles of mass ranging from
~200 kDato 2.5 MDa.Inanotable exception (Fig. 6e), however, we dem-
onstrated that as few as 482 ribosomes were sufficient to trainde novo
atomoDRGN model capable of distinguishing the presence or absence
of SecDF. While most SPA and STA tools can employ symmetry-based
averaging to furtherincrease the effective particle count, tomoDRGN'’s
decoder module is best suited to particles posed in C,, and we there-
fore recommend symmetry relaxation or expansion of symmetric
complexes before tomoDRGN analysis. In all demonstrated analyses,
theinput particles were aligned by STA withoutimposed symmetry to
resolutions of -4 A, and, while such resolutions will enable the greatest
insights from tomoDRGN, we also often use tomoDRGN substantially
earlier in data processing to aid upstream particle filtering and guide
general particle classification.

Other tools to explore conformational heterogeneity from a
cryo-ET dataset have been recently introduced*?***3** However,
they each rely on some degree of imposed prior structural knowl-
edge, eitherinthe form of ‘mass conservation’ to describe continuous
changes froma consensus structure, whichis often derived fromapro-
vided atomic model****; assumptions of linear relationships between
structures®; or the assertion thatasmall number of discrete structures
exist”. By contrast, tomoDRGN’s approach provides agreater degree of
generality, which we have found enables alargely unsupervised analysis
of datasets with highly complex combinations of compositional and
continuous conformational heterogeneity. Given the extent of struc-
tural heterogeneity observed with cryoDRGN in single-particle datasets
using purified samples®*“°, we expect tomoDRGN to uncover similar
structural variation within arapidly expanding set of samplesimaged

insituwith cryo-ET. For tomoDRGN, as with all of these heterogeneity
analysistools, we emphasize that observed structural variation should
be validated, including by reconstruction of the particles bearing the
structural feature of interest by an alternative approach (for example,
weighted back projection), by comparison with known biology and,
ideally, by orthogonal experimental approaches.

As is true with other STA processing pipelines, we expect that
usingtomoDRGN to reanalyze particle stacks at different spatial scales
(thatis, different real-space box sizes) will prove useful in correlating
intramolecular structural changes with adjacent macromolecules
(Extended Data Fig. 5). Of particular note, leveraging tomoDRGN’s
expressivity to generate a unique 3D volume corresponding to each
particle’s latent embedding enables users to populate low-SNR cel-
lular tomograms with individualized density maps at approximately
nanometer resolution and explore the resultant spatial distributions
of heterogeneous structures. Here, we used this approach to resolve
meso-scale patterning of NC layer organization among Gag hexamers
(Fig.3j) and todirectly identify disomesinsitu (Extended DataFig.5a,b).
By combining multiscale analysis and tomoDRGN’s per-particle volume
generation, we were able to further identify distinct structural classes
of these disomes, including direct visualization of mRNA threading
within and between individualized monosome structures (Extended
DataFig. 5c-fand Supplementary Video 4).

Finally, the analyses enabled by tomoDRGN are inherently iterable.
Our initialtomoDRGN analysis of EMPIAR-10499 revealed apopulation
of nonribosomal particles that we had failed to filter with traditional
classification-based approaches. Excluding such particles and retrain-
ing at multiple spatial scales resolved intramolecular and intermolecu-
lar structural heterogeneity, and retraining exclusively on a subset of
membrane-associated ribosomes identified extracellular density that
likely corresponded to the SecDF subcomplex. Given that tomoDRGN
hasthe potential to identify many such distinct classes, we encourage
usersto embrace thisbranching anditerative approach. Somerecently
introduced software packages”*® explicitly support such ‘molecular
sociology’ where co-refinement of multiple distinct structures derived
from acommon data source globally enhances the quality of individual
maps. We anticipate that tomoDRGN will form a virtuous cycle when
interfacing with such software.
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Methods

TomoDRGN design and software implementation

General architecture. TomoDRGN s forked from cryoDRGN. Thus, we
summarize the core aspects of the method here and direct readers to
related cryoDRGN publications for further details*****°, Briefly,
tomoDRGN is a VAE*® with encoder and decoder networks composed of
multilayer perceptrons. TomoDRGN’s encoder learns a function (£) to
map aset of;jtiltimages (size of D x D px) of particle ito alow-dimensional
latent encoding z; of dimension z; that s, £ : R*P*P — RrZ, The encoder
multilayer perceptron comprises two subnetworks that process; tilt
images for each particle as follows. First, the 2D Hartley transform of
eachtiltimageis passed separately through encoder A to produce aset
of jintermediate encodings. Thesejintermediate encodings are then
pooled and passed together through encoder B to output the particle’s
final latent embedding z;. The pooling step concatenates intermediate
encodings along the tilt image axis by default but also supports opera-
tions suchas ‘max’and ‘mean’, whichare inherently permutation invari-
ant. All experiments presented here concatenate the intermediate
encodings.

TomoDRGN’s decoder follows from that of cryoDRGN* and uses a
Gaussian featurization scheme for positional encoding in Fourier
space® asfollows. Spatial coordinates are normalized to span[-0.5, 0.5]
in each dimension, and a (fixed) positional encoder transforms each
spatial coordinate to abasis set of D sinusoids with frequencies sampled
from a scaled standard normal feat_sigma x #(0,1) for each spatial
coordinate axis, where Dis the box size of an inputimage and feat_sigma
is set to 0.5. These positionally encoded coordinates, concatenated
with thez-Dlatent coordinate, are then passed to the decoder, that s,
in totality, D : R3** » R. Unless otherwise specified, models were
trained for 50 epochs with batch size 1 (particle) using the AdamW
optimizer with alearningrate of 0.0002 and a weight decay of 0.

Training system. Input images are modeled as 2D projections of 3D
volumes, convolved by the CTF, with externally provided rotation,
translation and CTF parameters. Heterogeneity among volumes is
modeled via a continuous latent space sampled by a latent variable z
per particle. Following standard VAE nomenclature, the latent encoding
for agivenimage Xis taken as the maximum a posteriori of a Gaussian
distribution parameterized by outputs from the encoder network, 1,
and Xy, whereas the prior on the latent distribution is a standard
normaldistribution, # (0,/). Thus, the variational encoder g¢ (z|X) pro-
duces a variational approximation of the true posterior p (z|X). The
coordinate-based decoder models structuresinreciprocal space: given
aspatial frequency k € R*and alatentvariable z, the decoder predicts
the corresponding voxel intensity as py(V|k, 2).

Applying the Fourier slice theorem®, 3D Fourier coordinates cor-
respondingto 2D projectionimage X;are derived by rotatinga 2D lattice
by the orientation of the volume V;during imaging. Given afixed latent
coordinate sampled from g (z;]X;) and the posed coordinate lattice,
the reciprocal space image is reconstructed pixel by pixel via the
decoder py(VIk, z;). The reconstructed image is then translated in plane
and multiplied by the CTF. The negative log likelihood of the image is
then computed as the mean squared error between the input and the
reconstructed image. The optimization functionis the sum of theimage
reconstruction error and the KL divergence of the latent encoding:

£ (X:£,0) = Egzix) (10g po (X12)) — BKL(qe(z1X)lIpo (2))-
Inthisequation, the regularizing KL divergence termis weighted

by S, which is set to - Xixm, where D is the box size, t is the number of
tilts, and |z] is the dimensionality of the latent space.

Lattice masking and reconstruction weighting. The critical
dose is calculated for each spatial frequency using an empirical
exposure-dependent amplitude attenuation curve derived for cryo-EM

data®. The optimal dose is approximated to 2.51284 x (critical dose)
as in the original study***. Spatial frequencies (coordinates) of a tilt
image exceeding the corresponding optimal doses are excluded from
decoder network evaluation and loss calculation by alattice mask dur-
ing network training. Following error calculation of the input image
against the reconstructed and CTF-weighted voxels, the squared dif-
ferences are weighted (1) per frequency by the exposure-dependent
amplitude attenuation curve (afunction of tiltimage index and spatial
frequency) and (2) globally by the cosine of the stage-tilt angle in radi-
ans (afunctionof tiltimage index). This weighted reconstruction error
is backpropagated accordingly.

Random tilt sampling. During dataset initialization, the number of tilt
images per particle is parsed via the ‘rinGroupName’ star file column
using the syntaxin Warp and M of ‘tomogramlID_particlelD’. The mini-
mal number of tiltimages present for any particle (n) is then stored as
the number of images to be sampled from each particle during network
training and evaluation (this value also sets the input dimensionality of
encoder Bwhen using concatenation pooling). The value nis reported
by tomoDRGN during training initialization, and we recommend users
to exclude tilt series for which this value is below 11. By default, sam-
plingis performed randomly without replacement per particle, and the
subset and ordering of sampled tilts is updated each time a particle is
retrieved during training or evaluation.

Simulated dataset generation

Cryo-ET datasimulation was performed using scriptsinthe cryoSRPNT
(cryo-EM simulation of realistic particles via noise terms) GitHub
repository. Source data for the bacterial ribosome LSU dataset were
obtained as density maps of four assembly states of the bacterial 50S
ribosome (classes B-E) (EMD-8440, EMD-8441, EMD-8445 and EMD-
8450, respectively)*. For the yeast ATP synthase dataset, atomic mod-
els (7TK6,7TK7,7TKS8,7TK9, 7TKA, 7TKB, 7TKC, 7TKD)*° were obtained
from the Protein Data Bank (PDB). ChimeraX’s morph functionality
was used to interpolate between each state, resulting in 400 atomic
models smoothly sampling the conformational changes underlying
the experimental model ensemble. Each atomic model was then con-
verted to a volume using ChimeraX’s molmap functionality at 3 A px™
sampling and aresolution of 6 A.

The ‘project3d.py’ script was used to create noiseless projections
of each volume as follows. For the LSU dataset, 5,000 random particle
poses were sampled over SO(3) for each volume; for the ATP synthase
dataset, this number was 50 poses per volume. Thus, each dataset
totals 20,000 uniquely posed particles. Each posed particle was then
rotated following a dose-symmetric tilt series scheme from 0° to +60°
with 3°stepsingroups of two over 41 tilts, and each tilted volume was
projected along the zaxis to create noiseless images.

The ‘acn.py’ script was used to corrupt the noiseless projections
using a standard cryo-EM image formation model*” augmented by
tilt series-specific subroutines as follows. First, noiseless projec-
tions were Fourier transformed, dose weighted following an empiri-
cal exposure-dependent amplitude attenuation curve at 3e” A2 per
tilt to simulate SNR decrease due to radiation damage* and inverse
Fourier transformed. Structural noise was added with an SNR of 1.4,
and particles were then weighted by cosine (tilt_angle) to simulate
SNR decrease due to increased sample thickness. Projections were
then convolved with the 2D CTF with defocus values sampled from a
mixture of Gaussian-distributed defoci with means between 1.5 pm
and -3.5 um in 0.5-um steps and an s.d. of 0.3 um. Other CTF param-
etersincluded no astigmatism; accelerating voltage, 300 kV; spherical
aberration, 2.7 mm; amplitude contrast ratio, 0.1; and phase shift, 0°.
Finally, shot noise was added with an SNR of 0.1, for a final SNR of 0.05,
alevel consistent with that of other simulation approaches usedin the
field*?>?>¢*%_For the LSU dataset, particle stacks of each class were
Fourier cropped to box sizes of 256 px (3 A px, bin 1), 128 px (bin 2)
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and 64 px (bin4). For the ATP synthase dataset, only the original 114-px
(3 A px) dataset was generated.

TomoDRGN network training and analysis of the simulated
LSU dataset

TomoDRGN homogeneous network training was performed on the
5,000 simulated class E particles. TomoDRGN heterogeneous net-
work training was performed on all 20,000 simulated particles from
classes B-E. Unless otherwise specified, figures illustrate results on
the bin 2 datasets, with network architectures summarized as nodes_
per_layer x layers as follows: 128 x 3 (encoder A), 128 x 3 (encoder B)
and 256 x 3 (decoder). The dimensionality of the A-B intermediate
encoding was 32, and that of the final latent encoding was 128. Each
model was trained using dose and tilt loss weighting, dose frequency
masking and random tilt sampling, unless specified otherwise. Clas-
sification was performed directly on the latent embeddings with k=4
k-means clustering asimplemented in scikit-learn. The dataset’s latent
value nearest each k-means cluster center was used to generate a 3D
volume representative of that cluster.

TomoDRGN network training and analysis of the simulated
ATP synthase dataset

TomoDRGN heterogeneous network training was performed on all
20,000 simulated ATP synthase particles. The network architec-
ture, summarized as nodes_per_layer x layers, was as follows: 256 x 3
(encoder A), 256 x 3 (encoder B) and 256 x 3 (decoder). The dimen-
sionality of the intermediate encoding was 128, and that of the final
latent encoding was 128. The model was trained using dose and tilt
loss weighting, dose frequency masking and random tilt sampling for
50 epochs. Following model training, 500 latent embeddings were
sampled via k = 500 k-means classification; volumes were generated
at each sampled embedding using the trained tomoDRGN model and
subjected to unmasked real-space PCA.

Sub-tomogram averaging of EMPIAR-10491 (apoferritin)

Raw tilt movie data were downloaded from EMPIAR-10491. Movies
were aligned, and initial CTF estimation was performed in Warp®® as
previously reported”, modified by binning movies to 1.668 A px'in
Warp. Automated patch-based tilt series alignment was performed
using Aretomo version1.3.4 (ref. 67). Alignment parameters were then
used to generate tomograms at 10 A px~'in Warp. Template matching
was performed in Warp using alowpass-filtered apoferritin volume of
40 Agenerated from manually picked particles, keeping particles with a
minimum separation of 20 A. The top 700 of particles by figure-of-merit
per tomogram were kept (25,900 particles). Sub-tomograms were
extracted in Warp at 1.668 A px .. Ab initio model generation and 3D
refinement were performed in RELION 3.1.3 (ref. 17) with octahedral
symmetry applied, resulting in a reconstruction with a resolution
of -3.9 A. Particles were deduplicated with a cutoff distance of 50 A
(removing 519 particles). RELION 3D classification was performed with
pose alignment in C, or O symmetry with varying numbers of classes,
but no non-apoferritin classes were detected for removal. All particles
were imported into M to improve tomogram-level parameters while
taking advantage of octahedral symmetry duringiterative refinement
of particle poses, tilt geometry, image warp, volume warp and defocus,
resulting inareconstruction resolution of ~3.4 A. Sub-tomograms were
re-extracted in M at 1.668 A px”* for further RELION 3D refinement in
C,, whichresultedinareconstruction resolution of 4.6 A. These parti-
cles wereimported into M in C; and subjected to the same iterative M
refinements to produce a final resolution map of 3.6 A. Particles were
then exported as image series sub-tomograms from M at 1.668 A px™
and a box size of 132 px for tomoDRGN training. Particles were also
exported as volume series sub-tomograms using M at 132 px and
1.668 A px~'for generation of requisite metadata for mapping particles
totomogram-contextualized locations and particle re-extraction and

filtering in M. Note that, for this dataset, this metadata was used only
for particle re-extraction and filtering.

TomoDRGN network training on EMPIAR-10491 (apoferritin)
TomoDRGN heterogeneous network training was performed on all
25,381 apoferritin particles. The network architecture was as follows:
256 x 3 (encoder A), 256 x 3 (encoder B) and 256 x 3 (decoder). The
dimensionality of the intermediate encoding was 128, and that of the
final latent encoding was 128. The model was trained using dose and
tiltloss weighting, dose frequency masking and random tilt sampling
for 15 epochs. Following model training, 100 latent embeddings were
sampled via k=100 k-means classification; volumes were generated
at each sampled embedding using the trained tomoDRGN model
and visually classified into apoferritin, holoferritin or junk particles.
Arandomly selected representative of each class is shown in Fig. 3c.
The M volume series sub-tomogram star file was filtered according
to tomoDRGN classification indices for new multispecies population
creation and further iterative C, refinementin M.

Sub-tomogram averaging of EMPIAR-10164 (HIV Gag capsid
CAlayer)

Processing broadly followed the walkthrough guide provided at
https://teamtomo.org. Raw tilt movie data for the standard subset
of five tilt series used in benchmarking cryo-ET software were down-
loaded from EMPIAR-10164. Movies were aligned, and initial CTF esti-
mation was performed in Warp®®. Automated fiducial-based tilt series
alignment was performed using ‘dautoalign4warp’ (ref. 68) within
the Dynamo package running in a MATLAB environment'’. Tomo-
grams were reconstructed in Warp at 10 A px™.. Dynamo was used to
oversample manually annotated spherical lattices corresponding
to each VLP, and subsequent spherical lattice geometry filtering was
applied tofilter particles. An initial model was generated and refined
inDynamo, and duplicate particles from oversampling were removed
(keeping n =18,325 particles). Sub-tomograms were extracted in Warp
at 5 A px* for 3D refinement performed in RELION 3.1 (ref. 17) with
C, symmetry applied. Sub-tomogram extraction and RELION refine-
ment were repeated at 1.6 A px™ with C, symmetry (a resolution of
-4.2 A was achieved). All particles were imported into M to improve
tomogram-level parameters while taking advantage of C, symmetry
during iterative refinement of particle poses, tilt geometry, image
warp, volume warp, defocus, Zernike orders 2-5 and tilt movies
(aresolution of -3.3 Awas achieved). Sub-tomograms were re-extracted
in M at 1.6 A px* for further RELION 3D refinement in C, via symme-
try relaxation (a resolution of-4.8 A was achieved). The final 18,325
particles were imported into M and subjected to the same iterative M
refinements to produce a map of 3.9 A. Particles were then exported
as image series sub-tomograms from M at 1.6 A px ™ and a box size of
128 px for tomoDRGN training. Particles were also exported as volume
series sub-tomograms using M at 64 pxand 3.2 A px™'for generation of
requisite metadata for mapping particles totomogram-contextualized
locations and particle re-extraction and filtering in M.

TomoDRGN network training on EMPIAR-10164 (HIV Gag
capsid CAlayer)

TomoDRGN heterogeneous network training was performed on all
18,325 Gag hexamers. The network architecture was as follows: 256 x 3
(encoder A), 256 x 3 (encoder B) and 256 x 3 (decoder). The dimen-
sionality of the intermediate encoding was 128, and that of the final
latent encoding was 128. The model was trained using dose and tilt
loss weighting, dose frequency masking and random tilt sampling
for 25epochs. Following model training, 100 latent embeddings were
sampled via k=100 k-means classification; volumes were generated
ateach sampled embedding using the trained tomoDRGN model and
visually classified into Gag with only the CA layer resolved, the same
with moderate NC layer density, the same with larger NC layer density
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or junk particles. A randomly selected representative of each class is
showninFig.3h. Weighted back projection and lowpass filtering of the
particles’image series sub-tomograms were performed intomoDRGN
using particle classifications derived from the tomoDRGN k =100
classification labels.

Sub-tomogram averaging of EMPIAR-10499 ribosomes

Raw tilt movie data were downloaded from EMPIAR-10499. Movies
were aligned, and initial CTF estimation was performed in Warp®® as
previously reported”. Automated fiducial-based tilt series alignment
was performed using ‘dautoalign4warp’ (ref. 68) within the Dynamo
package running in a MATLAB environment”. Alignment parameters
were then used to generate tomograms at 10 A px'in Warp. Template
matching was performed in Warp using a lowpass-filtered ribosome
volume of 40 A generated from manually picked particles, keeping
particles with a minimum separation of 80 A (974,804 particles). The
top 3% of particles by figure of merit across all tomograms were kept
(29,245 particles). Sub-tomograms were extracted in Warp at 10 A px .
Ab initio model generation and 3D refinement were performed in
RELION 3.1 (ref. 17), resulting in a density map with Nyquist-limited
resolution. Sub-tomograms were re-extracted in Warp at 4 A px for
further RELION 3D refinement and 3D classification with k=4 classes
to remove false positive particle picks. The remaining 22,291 ribo-
somal particles were refined to a resolution of -8.1 A. Between each
round of refinement and classification, particles were deduplicatedin
RELION with a cutoffdistance of 80 A (removing atotal of 360 particles
throughout processing). The final 22,291 particles were imported into
Mand processed to produce aresolution map of -3.5 Aasreported pre-
viously”. Particles were then exported asimage series sub-tomograms
from Mat several pixel and box sizes for tomoDRGN training, including
three ‘single-ribosome-diameter’ scales: 96 px at 3.71 A px™', 210 px at
1.71A px, 352 px at 1.71 A px' and one ‘multiple-ribosome-diameter’
scale: 200 px at 3.71 A px . Particles were also exported as volume
series sub-tomograms using Mat 64 px, 6 A px™and 192 px, 4 A px~*for
validation of tomoDRGN heterogeneity analysis with traditional STA
tools and for generation of requisite metadata for mapping particles
to tomogram-contextualized locations in the tomoDRGN analysis
Jupyter notebook.

TomoDRGN network training on EMPIAR-10499 ribosomes
TomoDRGN homogeneous network training was performed on the
22,291image series particles extracted at each of the ‘single-ribosome-
diameter’ image series sub-tomograms described above or on select
subsets at 96 px and 3.71 A px™ for homogeneously reconstructing
subsets of the heterogeneous population. Unless specified otherwise,
the network architecture was 512 x 3 (decoder). Each model was trained
using dose and tilt loss weighting, dose frequency masking and random
tilt sampling.

TomoDRGN heterogeneous network training was performed on
the same stack of 22,291 image series particles at a box of 96 px and
3.71A px%. Unless specified otherwise, the network architecture was
256 x 3 (encoder A), 256 x 3 (encoder B) and 256 x 3 (decoder) with
the dimensionality of the intermediate encoding set to 128 and that
of the final latent encoding set to 128. Each model was trained using
dose and tilt loss weighting, dose frequency masking and random tilt
sampling. Classification was performed directly on the latent embed-
dings with either k=20 (used for general visualization) or k =100 (used
for detailed visualization and particle filtering) k-means clustering as
above. The dataset’s latent value nearest each k-means cluster center
was used to generate a 3D volume representative of that cluster. Fol-
lowing exclusion of 1,310 nonribosomal particles by separation of such
volumes from k-100 classification, the remaining 20,981 particles were
used to train new tomoDRGN models at box sizes of 96 and 200 px with
3.71 A px ' sampling. Membrane-associated ribosomes (482) identi-
fied by k-100 classification of the 200-px trained dataset were further

isolated to train a new tomoDRGN model with the parameters noted
asabove.

Visualization and validation

Python scripts. Anumber of Python scripts were generated to quantify
various properties of tomoDRGN outputs. Classification accuracy
of tomoDRGN latent encodings learned for simulated datasets was
evaluated by generating a confusion matrix (Fig. 2e). Classification
reproducibility was evaluated for 100 randomly initialized classifica-
tions by calculating the adjusted Rand index (ARI)®’ (Extended Data
Fig. 7f). The ARI measures a label-permutation-invariant similarity
between two sets of clusterings and scales from O (random labeling)
to1(identical labeling). Here, we used the ARl to measure the similar-
ity between tomoDRGN or cryoDRGN latent clusters and the ground
truth class labels.

Volumes generated by tomoDRGN were analyzed by either
real-space map-map CC’° or map-map FSC metrics. Map—map FSC
was used to assess the accuracy of atomoDRGN homogeneous net-
work reconstruction to a reference volume, whereas map-map CC
was used to validate consistency of volume ensembles produced by
tomoDRGN heterogeneous networks, either to themselves or to a
reference volume. Calculations were performed using Python scripts
available within the tomoDRGN software. Before calculating map-map
FSC curves, asoft mask was calculated and applied in real space. Masks
were defined by binarizing the map at half of the 99th voxel intensity
percentile, dilating the mask by 3 px and softening the mask using a
falling cosine edge applied over 10 px.

Heterogeneity of a set of EMPIAR-10499 pre-filtered ribosome
volumes generated by tomoDRGN was quantified by generating all
volumes from the final epoch of the training’s latent values and either
(1) calculating the map-map CCto the STA 70S map for eachtomoDRGN
volume (Fig. 5b) or (2) performing PCA onthe array of all volume’s vox-
els (shape 1o umes X D), followed by UMAP dimensionality reduction of
the first 128 principal components (Fig. 5c).

Finally, Python scripts were used to identify each particle’s near-
est neighbor in each tomogram, calculate the distance to the nearest
neighbor and calculate the angle to the nearest neighbor after rotating
to the STA consensus reference frame (Fig. 6¢).

Volume subset validation for EMPIAR-10499 ribosomes. Subsets
of ribosomes from EMPIAR-10499 were identified by tomoDRGN as
nonribosomal (n=1,310), 50S (n = 852), 70S (n=20,129) or associ-
ated with membrane (n =482). Nonribosomal particles were repro-
cessed in RELION 3.1 using ab initio volume generation with k=5
volume classes and all other parameters at their defaults. The 508,
70S and membrane-associated ribosome populations were repro-
cessed in RELION 3.1 using 3D refinement against a corresponding
real-space-cropped 70S volume lowpass filtered to 60 A. The same
three particle subsets were also used to train tomoDRGN homogeneous
networks as anadditional validation, with training parametersidentical
tothose of the full particle stack training detailed above.

Visualization of tomoDRGN volumes in situ. The ‘subtomo2chi-
merax’ script (https://zenodo.org/record/6820119) was adapted to
handle tomoDRGN’s unique sub-tomogram volumes per particle and
isimplemented in tomoDRGN. This script places each particle’s vol-
ume at its source location and orientation in the tomogram context
using ChimeraX for visualization”’%, All volumes corresponding to
EMPIAR-10164 tomogram 43 were generated by tomoDRGN at a box
size of 32 pxand 6.4 A pxusing latent coordinates from the tomoDRGN
modelinFig.3gand placedintomogram 43 with coordinate and angle
values extracted from the STA refinement in M. Similarly, all volumes
corresponding to EMPIAR-10499 tomogram 00256 were generated
by tomoDRGN at various box and pixel sizes using the corresponding
latent coordinates from tomoDRGN models in Figs. 5d and 6a and
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placed intomogram 00256 with coordinate and angle values extracted
from the STA refinementin M.

Atomic model-guided analyses of EMPIAR-10499 ribosomes

To aid interpretation of tomoDRGN density maps, atomic models of
the 70S ribosome (PDB 7PHA, 7PHB and 4V89, which highlight the
L7/L12 dimers) were docked into density maps as rigid bodies using
ChimeraX. The rRNA of PDB 7PHB was segmented into distinct chains
corresponding to rRNA helices” following the MAVEnN protocol® for
model-based analysis of volume ensembles (https://github.com/
Ikinman/MAVEN). Translation state populations were identified by
generating maps from the ten-state translation cycle previously iden-
tified in this dataset (PDB 7PAH, 7PAl, 7PAJ, 7PAK, 7PAL, 7PAM, 7PAN,
7PAO, 7PAQ, 7PAR) at a resolution of 8 A, aligning with the consensus
EMPIAR-10499 70S STAreconstruction and calculating the best-scoring
state by map-map CC for each of the 20,981 ribosomal volumes gener-
ated by tomoDRGN. The predicted atomic model for M. pneumoniae
SecDF was downloaded from AlphaFold (AOAOH3DPH3) and docked
into the membrane-associated ribosome STA map in ChimeraX as a
rigid body. Other genes encoding components of the canonical Sec hol-
otransloconand oligosaccharyltransferases were either absentin the
M. pneumoniae genome or lacked the observed extracellular domain.

CryoDRGN network training on simulated LSU and
EMPIAR-10499 ribosome datasets

CryoDRGN version 0.3.4 was used to train models for both the simu-
lated ribosome dataset (n =20,000) and the unfiltered EMPIAR-10499
dataset (n=22,291) using corresponding simulated or STA-derived
poses and CTF parameters. Because cryoDRGN treats each input
image independently, each dataset was reshaped to collapse the tilt
axis dimension, resulting in particle stacks of size n=820,000 and
n=913,931, respectively. Networks were trained with architecture
128 x 3 0r128 x 6 (encoder), latent dimensionality 8 or128 and 256 x 3
(decoder), as annotated. Allmodels were trained with hyperparameters
intended to maximize similarity to the respective tomoDRGN analysis:
batchsize of 40, Gaussian positional featurization, 50 epochs of train-
ing, automatic mixed precisionenabled and all other parameters adopt-
ing default values. Latent space classification and volume sampling
were performed as described for tomoDRGN above.

Pose perturbations of EMPIAR-10499 ribosomes

Our final RELION 3D refinement for the tomoDRGN-unfiltered stack of
22,291 ribosomes reported an angular accuracy of 0.3° and a transla-
tionalaccuracy of 0.5 Ain the final iterations; thus, we titrated perturba-
tions around values of similar magnitude. Particle poses (rotationand
translation) for these particles were extracted from the M refinement
at aresolution of 3.5 A described above and treated as ground truth.
Each particle’s rotation was further rotated over an axis randomly
sampled from the unit sphere by a magnitude (in degrees) sampled
from a Gaussian distribution parameterized by identical mean and
standard deviations of 0.1, 0.2, 0.4, 0.8, 1.6, 3.2 or 6.4. Each particle’s
projectionimages were further translated independently inxand y by
ashiftsampled uniformly such that the average perturbation would be
0.1A,0.2A,0.4A,0.8A,1.6A,3.2A0r6.4 A. Thisapproach produceda
total of seven datasets with increasing levels of rotation and translation
perturbation. Each dataset was used to trainatomoDRGN homogene-
ous network (decoder architecture of 512 x 3) and a heterogeneous
network (architectures forencoder A, encoder Band decoder of 256 x 3,
withencoder Aintermediate dimensionality and latent dimensionality
of128). Each model was trained using dose and tilt loss weighting, dose
frequency masking and random tilt sampling for 50 epochs.

Performance benchmarking
All tomoDRGN and cryoDRGN models were trained on a cluster with
nodes each using 2x Intel Xeon Gold 6242R CPU (3.10 GHz, 512 GB of

RAM) and 2x Nvidia GeForce RTX 3090. Reported training times may
in some cases be overestimates, as up to two jobs were allowed to
train or evaluate simultaneously on the same node. TomoDRGN VRAM
requirements are tabulated in Supplementary Tables1-4. TomoDRGN
training and analysis requires sufficient disk storage to hold extracted
particle stacks (around 50 GB for a20,000-particle dataset with 41tilts
per particle extracted with a128-px box). We recommend that worksta-
tions running tomoDRGN have -1.5x the particle stack’s size on diskin
available RAM for most performant execution, although this can be
circumvented ifneeded with the --lazy’ flag. Finally, as total time spent
performing tomoDRGN analysis will vary tremendously based on the
extent of training, tomoDRGN model analysis and iterative process-
ing, the wall clock times tabulated in Supplementary Tables 1-4 are
intended only to guide data processing choices.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Extracted particle sub-tomograms fromreprocessing of EMPIAR-10499
have been deposited under EMPIAR-11843. Requisite EMDB volumes
and PDB models to generate synthetic data using cryoSRPNT as
describedin Methods are deposited at https://zenodo.org/doi/10.5281/
zenodo.10076628. The trained models, latent embeddings and particle
classifications used to analyze all datasets presented have been depos-
ited at https://zenodo.org/doi/10.5281/zenodo.10076628 for simulated
datasetsand at https://zenodo.org/doi/10.5281/zenodo.10093310 for
experimental datasets. Maps corresponding to C, holoferritin and C,
apoferritin from EMPIAR-10491 generated in M have been deposited
under EMD-43285 and EMD-43286. The map of the SecDF-associated
70S ribosome from EMPIAR-10499 generated in RELION has been
deposited under EMD-43287. Source data are provided with this paper.

Code availability

TomoDRGN source code, installationinstructions and example usage
are available at https://github.com/bpowell122/tomodrgn. Version
0.2.2 was used in this study. Scripts used to generate simulated data
are available at https://github.com/bpowell122/cryoSRPNT. Version
0.1.0 was used in this study.

References

62. Tancik, M. et al. Fourier features let networks learn high
frequency functions in low dimensional domains. In Advances
in Neural Information Processing Systems 7537-7547 (NeurIPS,
2020).

63. Bracewell, R. N. Strip integration in radio astronomy. Aust. J. Phys.
9, 198-217 (1956).

64. Moebel, E. et al. Deep learning improves macromolecule
identification in 3D cellular cryo-electron tomograms. Nat.
Methods 18, 1386-1394 (2021).

65. Luo, Z., Ni, F., Wang, Q. & Ma, J. OPUS-DSD: deep structural
disentanglement for cryo-EM single-particle analysis. Nat.
Methods 20, 1729-1738 (2023).

66. Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data
preprocessing with Warp. Nat. Methods 16, 1146-1152 (2019).

67. Zheng, S. et al. AreTomo: an integrated software package
for automated marker-free, motion-corrected cryo-electron
tomographic alignment and reconstruction. J. Struct. Biol. X 6,
100068 (2022).

68. Burt, A., Gaifas, L., Dendooven, T. & Gutsche, I. A flexible
framework for multi-particle refinement in cryo-electron
tomography. PLoS Biol. 19, e3001319 (2021).

69. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193-218
(1985).

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb7PHA/pdb
https://doi.org/10.2210/pdb7PHB/pdb
https://doi.org/10.2210/pdb4V89/pdb
https://doi.org/10.2210/pdb7PHB/pdb
https://github.com/lkinman/MAVEn
https://github.com/lkinman/MAVEn
https://doi.org/10.2210/pdb7PAH/pdb
https://doi.org/10.2210/pdb7PAI/pdb
https://doi.org/10.2210/pdb7PAJ/pdb
https://doi.org/10.2210/pdb7PAK/pdb
https://doi.org/10.2210/pdb7PAL/pdb
https://doi.org/10.2210/pdb7PAM/pdb
https://doi.org/10.2210/pdb7PAN/pdb
https://doi.org/10.2210/pdb7PAO/pdb
https://doi.org/10.2210/pdb7PAQ/pdb
https://doi.org/10.2210/pdb7PAR/pdb
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://alphafold.ebi.ac.uk/entry/A0A0H3DPH3
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
https://www.ebi.ac.uk/empiar/EMPIAR-11843/
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10076628
https://zenodo.org/doi/10.5281/zenodo.10093310
https://www.ebi.ac.uk/empiar/EMPIAR-10491/
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43285
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43286
https://www.ebi.ac.uk/empiar/EMPIAR-10499/
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-43287
https://github.com/bpowell122/tomodrgn
https://github.com/bpowell122/cryoSRPNT

Article

https://doi.org/10.1038/s41592-024-02210-z

70. Afonine, P. V. et al. New tools for the analysis and validation of
cryo-EM maps and atomic models. Acta Crystallogr. D Struct. Biol.
74, 814-840 (2018).

71. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for
researchers, educators, and developers. Protein Sci. 30, 70-82
(2021).

72. Goddard, T.D. et al. UCSF ChimeraX: meeting modern challenges
in visualization and analysis. Protein Sci. 27, 14-25 (2018).

73. Petroy, A. S. et al. Secondary structures of rRNAs from all three
domains of life. PLoS ONE 9, €88222 (2014).

Acknowledgements

We thank L. Kinman and E. Zhong for helpful discussion and the
MIT-IBM Satori team and the MIT SuperCloud and Lincoln Laboratory
Supercomputing Center for HPC computing resources and support.
This work was supported by NIH grants RO1-GM144542 (J.H.D.) and
5T32-GM007287 (B.M.P.), NSF-CAREER grant 2046778 (J.H.D.) and
awards from the Sloan Foundation (J.H.D.) and the MIT Jameel Clinic
(J.H.D.). The funders had no role in study design, data collection and
analysis, decision to publish or preparation of the paper.

Author contributions
B.M.P. and J.H.D. conceived the work. B.M.P. implemented the
tomoDRGN method. B.M.P. and J.H.D. designed experiments.

B.M.P. performed and analyzed experiments. B.M.P. and J.H.D. wrote
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/
s41592-024-02210-z.

Supplementary information The online version contains
supplementary material available at https://doi.org/10.1038/s41592-
024-02210-z.

Correspondence and requests for materials should be addressed to
Barrett M. Powell or Joseph H. Davis.

Peer review information Nature Methods thanks the anonymous
reviewers for their contribution to the peer review of this work.
Peer reviewer reports are available. Primary Handling Editor:
Arunima Singh, in collaboration with the Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
https://doi.org/10.1038/s41592-024-02210-z
http://www.nature.com/reprints

Article

https://doi.org/10.1038/s41592-024-02210-z

— 100 - reconstruction
a ol
8 50 1\
'8 Dec
0 t4—r 71 A
010203 f—’
1.0 4 e
>FFT frequency (1/A) = [ S
=) . ol @
g 05 - r 2
weighted MSE loss p 8
EncA = o]
A g D Ef}‘: ° E| 0.0 T T T ©
50 0 50 0.1 0.2 0.3
tilt angle (°) spatial frequency (1/A)
b
- weight, -mask + weight, - mask - weight, + mask, + weight, + mask
£ 100 1.00 1.00 1.00 40 “—
[+)) x
© 075 0.75 0.75 0.75 3
= £
2 o050 0.50 0.50 0.50 20 g
= ]
S 025 0.25 0.25 0.25 E
£ =
3 0.00 T T 1 0.00 T T 0.00 - T T 0.00 - T T 0o =
1finf 1100 1/50 1/3.3 1/inf 1100 1/50 1/3.3 1/inf 1100 1/50 1/3.3 1/inf 1100 1/50 1/3.3
spatial frequency (1/A)  spatial frequency (1/A)  spatial frequency (1/A)  spatial frequency (1/A)
¢ 6.55 Alpx, D = 64px 3.28 A/px, D = 128px 1.64 A/px, D = 256px
1.0 - E E
O 087 E E
2
o 0.6 E E
@
E_ 0.4 4 —— -weight, - mask - -1
© —— + weight, - mask
E 0.2 /| —— -weight, + mask - -
—— + weight, + mask
0.0 1 T T T T 1 T T T T T T T T T
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
spatial frequency (1/px) spatial frequency (1/px) spatial frequency (1/px)
d 6.55 A/px, D = 64px 3.28 A/px, D = 128px 1.64 A/px, D = 256px
60 - 200 1000 -
5
£ —— - weight, - mask 150 800 -
= 40 ;
o —— + weight, - mask 600
E —— - weight, + mask 100 -
% 50 4 — +weight, + mask 400
E 50 7 200 -
0 0 0 -
T 1 T 1 T 1 1 T 1 T 1 T 1 T T
00 01 02 03 04 05 00 01 02 03 04 05 00 01 02 03 04 05
map-map FSC=0.5 frequency (1/px) map-map FSC=0.5 frequency (1/px) map-map FSC=0.5 frequency (1/px)
e . ground
weight/mask
truth
+/-
3
©
8 |e
< |«
< | ©
3

Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Efficient model training on aweighted subset of pixels
improves reconstruction quality and compute performance. (a) Graphical
overview of the dose filtering scheme (applied upstream of the decoder) and
dose and tilt weighting scheme (applied during reconstruction error calculation)
for asingle representative tilt image. Filtering: the fixed optimal exposure curve
isused to determine which spatial frequencies will be considered as a function
of dose; the decoder processes only Fourier lattice coordinates within this

mask (green lattice circle). Weighting: the squared error of the reconstructed
Fourier slice is weighted per-frequency by the exposure-dependent amplitude
attenuation curve and per-slice by the cosine of the corresponding stage tilt
angle, before backpropagation of the mean squared error (red arrows).

(b) Relative weight of each tiltimage assigned to a particle’s reconstruction

error during model training as a function of spatial frequencies (x-axis), and tilt
and dose, which are colored yellow to blue from low-to-high dose and tilt angle,
assuming a dose symmetric tilt scheme (Hagen, Wan et al. 2017). Note that dose-
filtering is applied upstream of theillustrated reconstruction weights.

(c) Map-map FSC of simulated class E large ribosomal subunit volumes (Davis,
Tanetal.2016) compared to tomoDRGN homogeneous network reconstructions
inthe presence or absence of the weighting or masking schemes at varying box
and pixel sizes. (d) Spatial frequencies corresponding to FSC = 0.5 map-map
correlation with the ground truth volume plotted against wall time for model
training. (e) Final tomoDRGN reconstructed volumes (left and center) and
ground truth volumes (right) in the presence or absence of the weighting or
masking schemes at box and pixel sizes assessed in panels (c) and (d).
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Extended DataFig. 2 | Random selection of tilts per epoch allows flexible
and robust model training for datasets with non-uniform numbers of
tilt-images per particle. (a) Graphical summary of a dataset with non-uniform
numbers of tiltimages per particle. Here, the minimum number of tilt images
for any particleis 3. (b) Corresponding tomoDRGN network architecture for
random sampling and ordering of 3 tilt images per particle. (c) Mean per-class
volumetric correlation coefficient for identical tomoDRGN models trained

on 41sequentially sampled tilts (top) or 41 randomly sampled tilts (bottom).
At5epochintervals, 25 random volumes were generated from each class

for correlation coefficient calculation to ground truth ribosome assembly
intermediate volumes (classes B-E). Error bars denote standard error of the mean
CC. (d) Nine tomoDRGN models with identical architectures were trained with
theindicated number of tilts sampled per particle (total available tilts =41).
PCA (left) and UMAP (right) dimensionality reduction of each final epoch’s
latent embeddings. Once trained, up to 10 randomly sampled and permuted tilt
images for one representative particle from each volume class were embedded
using the corresponding pretrained tomoDRGN model and are superimposed

as colored points. Note increased dispersion of colored points as number of tilts
sampled during training decreased. (e) For each ribosomal large subunit class
(B-E), 25 particles were randomly selected and up to 10 subsets of their tiltimages
were randomly sampled and permuted as in (d). In the heatmap, row indices
refer to models trained in (d) using different numbers of sampled tilts (1-41), and
columns denote epochs of training with that model. For each particle, each tilt
subset was evaluated with the corresponding tomoDRGN model and the ratio of
standard deviations of each particle’s 10 latent embeddings to all particles’ latent
embeddings was calculated. The mean ratio across all particles, which measures
the dispersion of encoder embeddings, is plotted per ribosomal LSU class. Here,
lower dispersion indicates better performance. (f) Particles and tilt subsets

were selected asin (e). At each indicated epoch of training, the corresponding
tomoDRGN model was used to generate volumes for each particle’s tilt subsets.
For each such volume, the correlation coefficient was calculated between

that volume and the corresponding ground truth volume. The mean across all
particles at each epoch for each model is shown as a heatmap per ribosomal LSU
class. Here, higher CCindicates improved performance.
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Extended Data Fig. 3| TomoDRGN and MAVEn identify structural variations
within HIV Gag lattice. (a) Mask used for MAVEn-based occupancy analysis of
NC layer density (gray, translucent). PDB: 5L93 is shown for reference, with CA-
NTD colored salmon, CA-CTD colored green, and CA-SP1 helix colored purple.

(b) Histogram and kernel density estimate of NC layer occupancy across 500

304 —kpe O O O O

25 -

count

50 25 00 25 50 75
NC layer occupancy  1e-5

volumes sampled from the trained tomoDRGN model, excluding junk particles
(see Fig. 3g). (c) Representative volumes sampling along the NC occupancy
histogram, colored asindicated in (b). Volumes are rendered at constant
isosurface and same pose asin (a).

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.2210/pdb5L93/pdb

Article https://doi.org/10.1038/s41592-024-02210-z

I-UMAP2

2 ¢

T T T b
7.5 10.0 125 10108

I-UMAP1

10 nm

Extended Data Fig. 4| TomoDRGN identifies non-ribosomal particles picked and pose. (b) Two tomograms are shown in slice view using Cube (https://github.
from EMPIAR-10499 tomograms. (a) Latent UMAP and corresponding sampled com/dtegunov/cube) with locations of particles labeled as non-ribosomal

volumes from tomoDRGN heterogeneous network training from Fig. 5a. Eight annotated within each tomogram. (c) RELION3-based multiclass (k = 5) ab initio
representative non-ribosomal particles identified through manual inspection of sub-tomogram volume generation using particles annotated as non-ribosomal
k=100 k-means clustering of latent space are rendered at a constant isosurface viatomoDRGN (n =1,310).
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e 8%

7PHB 7PAJ 7PHB
Extended Data Fig. 5| TomoDRGN visualizes structurally heterogeneous
disomes. (a) An EMPIAR-10499 tomogram reconstructed with tomoDRGN
intermolecular volumes. Volumes were generated for each ribosome using the
trained intermolecular tomoDRGN model, colored as in Fig. 6a, and positioned
correspondingly in the source tomogram. Transparent ribosomes correspond to
free 50S and 70S ribosomes as annotated in Fig. 6a. (b) The same tomogram asin
panel (a) reconstructed with tomoDRGN intramolecular volumes. Volumes were
generated for each ribosome using the trained intramolecular tomoDRGN model
(Fig. 5d). Pairs of volumes that were colored as disomes or trisomes and that
exhibited mutually overlapping main and adjacent monosomes when mapped
back to the tomogram in panel (a) were combined in ChimeraX (n = 21 disomes).

7PHB

Disomes are colored by manual classification into three classes with
representative volumes indicated with asterisks and shown in panels (c-e).

(c) Arepresentative tightly packed disome exhibiting continuous mRNA density
between the two monosomes (n = 7 disomes). Density of each monosome fit by
the indicated atomic model, excluding tRNA, mRNA, and elongation factors, has
been removed using ChimeraX’s zone functionality (Inset). (d) A representative
loosely packed disome exhibiting continuous mRNA density between the two
monosomes (n =9 disomes). Inset as in panel (c). (¢) Arepresentative

ribosome pair with no apparent structural contact between the two monosomes
(n=5disomes).
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70S 50S membrane/SecDF-positive ribosome

Extended Data Fig. 6 | Comparison of tomoDRGN-generated volumes to (row1,n=20,981,seeFigs.5d and 6a) and representative volumes are depicted.
traditional sub-tomogram averaged volumes. Comparison of volumes Separate tomoDRGN homogeneous decoder networks were trained on one of
generated by a fulltomoDRGN network (row 1), anisolated decoder neural three homogeneous substacks corresponding to (a) 70S particles (n =20,129);
network (row 2), or traditional sub-tomogram averaging (row 3). A full (b) 50S particles (n = 852); or (c) SecDF-positive ribosomes (n = 380). Traditional
tomoDRGN network was trained on the heterogeneous ribosomal particle stack STAwas also performed on each of these three particles stacks.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | CryoDRGN fails to consistently encode structural
heterogeneity using a simulated tilt series dataset. (a) Schematic of two
cryoDRGN network architectures that were tested, and the tomoDRGN
architecture used in Fig. 2c-e. Each model was trained using the same simulated
dataset of ribosome large subunit assembly classes B-E (Davis, Tan et al. 2016)
consisting of 41tiltimages for each of 5,000 particles for each of the four
assembly states and thus the dataset was treated by cryoDRGN as n = 820,000
images (see Methods). (b) UMAP of final epoch latent embeddings of each
particleimage, with kernel density estimates independently estimated and
plotted for each of the four ground truth assembly states. (c) UMAP of final
epoch latent embedding with k = 4 k-means latent classification of the resulting

latent space. KDEs were independently estimated and plotted for each of the
four k-means classes. The predicted labels are annotated by both the k-means
classindex (0-3) and corresponding ground truth class label (B-E) of the central
particle within each k-means class. (d) Confusion matrix of ground truth class
labels versus k = 4 k-means latent classification. (e) Volumes sampled at the k=4
k-means cluster centersillustrated in (c). Volumes are annotated by the k-means
classindex and ground truth class label and colored by the ground truth class
label. (f) Violin plot of consistency of k = 4 k-means clustering of each model

by Adjusted Rand Index (Hubert and Arabie 1985) (n =100 randomly seeded
initializations, higher values correspond to greater fidelity to ground truth
classification).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | CryoDRGN learns errant structural heterogeneity inan
exemplar tomographic dataset. Two cryoDRGN models (a, b) were trained on
the unfiltered particle stack of Mycoplasma pneumoniae ribosomes from

Fig. 5a (n =22,291 particles, treated as n = 913,931images). The latent space

is shown as aKDE plot following UMAP dimensionality reduction, with k=20

k-means class center particles annotated (left) and corresponding volumes
visualized (right). Note that many putative 70S particles lack density in the
particle core. Areference 70S volume sampled from tomoDRGN’s model in Fig. 5a
isshown in the same pose for comparison.
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Extended Data Fig. 9 | See next page for caption.
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Extended DataFig. 9| CryoDRGN’s learned latent space embeddings index, and the median value across each bin is annotated. (b) KDEs from panel A
exhibit undesirable correlations with tiltimage index. (a) Two cryoDRGN replotted after binning by tiltimage index quartiles. (c) KDEs from panel A with
models were tested on the unfiltered particle stack of Mycoplasma pneumoniae annotated positions corresponding to three representative particles evaluated
ribosomes from Fig. 5a. The latent space is shown as a KDE plot following UMAP using their 5,15, 25", or 35™ tiltimages. (d) Volumes generated from cryoDRGN
dimensionality reduction. The latent embeddings were binned by the tiltimage using the latent embeddings highlighted in panel C.
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Extended Data Fig. 10 | Assessment of tomoDRGN sensitivity to pose
accuracy. (a) The unfiltered stack of EMPIAR-10499 ribosomes in situ from

Fig. 5awas used to traina series of tomoDRGN decoder-only models with
increasinglevels of random perturbations from STA-derived, ‘ground truth’
rotation and translation poses (see Methods). The resulting map-map FSC
curves against the STA ribosomal reconstruction are shown. (b) Final tomoDRGN
decoder-only reconstructed volumes corresponding to the FSC curves shown

in (a). Volumes are lowpass filtered to the resolution where their map-map FSC to
the STA ribosomal reconstruction crossed 0.5. (¢, d, €) UMAP of first 128 principal
components of volume ensembles consisting of volumes generated for every
particle, using tomoDRGN models trained on EMPIAR-10499 unfiltered ribosome
stacks with indicated levels of pose perturbation. Particles annotated as 70S, 50S,
and NR are colored as in Fig. 5¢c, with representative volumes of each class shown
below. Note that NR particles are expected to be structurally diverse.
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