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Manuscript Title  Optimal conservation outcomes consider donor geography and their 

willingness to support more distant projects 

 

Abstract 

Private donors are often willing to give more to support conservation activities, like protecting 

land, when these take place nearby. However, population centers in which most donors live may 

be far from conservation priority areas. Here we examine how conservation organizations can 

best balance pursuing high impact conservation projects with their need to raise funds. We 

develop general principles governing optimal protected area siting by representing distance 

decay in people’s willingness to give to conservation as an increase in the effective cost of more 

distant projects. We illustrate these principles through applications to terrestrial vertebrate 

conservation and donation patterns to a private land trust in two U.S. states, California and North 

Carolina. In both states, we find a negative association between donation levels and conservation 

priorities, a pattern shaped by the lower cost of land protection in rural areas. A protected area 

strategy that gives some consideration to the distribution of donors while not compromising on 

protecting places that offer the highest conservation impact ensures the greatest improvement in 

biodiversity. This optimal strategy spreads spending on protected areas more than would have 

been optimal if ignoring spatial patterns in philanthropic giving. The optimal solution makes 

clear the value of integrating donation data and philanthropy staff earlier in the priority setting 

process. It emphasizes that the value of a conservation dollar depends on where it is donated, 

which suggests the need to cultivate local donor capacity in priority areas and persuade more 

distant donors to relax spatial restrictions on giving.  
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Introduction 

Recent national and international policies call for expanding the coverage of protected area 

networks (Haaland et al. 2021, CBD 2022) to help stem ongoing losses of biodiversity and 

ecosystem services (IPBES 2019). Spatial optimization tools can help conservation practitioners 

identify priority sites for expanding protection (Groves and Game 2016). Optimization methods 

now take into consideration the biodiversity found in candidate sites (Hamilton et al. 2022), the 

cost of protecting them (Nolte 2020), and threat of conversion they would face if left unprotected 

(Salgado-Rojas et al. 2020), along with other factors. Available approaches however typically 

assume that resources available to support establishment of new protected areas are free to move 

in space (but see Kark et al. 2009, Pouzols et al. 2014), something rarely true in practice. Instead, 

people’s willingness to pay (WTP) to support environmental projects is often lower for projects 

that are located further away (Hanley et al. 2003, Schaafsma 2015). We examine the implications 

for protected area priorities if funding available to support conservation declines with distance. 

 

Locations that promise the greatest gains for biodiversity when expanding protected area 

coverage are often concentrated in particular parts of the map (Armsworth et al. 2020). These are 

places rich in biodiversity, where land can be protected relatively cheaply and where habitats are 

at risk of conversion if left unprotected. The combined effects of these factors can be 

summarized in the conservation ‘return-on-investment’ (ROI) offered by investing in protected 

areas in a given locale (Boyd et al. 2015). Conservation ROI measures the gain in a given 

conservation objective per dollar spent. Locations where potential sources of support are most 

readily available to enable protected area establishment also tend to be concentrated in particular 

locations (Kroetz et al. 2014, Fovargue et al. 2019). Unfortunately, these are not the same places 

offering the greatest ROI in terms of conservation benefits (Armsworth et al. 2023). Most studies 

that examine the best places to protect ignore this spatial misalignment between protection 

priorities and conservation support and instead just assume funding for new protected areas is 

free to move anywhere in space. But this is not true for many sources of public and private 

funding for conservation. 

 

NGOs active in conservation are major contributors to land protection in many parts of the 

world. For example, in the U.S., 1281 active land trusts have protected around 25 million 
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hectares of land, an area equivalent to 72% of the U.S. National Park system (LTA 2023, NPS 

2023). The Nature Conservancy (TNC), an international NGO that operates a land trust like 

business model for some of its conservation activities in the U.S. (Birchard 2005), has itself 

helped protect over 50 million hectares of land worldwide (TNC 2023). The geographic context 

of resulting privately protected areas can be quite different from federally protected areas 

(Aycrigg et al. 2013, Jackson et al. 2021). NGOs typically depend on a mix of public and private 

funding to enable these protection efforts. Some funding given to NGOs active in land protection 

by private donors offers a degree of flexibility over where it can be used (Larson et al. 2016). 

However, surveys examining people’s willingness to give to support environmental causes 

repeatedly document declines in what people would be willing to give with increasing 

geographic distance (Glenk et al. 2020, Yamaguchi and Shah 2020) and across administrative 

boundaries, such as national borders (Dallimer and Strange 2015, Haefele et al. 2019). Here we 

examine the effect on protected area priorities of a decrease in willingness to support 

conservation with geographic distance (see also Ando and Shah 2010). Elsewhere we have 

examined implications of donors placing restrictions on funding support crossing administrative 

boundaries (Armsworth et al. 2023; see also Erasmus et al. 1999, Kark et al. 2009, Pouzols et al. 

2014). 

 

 

Materials and Methods 

We extend the spatial optimization framework and parameterization of Armsworth et al. (2020) 

so it can account for spatial decay in donors’ willingness to pay for conservation. This 

formulation focuses on allocating conservation funding to counties within the conterminous U.S. 

to establish new protected areas. In the main text, we assume a conservation goal of maximizing 

the number of species that will persist by adding new protected areas to prevent future habitat 

conversion. The Supporting Information includes results for other conservation objectives. The 

framework accounts for species complementarity, existing protected areas, the ecological value 

of private land and spatial heterogeneous costs and threats.  

  

Distance decay in WTP  
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We optimize the choice of how much additional protected area to establish in county i using 

funds from donors in county k. We denote this quantity 𝑥𝑖𝑘. In Armsworth et al. (2020), we 

calculated optimal allocation vectors describing how much protection should take place in each 

county from a shared national budget. Here, we differentiate new protected areas based on where 

the funding for them originates and where projects take place.  

 

We use yk to indicate the total amount of funding donors in county k are willing to pay to 

establish protected areas in their home county. Possible funding allocations must satisfy 

∑ 𝑐𝑖𝜀𝑖𝑘𝑥𝑖𝑘 ≤ 𝑦𝑘∀ 𝑘

𝐼

𝑖=1

 

 (1) 

In this inequality, ci is the cost per hectare of protecting land in county i. Meanwhile 𝜀𝑖𝑘 

represents the `effective cost’ of asking donors to support more distant projects instead of ones 

close by. We assume this leads to a reduction in what the donor would be willing to give, 

meaning less land can be protected. I.e., the effect is identical to what would happen if there 

were a cost to moving funds from one location to another, which is how we represent it here. 

With our assumptions, 𝜀𝑖𝑖 = 1, 𝜀𝑖𝑘 > 1 for 𝑖 ≠ 𝑘, and the effective cost of moving funding 𝜀𝑖𝑘 

gets larger the greater the distances involved. This term applies multiplicatively as it affects 

every dollar allocated from donors in county k invested in protecting land in county i. 

 

In the main text, we assume people’s willingness to donate to conservation projects declines 

exponentially with distance and explore the impact of varying the decay rate, 𝜎, in our analyses. 

To convert that exponential decay rate to our effective cost representation, we set  

𝜀𝑖𝑘 = 𝑒𝜎 x distance(𝑖,𝑘) 

 (2) 

In the Discussion and Supporting Information, we consider the effects of assuming spatially 

heterogeneous decay rates or using an alternative functional form for distance decay in WTP. 

 

We use the term ROI in the main text to refer to underlying ROI patterns before accounting for 

the effect of distance decay as a cost multiplier. We also report all results in terms of the 

potential funding available from each donor county before any distance decay is applied. 
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Expressing recommendations in this way makes it easier to compare how assuming low or high 

distance decay rates changes optimal allocation decisions.  

 

Optimization problem 

In our notation, we aim to maximize 

 

∑ 𝑤𝑗𝑃𝑗(𝑆𝑗)

𝑗

 

 (3) 

where 𝑗 indexes species, 𝑆𝑗 describes a landscape suitability score for species j across the 

conterminous U.S., 𝑃𝑗(𝑆𝑗) is the probability species j persists which is a function of 𝑆𝑗 and 𝑤𝑗is a 

weight taking the value 0 or 1 depending on whether species j is a conservation priority. We use 

a smooth, saturating functional form to represent how persistence probabilities depend on the 

amount of a species range that is protected or unconverted, 𝑃𝑗 = 1 − 𝑒−𝜑𝑗𝑆𝑗. Here saturation rate 

𝜑𝑗 is a positive constant for each species. The landscape score for species j across the 

conterminous U.S. is the sum of ecological conditions for the species across individual counties,  

 𝑆𝑗 = ∑ 𝑠𝑖𝑗

𝐼

𝑖=1

 

 (4) 

The conditions for species j in county i are described by sij, a nonlinear function, of the total 

amount of new protected area established there, 

 

𝑠𝑖𝑗 =  𝑠𝑖𝑗 (∑ 𝑥𝑖𝑘

𝐾

𝑘=1

). 

 (5) 

Here the total area protected in county i is summed across contributions from different donor 

counties and the functional form of sij is given by our land use change model described below. 

 

With these assumptions, the conservation organization’s spatial prioritization problem becomes 
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max
[𝑥𝑖𝑘]

∑ 𝑤𝑗𝑃𝑗 (∑ 𝑠𝑖𝑗

𝐼

𝑖=1

(∑ 𝑥𝑖𝑘

𝐾

𝑘=1

))

𝑗

 such that ∑ 𝑐𝑖𝜀𝑖𝑘𝑥𝑖𝑘 ≤ 𝑦𝑘∀ 𝑘 and 𝑥𝑖𝑘 ≥ 0 ∀  𝑖 and 𝑘

𝐼

𝑖=1

  

 

 (6) 

which must be solved subject to additional constraints described below that ensure funding 

allocations do not attribute more land to given uses than counties contain. 

 

Land use change model 

Remaining assumptions in our framework concern how we calculate the benefits in terms of 

improved conditions for a species (species j) that result from adding more protected areas into a 

county (county i), as represented by the county’s contribution sij to the overall landscape 

suitability score, Sj, for that species. This land use component of the models is somewhat 

modular and Armsworth et al. (2020) compared two different sets of assumptions for it. Here we 

adopt their pessimistic assumptions, which assume protected areas sample a species range in 

each county in proportion to the amount of habitat being protected. With their formulation, land 

can either be converted, protected or left unconverted and unprotected. Converted areas are 

assumed no longer to contribute to species persistence, while those inside protected areas are 

assumed to offer the greatest value to enabling species persistence. Areas that remain in the 

unprotected but unconverted category are assumed to offer a portion of the ecological value for 

species offered by full protected areas. Armsworth et al.’s (2020) formulation also considers to 

what degree any new protected areas successfully target parts of a county that would otherwise 

have faced conversion and whether any of the conversion threat involved is displaced onto other 

areas. Dropping i, j, and k subscripts by focusing on a generic county for now and instead using 

subscripting in this land use change model description to denote time, so that subscripts 0, 1 and 

2 distinguish these past, present and future activities, we use the following notations 

 

a is the area of the focal county 

𝑏0  was the historical range area of the species found in that county before any 

conversion to development or intensive agriculture took place 

𝑑0  was the area of habitat converted for development or intensive agriculture in 

the past 
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𝑑1  is the area that would be converted in the present if no further conservation 

action were taken today 

𝑟0  is the area that was protected through past conservation actions 

x denotes the new area that will be protected today as a function of the amount 

of additional funding available to the county 

𝑢2(𝑥)  is the future area of suitable habitat left unprotected that will not be converted 

for development or intensive agriculture, after accounting for both past and 

present protection and conversion 

𝛼 ∈ [0,1]  weights the ecological value of a hectare of unprotected, unconverted habitat 

with 𝛼=0 when this habitat makes no contribution to supporting species 

persistence and 𝛼=1 when it is as valuable for supporting species as a hectare 

of protected area. 

𝛿 ∈ [0,1]  indicates whether new protected areas target areas that would otherwise have 

been converted 

𝛾 ∈ [0,1]  indicates how much of that conversion pressure is displaced onto other 

unprotected sites as a result of establishing new protected areas, a form of 

leakage 

 

The area of the focal county that ends up protected is 𝑟0 + 𝑥. Meanwhile, the amount of 

converted habitat is 

𝑑0 + 𝑑1 − (1 − 𝛾)𝛿min (𝑥, 𝑑1) 

 (7) 

Finally, the amount of suitable habitat remaining on unprotected land in the future is the total 

area of the county minus the area protected or that will be converted 

𝑢2(𝑥) = 𝑎 − (𝑟0 + 𝑥) − (𝑑0 + 𝑑1 − (1 − 𝛾)𝛿min (𝑥, 𝑑1)) 

 (8) 

Our formulation assumes the three land uses cover species ranges in proportion to the area of 

range in the county, giving 

𝑠(𝑥) =
𝑏0

𝑎
(𝑟0 + 𝑥 + 𝛼𝑢2(𝑥)) 

 (9) 



8 
 

We use this land use change submodel in the optimization formulation to quantify by how much 

adding protected area to a county will improve conditions there for each species. Adding back in 

i and j subscripts, extending them to the land use change model components, and accounting for 

the overall amount of protection in the county, we obtain 

 

𝑠𝑖𝑗 (∑ 𝑥𝑖𝑘

𝐾

𝑘=1

) =
𝑏0,𝑖

𝑎𝑖
(𝑟0,𝑖 + ∑ 𝑥𝑖𝑘

𝐾

𝑘=1

+ 𝛼𝑢2,𝑖 (∑ 𝑥𝑖𝑘

𝐾

𝑘=1

)) 

 (10) 

We can now formalize the upper bound constraint on the total amount of land protected in a 

county as  

𝑢2,𝑖 (∑ 𝑥𝑖𝑘

𝐾

𝑘=1

) ≥ 0. 

 (11) 

 

Numerical Applications 

We use two examples for our numerical applications, one focused on counties in California and 

the other on counties in North Carolina. These two states reflect broad East and West Coast 

contrasts relevant to land protection in the conterminous U.S. For example, counties in California 

tend to be larger, with a greater area already protected and a lower historical rate of land 

conversion than those in North Carolina (Table S1). Counties in both states tend to donate 

slightly larger amounts to conservation, to involve somewhat higher land protection costs, and to 

be places where habitat conversion is predicted at a somewhat higher rate, than the average 

county in the lower 48 (Table S1).  

 

We consider how to allocate funding given by donors within each state to TNC to establish new 

protected areas where these are evaluated against how they will affect species persistence in 

2040. When doing so, we account for the existing distribution of protected areas across the 

whole of the conterminous U.S. as well as any additional protected areas created with 

conservation funding being allocated in each focal state. We also assume funds from California 
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donors will be used in California and those from North Carolina donors will be used in North 

Carolina (but see Armsworth et al. 2023). 

  

Donation data 

To represent spatial variation in the availability of donations to support conservation, we rely on 

the estimation of Fovargue et al. (2019). That study used statistical models to explain spatial 

variation across zip codes in the conterminous U.S. in giving to TNC by donors who gave 

between $1000 and $100,000 between 2009 and 2014. This included 160,000 gifts totaling USD 

$ 350 million. All dollar amounts in this paper were inflation corrected to 2016 U.S. dollars 

using the Bureau of Labor Statistics' Consumer Price Index (U.S. Bureau of Labor Satistics 

2023). 

 

We use the predicted values from these models to represent spatial variation in giving. Fovargue 

et al. (2019) used a hurdle model in their estimation that first predicts the probability of a gift 

being observed and then predicts the giving amount conditional on this outcome. We combined 

the two parts of their hurdle model to arrive at an overall expected gift amount per zip code by 

applying a threshold to identify zip codes likely to see gifts. To obtain an estimate of predicted 

giving by county, we took a population weighted average of the resulting predicted gift amounts 

by zip code. We used the distance between county centroids to calculate distance decay in 

potential donations. 

 

Data informing conservation ROI estimates 

We use the same approach to parameterize the biodiversity optimization models here that we 

took in Armsworth et al. (2020). Importantly, that earlier work along with subsequent analyses 

(Yoon et al. 2022, Armsworth et al. 2023, Le Bouille et al. 2023) includes extensive sensitivity 

tests to model assumptions and parameters. Briefly, we focused on protecting terrestrial 

vertebrate species. We used range map data for mammal, amphibian and reptile species from 

IUCN (2016) and for bird species from Birdlife and Handbook of the Birds of the World (2016). 

In the main text, we include scenarios focused on protecting species evaluated as being 

vulnerable to extinction or worse by IUCN by setting wj=1 for these species and wj=0 for others. 

In the Supporting Information, we provide results when focused on protecting all species 
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regardless of their vulnerability status. In the California application, we included 707 species of 

which 48 were vulnerable to extinction or worse. The North Carolina application included 515 of 

which 19 were vulnerable to extinction or worse. 

 

With function Pj the contribution that protecting an additional hectare of habitat makes to 

increasing the persistence probability for species j decreases the greater the area within the 

species range that is already protected or remains unconverted. We use species specific 

saturation rates, 𝜑𝑗, in this function based on the procedure laid out in Armsworth et al. (2020). 

These saturation rates were chosen such that large range species have a high persistence 

probability once 10% of their total range is fully protected, whereas small range species need 

their entire range to be protected to have high persistence probabilities. We assume four hectares 

of unconverted land that remains in private ownership makes an equal contribution to ensuring 

species persistence as each hectare of protected areas. Also, we assume the combined effects of 

imperfect subcounty targeting of protected areas and of leakage is such that for every two 

hectares of land protected, one hectare that would have faced conversion and one that would 

have remained unconverted now would be protected. When evaluating the contribution of any 

new protected areas in California and North Carolina, we focus on persistence throughout a 

species range. To do so, we account for existing protected areas and predicted habitat changes 

throughout the lower 48. Following Armsworth et al. (2020), we also include an ‘ecological 

subsidy’ for species with ranges reaching outside the conterminous U.S. to reflect the 

contributions to ensuring their persistence made by protected areas and unconverted habitats 

outside the lower 48 states.  

 

We used GAP 1 and 2 protected areas from the flattened version 1.4 of the data from the 

Protected Area Database of the United States (2018) to account for existing protected areas 

before considering where additional protected areas should be added. We used the predicted 

protected area acquisition costs per county of Le Bouille et al. (2023). These estimates are based 

on a regression model fit to acquisition costs for 36,000 parcels of land protected between 1980 

and 2014 by TNC or state and federal agencies within the U.S. We used land cover change 

projections produced by USFS to estimate spatial variation in the threat of habitat conversion if 

areas remain unprotected. We used land cover change projections for 2040 per county from the 
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A2 growth scenario in Wear (2011). When assessing the ecological value of the landscape for 

species, we treated areas predicted to be covered by urban, crop or pasture in 2040 as having 

been converted and those covered by rangeland and forest as remaining unconverted. Armsworth 

et al. (2020), Yoon et al. (2022) and Le Bouille et al. (2023) explore the effects of these 

assumptions relative to other ways of representing spatial variation in biodiversity benefits, costs 

and threats on protected area priorities.  

 

From our assumptions, we can derive a baseline persistence probability for species when 

accounting for existing protected areas and projected land cover change by 2040, before 

considering how investing in new protected areas could improve species persistence. With our 

assumptions and parameters, the median persistence probability for all species in California is 

0.95 and that for vulnerable species in the state is 0.44. The median persistence probability for 

species in North Carolina with these assumptions and parameters is 0.90 for all species and 0.37 

for vulnerable species. Our analyses of ROI patterns and optimization solutions focus on the 

improvement over these baseline persistence probabilities made possible by further investment in 

protected areas. 

 

The future land conversion predictions we rely on are not available for the small, heavily 

urbanized City and County of San Francisco in California. We exclude this county when 

considering targets for potential conservation investment in California, although include 

donations from it when considering funding for conservation. After dropping this county, 57 

counties are candidates for conservation investment in California and 100 in North Carolina. 

 

Analysis 

We obtain insights into the behavior of the optimal solution by forming the relevant Lagrangian 

for the optimization problem in Eqn. (6) and calculating the first order necessary conditions for 

an optimal solution. To do so, we augment the objective with relevant constraints using 

Lagrangian multipliers and slack variables.  

 

To find numerical solutions for our optimization problem, we use Matlab’s nonlinear 

programming solver, fmincon (Matlab version 2019B). We rely on a sequential search strategy, 
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given the size of the control space. Specifically, we optimize the funding allocation from 

counties one at a time, while keeping allocations from other counties constant, proceeding 

through all counties in a randomized order three times, by which point no further changes in 

allocation occur. We repeated this process 100 times for randomly assigned starting guesses and 

orderings of counties, selecting the solution giving the highest objective score. Convergence was 

excellent across the solution sets generated with this method. We also compared the performance 

of this search strategy to two other solution methods. Additional details of our optimization 

approach are provided in the Supporting Information.  

 

The underlying model formulation quantifies conservation ROI from investing in any county, not 

just the optimal set of counties. As well as shaping the optimal solution, these ROI values 

provide informative summary statistics in their own right by describing patterns of spatial 

variation in conservation opportunities. ROI measures the gain in the overall conservation 

objective when a small amount of additional protected area is created in a county divided by the 

cost of protecting that additional area (i.e., it measures the marginal benefit to cost ratio). Within 

our model, ecological complementarity implies that the ROI from investing in some county is a 

function of investment levels into every county and not a constant. However, displaying and 

describing spatial patterns in these values is easier when assuming a particular underlying 

investment pattern. As such, when producing maps of ROI, we start from the existing 

distribution of protected areas today and show the ROI on offer from the first dollar invested in 

making new, additional protected area in a county while assuming no further new investment is 

made elsewhere on the landscape.   

 

We use Spearman’s rank correlations to examine covariation between predicted donations 

available to support conservation and the ROI offered on the first dollar invested into each 

county. We also provide correlations between this ROI score and components that comprise it 

(cost, threat, etc.) and between donations and factors explaining variation in donation rates. We 

evaluate the significance of these correlations while accounting for spatial autocorrelation. We 

use Moran spectral randomization to maintain the global level of spatial autocorrelation while 

randomly resampling from each variable using R package adespatial (Dray et al. 2023). Because 

Moran spectral randomization is sensitive to linear trend (Wagner and Dray 2015), we first 
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removed spatial trends based on latitude and longitude from the relevant variables before 

applying significance tests to the detrended residuals. As a robustness check, we compared 

coefficients and significance levels to those obtained when making other test assumptions, 

namely: not controlling for spatial autocorrelation, not detrending first, or assuming alternative 

distance measures to define neighborhoods. We provide additional details of these steps in the 

Supporting Information.  

 

Sensitivity tests 

 

To explore the sensitivity of our results to assumptions we made, we repeat some analyses for a 

larger geographic extent (the conterminous US); two other conservation objective choices (one 

focused on protecting all species regardless of their vulnerability status and one focused on 

protecting vulnerable species while also providing recreational benefits to people); alternative 

representations of distance decay; an alternative representation of conservation donations; and 

alternative numerical optimization methods (Supporting Information). 

 

Results 

Analytical optimization results 

The first order necessary conditions for an optimal solution reveal how including distance decay 

in donations changes optimal recommendations regarding protection priorities. These conditions 

require funds from county k be only allocated to counties that provide large marginal benefit to 

effective cost ratios for dollars donated from county k. Moreover, funds are shared in such a way 

that these marginal benefit to effective cost ratios are equalized across counties receiving funding 

(an “equimarginal” principle) and all potential funds from county k are fully allocated.  

 

The relevant marginal benefit to effective cost ratio for dollars donated from county k is 

𝜆𝑘 =

∑ 𝑤𝑗

𝑑𝑃𝑗

𝑑𝑆𝑗

𝜕𝑠𝑖𝑗

𝜕𝑥𝑖𝑘
𝑗

𝑐𝑖𝜀𝑖𝑘
 

 (12) 

where 𝜆𝑘 is the Lagrangian multiplier on that county’s budget constraint. The numerator here 

summarizes the change in the overall conservation objective (how many species will persist) as a 
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function of adding a hectare of new protected area to county i. The numerator is greater for 

counties with more species (the summation is over species). The 𝑑𝑃𝑗/𝑑𝑆𝑗 ensures these species 

are not already well-protected, while the 𝜕𝑠𝑖𝑗/𝜕𝑥𝑖𝑘term favors counties where adding new 

protected area does more to improve outcomes for them (e.g., counties where conversion threats 

are higher). The 𝑐𝑖 in the denominator favors counties where land can be protected relatively 

cheaply. The 𝜀𝑖𝑘 adjusts this cost of protection to reflect the effective cost of moving funds from 

county k to county i, because of the distance decay in donors’ WTP. It is this 𝜀𝑖𝑘 term that drives 

differences between optimal solutions for different severities of distance decay. There are as 

many of these Lagrangian multipliers as there are donor counties.  

 

Figures 1 and 2 near here 

 

We illustrate the behavior of the optimal solution with and without distance decay for a 

hypothetical three county application in Figs. 1 and 2. The three counties are located at different 

distances from one another. They also differ in the cost of establishing new protected areas (grey 

bars in Fig. 1a) and improvement in conservation goals that results from doing so. The initial 

improvement is shown by black bars in Fig. 1a, but this improvement will decline as more 

funding is allocated to a county to establish additional protected areas, as reflected in the tan 

downward sloping marginal benefit to cost ratios for each county in Fig. 1b. For ease of 

illustration in Figs. 1 and 2, we did not include interaction effects caused by species 

complementarity across the counties, but we account for these fully in our derivations and 

numerical applications. 

 

If there were no distance decay in donations (Fig. 1b), funding would be pooled (y1+y2+y3 

represents the summed donations from the three counties combined) and allocated in the optimal 

solution only to counties offering the highest marginal benefit to cost ratio (here counties 1 and 

2). All available funds would be divided between counties 1 and 2 in such a way as to equalize 

these marginal benefit to cost ratios. This allocation is illustrated by the horizontal blue line 

segments. 
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When adding distance decay in donations (inset in Fig. 2a), the optimal allocation changes. Now 

we must consider the marginal benefit to effective cost ratios offered when seeking to allocate 

funds donated by each individual county (Figs. 2abc). The marginal benefit to effective cost ratio 

of keeping funds in the same county where they were donated is unchanged (solid tan line in Fig. 

2a, dashed tan in Fig. 2b and dotted tan in Fig. 2c). But the effective cost of protecting land in 

more distant counties is now higher, because of the distance decay in donors’ WTP for 

conservation. This moves the marginal benefit to effective cost ratios for more distant counties 

downwards (as indicated by the mini-plots and yellow arrows). A similar equimarginal principle 

applies but this time is applied to dollars donated by each county individually. For example, in 

Fig. 2c, funding from county 3, the largest donor county (length of magenta line segment), is 

divided between counties 2 and 3 in such a way as to equalize the marginal benefit to effective 

cost ratio available in each location. County 1, which had been a top investment priority when no 

distance decay applied (Fig. 1b), no longer offers a good investment when considering donors in 

county 3, because of the large distance decay in donations that would result. 

 

The characteristics of the optimal solution revealed by first order necessary conditions and 

illustrated in Fig. 2 indicate two important properties.  

1. the value of a dollar for conservation depends on where it is donated. The potential 

improvement in conservation outcomes offered by an additional donation in each county 

are illustrated by the horizontal line segments in Figs. 2a-c and measured by these 

Lagrangian multipliers, 𝜆𝑘. While these are equalized between counties receiving funds 

from county k, they differ among donor counties. In our illustrative example, 

conservation dollars donated from county 3 are worth only 60% of dollars donated from 

county 1 when measured in terms of conservation gain.  

2. priority targets for investment are different for donors in different places. When no 

distance decay applies (Fig. 1b), protection priorities are the same for donors everywhere. 

However, when distance decay in donation is considered, donors in different locations 

should be asked to support different projects. E.g., in our illustration, donors in counties 1 

and 2 should be asked to support their local protected areas, whereas those in county 3 

should be asked to support projects in both counties 2 and 3. 
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The illustrations in Figs. 1 and 2 also make clear the behavior of the optimal solution in extreme 

cases when there is no distance decay rate or where this rate is very large. Fig. 1b illustrates the 

case where the distance decay rate is zero; this is the situation explored in Armsworth et al. 

(2020). In the optimal solution for this case, funds flow to the highest marginal benefit to 

marginal cost opportunities regardless of where they were donated and tend to be quite 

concentrated in space (Armsworth et al. 2020). In contrast, as the decay rate becomes very large, 

the dynamic illustrated in Fig. 2a-c in which marginal benefit to effective cost curves for distant 

counties move downwards, would be greatly accentuated. In this situation, moving funding in 

space becomes prohibitively expensive and conservation funds should just be spent in the 

counties where they were donated. More interesting questions lie in understanding when and 

how solutions transition between these two extremes, something that depends on the particular 

distributions of donations and conservation opportunities on the landscape as we now explore in 

our numerical applications. 

 

Spatial variation in donations and in ROI patterns 

The total predicted donation amount for California counties is USD $46.2 M, while that for 

North Carolina is $9.7M. The distribution of giving in both states is highly skewed (Table S1); 

the top 10% of counties in each state account for the bulk of predicted donations (60.8% for 

California and 74.0% for North Carolina). In California, counties predicted to give most are 

clustered around the San Francisco Bay Area and coastal areas near Los Angeles (Fig. 3a). In 

North Carolina, high predicted donation areas include the region in the center of the state 

containing the cities Raleigh, Durham, Greensboro and Winston-Salem and the counties 

containing the cities of Charlotte and Asheville (Mecklenburg County and Buncombe County 

respectively; Fig. 3d). Counties predicted to donate more in each state tend to have higher 

population sizes, higher median income levels, and a greater proportion of individuals holding a 

bachelors degree or above (Table S2). 

 

Figure 3 near here 

 

The distribution of ROI is also heavily skewed. When focused on improving conditions for 

vulnerable vertebrate species in California, investments in additional protected areas in a set of 



17 
 

counties in the interior of the state offers the greatest ROI (including Kern, Mariposa and 

Riverside counties; Fig. 3b). In North Carolina, the highest ROI is offered either by a set of 

coastal counties (including Tyrrell and Hyde counties) or by counties in the southern 

Appalachian Mountains in western North Carolina (including Swain and Burke counties; Fig. 

3e). Examining the change in the persistence probabilities of individual species that drives 

changes in ROI makes clear that high ROI counties are ones where new protected areas can 

benefit small range species (e.g., small range endemics, including many amphibians and small 

mammals, or species that have undergone acute range contractions, such as red wolf, Canis 

rufus).  

 

All else being equal, we would expect counties where costs of land protection are lower, habitats 

are at a greater risk of conversion and there are more vulnerable species, to be higher priorities 

for investment. The negative association between ROI and cost is clear in both states (Table 1). 

There is also a significant positive association between ROI and the number of vulnerable 

species in North Carolina (Table 1). However, the association of ROI with threat does not 

conform to the basic expectation (Table 1). The reason lies in correlations between different 

components of ROI. Land protection costs are strongly positively correlated with conversion 

threat in both states, setting up a trade-off between cost and threat for determining where higher 

ROI values will be found. The cost signal appears to dominate in both states. Table S3 provides a 

comparable correlation table for all counties in the lower 48 states, showing that similar patterns 

apply across larger spatial scales in the U.S. as well. 

 

Table 1 near here 

 

The consequence of these patterns is that predicted donations to conservation are negatively 

correlated to ROI opportunities in both states (Table 1). Predicted donations tend to be higher in 

more urbanized areas, while the higher ROI opportunities in each state are found in more rural 

counties, where land costs are lower (Fig. 3). A similar negative association between 

conservation donations and ROI applies across the lower 48 (Table S3).  
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Our finding of a negative association between predicted donations and conservation ROI in these 

applications depends on our assumed conservation objective. In Table S5, we provide similar 

results for two alternative conservation objectives, one focused on conserving all species 

regardless of vulnerability status and one that both seeks to protect vulnerable species and also 

provide recreational benefits to people (Supporting Information). We find even stronger negative 

associations between donations and conservation ROI when pursuing the first of these alternative 

objectives, but no association between the two when pursuing the second (Table S5). 

 

Numerical optimization results for California and North Carolina 

The numerical optimization results for our CA and NC applications parallel the theoretical 

expectation for the extreme cases. Very low distance decay rates lead to spending all being 

directed to the same place, while very high distance decay rates favor funding just being spent in 

donors’ home counties. More interesting is the transition between these extremes, as illustrated 

by the examples in Figures 4 and 5. For clarity of display, these figures only show part of the full 

optimal solution focused on the allocation of funding from the fifteen counties predicted to give 

most in each state (our analyses use the full optimal solution). The skewed nature of the 

distributions of conservation ROI and predicted donations mean that values displayed in the 

figure account for between 77% and 87% of the overall conservation gain achieved by the full 

optimal solution across the four scenarios shown, despite only accounting for 0.45% (NC) to 

1.3% (CA) of the overall control set. As noted in the Materials and Methods, the optimal 

allocations in Figs. 4 and 5 are shown in terms of potential dollars available from a donor county 

when accounting for a particular distance decay rate but before that distance decay has been 

applied. The actual dollars that would reach a recipient county that was far away would be lower 

once that decay rate was applied. Showing things in terms of potential dollars from donor 

counties in this way aids visual comparison of plots that assume distance decay rates of differing 

severity. 

 

Figures 4 and 5 near here 

 

In California, a low rate of distance decay favors funding being concentrated in the highest ROI 

county (Kern county, Fig. 4ab), which contains habitats for a number of vulnerable species (e.g., 
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Nelson’s antelope squirrel, Ammospermophilus nelsoni; White eared pocket mouse, Perognathus 

alticola). At a higher rate of distance decay however (Fig. 4c-f), funding from counties in 

northern California, particularly around the Bay Area, should shift to protect parts of Mariposa 

county in the foothills of the Sierra Nevada Mountains, and donors in Riverside county should 

fund local projects. This shift in funding allows additional species to benefit (e.g., Sierra Nevada 

yellow-legged frog, Rana sierrae).  

 

Fig. 5 shows how similar shifts play out in optimal solutions for North Carolina as a higher 

decay rate is assumed. Funding should be concentrated into projects at the eastern and western 

extremes of the state if there is a low level of distance decay in donors’ willingness to support 

conservation projects (Figs. 5a-c). Specifically, Tyrrell county on the coast should receive the 

most funding allowing protection of coastal species. Meanwhile, funding from Charlotte, 

Asheville, Boone (Mecklenburg, Buncombe, Watauga counties) and other areas nearer to the 

Appalachians should be used for projects protecting mountain species (e.g., Cheoah Bald 

salamander, Plethodon cheoah) in Swain county on the edge of the Great Smoky Mountains 

National Park. At a higher decay rate, we again see a shift in the optimal funding allocation with 

a third funding priority emerges that is more centrally located and draws funding away from 

these more distant counties (Figs. 5d-g). Specifically, in that case, funding from some more 

central counties shifts to Burke County that covers parts of the Eastern Blue Ridge Mountains. 

 

We chose the particular decay rates used in Figs. 4 and 5 to illustrate how transitions in optimal 

funding allocations play out. The decay rates at which donors in Santa Clara in California and 

Mecklenburg in North Carolina would become indifferent between closer and more distant 

projects falls between the low decay rate in Figs. 4ab and 5a-c (willingness to give halves after 

500 km) and high decay rate in Figs. 4c-f and 5d-g (willingness to give halves after 100 km). We 

review in the Discussion how these values compare to empirical estimates of distance decay rates 

in people’s willingness to give to conservation projects. 

 

Overall, the greater the distance decay in donors’ willingness to support conservation projects the 

less effective conservation can be at protecting vulnerable species (Figure 6a). Accounting for 

distance decay in willingness to support conservation also changes optimal solutions in other 
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ways. For example, conservation funding appears to be dispersed across more counties the 

greater the distance decay in donors’ willingness to give to projects (Figure 6b). This increased 

spreading of funds means a greater diversity species and ecosystems will see some benefit from 

conservation actions, even if aggregate benefit will not be improved as much (Fig. 6a).  

 

Figure 6 near here 

 

The distance decay rates shown in Figures 4 and 5 are not great enough to favor keeping all 

projects in donors’ home counties, as would maximize conservation income. Instead, 

conservation organizations should accept some reduction in overall donations if it allows them to 

pursue high ROI opportunities. Indeed, for the particular decay rates shown, only pursuing 

projects in donors’ home counties and not moving funds at all in order to maximize income 

would greatly reduce overall conservation efficacy (Figure 6c). Simply pursuing the highest ROI 

opportunities and ignoring distance decay altogether would also come at some cost in terms of 

conservation outcomes, albeit not as large a cost as seeking to maximize conservation income for 

the particular decay rates shown (Figure 6d). How the optimal solution balances these two 

competing forces (maximizing donations versus maximizing ROI from projects) depends on the 

severity of the distance decay rate (Figures 4 and 5). 

 

Conclusions 

Empirical evidence suggests the amount people are willing to give to support environmental 

projects declines with distance (Bateman et al. 2006, De Valck and Rolfe 2018). Here we 

examined consequences for protected area priorities of distance decay in the willingness of 

private philanthropic donors to support conservation projects. We developed an optimization 

approach that can account for different forms of distance decay and derived general 

characteristics describing optimal solutions. We also examined patterns of covariation between 

philanthropic giving to conservation and spatial protection priorities in two U.S. states and 

applied numerical optimization to reveal optimal funding allocations at different distance decay 

rates. We find that ignoring the distribution of donors and any spatial distance decay in their 

willingness to support projects when identifying protection priorities will reduce conservation’s 

potential impact on vulnerable species. Our results also suggest the value of finding ways to 
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integrate donors’ interests during priority setting while, at the same time, not compromising on 

pursuing the highest conservation return opportunities. 

 

In our applications to land protection in California and North Carolina, we find a negative 

correlation between where donors are located who support conservation and where the highest 

conservation priorities are to be found. Top giving locations are not conservation priorities, while 

top priority locations are rarely those where donation amounts are particularly high. This 

disconnect poses a challenge when donors’ willingness to support conservation declines with 

distance. Whether a negative or positive association between donations and conservation ROI 

should be expected more generally will depend on the particular geography, conservation 

objective, and source of funding. In terms of geography, we anticipate our findings of a negative 

correlation between predicted donations and conservation ROI in California and North Carolina 

may be quite common. For example, in Table S3, we show that equivalent associations across 

the whole of the conterminous U.S. again display a similar, negative correlation. For both 

individual states and for the lower 48, the negative association between conservation ROI and 

predicted donations arises, because costs exert a strong role in shaping overall ROI patterns 

(Table 1, S3). Conservation ROI is higher in more rural areas where costs of land protection are 

lower, but predicted donations are higher in urbanized areas where land is expensive. We 

observed greater sensitivity in the relationship between ROI and predicted donations when we 

compared across alternative conservation objectives. Table S5 shows correlation statistics 

between ROI and predicted donations when pursuing two alternative conservation objectives, 

one focused on protecting all species and one that balances protecting vulnerable species with 

providing recreational benefits to people. Again, conservation costs play a central role, because 

some conservation objectives give rise to ROI patterns that are more cost dominated (our all 

species example) and some less so (our recreation example; Table S5). Associations between 

sources of conservation funding and conservation priorities also depend on the type of funding 

involved. Here we focused on funding to a major national NGO, but the tendency for higher 

giving to be associated with larger population centers seems likely to apply to many other 

sources of conservation revenue (membership based funding, public funding tied to local tax 

revenues, compensatory mitigation funding tied to local development, etc.) Different types of 
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conservation funding will also differ in how much flexibility to move funding in space they 

offer.  

 

To understand how distance decay in donors’ willingness to support conservation projects shapes 

optimal protected areas strategies, we developed an approach that analogizes the effect of 

distance decay to an expanded conservation cost term. We refer to this expanded cost 

representation as the effective cost of supporting a project in one location when relying on 

funding from somewhere else. Using this formulation, we are able to derive conditions that an 

optimal protected area strategy must satisfy. This effective cost method is very flexible and can 

accommodate more complicated patterns in willingness-to-pay for conservation (Johnston and 

Ramachandran 2014). For example, we show ROI patterns for an alternative functional form for 

distance decay in willingness to support conservation in Table S6, one that allows funding to be 

moved flexibly in a region close to where it was donated but not further (Figure S1). We also 

consider situations where patterns in willingness to pay for conservation are  better described 

using spatially heterogeneous decay rates (Glenk et al. 2020). In the Supporting Information, we 

discuss examples where decay rates vary based on characteristics of the population donating 

funds and of the location receiving conservation investment.  

 

The functional form for distance decay we rely on for the numerical example in the main text is 

exponential decay. In Figs. 4-6, we display characteristics of the optimal solutions at two 

different decay rates (willingness to support conservation halves at 100 km and 500 km) where 

we chose these values because they sit either side of a transition in the behavior of the optimal 

solution. These decay rates are slightly larger than those observed in empirical studies. For 

example, in the stated preference studies reviewed in Loomis (2000), the highest decay rates 

involve people’s willingness-to-pay for conservation programs to conserve Mexican spotted owl 

halving at around 500 miles (800 km), with other estimates decaying more slowly. In terms of 

our results, if decay rates this low also characterize revealed giving behavior, then concerns 

about distance decay should not prevent conservation organizations developing programs in 

locations offering the highest ROI for biodiversity. Indeed, as we describe below, TNC has been 

able to invest in high ROI counties even though these are further from peak giving locations. At 
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the same time, over larger scales limitations on how freely the organization can move donations 

are also apparent (Larson et al. 2016). 

 

Skewed conservation ROI distributions in our applications favor concentrating investment in just 

a few locations, while distance decay in donors’ willingness to support project favors dispersing 

funding a little more widely. Conservation ROI distributions are typically very skewed, 

reflecting the multiplicative nature of ROI formulae (Vijay et al. 2022, Yoon et al. 2022). At the 

budget levels we consider, ecological complementarity considerations are not sufficient to 

overcome the concentration this skewed distribution favors in optimal funding allocations. 

However, accounting for distance decay in donors’ willingness to support conservation can lead 

to greater dispersion of conservation funds if decay rates are high enough, a trend continued if 

we consider even more aggressive forms of distance decay (Table S6). Ando and Shah (2010) 

also modeled the effect of spatial decay in people’s willingness to support conservation on 

protection priorities and showed that optimally sited protected areas may be more fragmented 

and closer to population centers than would be expected if prioritizing based on ecological 

considerations alone.  

 

Actual conservation spending also tends to be quite concentrated in space. For example, during 

the same period covered by our data, TNC concentrated spending to acquire land via fee simple 

acquisition or easements into just five counties in California and six in North Carolina. 

Moreover, in both states, counties that we identified as offering the greatest conservation ROI 

saw the largest expansion of protected area from this funding. Tyrrell County had as much new 

land protected as the rest of North Carolina combined during this period, while new protected 

areas TNC acquired in Kern County accounted for a much larger area than those acquired in the 

rest of California. TNC has also continued its investment into both counties subsequently, as part 

of a continuing project to protect the Tehachapi Range in California and a collaborative effort to 

protect North Carolina’s coastal wetland ecosystems. 

 

As with any modeling study, we had to make assumptions in our analyses. Here, we highlight 

three assumptions that are particularly relevant to how we combined conservation prioritization 

with information on donations. We refer readers more interested in the assumptions behind either 
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piece in isolation, either how we estimated donations or how we estimated conservation ROI, to 

earlier work (Fovargue et al. 2019, Armsworth et al. 2020, Yoon et al. 2022, Le Bouille et al. 

2023). To examine how distance decay changed conservation priorities, we focused on priorities 

within state boundaries. TNC has a federated structure with fund-raising activities and land 

protection decisions being organized at the state level (Fishburn et al. 2013). At the same time, 

while much funding stays in-state, some movement of funds between states also occurs (Larson 

et al. 2016). For our North Carolina application, for example, ecosystems in the southern 

Appalachians emerged as one priority for investment. Land trusts working in that region often 

draw upon donors in the Atlanta area in Georgia and our analyses would miss these state to state 

transfers. We also based our analyses on spatial patterns in giving that had been observed 

(Fovargue et al. 2019) and not on the hypothetical level of giving that could have been realized 

had alternative conservation projects been presented to donors. An initial exploration suggests 

the patterns we find will not be particularly sensitive to this assumption (Supporting 

Information). We also did not yet consider richer specifications in which, for example: investing 

in protected area creation leads to greater donation levels in the future (Larson et al. 2016, 

Cazalis and Prevot 2019, Pinnschmidt et al. 2021); different sources of conservation support are 

combined (Kroetz et al. 2014); or multiple conservation organizations interact when protecting 

land (Harding et al. 2023, O’Bryan et al. 2023). 

 

Our results have several implications for conservation NGOs and the donors who support them. 

For example, we show that the value of a conservation dollar depends on where it is donated 

when donors’ willingness to support conservation declines with distance and is highest near 

priority areas for conservation investment. This finding emphasizes the importance of NGOs 

cultivating donors and building local capacity in locations that are top conservation priorities. 

Our approach also provides a means of quantifying for donors the potential improvement in 

conservation outcomes possible if they were to allow greater spatial flexibility over where funds 

could be used (Fig. 6a). Our optimization approach makes clear that donors located in different 

places should be asked to fund different projects. At the same time our results suggest when 

doing so, conservation organizations not compromise on top conservation priorities, even if this 

might mean accepting a smaller gift than a donor might be willing to give for a nearer project 

more personal to them. Obviously, that requires a careful balance. In our experience, many 
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philanthropy staff at NGOs manage this trade-off implicitly. They build relationships with 

potential donors, seek to understand their preferences, and offer them potential projects that 

might appeal, where these are drawn from a larger set of priorities already identified from 

examining ecological and other data. Our models try to capture some spatial aspects of this 

interaction, albeit in broad-strokes. Our results emphasize the advantages of an integrated 

approach that engages philanthropy staff in the process of conservation priority setting, rather 

than only after the fact. Doing so would allow priority recommendations to be delivered in ways 

that would be more helpful to philanthropy teams. For example, regionalized products tailored to 

donor interests may be more helpful to philanthropy teams and donors than a single large-scale 

priority map. Armsworth et al. (2023) provide an example of what tailored products could look 

like focused on interstate transfers of funding. The analyses we present here offers the potential 

to support similar products tailored to donors’ preferences within state boundaries. 
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Tables 

Table 1. Spearman’s rank correlations on detrended data. Significance levels calculated with 

Moran’s spectral randomization; *p<0.05, **<0.01. 

 

CA, n=57 ROI for vul 

species 

cost threat No. vul. species 

Donations -0.37**   0.50**   0.43**   0.39*    

ROI for vul 

species       -0.56**   -0.21 0.18 

cost             0.59**   0.21 

threat                   0.24 

NC, n=100 ROI for vul 

species 

cost threat No. vul. species 

Donations -0.34**   0.72**   0.59**   -0.05 

ROI for vul 

species       -0.38*    -0.48**   0.78**   

cost             0.68**   -0.07 

threat                   -0.31 
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Figure captions 

 

Figure 1. Three county illustration of characteristics of optimal solution with no distance decay. 

(a) Counties differ in benefits (black bars show benefit on the first dollar invested) and costs 

(grey bars) of protected areas, in location (horizontal axis), and in donation amounts (yi for i=1-3 

shown by length of magenta line segments). (b) Optimal solution with no distance decay. Tan 

line segments show marginal benefit to cost ratios which start at the ratio of black to grey bars in 

(a) but then decrease with additional investment into each county. Optimal allocation of spending 

(blue line segments, offset in plot for visual clarity) gives funding only to highest marginal 

benefit to cost ratio counties (1 and 2), equalizes these ratios across counties receiving funding, 

and fully allocates the total funds donated from the three counties (summed length of magenta 

line segments equals summed length of blue line segments).  

 

Figure 2. Three county illustration of how distance decay changes optimal allocation 

recommendation. Benefits and costs of protected areas, county locations, and donation amounts 

same as in Figure 1. Optimal allocation of funds from counties (a) 1, (b) 2 and (c) 3 when 

distance decay in donations applies (inset in (a)). Marginal benefit to effective cost ratios 

reduced for distant counties (tan lines shift downwards as indicated by yellow arrows in mini-

plots). Optimal allocation (blue line segments) targets donations from each county only to 

highest marginal benefit to effective cost ratio counties for that donor county; equalizes these 

ratios across places receiving funding from that donor county (blue line segments in (c) offset for 

visual clarity); and fully allocates funding from that donor county (length of magenta line 

segment for each donor county equals summed length of blue line segments showing spending 

allocation of funds from that donor county).  

 

Figure 3. (ad) Predicted donations to conservation and (be) conservation return-on-investment 

(ROI) in terms of improving the persistence probability of vulnerable terrestrial vertebrate 

species by acquiring additional protected areas from counties in (ab) California and (de) North 

Carolina, with locations of these states in the conterminous U.S. shown (inset). Data shown as 

ranks and compared in scatters in (cf). Redder counties predicted to offer higher donation levels 
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(ad) or higher priorities for protection (be). Scale bars in be) indicate 250 km. Return-on-

investment in this plot is calculated before considering distance to decay in willingness to pay. 

 

Figure 4. Optimal budget allocation when seeking to protect vulnerable vertebrate species 

through land acquisition in California for a (ab) low and (c-f) high distance decay rate in donors’ 

willingness to support conservation projects. Bars show potential dollar amounts donated from 

15 highest donation counties that are allocated to those counties receiving most funding. 

Potential dollar amounts shown before distance decay has been applied, which allows easier 

visual comparisons between low and high decay rate cases. Inset maps in (bf) show locations of 

these counties using same color coding as bars. Counties shown with thick border are those 

receiving funding from similarly shaded donor counties. Donors’ willingness to support 

conservation assumed to halve at a distance of (ab) 500 km and (c-f) 100 km, with these 

distances indicated by scale bars.  

 

Figure 5. Optimal budget allocation when seeking to protect vulnerable vertebrate species 

through land acquisition in North Carolina for a (a-c) low and (d-g) high distance decay rate in 

donors’ willingness to support conservation projects. Bars show potential dollar amounts donated 

from 15 highest donation counties that are allocated to those counties receiving most funding. 

Potential dollar amounts shown before distance decay has been applied, which allows easier 

visual comparisons between low and high decay rate cases. Inset maps in (ae) show locations of 

these counties using same color coding as bars. Counties shown with thick border are those 

receiving funding from similarly shaded donor counties. Donors’ willingness to support 

conservation assumed to halve at a distance of (ab) 500 km and (c-f) 100 km, with these 

distances indicated by scale bars.  

 

Figure 6. Characteristics of the optimal budget allocation when seeking to protect vulnerable 

vertebrate species through land acquisition shown for California (black) and North Carolina 

(gray) for a low (donations halve at 500 km) and a high distance decay rate (donations halve at 

100 km) in donors’ willingness to support conservation projects. (a) Effect of distance decay on 

conservation outcomes shown as proportion of hypothetical biodiversity gain predicted had no 

distance decay applied that is achieved by the optimal solution when donations are subject to 
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distance decay. (b) Number of counties accounting for at least 2% of overall potential funding in 

the optimal solution. Proportion of the optimal biodiversity outcome when accounting for 

distance decay that is achieved if instead (c) maximizing donations by spending funds in the 

county where they were donated to avoid any distance decay in donations or (d) ignoring the 

distance decay in donations and simply allocating funding to counties offering the highest ROI 

on the first dollar invested.  
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