Neural Caches for Monte Carlo Partial Differential Equation

Solver
Zilu Li* Guandao Yang" Xi Deng
Cornell University Cornell University Cornell University
zI327@cornell.edu gy46@cornell.edu xd93@cornell.edu
Christopher De Sa Bharath Hariharan Steve Marschner
Cornell University Cornell University Cornell University
cdesa@cs.cornell.edu bharathh@cs.cornell.edu srm(@cs.cornell.edu
Geometry Slice NF WoS. 2022 Ours Reference
g } 1 | z 0.8
Bl ‘ ¥ ' g N ' o
i i
I t LYY d ! t 1y "

Err 0.78x

U5 W

i i

Figure 1: We visualize a slice of the solution to an elliptic PDE within a dragon-shaped boundary. Our hybrid solver can reduce
the error of the neural field baseline, while achieving lower variance compared to the Walk-on-Spheres [Sawhney et al. 2022]
method when working within the constraints of a limited computing budget

ABSTRACT

This paper presents a method that uses neural networks as a caching
mechanism to reduce the variance of Monte Carlo Partial Differen-
tial Equation solvers, such as the Walk-on-Spheres algorithm [Sawh-
ney and Crane 2020]. While these Monte Carlo PDE solvers have
the merits of being unbiased and discretization-free, their high
variance often hinders real-time applications. On the other hand,
neural networks can approximate the PDE solution, and evaluat-
ing these networks at inference time can be very fast. However,
neural-network-based solutions may suffer from convergence diffi-
culties and high bias. Our hybrid system aims to combine these two
potentially complementary solutions by training a neural field to
approximate the PDE solution using supervision from a WoS solver.
This neural field is then used as a cache in the WoS solver to reduce
variance during inference. We demonstrate that our neural field
training procedure is better than the commonly used self-supervised
objectives in the literature. We also show that our hybrid solver
exhibits lower variance than WoS with the same computational
budget: it is significantly better for small compute budgets and

*Equal Contribution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SA Conference Papers "23, December 12—15, 2023, Sydney, NSW, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0315-7/23/12...$15.00
https://doi.org/10.1145/3610548.3618141

provides smaller improvements for larger budgets, reaching the
same performance as WoS in the limit.

KEYWORDS
PDE Solver, Monte Carlo, Neural Fields, Geometry Processing

ACM Reference Format:

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan,
and Steve Marschner. 2023. Neural Caches for Monte Carlo Partial Dif-
ferential Equation Solver. In SIGGRAPH Asia 2023 Conference Papers (SA
Conference Papers °23), December 12-15, 2023, Sydney, NSW, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3610548.3618141

1 INTRODUCTION

Solving elliptic PDEs is critical for various computer graphics ap-
plications, including 3D reconstruction, animation, and physics
simulation. Conventional PDE solvers, however, typically involve
time-consuming and error-prone discretization of space with finite
elements or meshes. Monte Carlo PDE solvers based on the Walk on
Spheres (WoS) algorithm [Sawhney and Crane 2020; Sawhney et al.
2023, 2022] offer a way to circumvent these issues by estimating so-
lution values without discretization. These solvers, however, suffer
from high variance, making them slow as they require numerous
samples to reduce the variance. This prevents their use in many
applications with limited computing budgets.

An alternative to both discretized and Monte Carlo solvers is to
use neural fields to approximate the solution to a PDE. Neural fields
are a class of neural networks that take spatial coordinates as input
and output values of a continuous field [Raissi et al. 2019; Xie et al.
2022]. Prior works have developed self-supervised losses that can
be used to optimize a neural field so that it satisfies a given PDE

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

and boundary conditions [Raissi et al. 2019; Sitzmann et al. 2020].
Neural fields are typically compact, fast to evaluate, and expressive.
However, training neural fields with such self-supervised losses can
be unstable, and they tend to produce biased solutions. Since neural
field-based solvers are fast but biased and MC-based solvers are
unbiased but slow due to high variance, it is natural to ask whether
a hybrid solver that combines these two methods can be developed
to achieve controllable bias, low variance, and fast evaluation.
This paper takes the first step towards building a hybrid solver
combining neural fields with WoS approaches for variable-coefficient
elliptic PDEs. Inspired by previous work [Miiller et al. 2021] that
deploys neural radiance fields as a cache to accelerate Monte Carlo
rendering, we hypothesize that a neural field cache can also be
used to reduce the variance of a Monte Carlo PDE solver. Adapting
this idea, we have developed a novel hybrid PDE solver that first
trains a neural field, then uses it to decrease the cost and variance
of evaluating the solution. In the training phase, we optimize the
neural field supervised by unbiased solution estimates from the
WoS algorithm. Then to evaluate the solution, we run WoS but
terminate its random walks at a prescribed depth by querying the
neural field, providing solution estimates that are more accurate
than the neural field alone and faster and less noisy than WoS alone.
To transfer the success of Miiller et al. [2021] to reduce the vari-
ance of Monte Carlo PDE solvers, we identify the necessary change
of neural network architecture and modification of the training
procedure. We provide a theoretical analysis showing that our loss
retains comparable convergence guarantees to conventional SGD
algorithms. In practical testing, we find that our neural field has a
lower average error than the unbiased but noisy one-sample WoS
estimator, and as the number of samples increases, our hybrid solver
produces a lower error when the depth limit is set appropriately.

2 RELATED WORK

This paper draws inspiration from the existing literature on Monte
Carlo PDE solvers and PDE solvers with neural networks.

Monte Carlo PDE Solvers. The idea of using the Monte Carlo
method to solve PDEs can date back to Courant et al. [1967] and
Forsythe and Leibler [1950]. The Walk on Spheres (WoS) algorithm,
initially proposed by Muller [1956], estimates the solution of a PDE
by simulating a random walk from which boundary and source
contributions are accumulated. Sawhney and Crane [2020] further
applied the WoS algorithm in geometry processing tasks. After
this seminal work, a number of projects have extended WoS to al-
low variable coefficients [Sawhney et al. 2022], Neuman boundary
conditions [Sawhney et al. 2023], PDE parameter inversion [Yil-
mazer et al. 2022], and different applications such as fluid simula-
tion [Rioux-Lavoie et al. 2022]. Although these works extend Monte
Carlo methods to a broader range of PDEs, they are still limited
by shortcomings, such as the high variance and expensive compu-
tations, of Monte Carlo estimators. To tackle these, the computer
graphics community has also developed methods such as bound-
ary caching [Bakbouk and Peers 2023; Miller et al. 2023; Miiller
et al. 2021], importance sampling [Miiller et al. 2017, 2019; Veach
and Guibas 1995], and denoising [Chaitanya et al. 2017; Gharbi
et al. 2019]. Some of these techniques have been applied in WoS

Li et al. 2023

solvers [Qi et al. 2022; Sawhney et al. 2022]. In this paper, we pro-
pose an alternative method to mitigate the shortcomings of Monte
Carlo PDE solvers by incorporating neural networks. Similar ideas
have been applied in path tracing and radiosity [Hadadan et al. 2021;
Miller et al. 2019, 2020, 2021; Ren et al. 2013], and we draw inspira-
tion from these applications. Of particular relevance to this paper is
[Miller et al. 2021], which trains a neural radiance field to be used
as a cache for real-time Monte Carlo rendering. Applying this idea
to Walk-on-Spheres PDE solvers, however, is nontrivial and can
pose new challenges. We identify the correct network architectures
and training procedures to address such domain differences and
provide theoretical analysis for convergence rates.

Neural Fields. Recently, neural fields have been shown to be a
unique signal representation tool with the advantages of allowing
high fidelity reconstruction [Mildenhall et al. 2020; Miiller et al.
2022; Sitzmann et al. 2020; Tancik et al. 2020], enabling sampling at
arbitrary locations , and providing fast training and inference [Chan
et al. 2022; Chen et al. 2022b; Fridovich-Keil et al. 2022; Miiller et al.
2022]. Most applications of neural fields have focused on image
compression [Martel et al. 2021], view synthesis [Barron et al. 2021;
Liu et al. 2020; Mildenhall et al. 2020; Verbin et al. 2021], 3D recon-
struction [Mescheder et al. 2019; Park et al. 2019; Peng et al. 2020;
Wang et al. 2021] and generation [Cai et al. 2020; Chen et al. 2020;
Chen and Zhang 2019; Mescheder et al. 2019; Park et al. 2019; Yang
et al. 2019]. Recently, Sitzmann et al. [2020] showed that neural
fields with an appropriate architecture can be used to solve PDEs.
Yang et al. [2021a] leveraged this idea and applied these neural field
solvers to geometry processing tasks. Other researchers have suc-
cessfully applied neural fields in character animation [Bergman et al.
2022; Noguchi et al. 2021], applications of level-set methods [Mehta
et al. 2022], and solving time-dependent PDEs [Chen et al. 2022a].
Most of these existing methods aim to produce a network that
deterministically approximates the physical field of interest, and
accuracy can only be improved with additional training supervision.
In contrast, we combine a neural field inside a WoS solver, so that it
can produce better results when given more compute at test time.

Other Deep Learning-based PDE solvers. Another class of neural
network-based PDE solvers is commonly known as neural opera-
tors [Li et al. 2020, 2021], which has shown success in many applica-
tions [Liu et al. 2022; Pathak et al. 2022; Trifan et al. 2021; Yang et al.
2021b]. A neural operator will train a neural network to predict
how to evolve a physical system, learning from prior data gener-
ated from the simulation. Unlike neural operators, we will focus
on learning a representation for the PDE solution. Improving our
method to use data drive priors is an exciting direction, but it’s out-
of-the-scope for our discussion. Most closely related to the neural
field PDE solver is a class of solvers called Physics-informed neural
networks (PINNs) [Raissi et al. 2019], which has been applied in
many PDE applications, including turbulence [Hennigh et al. 2021],
elasticity [Rao et al. 2021], and topological optimization [Zehnder
et al. 2021]. PINNSs aim to train a neural network to approximate
the PDE solution via a self-supervised loss derived from the PDE
constraint and boundary conditions. We instead propose an alter-
native way to train neural fields as a representation of the PDE
solution using labels provided by the WoS estimator, which works
well in the class of PDE that the WoS estimator can be applied to.

Neural Caches for Monte Carlo Partial Differential Equation Solver

3 BACKGROUND

Our work builds on two bodies of literature: Monte Carlo PDE
solvers and neural-field PDE solvers.

3.1 Steady State Elliptic PDEs

Elliptic equations are a general class of PDEs that are important
for various computer vision and graphics applications including
(screened) Poisson surface reconstruction [Kazhdan et al. 2006;
Kazhdan and Hoppe 2013] and fluid simulation [Rioux-Lavoie et al.
2022; Stam 1999]. In this paper, we are interested in obtaining the
steady-state solution of an elliptic PDE.

Let Q c R denote the domain and dQ be the boundary of this
domain. Vf denotes the gradient of f and V- is the divergence
operator V - v(x) = 3; dv(x);/dx;. The class of Elliptic equations
we consider in this paper can be expressed in the following form:

V- (a(x)Vu(x)) + &(x)Vu(x) — o(x)u(x) = —f(x) x€Q
u(x) =g(x) xe€9Q,

wherea : R 5 R, % :RY - R?and o : R? — R are spatially
varying coefficients. f : R? — R denotes the source term, and
g: RY — Ris the boundary condition. We will introduce two
different ways to solve elliptic PDEs without discretization.

3.2 Monte Carlo PDE Solvers

The general idea of Monte Carlo PDE solvers is to express the
solution of a PDE in the form of a recursive integral equation, and
then define a Monte Carlo estimator for the integral equation. While
our method can potentially be applied to other types of Monte Carlo
PDE solvers, this paper focuses on PDEs in the form of Equation 1.
This PDE can be solved as an integral equation of the form:

u(x) = S(x) +‘/B ()u(y)Gx(y)dy+/

where S, Gy, and Ky, which are functions depending on a(x), o(x),
and f(x). Br(x) is a ball centered at x with radius r: {y | ||x — y|| <
r}, and 9B(x) is the sphere: {y | ||x — y|| = r}. Specifically,

fQG&Txy) ,
B(x) +a(x)a(y)

Gx(y) = Va(y)/a(x)(5 - o' ()G (x,y) @
where & = max (o’ (x)) — min(¢’ (x)). G? is the Green’s function
and P9 is the Poisson kernel. A more detailed definition of these
functions is provided by Sawhney et al. [2022].

Sawhney et al. [2022] provided the following Monte Carlo esti-
mator for Equation 2, that uses delta-tracking [Coleman 1968; Raab
et al. 2008] to avoid exponential number of walks:

g(x) ifd(x) <e
a(x) = 1 (Sx () + G (y)a(yi)) Py (x) 7 w. prob. Py (x)
(Sx(yi) + K (2:)d(zi)) (1 = PN (x)) ! otherwise

u(z)Ky(z)dz, (2)

B, (x

S(x) = y Ke(z) = Va(2)P7(x,2) (3)

®)

In this solver, S is a single sample Monte-Carlo estimator for the
source contribution S, y; is sampled from By (x), and z; are sam-
pled from 8By () (x). The function d(x) = minye a0 ||y — x|| is the
minimum distance of x to the boundary, x = arg min e 50 [ly — x||

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

is the nearest projection of x the boundary, and € defines a band
around the boundary where walks will be terminated. When the
first branch is not evaluated, the second branch will be evaluated
with probability Py (x). The third branch will be evaluated if nei-
ther the first and the second is evaluated. Please refer to Sawhney
et al. [2022] for definitions of $ and Py.

Limitations. While these Monte Carlo solvers are guaranteed
to be unbiased, they experience very high variance due to the
large space they need to integrate, so one needs to sample many
independent walks to achieve good results. Moreover, each walk
can be expensive, since the walk presented in Equation 5 can take
hundreds of steps to reach the boundary. As a result, these solvers
usually require additional variance reduction techniques.

3.3 PDE solvers using Neural Fields

A neural field is a neural network that takes the coordinates of
an m-dimensional spatial point X and outputs a field value: uy :
R"? — R™ [Xie et al. 2022]. If ug is constructed to be smooth
and continuous, then the spatial gradients such as dug/dx; can be
obtained via automatic differentiation. These properties have been
leveraged by prior works to apply neural fields to solve PDEs [Chen
et al. 2022a; Raissi et al. 2019; Sitzmann et al. 2020] and to perform
geometry processing [Mehta et al. 2022; Yang et al. 2021a]. For the
PDE in Equation 1, we can define the following training objectives:

P(0,x) = ||(ug — V - (aVug) — 3Vup + aug + f) ()[I* (6)
B(0,x) = |(ug — 9) (%) (7)

The loss % is trying to enforce the PDE condition, and the loss 8 is
trying enforce the boundary condition. Solving Equation 1 can be
formulated as an optimization problem [Raissi et al. 2019; Sitzmann
et al. 2020; Yang et al. 2021a]

argmin/P(G,x)dx+/1/ B (0,x) dx, 3)
0 Q Q

where A is a hyperparameter that balances the PDE constraints and
boundary constraints.

Network architectures. The network architecture is chosen to
strike a good balance between expressiveness and regularization
to obtain good performance. A popular choice is a multi-layer per-
ceptron (MLP) with sinusoidal activations [Sitzmann et al. 2020]
or Fourier positional encoding [Lindell et al. 2022; Tancik et al.
2020; Yang et al. 2022; Zhang et al. 2020]. These MLPs are very
compact to store, yet they can be slow to train and expensive
to evaluate. Another class of of neural field architecture modu-
lates an MLP with interpolated spatial features [Miiller et al. 2022]:
ug(x) = fp,,, (g(interp(x, 61),...,interp(x, 0,)), where interp is
bi-linear interpolation, g(v1,...,v,) is an aggregation operation,
and fp is a small MLP. These neural fields with spatially modu-
lated features are usually fast to converge, but they are harder to
regularize to produce a good solution when supervision is limited.

Limitations. Once successfully trained, these neural fields can
produce an approximate solution to the PDE very efficiently since
only a forward pass is required to evaluate the field. However, train-
ing such neural fields using a self-supervised loss can be difficult.

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

In order for the training to converge, one needs to choose appro-
priate network architectures, initialization, as well as the learning
rate schedule. For example, using a network with piecewise linear
activation will not work since the Laplacian of the network will be
zero [Lei and Jia 2020], even though the network is still a universal
approximator. Also, the residual error between the neural field and
the exact solution depends on the architecture, the training pro-
cedures, and the characteristics of the PDE, making it difficult to
control the amount of bias in a neural field solution.

4 METHOD OVERVIEW

On one hand, the WoS method is slow at inference time due to high
variance, but it has no bias. On the other hand, the neural field is
comparatively fast at inference time since it produces deterministic
output without variance, but it suffers from non-zero bias. Inspired
by these complementary properties, we want to build a hybrid
solver where we can reduce the inference time for WoS by querying
the neural field after a fixed compute budget.

We achieve this hybrid solver in two steps. First, we need to
build a mechanism to reliably train neural field solutions. Instead of
using the self-supervised loss, we proposed to use a WoS estimator
to provide target data to supervise the neural field to approximate
the PDE solution (Section 5). Once we obtain a neural field with a
small enough error, we use a hybrid WoS solver that terminates the
recursive call in Equation 5 by querying the neural field (Section 6).
Intuitively, this hybrid solver can lower the error of the neural
field solution since it performs WoS-style random walks that can
terminate at the boundary. At the same time, it can achieve lower
variance than the WoS estimator since it conducts shorter walks,
thus exploring a smaller sample space.

5 TRAINING A NEURAL FIELD SOLUTION

To build a hybrid solver, we first need to obtain a neural field that
approximates the solution of the PDE in Equation 1. Specifically,
the network ug will take a 2D or 3D spatial coordinate x as input
and output a real number to approximate the ground truth u(x).

One way to achieve this is to directly use a self-supervised loss
like the one in Equation 8. Training with this type of loss can be un-
stable and often requires extensive hyper-parameter tuning. For ex-
ample, Figure 3 shows that for the self-supervised loss, performance
is sensitive to hyper-parameters such as network architecture.

One potential reason for such instability is the higher-order
differential operator used in the self-supervised loss. If neural fields
need to be expressive enough to approximate arbitrary solutions,
the network needs to contain high-frequency components. The
derivative operators will further amplify the contribution of these
high-frequency components. As a result, the self-supervised loss
can be high-frequency, making it difficult to optimize.

In this paper, we circumvent this issue by proposing loss func-
tions that do not require evaluating gradients of the network. The
key idea is that the WoS estimator provides statistical estimates
of the exact solution to the PDE, and these estimates can be used
as targets to train the neural networks. We will demonstrate the
derivation of the WoS-supervision loss in Section 5.1, analyze its
convergence properties in Section 5.2.

Li et al. 2023

5.1 WosS Supervision Loss

One way to supervise the neural field solution without taking spatial
derivatives is to use the MC estimator to create supervision targets
to optimize the neural network. The straightforward way to achieve
this is first running the Monte-Carlo estimator for enough iterations
to accurately estimate the PDE solution for a fixed set of spatial
locations {x; € Q}_,. Then we can use SGD to optimize the L2
objectives between the network’s output and the estimated target:
2

n N
L@ =23 o) - Yt | ©)
i=1 =

where 4 is an unbiased Monte Carlo estimator for the PDE solution
so E [4] = u in Q. Computing this target can take a substantial
amount of time since it requires running N independent walks for
each training location x;.

Intuitively, we need not wait to start training until the super-
vision signal is very accurate, since SGD-based neural network
training can tolerate noisy gradients. This suggests that we can
run the data acquisition process and the neural network training
process in parallel, similar to Miiller et al. [2021].

To achieve this, we first create a running estimate y; of the PDE
solution at each location x; target using the WoS estimator :

g™ = (k™ i)/ (ke + 1), (10)

where k denotes the number of accumulation steps. The training
loss at step t is simply the L2 loss between the network prediction
and the accumulated sample average:

£:(0) = % i Hue(xi) - yl-(t)Hz : (11)
i1

By using a loss defined in this way with a target value yi(t) that
improves in accuracy as training progresses, we are able to run
the sample generation in parallel with training and also converge
provably to low-noise results.

5.2 Convergence analysis

Intuitively, when training a neural field using stochastic gradient
descent (SGD) with the loss function in Equation 11, the variance
of the target from the Monte-Carlo estimator will be added to the
variance created by SGD. As long as this estimator is unbiased, SGD
can converge to a region with small gradients.

THEOREM 5.1. Let u be the solution of the PDE of interest, and ii
be an unbiased WoS estimator for the solution with bounded variance:
E (@] =u and V [4] < C. Let ugy be the neural field to be optimized.
Define the final objective to be L;i(0,y) = (ug(x;) — yi)z. Further,
assume that ||Vgoug(x)|| < F, ”vT (Vé.ﬁ) u| < L||v|| for all v, and
[IVoLi(6,u)|| < G. If we run the following SGD optimization for T
steps: Op41 = 0 — Vg L(0, yi(t)), where yi(Hl) is obtained through
Equation 10, then the expected gradient norm will converge at the
following rate:

L(60) — L(0") LCF?log(T) LG%a
+ , (12)

Ta 2 T 2
where t is a random variable on [0, ..., T — 1] indicating which step
to stop, P(t = t) = 1/T, T is the maximum number of SGD steps, and

E[VgL(0:)] <

Neural Caches for Monte Carlo Partial Differential Equation Solver

Neural
Field

MC Samples
Collection

0 0000%0 g0 00000

00000000 o000

TrainAing
Gy

(% G)

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

Query NF

after depth d Ours (Hybrid)

Result

Increase

#sample
-

Figure 2: Illustration of our training and testing pipeline. We first use the WoS algorithm to generate target data for training a
neural field approximation of the PDE solution. Once the neural field is trained, it will be used as cache in the hybrid solver,

enabling the random walks to terminate early.

iNGP-Self

Siren-Self

Siren-WoS

Figure 3: Result of training Neural Fields with the self-
supervised loss and with WoS supervision. Here we train
two different neural field architectures, SIREN and iNGP,
using each of these losses. Swapping from SIREN to iNGP
causes catastrophic failure when using self-supervision. Our
loss produces good results for both architectures.

L(0) is the averaged loss over different sampling locations at time
t: ﬁ Zfil Li(0, yl.(t)). The expectation is taken over stopping time T,
()

randomly generated targety, ’, and optimization trajectory 0y .

The proof is provided in the supplementary. This theorem sug-
gests that supervising SGD with signals created from an unbiased
WoS estimator will converge to a noise ball of size LG%a/2, which
is the same as SGD algorithms. The convergence rate is under-
standably slower (i.e. O(log(T)/T)) compared to SGD training with
variance-free labels (i.e. O(1/T)). This is because additional steps
are required to average out the variance introduced by y!.

Note that Theorem 5.1 only shows the most basic convergence
analysis for constant learning rate SGD with labels created by
WoS estimators. This convergence rate can be easily improved by
standard techniques such as reducing the learning rate, adding
momentum, or reducing the variance of the MC samples.

def train(net, WoS, domain, n_points):
X = WoS.domain_sample(n_points)
data = {x_i: (@, @) for x_i in x}
for i in range(max_training_iters):
xi, yi, ci = sample_batch(data)
y_new = WoS(xi) Obtain new MC estimate

#

#
yi = (yi * ci+ y_new) / (ci + 1) # Estimate new label.
loss = ((net(xi) - yi)**2).mean() # Compute loss.
#
#

Initialize dataset

Sample a batch.

net = Adam(net, 1r(t), loss.grad()) SGD updates.
datalxi] = (yi, ci + 1) Dataset update.
return net

Listing 1: Training algorithm (Sec 5).

6 WALK-ON-SPHERES WITH NEURAL CACHE

Now we have a Monte Carlo solver # and a neural field ug(x) ap-
proximating the solution. How do we construct a hybrid solver
with lower variance than the Monte Carlo solver but can also
have controllable bias like the Monte Carlo solver? We propose to
achieve this is by replacing the recursive call in the Monte Carlo
solver of Equation 5 with neural network inference after a certain
depth.Specifically, we define a hybrid solver in the following form:

9(%) ifd(x) <e
ug(x) ifm=0

g (x,m) = sx(y)+6¢3(>z§<y’m—1> w. prob. P (x) 3)
Sx(y) +If:i g?f)(z’m_ D stherwise

where y ~ By(x)(x), z ~ dBr(x), and ¥ is a projection of x to the
closest point on the boundary: x = arg min e 50 [lx =yl

The idea of this solver is to run a random walk following the
WoS algorithm, but keeping track of the number of steps, which is
the key indicator of computational cost. The walk can terminate
in two ways. If the walk reaches the boundary, then the solver
returns the boundary condition g as in standard WoS. If the walk
doesn’t reach the boundary within the budgeted number of steps
m, it queries the approximate solution from the neural field uy.

This hybrid solver generalizes both the neural field and the WoS
estimator, and the parameter m lets us explore the trade-off between
bias (from the neural field) and variance (from the Monte Carlo
estimator). When calling @ with m = 0, it simply returns the neural
field value; there is no variance, but the bias is the approximation
error of the neural field. When setting m = oo, it computes exactly
the WoS estimator, which has no bias but can have substantial
variance. For intermediate values of m, the hybrid method can
achieve lower bias than the NF alone and lower variance than the
WoS estimator. This is supported by experiment results in Sec 7.4.

When dealing with low computation budgets, the parameter m
can be assigned a low value or even set to zero, resulting in fast
evaluation with minimal or no variance. When more computation is
available, m can be set higher to decrease bias. But each sample can
create walks with up to m steps, which results in higher variance
(due to the large sample space caused by longer walks). As a result,
as the depth increases, the hybrid solver will require more samples,

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

thus increasing the computational cost. However, in Section 7.4, we
show that the hybrid estimator can achieve lower overall error in
practice for most ranges of accuracy.
def test(net, WoS, x, m):
dist, x_proj = WoS.domain.nn_query(x)
if dist < eps: return WoS.boundary(x_proj)
if m == return net(x)
y, z = WoS.sample_walk(x)
source = WoS.compute_source(x, y)
if WoS.is_null(x):
x_next, coef =y, WoS.compute_null_coef(x, y)
else:
x_next, coef = z, WoS.compute_non_null_coef(x, z)
return test(net, WoS, x_next, m - 1) * coef + source

Listing 2: Hybrid solver inference (Sec 6).

7 RESULTS

This section will first compare the proposed hybrid solver and two
baselines: pure WoS and pure neural field solutions trained with
self-supervised loss. We first show equal-time comparisons on a
3D elliptic equation with spatially varying coefficients (Sec 7.1).
We then provide an analysis under the same number of samples
(Sec 7.3). Finally, we demonstrate how the depth hyperparameter of
our hybrid solver allows users to trade off compute for bias (Sec 7.4).

7.1 Experiment Setup

In this section, we apply our solvers and the baseline solvers to the
PDE in Equation 1 without a drifting term:

V- (a(x)Vu(x)) —o(x)u(x) = —f(x) xe€Q

u(x) =g(x) xe€aQ. (14)

This experiment section will focus on variable coefficient PDEs.
Please refer to the supplementary for the results of combining our
methods with constant coefficient WoS algorithms.

Domain representation. The domain Q is defined by a signed
distance function (SDF). In this experiment, we represent the do-
main SDF by training a neural field in instant-NGP [Miiller et al.
2022; Park et al. 2019; Sitzmann et al. 2020]. We follow the training
procedure of Miiller et al. [2022] except that 1) we do not deploy
hashing to compress the storage, and 2) we use multi-resolution
grids with only four layers with following resolutions: 128, 64, 32,
and 16. Our model takes about 20 minutes to finish training and
contains 4MB parameters.

Diffusion, absorption, forcing, and boundary functions. Following
Sawhney et al. [2022], we use smooth periodic patterns to generate
the spatially varying diffusion, absorption, forcing, and boundary
functions. Please refer to the released code for more details.

Baselines. Our baselines for comparison are (1) Walk-on-spheres
solver (WoS) and (2) neural fields trained with self-supervised tech-
niques (NF). For the WoS baseline, we follow the released C++ im-
plementation of Sawhney et al. [2022]. We used the Delta Tracking
algorithm, with importance sampling on the off-centered Green’s
function but didn’t apply the next-flight variant. This WoS solver
is also used as the basis for the hybrid solver. For the NF base-
line, we implement the self-supervised loss as shown in Equation 8.
This neural field baseline is trained for 2 x 10* iterations, with the

Li et al. 2023

best hyper-parameter obtained Ray-tune [Liaw et al. 2018] random
search. The training of this baseline takes about 5 minutes to finish.

Reference solution. We use the unbiased WoS estimators to pro-
duce the reference solution. Specifically, for each geometry, we
choose a slice of interest (i.e. the z = 0 plane). At that plane, we
densely sample an image with resolution 512 X 512 unless other-
wise noted. We average 10* WoS samples for each of these pixels to
create the reference value. For pixels that are outside the domain,
we set the reference to 0.

Hyperparameters for hybrid solvers. To obtain the neural field ap-
proximation using the method proposed in Section 5, we uniformly
sample 20000 points inside the domain via rejection sampling. For
each of these points, we run WoS algorithm with 50 walks to obtain
the initial training label y(%). Then we start the training procedure
for 20000 iterations using Adam optimizer. For every 5000 iterations,
we sample another batch of data from WoS with 50 walks. We do
not interrupt the training until the next batch of data accumulation
of 50 walks is ready. To compute WoS for 50 independent walks for
all data points takes about 40 seconds, during which we can run
about 8000 training iterations. This allow us to update the training
data at every 5000 iterations without waiting. We use SIREN with
512 hidden dimensions and 2 hidden layers. The training is done
in NVIDIA RTX 2080 Ti GPUs and can be finished within 4 min-
utes. We implement the training pipeline and WoS solver using the
automatic differentiation framework Jax [Bradbury et al. 2018].

7.2 Equal Time Comparison

We present qualitative results for three shapes: Sprocket, Mis-
sile [Koch et al. 2019], and Cow [Crane et al. 2013]. For each of these
shapes, we allocate 5 minutes of compute time to obtain the result.
We also report the mean square error for each frame. The results
are shown in Figure 4. Our network is more accurate than the NF
baseline, with a lower MSE compared with the reference solution.
For our hybrid solution, we set m = 1. Compared to the WoS base-
line, our network shows less noise, which is also reflected through
both the cleaner image and the lower MSE error. This result verifies
our hypothesis that our hybrid solver is able to produce less biased
results than the NF baseline and also achieves lower variance than
the WoS baseline using a similar amount of computing resources.
Note that our method performs better when the solution function
has higher spatial frequency (e.g. Missile and Cow example).

To further understand the allocation of time for our method and
the WoS baseline, we report a detailed compute time breakdown in
Figure 6. We report the amount of time it takes for both the WoS
and the hybrid model to reach an MSE error of 5e-3 at different
resolutions. We report three different resolutions: 256, 512, and 1024.
For the hybrid model, we show the breakdown of training time
and inference time. The hybrid model can outperform WoS in time
efficiency as long as there are sufficient locations whose solution
needs to be computed during inference. Its advantage is larger when
the number of testing locations is larger (e.g. 1024 x 1024). This is
because it is very fast for the hybrid method with shallow depth (e.g.
m = 1) to produce a good estimate during inference. The training
time remains unchanged regardless of the inference time resolution.
As a result, when the slice resolution is large, the hybrid model can

Neural Caches for Monte Carlo Partial Differential Equation Solver

Geo Slice NF

4
v . “\\
iy,
\
{ n\o
\

o

/vvl
HOV

-l]l

.. .'\ ¥ / 2 E<
'. — 1(» (# ‘.!' Brr 23.67%

eec” 5&(!

"'IP e

Err 2.61x

~

| II \“mm‘ t

ﬂ.‘

Err 24.65%

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

WoS. 2022 Ours (m=1) Ref.

A
srd bV
AL

E
o

A
srd bV
0’90

Err 0.48%

El]’

Y
st bV
lfi'

Err 1.0x

EEi
o

S
rr 1.0X Err 0.82x

PHE PEE PEe

]l‘lﬁﬁ"'m'!xl' Ilf"'m.ll" l!ﬁvvvmv

Relaks felals L..h‘l

Err 1.0x Err 0.52x

IR e e

Figure 4: Equal time comparison. We solve a variable coefficient screened Poisson equation (Eq 1) with different domain shapes,
including high-genus shapes (Row 2) and shapes with thin structures and sharp edges (Row 3). We sample a 512 X 512 slice
for each method and allocate 5 minutes of compute time to obtain the result. We can see that the hybrid solver can achieve
more accurate results than both the self-supervised baseline (with high bias) and the WoS baseline (with high variance). The
performance gap is larger when the PDE solution is high-frequency.

amortize the training cost, which leads to a larger performance gap
compared to the WoS baseline.

7.3 Equal Sample Analysis

Equal-time comparison can be unreliable since the compute time
also tightly depends on implementation and hardware. To further
compare the performance among these solvers, we conduct an
equal sample analysis. For each solver, we averaged the output
of k independent samples. This averaged output is then used to
compute the MSE with the reference solution. In the left-hand side
of Figure 5, we plot the MSE versus the number of samples in log
scale. The NF baseline using self-supervised loss failed to produce
accurate results and lacks any provision to reduce its error during
inference time. This is indicated by a constant high MSE throughout
different numbers of test-time samples. This error is also visible in
the slice figure titled NF, which has different values near the ear
and the front foot of the bunny. This can be caused by the training
instability of the self-supervised loss, which requires additional
hyperparameter tuning. On the other hand, our neural field trained
with WoS supervision (Section 5.1, Ours(m=0)) has lower MSE
and better qualitative results compared to the NF baseline. The
qualitative result of Ours(m=0) is also closer to the reference.
Compared to WoS baseline, our hybrid solvers achieve lower MSE
error when the number of walks per testing location is low. But as
more walks are allowed during inference, the performance of hybrid

solvers plateaus while the WoS baseline is able to sustain the O(1/N)

convergence rate with N being the number of independent walks.

This is expected since the hybrid solver terminates by evaluating
the neural cache uy, which is only an approximation of the actual
solution u. Overall, the result suggests that our hybrid solver has
an advantage over both the NF baseline and the WoS baseline when
computation resource is limited.

7.4 Effect of Cache Depth

Finally, we want to analyze the key hyperparameter of our hybrid
solver, the depth budget m in Eq 13. We want to study how this
hyper-parameter allows us to trade off bias and compute. To achieve
this, we first run our hybrid models but set the depth budget to
different numbers: m = 0, 1, 5. As in the previous section, we sample
10* independent walks for each model. To produce outputs at the
kth step, we average k sampled walks. Each of these outputs is
compared to the reference solution to compute MSE. Figure 7 shows
a graph of the number of samples versus MSE.

First, as m increases, the curve plateaus at lower MSE. Intuitively
as m increases, the hybrid solver should behave more and more like
the WoS solver since more and more walks can terminate within
the budget, making fewer (biased) neural network queries. At the
same time, increasing m will result in more compute per walk since
the random walk might not terminate until it hits the budget. Thus
each such walk will take a longer time to finish. This suggests that

125

1.00

0.75

0.50

°
®

&

02

o
>

MSE

SA Conference Papers ’23, December 12-15, 2023, Sydney, NSW, Australia

WoS. 2022

== WoS
-1 = Our (m=0)
10 e OQur (m=1)
NF
1072

. mal Fol Al BCL

103 X

1074
10! 10% 10*

#Walks

Err 40.0x Err 1.0x

Li et al. 2023

Ours (m=0) Ours (m=1)

Err 0.259x Err 0.248%

Figure 5: Equal sample convergence analysis. L: we show number of walks v.s. MSE curves. Our method achieves lower MSE
when number of walks is limited. R: a qualitative comparison of different models at 100 walks per pixel.

Cow Scene Bunny Scene
25 200 .
20 Training WoS 175 Training WoS
- 150 = Inference
15 125
Ours 100
10 75
’E\ WoS -
.= - Wos Oum 50
E 2 Ours
25
& On
g Ours urs
I I |
256 x 256 512x 512 1024 x 1024 256 x 256 512x 512 1024 x 1024
Resolution Resolution

Figure 6: Computational time breakdown for WoS and our
method. We report the time it took each of the methods to
reach an MSE error of less than 5e-3. Our hybrid solver is
faster than WoS when there are more test samples.

if the user desires more accurate results, they are able to achieve

this by increasing the depth of the hybrid solver.

Second, as the depth m increases, the MSE curve starts higher.

Intuitively, we can think of the hybrid solver as computing the
expectation of a function that takes a random walk x1, . .., x4 with
length m and return a value. A larger m means the expectation
is taken over a larger space, which might require more samples
to compute accurately. As a result, when the compute budget is
limited, it’s beneficial to use the hybrid solver with smaller m.

Finally, we are able to expand the advantages of our hybrid solver
over the WoS solver at different compute budgets by considering
different values of m. For example, when we only consider the
configuration of m = 0 and m = 1, our hybrid solver is better
than WoS when the budget is less than about 1000 walks, shown in
the plot at the left-hand-side of Figure 7. This can be seen by the
crossing point of the m=1 and WoS curves. But when we expand the
set of hybrid solvers to include m = 0 through m = 5, our hybrid
solver outperforms WoS until about 4071 walks per sample, which
is indicated by the crossing point of m=5 and WoS.

8 CONCLUSION

In this paper, we propose to use neural fields to effectively reduce

the variance of the Walk-on-spheres Monte Carlo PDE solvers.

First, we develop a simple and effective training objective to obtain
a neural field that approximates the PDE solution. Then, it’s used
as a cache to reduce the length of random walks from the WoS

MSE

107110\ 102 103 10t 0.60x 1.00x 0.72x 1.00X
#Walks m=5 WoS m=5 WoS

Figure 7: L: Convergence rate with different depths. The cross-
ing points A, B, and C show that given different compute
budgets we should choose different parameters m. R: Visual-
ization at different depths at 80 and 1300 walks.

solvers. We also provide a convergence analysis of the proposed
training algorithm showing similar convergence properties to SGD.
Empirically, we show that our hybrid solver can reduce the variance
of the WoS solver when working within a limited computational
budget. It can converge to an unbiased solver as we increase the
compute budget.

Currently, our method only applies to a specific class of PDEs and
boundary conditions where there exists an unbiased Monte Carlo
solver. Applying to a broader class of recursive Monte Carlo esti-
mators is an interesting direction for future research. Our method
also requires the manual selection of certain key hyper-parameters
such as the inference depth budget. An automatic way to determine
these hyper-parameters would be helpful to make our method ap-
plicable to more examples. To scale our method to larger scenes,
we may need to efficiently train a neural field to approximate a
function within such large and complex geometry. Moreover, how
to leverage recent advances such as instant NGP [Miiller et al. 2022]
to achieve PDE simulation in large scenes is also interesting. A
comprehensive convergence analysis with empirical evidence can
be beneficial for the community to better understand the algorithm.

Acknowledgement. This research was supported in part by the
National Science Foundation under grant 2212084, grant 2144117,
and by the RI-CAREER award 2046760. We want to thank Rohan
Sawhney and Wenqi Xian for their discussions.

Neural Caches for Monte Carlo Partial Differential Equation Solver

REFERENCES

Ghada Bakbouk and Pieter Peers. 2023. Mean Value Caching for Walk on Spheres.
(2023).

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-
Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 5855-5864.

Alexander Bergman, Petr Kellnhofer, Wang Yifan, Eric Chan, David Lindell, and Gordon
Wetzstein. 2022. Generative neural articulated radiance fields. Advances in Neural
Information Processing Systems 35 (2022), 19900-19916.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of
Python+NumPy programs. http://github.com/google/jax

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah
Snavely, and Bharath Hariharan. 2020. Learning gradient fields for shape generation.
In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August
23-28, 2020, Proceedings, Part III 16. Springer, 364-381.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-
struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-
toencoder. ACM Trans. Graph. 36, 4, Article 98 (jul 2017), 12 pages. https:
//doi.org/10.1145/3072959.3073601

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2022. Efficient Geometry-aware 3D Generative
Adversarial Networks. In Proc. CVPR.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022b. TensoRF: Tenso-
rial Radiance Fields. In Computer Vision — ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXII (Tel Aviv, Israel). Springer-
Verlag, Berlin, Heidelberg, 333-350. https://doi.org/10.1007/978-3-031-19824-3_20

Honglin Chen, Rundi Wu, Eitan Grinspun, Changxi Zheng, and Peter Yichen Chen.
2022a. Implicit Neural Spatial Representations for Time-dependent PDEs. arXiv
preprint arXiv:2210.00124 (2022).

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. Bsp-net: Generating compact
meshes via binary space partitioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 45-54.

Zhigin Chen and Hao Zhang. 2019. Learning implicit fields for generative shape
modeling. In Proc. CVPR.

W. A. Coleman. 1968. Mathematical Verification of a Certain Monte Carlo Sampling
Technique and Applications of the Technique to Radiation Transport Problems.
Nuclear Science and Engineering 32, 1 (1968), 76-81. https://doi.org/10.13182/NSE68-
1

Richard Courant, Kurt Friedrichs, and Hans Lewy. 1967. On the partial difference
equations of mathematical physics. IBM journal of Research and Development 11, 2
(1967), 215-234

Keenan Crane, Ulrich Pinkall, and Peter Schroder. 2013. Robust fairing via conformal
curvature flow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-10.

George E Forsythe and Richard A Leibler. 1950. Matrix inversion by a Monte Carlo
method. Math. Comp. 4, 31 (1950), 127-129.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5501-5510.

Michaél Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.
Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4, Article 125 (jul 2019), 12 pages. https://doi.org/10.1145/3306346.
3322954

Saeed Hadadan, Shuhong Chen, and Matthias Zwicker. 2021. Neural Radiosity. ACM
Trans. Graph. 40, 6, Article 236 (dec 2021), 11 pages. https://doi.org/10.1145/3478513.
3480569

Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subrama-
niam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, and Sanjay
Choudhry. 2021. NVIDIA SimNet™: An Al-accelerated multi-physics simulation
framework. In Computational Science—ICCS 2021: 21st International Conference,
Krakow, Poland, June 16-18, 2021, Proceedings, Part V. Springer, 447-461.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-
struction. In Symposium on Geometry Processing, Alla Sheffer and Konrad Polthier
(Eds.). The Eurographics Association. https://doi.org/10.2312/SGP/SGP06/061-070

Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction.
ACM Trans. Graph. 32, 3, Article 29 (jul 2013), 13 pages. https://doi.org/10.1145/
2487228.2487237

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A Big
CAD Model Dataset For Geometric Deep Learning. arXiv:1812.06216 [cs.GR]

Jiabao Lei and Kui Jia. 2020. Analytic marching: An analytic meshing solution from
deep implicit surface networks. In International Conference on Machine Learning.

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

PMLR, 5789-5798.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. 2020. Fourier neural operator
for parametric partial differential equations. arXiv preprint arXiv:2010.08895 (2020).

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu,
Kamyar Azizzadenesheli, and Anima Anandkumar. 2021. Physics-informed neural
operator for learning partial differential equations. arXiv preprint arXiv:2111.03794
(2021).

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and
Ton Stoica. 2018. Tune: A Research Platform for Distributed Model Selection and
Training. arXiv preprint arXiv:1807.05118 (2018).

David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. BACON:
Band-limited Coordinate Networks for Multiscale Scene Representation. CVPR
(2022).

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anand-
kumar, Andrew M Stuart, and Kaushik Bhattacharya. 2022. A learning-based
multiscale method and its application to inelastic impact problems. Journal of the
Mechanics and Physics of Solids 158 (2022), 104668.

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural Sparse Voxel Fields. In NeurIPS.

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene
Representation. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 58 (2021), 13 pages.

Ishit Mehta, Manmohan Chandraker, and Ravi Ramamoorthi. 2022. A Level Set Theory
for Neural Implicit Evolution under Explicit Flows. arXiv preprint arXiv:2204.07159
(2022).

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas
Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space.
In Proc. CVPR.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proc. ECCV.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. (Feb. 2023). arXiv:2302.11825 [cs.GR]

Mervin E Muller. 1956. Some continuous Monte Carlo methods for the Dirichlet
problem. The Annals of Mathematical Statistics (1956), 569—-589.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. 41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.
3530127

Thomas Miiller, Markus Gross, and Jan Novak. 2017. Practical Path Guiding for
Efficient Light-Transport Simulation. Comput. Graph. Forum 36, 4 (jul 2017), 91-100.
https://doi.org/10.1111/cgf.13227

Thomas Miiller, Brian Mcwilliams, Fabrice Rousselle, Markus Gross, and Jan Novak.
2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (oct 2019),
19 pages. https://doi.org/10.1145/3341156

Thomas Miiller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novak.
2019. Neural importance sampling. ACM Transactions on Graphics (ToG) 38, 5
(2019), 1-19.

Thomas Miiller, Fabrice Rousselle, Alexander Keller, and Jan Novak. 2020. Neural
control variates. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1-19.

Thomas Miiller, Fabrice Rousselle, Jan Novék, and Alexander Keller. 2021. Real-Time
Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4 (Aug. 2021).

Thomas Miiller, Fabrice Rousselle, Jan Novak, and Alexander Keller. 2021. Real-time
neural radiance caching for path tracing. arXiv preprint arXiv:2106.12372 (2021).

Atsuhiro Noguchi, Xiao Sun, Stephen Lin, and Tatsuya Harada. 2021. Neural articulated
radiance field. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 5762-5772.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape
Representation, In Proc. CVPR. Proc. CVPR.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chat-
topadhyay, Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Aziz-
zadenesheli, et al. 2022. Fourcastnet: A global data-driven high-resolution weather
model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214
(2022).

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas
Geiger. 2020. Convolutional occupancy networks, In Proc. ECCV. arXiv preprint
arXiv:2003.04618.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. In Computer Graphics Forum, Vol. 41. Wiley
Online Library, 51-62.

Matthias Raab, Daniel Seibert, and Alexander Keller. 2008. Unbiased global illumination
with participating media. In Monte Carlo and Quasi-Monte Carlo Methods 2006.
Springer, 591-605.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. Journal of Computational

SA Conference Papers "23, December 12-15, 2023, Sydney, NSW, Australia

physics 378 (2019), 686-707.

Chengping Rao, Hao Sun, and Yang Liu. 2021. Physics-informed deep learning for com-
putational elastodynamics without labeled data. Journal of Engineering Mechanics
147, 8 (2021), 04021043.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4, Article 130 (jul 2013), 12 pages. https://doi.org/10.1145/2461912.2462009

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tiimay Ozdemir, Naoharu H Shimada,
Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte
Carlo Method for Fluid Simulation. ACM Trans. Graph. 41, 6 (Nov. 2022), 1-16.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing. ACM
Trans. Graph. 39, 4 (Aug. 2020).

Rohan Sawhney, Bailey Miller, Ioannis Gkioulekas, and Keenan Crane. 2023. Walk
on Stars: A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary
Conditions. (Feb. 2023). arXiv:2302.11815 [cs.GR]

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-
Free Monte Carlo for PDEs with Spatially Varying Coefficients. (Jan. 2022).
arXiv:2201.13240 [cs.GR]

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and
Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation
Functions. In Proc. NeurIPS.

Jos Stam. 1999. Stable Fluids. In Proceedings of the 26th Annual Conference on Computer
Graphics and Interactive Techniques (SSGGRAPH °99). ACM Press/Addison-Wesley
Publishing Co., USA, 121-128. https://doi.org/10.1145/311535.311548

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
2020. Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains. In Proc. NeurIPS.

Anda Trifan, Defne Gorgun, Zongyi Li, Alexander Brace, Maxim Zvyagin, Heng Ma,
Austin Clyde, David Clark, Michael Salim, David] Hardy, et al. 2021. Intelligent
Resolution: Integrating Cryo-EM with Al-driven Multi-resolution Simulations to
Observe the SARS-CoV-2 Replication-Transcription Machinery in Action. bioRxiv
(2021), 2021-10.

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for
Monte Carlo Rendering. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques (SSIGGRAPH *95). Association for Computing
Machinery, New York, NY, USA, 419-428. https://doi.org/10.1145/218380.218498

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd E. Zickler, Jonathan T. Barron, and
Pratul P. Srinivasan. 2021. Ref-NeRF: Structured View-Dependent Appearance for
Neural Radiance Fields. ArXiv abs/2112.03907 (2021).

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeusS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction. Proc. NeurIPS (2021).

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shigin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022.
Neural fields in visual computing and beyond. In Computer Graphics Forum, Vol. 41.
Wiley Online Library, 641-676.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. 2021a. Geome-
try Processing with Neural Fields. In Thirty-Fifth Conference on Neural Information
Processing Systems.

Guandao Yang, Sagie Benaim, Varun Jampani, Kyle Genova, Jonathan Barron, Thomas
Funkhouser, Bharath Harjharan, and Serge Belongie. 2022. Polynomial Neural
Fields for Subband Decomposition and Manipulation. In Thirty-Sixth Conference on
Neural Information Processing Systems.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing
flows. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
4541-4550.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli,
and Robert W Clayton. 2021b. Seismic wave propagation and inversion with neural
operators. The Seismic Record 1, 3 (2021), 126-134.

Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob. 2022. Solving Inverse PDE Prob-
lems using Grid-Free Monte Carlo Estimators. (Aug. 2022). arXiv:2208.02114 [cs.GR]

Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2021. Ntopo:
Mesh-free topology optimization using implicit neural representations. Advances
in Neural Information Processing Systems 34 (2021), 10368-10381.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. Nerf++: Analyzing
and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020).

Li et al. 2023

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Steady State Elliptic PDEs
	3.2 Monte Carlo PDE Solvers
	3.3 PDE solvers using Neural Fields

	4 Method Overview
	5 Training a Neural Field Solution
	5.1 WoS Supervision Loss
	5.2 Convergence analysis

	6 Walk-on-spheres with Neural Cache
	7 Results
	7.1 Experiment Setup
	7.2 Equal Time Comparison
	7.3 Equal Sample Analysis
	7.4 Effect of Cache Depth

	8 Conclusion
	References

