


1. Quantify arbitrariness. We formalize a metric called
self-consistency, derived from statistical variance, which
we use as a quantitative proxy for arbitrariness of model
outputs. Self-consistency is a simple yet powerful tool for
empirical analyses of fair classification (§3).

2. Ensemble to improve self-consistency. We ex-
tend Breiman’s classic bagging to allow for abstaining
from classifying instances for which self-consistency is
low. This improves overall self-consistency (i.e., reduces
variance), and improves accuracy (§4).

3. Perform a comprehensive experimental study of vari-
ance in fair binary classification. We conduct the largest-
to-date such study, through the lens of self-consistency
and its relationship to arbitrariness. Surprisingly, we find
that most benchmarks are close-to-fair when taking into
account the amount of arbitrariness present in predictions
— before we even try to apply any fairness interventions
(§5). This shocking finding has huge implications for the
field: it casts doubt on the reliability of prior work that
claims there is baseline unfairness in these benchmarks,
in order to demonstrate that methods to improve fairness
work in practice. We instead find that such methods are
often empirically unnecessary to improve fairness (§6).

4. Release a large-scale fairness dataset package. We
observe that variance, particularly in small datasets, can
undermine the reliability of conclusions about fairness.
We therefore open-source a package that makes the
large-scale US Home Mortgage Disclosure Act datasets
(HMDA) easily usable for future research.

2 Preliminaries on Fair Binary Classification

To analyze arbitrariness in the context of fair binary
classification, we first need to establish our background
definitions. This material is likely familiar to most readers.
Nevertheless, we highlight particular details that are impor-
tant for understanding the experimental methods that enable
our contributions. We present the fair-binary-classification
problem formulation and associated empirical approxima-
tions, with an emphasis on the distribution over possible
models that could be produced from training on different
subsets of data drawn from the same data distribution.

Problem formulation. Consider a distribution q(·) from
which we can sample examples (x, g, o). The x ∈ X ⊆ R

m

are feature instances and g ∈ G is a protected attribute
that we do not use for learning (e.g., race, gender). The
o ∈ O are the associated observed labels, and O ⊆ Y, where
Y = {0, 1} is the label space. From q(·) we can sample train-
ing datasets {(x, g, o)}ni=1, with D representing the set of
all n-sized datasets. To reason about the possible models of
a hypothesis class H that could be learned from the different
subsampled datasets Dk ∈ D, we define a learning process:

Definition 2.1. A learning process is a randomized function
that runs instances of a training procedure A on each Dk ∈
D and a model specification, in order to produce classifiers
hDk

∈ H. A particular run A(Dk) → hDk
, where hDk

:
X → Y, which is deterministic mapping from the instance
space X to the label space Y. All such runs over D produce a
distribution over possible trained models, µ.

Reasoning about µ, rather than individual models hDk
,

enables us to contextualize arbitrariness in the data, which,
in turn, is captured by learned models (§3). Each particu-
lar model hDk

∼ µ deterministically produces classifica-
tions ŷ = hDk

(x). The classification rule is hDk
(x) =

1[rDk
(x) ≥ τ ], for some threshold τ , where regressor

rDk
: X → [0, 1] computes the probability of positive classi-

fication. Executing A(Dk) produces hDk
∼ µ by minimiz-

ing the loss of predictions ŷ with respect to their associated
observed labels o in Dk. This loss is computed by a cho-
sen loss function ℓ : Y × Y 7→ R. We compute predictions
for a test set of fresh examples and calculate their loss. The
loss is an estimate of the error of hDk

, which is dependent
on the specific dataset Dk used for training. To generalize
to the error of all possible models produced by a specific
learning process (Def. 2.1), we consider the expected error,
Err(A,D, (x, g, o)) = ED[ℓ(o, ŷ)|x = x].

In fair classification, it is common to use 0-1 loss
≜ 1[ŷ ̸= o] or cost-sensitive loss, which assigns asymmetric
costs C01 for false positives FP and C10 for false negatives
FN. These costs are related to the classifier threshold
τ = C01

C01+C10
, with C01, C10 ∈ R

+ (§A.3). Common fairness

metrics, such as Equality of Opportunity (Hardt et al. 2016),
further analyze error by computing disparities across group-

specific error rates FPRg and FNRg . For example, FPRg ≜
pµ[rD(x) ≥ τ |o = 0,g = g] = pµ[ŷ = 1|o = 0,g = g].
Model-specific FPRg and FNRg are further-conditioned on
the dataset used in training, i.e., D = Dk.

Empirical approximation. We typically only have access
to one dataset, not the data distribution q(·). In fair binary
classification experiments, it is common to estimate expected
error by performing cross validation (CV) on this dataset to
produce a small handful of models (Chen et al. 2018; Corbett-
Davies et al. 2017). CV can be unreliable when there is high
variance; it can produce error estimates that are themselves
high variance, and does not reliably estimate expected error
with respect to possible models µ (§5). For more details,
see Efron and Tibshirani (1997, 1993) and Wager (2020).

To get around these reliability issues, one can bootstrap.
Bootstrapping splits the available data into train and test sets,
and simulates drawing different training datasets from a dis-

tribution by resampling the train set D̂, generating replicates

D̂1, D̂2, . . . , D̂B := D̂. We use these replicates D̂ to ap-
proximate the learning process on D (Def. 2.1). We treat the

resulting ĥ
D̂1

, ĥ
D̂2

, . . . , ĥ
D̂B

as our empirical estimate for

the distribution µ̂, and evaluate their predictions for the same
reserved test set. This enables us to produce comparisons
of classifications across test instances like in Fig. 1 (§A.4).

3 Variance, Self-Consistency & Arbitrariness

We develop a quantitative proxy for measuring arbitrariness,
called self-consistency (§3), which is derived from a defini-
tion of statistical variance between different model predic-
tions (§3). We then illustrate how self-consistency is a simple-
yet-powerful tool for revealing the role of arbitrariness in fair
classification (§3). Next, we will introduce an algorithm to
improve self-consistency (§4) and compute self-consistency
on popular fair binary classification benchmarks (§5).
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Arbitrariness Resembles Statistical Variance

In Section 2, we discussed how common fairness definitions
analyze error by computing false positive rate (FPR) and
false negative rate (FNR). Another common way to formalize
error is as a decomposition of different statistical sources:
noise-, bias-, and variance-induced error (Abu-Mostafa et al.
2012; Geman et al. 1992). To understand our metric for
self-consistency (§3), we first describe how the arbitrariness
in Figure 1 (almost, but not quite) resembles variance.

Informally, variance-induced error quantifies fluctuations
in individual example predictions for different models hDk

∼
µ. Variance is the error in the learning process that comes
from training on different datasets Dk ∈ D. In theory, we
measure variance by imagining training all possible hDk

∼ µ,
testing them all on the same test instance (x, g), and then
quantifying how much the resulting classifications for (x, g)
deviate from each other. More formally,

Definition 3.1. For all pairs of possible models
hDi

, hDj
∼ µ (i ̸= j), the variance for a test (x, g) is

var

(

A,D, (x, g)
)

≜ EhDi
∼µ,hDj

∼µ

[

ℓ
(

hDi
(x), hDj

(x)
)]

.

We can approximate variance directly by using the boot-
strap method (§2, §B.1). For 0-1 and cost-sensitive loss with
costs C01, C10 ∈ R

+ (§2), we can generate B replicates to
train B concrete models that serve as our approximation for
the distribution µ̂. For B = B0 +B1 > 1, where B0 and B1

denote the number of 0- and 1-class predictions for (x, g),

ˆvar
(

A, D̂, (x, g)
)

:=
1

B(B − 1)

∑

i̸=j

ℓ
(

ĥ
D̂i

(x), ĥ
D̂j

(x)
)

=
(C01 + C10)B0B1

B(B − 1)
. (1)

We derive (1) in Appendix B.2 and show that, for increas-

ingly large B, ˆvar is defined on [0, C01+C10

4
+ ϵ].

Defining Self-Consistency from Variance

It is clear from above that, in general, variance (1) is
unbounded. We can always increase the maximum possible
ˆvar by increasing the magnitudes of our chosen C01 and

C10 (§2. However, as we can see from our intuition for
arbitrariness in Figure 1, the most important takeaway is
the amount of (dis)agreement, reflected in the counts B0 and
B1. Here, there is no notion of the cost of misclassifications.
So, variance (1) does not exactly measure what we want
to capture. Instead, we want to focus unambiguously
on the (dis)agreement part of variance, which we call
self-consistency of the learning process:

Definition 3.2. For all pairs of possible models
hDi

, hDj
∼ µ (i ̸= j), the self-consistency of the

learning process for a test (x, g) is

SC

(

A,D, (x, g)
)

≜ EhDi
∼µ,hDj

∼µ

[

hDi
(x) = hDj

(x)
]

= phDi
∼µ,hDj

∼µ

(

hDi
(x) = hDj

(x)
)

. (2)

In words, (2) models the probability that two models
produced by the same learning process on different n-sized

training datasets agree on their predictions for the same
test instance. Like variance, we can derive an empirical
approximation of SC. Using the bootstrap method with
B = B0 +B1 > 1,

ŜC

(

A, D̂, (x, g)
)

:=
1

B(B − 1)

∑

i̸=j

1

[

ĥ
D̂i

(x) = ĥ
D̂j

(x)
]

= 1−
2B0B1

B(B − 1)
. (3)

For increasingly large B, ŜC is defined on [0.5− ϵ, 1] (§B.3).
Throughout, we use the shorthand self-consistency, but it
is important to note that Definition 3.2 is a property of the
distribution over possible models µ produced by the learn-
ing process, not of individual models. We summarize other
important takeaways below:

Terminology. In naming our metric, we intentionally evoke
related notions of “consistency” in logic and the law (Fuller
(1965); Stalnaker (2006); §B.3).

Interpretation. Definition 3.2 is defined on [0.5, 1], which
coheres with the intuition in Figure 1: 0.5 and 1 respectively
reflect minimal (Individual 2) and maximal (Individual 1)
possible SC. SC, unlike FPR and FNR (§2), does not depend
on the observed label o. It captures the learning process’s
confidence in a classification ŷ, but says nothing directly
about ŷ’s accuracy. By construction, low self-consistency
indicates high variance, and vice versa. We derive empirical
ŜC (3) from ˆvar (1) by leveraging observations about the
definition of ˆvar for 0-1 loss (§B.3). While there are no
costs C01, C10 in computing (3), they still affect empirical
measurements of ŜC. Because C01 and C10 affect τ (§2),
they control the concrete number of B0 and B1, and thus the
ŜC we measure in experiments.

Empirical focus. Since self-consistency depends on the par-
ticular data subsets used in training, conclusions about its
relevance vary according to task. This is why we take a prac-
tical approach for our main results — of running a large-scale
experimental study on many different datasets to extract gen-
eral observations about ŜC’s practical effects (§5). In our
experiments, we typically use B = 101, which yields a ŜC
range of [≈ 0.495, 1] in practice.

Relationship to other fairness concepts. Self-consistency
is qualitatively different from traditional fairness metrics. Un-
like FPR and FNR, SC does not depend on observed label o.
This has two important implications. First, while calibration
also measures a notion of confidence, it is different: calibra-
tion reflects confidence with respect to a model predicting
o, but says nothing about the relative confidence in predic-
tions ŷ produced by the possible models µ that result from
the learning process (Pleiss et al. 2017). Second, a common
assumption in algorithmic fairness is that there is label bias
— that unfairness is due in part to discrimination reflected in
recorded, observed decisions o (Friedler et al. 2016; Cooper
and Abrams 2021). As a result, it is arguably a nice side
effect that self-consistency does not depend on o. However, it
is also possible to be perfectly self-consistent and inaccurate
(e.g., ∀k, ŷk ̸= o; §6).
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Algorithm 1: ŜC Ensembling with Abstention

Input: training dataset (X,o), A, B, ŜC κ ∈ [0.5, 1], xtest

Output: ŷ with ŜC ≥ κ or Abstain

1: ŷA := list() ▷ To store ensemble predictions
2: for 1 . . . B do
3: DB ← Bootstrap

(

(X,o)
)

4: ▷ ĥDB
can itself be a bagged model, with A bagging on

5: DB as the dataset to bootstrap

6: ĥDB
← A(DB)

7: ŷA.append
(

ĥDB
(xtest)

)

▷ ŷA = [ŷ1, . . . , ŷB ]
8: end for
9: return Aggregate(ŷA, κ)

10: ▷ Returns κ-majority prediction or abstains
11: function Aggregate

(

ŷ1, . . . , ŷB , κ
)

12: if SelfConsistency(ŷ1, . . . , ŷB) ≥ κ ▷ Compute ŜC (3)

13: return argmaxy′∈Y

[

∑B

i=1
1[y′ = ŷi]

]

14: end if
15: return Abstain

16: end function

ance (Breiman 1996, 1998). However, by taking the majority
vote, bagging embeds the idea that having slightly-better-
than-random classifiers is sufficient for improving ensembled
predictions, ŷA. Unfortunately, there exist instances like In-
dividual 2 (Fig. 1), where the classifiers in the ensemble are
evenly split between classes. This means that bagging alone
cannot overcome arbitrariness (§D.1).

To remedy this, we add the option to abstain from
prediction if ŜC is low (Alg. 1). A minor adjustment to
(3) accounts for abstentions, and a simple proof follows
that Algorithm 1 improves ŜC (§D). We bootstrap as usual,
but produce a prediction ŷ ∈ [0, 1] for instance x only

if x surpasses a user-specified minimum level κ of ŜC;
otherwise, if an instance fails to achieve ŜC of at least κ,
we Abstain from predicting. For evaluation, we divide the
test set into two subsets: we group together the instances we
Abstain on in an abstention set and those we predict on
in a prediction set. This method improves self-consistency
through two complementary mechanisms: 1) variance
reduction (due to bagging, see §D) and 2) abstaining from
instances that exhibit low ŜC (thereby raising the overall
amount of ŜC for the prediction set, see §D).

Further, since variance is a component of error (§3),
variance reduction also tends to improve accuracy (Breiman
1996). This leads to an important observation: the abstention
set, by definition, exhibits high variance; we can therefore
expect it to exhibit higher error than the prediction set (§5,
§E). So, while at first glance it may seem odd that our
solution for arbitrariness is to not predict, it is worth noting
that we often would have predicted incorrectly on a large
portion of the abstention set, anyway (§D). In practice, we
test two versions of our method:

Simple ensembling. We run Algorithm 1 to build ensembles
of typical hypothesis classes in algorithmic fairness. For
example, running with B = 101 decision trees and κ = 0.75

produces a bagged classifier that contains 101 underlying
decision trees, for which the bagged classifier abstains from
predicting on test instances that exhibit less than 0.75 ŜC.
If overall ŜC is low, then simple ensembling will lead to a
large number of abstentions. For example, almost half of all
test instances in COMPAS using random forests would fail
to surpass the threshold κ = 0.75 (Fig. 2a). The potential
for large abstention sets informs our second approach.

Super ensembling. We run Algorithm 1 on bagged models

ĥ. When there is low ŜC (i.e., high ˆvar) it can be beneficial
to do an initial pass of variance reduction. We produce
bagged classifiers using traditional bagging, but without ab-
staining (at Alg. 1, lines 4-5); then we Aggregate using those

bagged classifiers as the underlying models ĥ. The first round
of bagging raises the overall ŜC before the second round,
which is when we decide whether to Abstain or not. We
therefore expect this approach to abstain less; however, it may
potentially incur higher error, if, by happenstance, simple-
majority-vote bagging chooses ŷ ̸= o for instances with very
low ŜC (§D). We also experiment with an Aggregate rule that
averages the output probabilities of the underlying regressors
rDk

, and then applies threshold τ to produce ensembled
predictions. We do not observe major differences in results.

5 Experiments

We release an extensible package of different Aggregate
methods, with which we trained and compared several mil-
lion different models (all told, taking on the order of 10 hours
of compute). We include results covering common datasets
and models: COMPAS, Old Adult, German and Taiwan
Credit, and 3 large-scale New Adult - CA tasks on lo-
gistic regression (LR), decision trees (DTs), random forests
(RFs), MLPs, and SVMs (§E). Our results are shocking: by
using Algorithm 1, we happened to observe close-to-fairness
in nearly every task. Mitigating arbitrariness leads to fairness,
without applying common fairness-improving interventions
(§5, §E).

Releasing an HMDA toolkit. A possible explanation is that
most fairness benchmarks are small (< 25, 000 examples)
and therefore exhibit high variance. We therefore clean a
larger, more diverse, and newer dataset for investigating fair
binary classification — the Home Mortgage Disclosure Act
(HMDA) 2007-2017 datasets (FFIEC 2017) — and release
them with a standalone, easy-to-use software package. In this
paper, we examine the NY and TX 2017 subsets of HMDA,
which have 244, 107 and 576, 978 examples, respectively,
and we still find close-to-fairness (§5, §E).

Presentation. To visualize Algorithm 1, we plot the CDFs
of the ŜC of the underlying models used in each ensembling
method. We simultaneously plot the results of simple
ensembling (dotted curves) and super ensembling (solid
curves). Instances to the left of the vertical line (the minimum
ŜC threshold κ) form the abstention set. We also provide
corresponding mean ± STD fairness and accuracy metrics
for individual models (our expected, but not-necessarily-
practically-attainable baseline) and for both simple and super
ensembling. For ensembling methods, we report these met-
rics on the prediction set, along with the abstention rate (ÂR).
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Ethical Statement

This work raises important ethical concerns regarding the
practice of fair-binary-classification research. We organize
these concerns into several themes below.

Arbitrariness and legitimacy. On common research bench-
marks, we show that many classification decisions are ef-
fectively arbitrary. Intuitively, this is unfair, but is a type of
unfairness that largely has gone unnoticed in the algorithmic-
fairness community. Such arbitrariness raises serious con-
cerns about the legitimacy of automated decision-making.
Fully examining these implications is the subject of current
work that our team is completing. Complementing prior work
on ML and arbitrariness (Creel and Hellman 2022; Cooper
et al. 2022b), we are working on a law-review piece that
clarifies the due process implications of arbitrariness in ML-
decision outcomes. For additional notes on future work in
this area, see Appendix F.

Misspecification, mismeasurement, and fairness. Much
prior work has emphasized theoretical contributions and prob-
lem formulations for how to study fairness in ML. A common
pattern is to study unequal model error rates between demo-
graphic subgroups in the available data. Typically, experimen-
tal validation of these ideas has relied on using just a handful
of models. Our work shows that this is not empirically sound:
it can lead to drawing unreliable conclusions about the de-
gree of unfairness (defined in terms of error rates). Most
observable unfairness seems due to inadequately modeling or
measuring the role of variance in learned models on common
benchmark tasks.

Other than indicating serious concerns about the rigor of
experiments in fairness research, our findings suggest ethical
issues about the role of mismeasurement in identifying and
allocating resources to specific research problems (Jacobs and
Wallach 2021). A lot of resources and research effort have
been allocated to the study of these problem formulations.
In turn, they have had profound social influence and impact,
both in research and in the real world, with respect to how we
reason broadly about fairness in automated decision-making.
In response to the heavy investment in these ideas, many
have noted that there are normative and ethical reasons why
such formulations are inadequate for the task of aligning
with more just or equitable outcomes in practice. Our work
shows that normative and ethical considerations extend even
further. Even if we take these formulations at face value
in theory, they are very difficult to replicate in practice on
common fairness benchmarks when we account for variance
in predictions across trained models. When we perform due
diligence with our experiments, we have trouble validating
the hypothesis that popular ML-theoretical formulations of
fairness are capturing a meaningful practical phenomenon.

This should be an incredibly alarming finding to anyone
in the community that is concerned about the practice, not
just the theory, of fairness research. Using bootstrapping,
we observe serious problems with respect to the reliability
of how fairness and accuracy are measured in work that
relies on cross-validation of just a few models. We also find
little empirical evidence of a trade-off between fairness and
accuracy (another common formulation in the community),

which complements prior work that has made similar
observations (Rodolfa et al. 2021).

Project aims, reduction of scope. We emphasize that
this was an unintended outcome of our original research
objectives. We aimed to study arbitrariness as a latent issue in
problem formulations that have to do with fair classification.
This included broader methodological aims: studying many
sources of non-determinism that could impact arbitrariness
in practice (e.g., minibatching, example ordering). Instead,
our initial results of close-to-fair expected performance for
individual models made us refocus our work on issues of
mismeasurement and fairness. We did not expect to find that
dealing with arbitrariness would make almost all unfairness
(again, as measured by common definitions) vanish in prac-
tice. Regardless of our intention, these results indicate the
limits of theory in a domain that, by centering social values
like fairness, cannot be separated from practice. We believe
that problem formulations are only as good as they are useful.
Based on our work, it is unclear how useful our existing
formulations are if they do not bear out in experiments.

Reproducibility and project aims. In the course of this
study, we also tried to reproduce the experiments of many
well-cited theory-focused works. We almost always could
not do so: code was almost always unavailable. We therefore
pivoted from making reproducibility an explicit aspect of
the present paper, which we will pursue in future work that
focuses solely on reproducibility and fairness. Nevertheless,
our work raises concerns about the validity of some of this
past work. At the very least, past work that makes claims
about preexisting unfairness in fairness benchmarks (in order
to demonstrate that proposed methods provide improvements)
should be subject to experimental scrutiny. Further along
these lines, we believe that the novel findings we present
here should have surfaced long ago. They likely would have
surfaced if experimental contributions had been more evenly
balanced with theoretical ones, or if exact Bayesian inference
(rather than optimization) had been employed as the chosen
algorithmic approach in the problem formulation.

The limits of prediction. Lastly, it has not escaped our no-
tice that our results signal severe limits to prediction in social
settings. It is true that our method performs reasonably well
with respect to both fairness and accuracy metrics; however,
arbitrariness is such a rampant problem, it is arguably unrea-
sonable to assign these metrics much value in practice.
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