

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li et al. 2023

and boundary conditions [Raissi et al. 2019; Sitzmann et al. 2020].
Neural �elds are typically compact, fast to evaluate, and expressive.
However, training neural �elds with such self-supervised losses can
be unstable, and they tend to produce biased solutions. Since neural
�eld-based solvers are fast but biased and MC-based solvers are
unbiased but slow due to high variance, it is natural to ask whether
a hybrid solver that combines these two methods can be developed
to achieve controllable bias, low variance, and fast evaluation.

This paper takes the �rst step towards building a hybrid solver
combining neural �eldswithWoS approaches for variable-coe�cient
elliptic PDEs. Inspired by previous work [Müller et al. 2021] that
deploys neural radiance �elds as a cache to accelerate Monte Carlo
rendering, we hypothesize that a neural �eld cache can also be
used to reduce the variance of a Monte Carlo PDE solver. Adapting
this idea, we have developed a novel hybrid PDE solver that �rst
trains a neural �eld, then uses it to decrease the cost and variance
of evaluating the solution. In the training phase, we optimize the
neural �eld supervised by unbiased solution estimates from the
WoS algorithm. Then to evaluate the solution, we run WoS but
terminate its random walks at a prescribed depth by querying the
neural �eld, providing solution estimates that are more accurate
than the neural �eld alone and faster and less noisy thanWoS alone.

To transfer the success of Müller et al. [2021] to reduce the vari-
ance of Monte Carlo PDE solvers, we identify the necessary change
of neural network architecture and modi�cation of the training
procedure. We provide a theoretical analysis showing that our loss
retains comparable convergence guarantees to conventional SGD
algorithms. In practical testing, we �nd that our neural �eld has a
lower average error than the unbiased but noisy one-sample WoS
estimator, and as the number of samples increases, our hybrid solver
produces a lower error when the depth limit is set appropriately.

2 RELATED WORK

This paper draws inspiration from the existing literature on Monte
Carlo PDE solvers and PDE solvers with neural networks.

Monte Carlo PDE Solvers. The idea of using the Monte Carlo
method to solve PDEs can date back to Courant et al. [1967] and
Forsythe and Leibler [1950]. The Walk on Spheres (WoS) algorithm,
initially proposed by Muller [1956], estimates the solution of a PDE
by simulating a random walk from which boundary and source
contributions are accumulated. Sawhney and Crane [2020] further
applied the WoS algorithm in geometry processing tasks. After
this seminal work, a number of projects have extended WoS to al-
low variable coe�cients [Sawhney et al. 2022], Neuman boundary
conditions [Sawhney et al. 2023], PDE parameter inversion [Yıl-
mazer et al. 2022], and di�erent applications such as �uid simula-
tion [Rioux-Lavoie et al. 2022]. Although these works extend Monte
Carlo methods to a broader range of PDEs, they are still limited
by shortcomings, such as the high variance and expensive compu-
tations, of Monte Carlo estimators. To tackle these, the computer
graphics community has also developed methods such as bound-
ary caching [Bakbouk and Peers 2023; Miller et al. 2023; Müller
et al. 2021], importance sampling [Müller et al. 2017, 2019; Veach
and Guibas 1995], and denoising [Chaitanya et al. 2017; Gharbi
et al. 2019]. Some of these techniques have been applied in WoS

solvers [Qi et al. 2022; Sawhney et al. 2022]. In this paper, we pro-
pose an alternative method to mitigate the shortcomings of Monte
Carlo PDE solvers by incorporating neural networks. Similar ideas
have been applied in path tracing and radiosity [Hadadan et al. 2021;
Müller et al. 2019, 2020, 2021; Ren et al. 2013], and we draw inspira-
tion from these applications. Of particular relevance to this paper is
[Müller et al. 2021], which trains a neural radiance �eld to be used
as a cache for real-time Monte Carlo rendering. Applying this idea
to Walk-on-Spheres PDE solvers, however, is nontrivial and can
pose new challenges. We identify the correct network architectures
and training procedures to address such domain di�erences and
provide theoretical analysis for convergence rates.

Neural Fields. Recently, neural �elds have been shown to be a
unique signal representation tool with the advantages of allowing
high �delity reconstruction [Mildenhall et al. 2020; Müller et al.
2022; Sitzmann et al. 2020; Tancik et al. 2020], enabling sampling at
arbitrary locations , and providing fast training and inference [Chan
et al. 2022; Chen et al. 2022b; Fridovich-Keil et al. 2022; Müller et al.
2022]. Most applications of neural �elds have focused on image
compression [Martel et al. 2021], view synthesis [Barron et al. 2021;
Liu et al. 2020; Mildenhall et al. 2020; Verbin et al. 2021], 3D recon-
struction [Mescheder et al. 2019; Park et al. 2019; Peng et al. 2020;
Wang et al. 2021] and generation [Cai et al. 2020; Chen et al. 2020;
Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019; Yang
et al. 2019]. Recently, Sitzmann et al. [2020] showed that neural
�elds with an appropriate architecture can be used to solve PDEs.
Yang et al. [2021a] leveraged this idea and applied these neural �eld
solvers to geometry processing tasks. Other researchers have suc-
cessfully applied neural �elds in character animation [Bergman et al.
2022; Noguchi et al. 2021], applications of level-set methods [Mehta
et al. 2022], and solving time-dependent PDEs [Chen et al. 2022a].
Most of these existing methods aim to produce a network that
deterministically approximates the physical �eld of interest, and
accuracy can only be improved with additional training supervision.
In contrast, we combine a neural �eld inside a WoS solver, so that it
can produce better results when given more compute at test time.

Other Deep Learning-based PDE solvers. Another class of neural
network-based PDE solvers is commonly known as neural opera-
tors [Li et al. 2020, 2021], which has shown success in many applica-
tions [Liu et al. 2022; Pathak et al. 2022; Trifan et al. 2021; Yang et al.
2021b]. A neural operator will train a neural network to predict
how to evolve a physical system, learning from prior data gener-
ated from the simulation. Unlike neural operators, we will focus
on learning a representation for the PDE solution. Improving our
method to use data drive priors is an exciting direction, but it’s out-
of-the-scope for our discussion. Most closely related to the neural
�eld PDE solver is a class of solvers called Physics-informed neural
networks (PINNs) [Raissi et al. 2019], which has been applied in
many PDE applications, including turbulence [Hennigh et al. 2021],
elasticity [Rao et al. 2021], and topological optimization [Zehnder
et al. 2021]. PINNs aim to train a neural network to approximate
the PDE solution via a self-supervised loss derived from the PDE
constraint and boundary conditions. We instead propose an alter-
native way to train neural �elds as a representation of the PDE
solution using labels provided by the WoS estimator, which works
well in the class of PDE that the WoS estimator can be applied to.

Neural Caches for Monte Carlo Partial Di�erential Equation Solver SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

3 BACKGROUND

Our work builds on two bodies of literature: Monte Carlo PDE
solvers and neural-�eld PDE solvers.

3.1 Steady State Elliptic PDEs

Elliptic equations are a general class of PDEs that are important
for various computer vision and graphics applications including
(screened) Poisson surface reconstruction [Kazhdan et al. 2006;
Kazhdan and Hoppe 2013] and �uid simulation [Rioux-Lavoie et al.
2022; Stam 1999]. In this paper, we are interested in obtaining the
steady-state solution of an elliptic PDE.

Let Ω ⊂ R3 denote the domain and mΩ be the boundary of this
domain. ∇5 denotes the gradient of 5 and ∇· is the divergence
operator ∇ · v(G) =

∑
8 mv(G)8/mG8 . The class of Elliptic equations

we consider in this paper can be expressed in the following form:

∇ · (U (G)∇D (G)) + ®l (G)∇D (G) − f (G)D (G) = −5 (G) G ∈ Ω

D (G) = 6(G) G ∈ mΩ,
(1)

where U : R3 → R, ®l : R3 → R
3 and f : R3 → R are spatially

varying coe�cients. 5 : R3 → R denotes the source term, and

6 : R3 → R is the boundary condition. We will introduce two
di�erent ways to solve elliptic PDEs without discretization.

3.2 Monte Carlo PDE Solvers

The general idea of Monte Carlo PDE solvers is to express the
solution of a PDE in the form of a recursive integral equation, and
then de�ne aMonte Carlo estimator for the integral equation.While
our method can potentially be applied to other types of Monte Carlo
PDE solvers, this paper focuses on PDEs in the form of Equation 1.

This PDE can be solved as an integral equation of the form:

D (G) = ((G) +

∫
�A (G)

D (~)�G (~)3~ +

∫
m�A (G)

D (I) G (I)3I, (2)

where (,�G , and G , which are functions depending on U (G), f (G),
and 5 (G). �A (G) is a ball centered at G with radius A : {~ | ∥G − ~∥ <

A }, and m�(G) is the sphere: {~ | ∥G − ~∥ = A }. Speci�cally,

((G) =

∫
� (G)

5 (~)�f̄ (G,~)√
U (G)U (~)

3~, G (I) =
√
U (I)% f̄ (G, I) (3)

�G (~) =
√
U (~)/U (G) (f̄ − f′ (~))�f̄ (G,~) (4)

where f̄ = max(f′ (G)) − min(f′ (G)). �f̄ is the Green’s function
and % f̄ is the Poisson kernel. A more detailed de�nition of these
functions is provided by Sawhney et al. [2022].

Sawhney et al. [2022] provided the following Monte Carlo esti-
mator for Equation 2, that uses delta-tracking [Coleman 1968; Raab
et al. 2008] to avoid exponential number of walks:

D̂ (G) =



6(Ḡ) if 3 (G) < n

((̂G (~8) +�G (~8)D̂ (~8))%# (G)−1 w. prob. %# (G)

((̂G (~8) + G (I8)D̂ (I8)) (1 − %# (G))−1 otherwise

(5)

In this solver, (̂ is a single sample Monte-Carlo estimator for the
source contribution (, ~8 is sampled from �3 (G) (G), and I8 are sam-
pled from m�3 (G) (G). The function 3 (G) = min~∈mΩ ∥~ − G ∥ is the
minimum distance of G to the boundary, Ḡ = argmin~∈mΩ ∥~ − G ∥

is the nearest projection of G the boundary, and n de�nes a band
around the boundary where walks will be terminated. When the
�rst branch is not evaluated, the second branch will be evaluated
with probability %# (G). The third branch will be evaluated if nei-
ther the �rst and the second is evaluated. Please refer to Sawhney

et al. [2022] for de�nitions of (̂ and %# .

Limitations. While these Monte Carlo solvers are guaranteed
to be unbiased, they experience very high variance due to the
large space they need to integrate, so one needs to sample many
independent walks to achieve good results. Moreover, each walk
can be expensive, since the walk presented in Equation 5 can take
hundreds of steps to reach the boundary. As a result, these solvers
usually require additional variance reduction techniques.

3.3 PDE solvers using Neural Fields

A neural �eld is a neural network that takes the coordinates of
an <-dimensional spatial point ®G and outputs a �eld value: D\ :

R
= → R

< [Xie et al. 2022]. If D\ is constructed to be smooth
and continuous, then the spatial gradients such as mD\ /mG8 can be
obtained via automatic di�erentiation. These properties have been
leveraged by prior works to apply neural �elds to solve PDEs [Chen
et al. 2022a; Raissi et al. 2019; Sitzmann et al. 2020] and to perform
geometry processing [Mehta et al. 2022; Yang et al. 2021a]. For the
PDE in Equation 1, we can de�ne the following training objectives:

P(\, G) = ∥(D\ − ∇ · (U∇D\) − ®l∇D\ + fD\ + 5) (G)∥2 (6)

B(\, G) = ∥(D\ − 6) (G)∥2 (7)

The loss P is trying to enforce the PDE condition, and the loss B is
trying enforce the boundary condition. Solving Equation 1 can be
formulated as an optimization problem [Raissi et al. 2019; Sitzmann
et al. 2020; Yang et al. 2021a]

argmin
\

∫
Ω

P (\, G) dG + _

∫
mΩ

B (\, G) dG, (8)

where _ is a hyperparameter that balances the PDE constraints and
boundary constraints.

Network architectures. The network architecture is chosen to
strike a good balance between expressiveness and regularization
to obtain good performance. A popular choice is a multi-layer per-
ceptron (MLP) with sinusoidal activations [Sitzmann et al. 2020]
or Fourier positional encoding [Lindell et al. 2022; Tancik et al.
2020; Yang et al. 2022; Zhang et al. 2020]. These MLPs are very
compact to store, yet they can be slow to train and expensive
to evaluate. Another class of of neural �eld architecture modu-
lates an MLP with interpolated spatial features [Müller et al. 2022]:
D\ (G) = 5\=+1 (6(interp(G, \1), . . . , interp(G, \=)), where interp is
bi-linear interpolation, 6(E1, . . . , E=) is an aggregation operation,
and 5\ is a small MLP. These neural �elds with spatially modu-
lated features are usually fast to converge, but they are harder to
regularize to produce a good solution when supervision is limited.

Limitations. Once successfully trained, these neural �elds can
produce an approximate solution to the PDE very e�ciently since
only a forward pass is required to evaluate the �eld. However, train-
ing such neural �elds using a self-supervised loss can be di�cult.

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li et al. 2023

In order for the training to converge, one needs to choose appro-
priate network architectures, initialization, as well as the learning
rate schedule. For example, using a network with piecewise linear
activation will not work since the Laplacian of the network will be
zero [Lei and Jia 2020], even though the network is still a universal
approximator. Also, the residual error between the neural �eld and
the exact solution depends on the architecture, the training pro-
cedures, and the characteristics of the PDE, making it di�cult to
control the amount of bias in a neural �eld solution.

4 METHOD OVERVIEW

On one hand, the WoS method is slow at inference time due to high
variance, but it has no bias. On the other hand, the neural �eld is
comparatively fast at inference time since it produces deterministic
output without variance, but it su�ers from non-zero bias. Inspired
by these complementary properties, we want to build a hybrid
solver where we can reduce the inference time for WoS by querying
the neural �eld after a �xed compute budget.

We achieve this hybrid solver in two steps. First, we need to
build a mechanism to reliably train neural �eld solutions. Instead of
using the self-supervised loss, we proposed to use a WoS estimator
to provide target data to supervise the neural �eld to approximate
the PDE solution (Section 5). Once we obtain a neural �eld with a
small enough error, we use a hybrid WoS solver that terminates the
recursive call in Equation 5 by querying the neural �eld (Section 6).
Intuitively, this hybrid solver can lower the error of the neural
�eld solution since it performs WoS-style random walks that can
terminate at the boundary. At the same time, it can achieve lower
variance than the WoS estimator since it conducts shorter walks,
thus exploring a smaller sample space.

5 TRAINING A NEURAL FIELD SOLUTION

To build a hybrid solver, we �rst need to obtain a neural �eld that
approximates the solution of the PDE in Equation 1. Speci�cally,
the network D\ will take a 2D or 3D spatial coordinate G as input
and output a real number to approximate the ground truth D (G).

One way to achieve this is to directly use a self-supervised loss
like the one in Equation 8. Training with this type of loss can be un-
stable and often requires extensive hyper-parameter tuning. For ex-
ample, Figure 3 shows that for the self-supervised loss, performance
is sensitive to hyper-parameters such as network architecture.

One potential reason for such instability is the higher-order
di�erential operator used in the self-supervised loss. If neural �elds
need to be expressive enough to approximate arbitrary solutions,
the network needs to contain high-frequency components. The
derivative operators will further amplify the contribution of these
high-frequency components. As a result, the self-supervised loss
can be high-frequency, making it di�cult to optimize.

In this paper, we circumvent this issue by proposing loss func-
tions that do not require evaluating gradients of the network. The
key idea is that the WoS estimator provides statistical estimates
of the exact solution to the PDE, and these estimates can be used
as targets to train the neural networks. We will demonstrate the
derivation of the WoS-supervision loss in Section 5.1, analyze its
convergence properties in Section 5.2.

5.1 WoS Supervision Loss

Oneway to supervise the neural �eld solutionwithout taking spatial
derivatives is to use the MC estimator to create supervision targets
to optimize the neural network. The straightforward way to achieve
this is �rst running theMonte-Carlo estimator for enough iterations
to accurately estimate the PDE solution for a �xed set of spatial
locations {G8 ∈ Ω}=8=1. Then we can use SGD to optimize the L2
objectives between the network’s output and the estimated target:

L(\) =
1

=

=∑
8=1

©­
«
D\ (G8) −

1

#

#∑
9=1

D̂ (G8)
ª®
¬
2

, (9)

where D̂ is an unbiased Monte Carlo estimator for the PDE solution
so E [D̂] = D in Ω. Computing this target can take a substantial
amount of time since it requires running # independent walks for
each training location G8 .

Intuitively, we need not wait to start training until the super-
vision signal is very accurate, since SGD-based neural network
training can tolerate noisy gradients. This suggests that we can
run the data acquisition process and the neural network training
process in parallel, similar to Müller et al. [2021].

To achieve this, we �rst create a running estimate ~8 of the PDE
solution at each location G8 target using the WoS estimator D̂:

~
(:+1)
8 = (:~

(:)
8 + D̂ (G8))/(: + 1), (10)

where : denotes the number of accumulation steps. The training
loss at step C is simply the L2 loss between the network prediction
and the accumulated sample average:

LC (\) =
1

=

=∑
8=1

D\ (G8) − ~ (C)8

2 . (11)

By using a loss de�ned in this way with a target value ~
(C)
8 that

improves in accuracy as training progresses, we are able to run
the sample generation in parallel with training and also converge
provably to low-noise results.

5.2 Convergence analysis

Intuitively, when training a neural �eld using stochastic gradient
descent (SGD) with the loss function in Equation 11, the variance
of the target from the Monte-Carlo estimator will be added to the
variance created by SGD. As long as this estimator is unbiased, SGD
can converge to a region with small gradients.

Theorem 5.1. Let D be the solution of the PDE of interest, and D̂

be an unbiased WoS estimator for the solution with bounded variance:

E [D̂] = D and V [D̂] < � . Let D\ be the neural �eld to be optimized.

De�ne the �nal objective to be L8 (\,~) = (D\ (G8) − ~8)
2. Further,

assume that ∥∇\D\ (G)∥ ≤ � ,

E) (

∇2
\
L
)
E

 ≤ ! ∥E ∥ for all E , and

∥∇\L8 (\,D)∥ ≤ � . If we run the following SGD optimization for)

steps: \C+1 = \C − U∇\L(\,~
(C)
8), where ~

(C+1)
8 is obtained through

Equation 10, then the expected gradient norm will converge at the

following rate:

E [∇\L(\g)] ≤
L(\0) − L(\∗)

)U
+
!�� 2

2

log())

)
+
!�2U

2
, (12)

where g is a random variable on [0, . . . ,) − 1] indicating which step

to stop, % (g = C) = 1/) ,) is the maximum number of SGD steps, and

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li et al. 2023

thus increasing the computational cost. However, in Section 7.4, we
show that the hybrid estimator can achieve lower overall error in
practice for most ranges of accuracy.

1 def test(net, WoS, x, m):

2 dist, x_proj = WoS.domain.nn_query(x)

3 if dist < eps: return WoS.boundary(x_proj)

4 if m == 0: return net(x)

5 y, z = WoS.sample_walk(x)

6 source = WoS.compute_source(x, y)

7 if WoS.is_null(x):

8 x_next, coef = y, WoS.compute_null_coef(x, y)

9 else:

10 x_next, coef = z, WoS.compute_non_null_coef(x, z)

11 return test(net, WoS, x_next, m - 1) * coef + source

Listing 2: Hybrid solver inference (Sec 6).

7 RESULTS

This section will �rst compare the proposed hybrid solver and two
baselines: pure WoS and pure neural �eld solutions trained with
self-supervised loss. We �rst show equal-time comparisons on a
3D elliptic equation with spatially varying coe�cients (Sec 7.1).
We then provide an analysis under the same number of samples
(Sec 7.3). Finally, we demonstrate how the depth hyperparameter of
our hybrid solver allows users to trade o� compute for bias (Sec 7.4).

7.1 Experiment Setup

In this section, we apply our solvers and the baseline solvers to the
PDE in Equation 1 without a drifting term:

∇ · (U (G)∇D (G)) − f (G)D (G) = −5 (G) G ∈ Ω

D (G) = 6(G) G ∈ mΩ.
(14)

This experiment section will focus on variable coe�cient PDEs.
Please refer to the supplementary for the results of combining our
methods with constant coe�cient WoS algorithms.

Domain representation. The domain Ω is de�ned by a signed
distance function (SDF). In this experiment, we represent the do-
main SDF by training a neural �eld in instant-NGP [Müller et al.
2022; Park et al. 2019; Sitzmann et al. 2020]. We follow the training
procedure of Müller et al. [2022] except that 1) we do not deploy
hashing to compress the storage, and 2) we use multi-resolution
grids with only four layers with following resolutions: 128, 64, 32,
and 16. Our model takes about 20 minutes to �nish training and
contains 4MB parameters.

Di�usion, absorption, forcing, and boundary functions. Following
Sawhney et al. [2022], we use smooth periodic patterns to generate
the spatially varying di�usion, absorption, forcing, and boundary
functions. Please refer to the released code for more details.

Baselines. Our baselines for comparison are (1) Walk-on-spheres
solver (WoS) and (2) neural �elds trained with self-supervised tech-
niques (NF). For the WoS baseline, we follow the released C++ im-
plementation of Sawhney et al. [2022]. We used the Delta Tracking
algorithm, with importance sampling on the o�-centered Green’s
function but didn’t apply the next-�ight variant. This WoS solver
is also used as the basis for the hybrid solver. For the NF base-
line, we implement the self-supervised loss as shown in Equation 8.
This neural �eld baseline is trained for 2 × 104 iterations, with the

best hyper-parameter obtained Ray-tune [Liaw et al. 2018] random
search. The training of this baseline takes about 5 minutes to �nish.

Reference solution. We use the unbiased WoS estimators to pro-
duce the reference solution. Speci�cally, for each geometry, we
choose a slice of interest (i.e. the I = 0 plane). At that plane, we
densely sample an image with resolution 512 × 512 unless other-
wise noted. We average 104 WoS samples for each of these pixels to
create the reference value. For pixels that are outside the domain,
we set the reference to 0.

Hyperparameters for hybrid solvers. To obtain the neural �eld ap-
proximation using the method proposed in Section 5, we uniformly
sample 20000 points inside the domain via rejection sampling. For
each of these points, we run WoS algorithm with 50walks to obtain

the initial training label ~ (0) . Then we start the training procedure
for 20000 iterations using Adam optimizer. For every 5000 iterations,
we sample another batch of data from WoS with 50 walks. We do
not interrupt the training until the next batch of data accumulation
of 50 walks is ready. To compute WoS for 50 independent walks for
all data points takes about 40 seconds, during which we can run
about 8000 training iterations. This allow us to update the training
data at every 5000 iterations without waiting. We use SIREN with
512 hidden dimensions and 2 hidden layers. The training is done
in NVIDIA RTX 2080 Ti GPUs and can be �nished within 4 min-
utes. We implement the training pipeline and WoS solver using the
automatic di�erentiation framework Jax [Bradbury et al. 2018].

7.2 Equal Time Comparison

We present qualitative results for three shapes: Sprocket, Mis-
sile [Koch et al. 2019], and Cow [Crane et al. 2013]. For each of these
shapes, we allocate 5 minutes of compute time to obtain the result.
We also report the mean square error for each frame. The results
are shown in Figure 4. Our network is more accurate than the NF
baseline, with a lower MSE compared with the reference solution.
For our hybrid solution, we set< = 1. Compared to the WoS base-
line, our network shows less noise, which is also re�ected through
both the cleaner image and the lower MSE error. This result veri�es
our hypothesis that our hybrid solver is able to produce less biased
results than the NF baseline and also achieves lower variance than
the WoS baseline using a similar amount of computing resources.
Note that our method performs better when the solution function
has higher spatial frequency (e.g. Missile and Cow example).

To further understand the allocation of time for our method and
the WoS baseline, we report a detailed compute time breakdown in
Figure 6. We report the amount of time it takes for both the WoS
and the hybrid model to reach an MSE error of 5e-3 at di�erent
resolutions. We report three di�erent resolutions: 256, 512, and 1024.
For the hybrid model, we show the breakdown of training time
and inference time. The hybrid model can outperform WoS in time
e�ciency as long as there are su�cient locations whose solution
needs to be computed during inference. Its advantage is larger when
the number of testing locations is larger (e.g. 1024 × 1024). This is
because it is very fast for the hybrid method with shallow depth (e.g.
< = 1) to produce a good estimate during inference. The training
time remains unchanged regardless of the inference time resolution.
As a result, when the slice resolution is large, the hybrid model can

Neural Caches for Monte Carlo Partial Di�erential Equation Solver SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

REFERENCES
Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres.

(2023).
Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance �elds. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5855–5864.

Alexander Bergman, Petr Kellnhofer,Wang Yifan, Eric Chan, David Lindell, and Gordon
Wetzstein. 2022. Generative neural articulated radiance �elds. Advances in Neural
Information Processing Systems 35 (2022), 19900–19916.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah
Snavely, and Bharath Hariharan. 2020. Learning gradient �elds for shape generation.
In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part III 16. Springer, 364–381.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-
toencoder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073601

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2022. E�cient Geometry-aware 3D Generative
Adversarial Networks. In Proc. CVPR.

Anpei Chen, ZexiangXu, Andreas Geiger, Jingyi Yu, andHao Su. 2022b. TensoRF: Tenso-
rial Radiance Fields. In Computer Vision – ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII (Tel Aviv, Israel). Springer-
Verlag, Berlin, Heidelberg, 333–350. https://doi.org/10.1007/978-3-031-19824-3_20

Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng, and Peter Yichen Chen.
2022a. Implicit Neural Spatial Representations for Time-dependent PDEs. arXiv
preprint arXiv:2210.00124 (2022).

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. Bsp-net: Generating compact
meshes via binary space partitioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 45–54.

Zhiqin Chen and Hao Zhang. 2019. Learning implicit �elds for generative shape
modeling. In Proc. CVPR.

W. A. Coleman. 1968. Mathematical Veri�cation of a Certain Monte Carlo Sampling
Technique and Applications of the Technique to Radiation Transport Problems.
Nuclear Science and Engineering 32, 1 (1968), 76–81. https://doi.org/10.13182/NSE68-
1

Richard Courant, Kurt Friedrichs, and Hans Lewy. 1967. On the partial di�erence
equations of mathematical physics. IBM journal of Research and Development 11, 2
(1967), 215–234.

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2013. Robust fairing via conformal
curvature �ow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1–10.

George E Forsythe and Richard A Leibler. 1950. Matrix inversion by a Monte Carlo
method. Math. Comp. 4, 31 (1950), 127–129.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance �elds without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5501–5510.

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.
3322954

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural Radiosity. ACM
Trans. Graph. 40, 6, Article 236 (dec 2021), 11 pages. https://doi.org/10.1145/3478513.
3480569

Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subrama-
niam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, and Sanjay
Choudhry. 2021. NVIDIA SimNet™: An AI-accelerated multi-physics simulation
framework. In Computational Science–ICCS 2021: 21st International Conference,
Krakow, Poland, June 16–18, 2021, Proceedings, Part V. Springer, 447–461.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-
struction. In Symposium on Geometry Processing, Alla She�er and Konrad Polthier
(Eds.). The Eurographics Association. https://doi.org/10.2312/SGP/SGP06/061-070

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.
ACM Trans. Graph. 32, 3, Article 29 (jul 2013), 13 pages. https://doi.org/10.1145/
2487228.2487237

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big
CAD Model Dataset For Geometric Deep Learning. arXiv:1812.06216 [cs.GR]

Jiabao Lei and Kui Jia. 2020. Analytic marching: An analytic meshing solution from
deep implicit surface networks. In International Conference on Machine Learning.

PMLR, 5789–5798.
Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-

tacharya, Andrew Stuart, and Anima Anandkumar. 2020. Fourier neural operator
for parametric partial di�erential equations. arXiv preprint arXiv:2010.08895 (2020).

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu,
Kamyar Azizzadenesheli, and Anima Anandkumar. 2021. Physics-informed neural
operator for learning partial di�erential equations. arXiv preprint arXiv:2111.03794
(2021).

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and
Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection and
Training. arXiv preprint arXiv:1807.05118 (2018).

David B. Lindell, Dave VanVeen, Jeong Joon Park, andGordonWetzstein. 2022. BACON:
Band-limited Coordinate Networks for Multiscale Scene Representation. CVPR
(2022).

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anand-
kumar, Andrew M Stuart, and Kaushik Bhattacharya. 2022. A learning-based
multiscale method and its application to inelastic impact problems. Journal of the
Mechanics and Physics of Solids 158 (2022), 104668.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural Sparse Voxel Fields. In NeurIPS.

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene
Representation. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 58 (2021), 13 pages.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. 2022. A Level Set Theory
for Neural Implicit Evolution under Explicit Flows. arXiv preprint arXiv:2204.07159
(2022).

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In Proc. CVPR.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proc. ECCV.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. (Feb. 2023). arXiv:2302.11825 [cs.GR]

Mervin E Muller. 1956. Some continuous Monte Carlo methods for the Dirichlet
problem. The Annals of Mathematical Statistics (1956), 569–589.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for
E�cient Light-Transport Simulation. Comput. Graph. Forum 36, 4 (jul 2017), 91–100.
https://doi.org/10.1111/cgf.13227

Thomas Müller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (oct 2019),
19 pages. https://doi.org/10.1145/3341156

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.
2019. Neural importance sampling. ACM Transactions on Graphics (ToG) 38, 5
(2019), 1–19.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural
control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–19.

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-Time
Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4 (Aug. 2021).

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. arXiv preprint arXiv:2106.12372 (2021).

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. 2021. Neural articulated
radiance �eld. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 5762–5772.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation, In Proc. CVPR. Proc. CVPR.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chat-
topadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Aziz-
zadenesheli, et al. 2022. Fourcastnet: A global data-driven high-resolution weather
model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214
(2022).

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. 2020. Convolutional occupancy networks, In Proc. ECCV. arXiv preprint
arXiv:2003.04618.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. In Computer Graphics Forum, Vol. 41. Wiley
Online Library, 51–62.

Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased global illumination
with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006.
Springer, 591–605.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial di�erential equations. Journal of Computational

SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li et al. 2023

physics 378 (2019), 686–707.
Chengping Rao, Hao Sun, and Yang Liu. 2021. Physics-informed deep learning for com-

putational elastodynamics without labeled data. Journal of Engineering Mechanics
147, 8 (2021), 04021043.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4, Article 130 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2462009

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H Shimada,
Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte
Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6 (Nov. 2022), 1–16.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing. ACM
Trans. Graph. 39, 4 (Aug. 2020).

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk
on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary
Conditions. (Feb. 2023). arXiv:2302.11815 [cs.GR]

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-
Free Monte Carlo for PDEs with Spatially Varying Coe�cients. (Jan. 2022).
arXiv:2201.13240 [cs.GR]

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation
Functions. In Proc. NeurIPS.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley
Publishing Co., USA, 121–128. https://doi.org/10.1145/311535.311548

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
2020. Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains. In Proc. NeurIPS.

Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma,
Austin Clyde, David Clark, Michael Salim, David J Hardy, et al. 2021. Intelligent
Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to
Observe the SARS-CoV-2 Replication-Transcription Machinery in Action. bioRxiv
(2021), 2021–10.

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for
Monte Carlo Rendering. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’95). Association for Computing
Machinery, New York, NY, USA, 419–428. https://doi.org/10.1145/218380.218498

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2021. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. ArXiv abs/2112.03907 (2021).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. Proc. NeurIPS (2021).

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural �elds in visual computing and beyond. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 641–676.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021a. Geome-
try Processing with Neural Fields. In Thirty-Fifth Conference on Neural Information
Processing Systems.

Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas
Funkhouser, Bharath Hariharan, and Serge Belongie. 2022. Polynomial Neural
Fields for Subband Decomposition and Manipulation. In Thirty-Sixth Conference on
Neural Information Processing Systems.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Point�ow: 3d point cloud generation with continuous normalizing
�ows. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
4541–4550.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli,
and Robert W Clayton. 2021b. Seismic wave propagation and inversion with neural
operators. The Seismic Record 1, 3 (2021), 126–134.

Ekrem Fatih Yılmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving Inverse PDE Prob-
lems using Grid-FreeMonte Carlo Estimators. (Aug. 2022). arXiv:2208.02114 [cs.GR]

Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2021. Ntopo:
Mesh-free topology optimization using implicit neural representations. Advances
in Neural Information Processing Systems 34 (2021), 10368–10381.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. Nerf++: Analyzing
and improving neural radiance �elds. arXiv preprint arXiv:2010.07492 (2020).

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Steady State Elliptic PDEs
	3.2 Monte Carlo PDE Solvers
	3.3 PDE solvers using Neural Fields

	4 Method Overview
	5 Training a Neural Field Solution
	5.1 WoS Supervision Loss
	5.2 Convergence analysis

	6 Walk-on-spheres with Neural Cache
	7 Results
	7.1 Experiment Setup
	7.2 Equal Time Comparison
	7.3 Equal Sample Analysis
	7.4 Effect of Cache Depth

	8 Conclusion
	References

