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A B S T R A C T

Recent experiments have shown that Al-Si-Mg alloys solidified under high cooling rates may lead to the
nucleation of Si-enriched clusters that are remarkably different from the conventional Mg-Si co-clusters (e.g. β″
particles), and yet the responsible mechanism remains to be elucidated. Here we tackle the problem using a
multiscale modeling framework that integrates atomistic modeling, energy landscape sampling, and lattice-based
kinetic Monte Carlo (kMC) simulation. The migration energy barriers for vacancy-mediated diffusion amid
complex local chemical environments are predicted on-the-fly using a surrogate machine learning model. We
discover that the actual vacancy-Si migration barriers are much lower than those assumed in the classic linear
interpolation approximation. Such a strong deviation from conventional wisdom, in conjunction with differing Si
solute composition, can lead to a great variety in the nucleated early-stage precipitates. More specifically, a high-
level supersaturation of Si solute (i.e. xSi/

(
xSi + xMg

)
> 0.75) would lead to an unexpectedly high enrichment of

Si in the nucleated clusters with the Si:Mg ratio up to 5~6; while at a lower-level supply of Si solute the Mg-Si co-
clusters (i.e. Si:Mg ratio around 1~2) are nucleated instead. These findings provide a viable explanation for the
diverse types of early-stage precipitates observed in various experiments, from Si-enriched precipitates in high-
pressure die cast Al alloys to β″ particles in conventional casting and/or heat-treated alloys. The implications of
our findings are also discussed.

Introduction

Al-Si alloys exhibit an excellent combination of properties, such as
good castability, corrosion resistance, and high strength-to-weight ratio
[1–5]. As a result, these alloys are widely employed as structural ma-
terials in aerospace and automobile industries [6–8]. To tune the Al-Si
alloys’ microstructures and subsequently their properties, additional
minor elements have been introduced into the system [9–12], and an
important species in (3xx- and 6xxx-series) alloys is Mg [13–17]. Ener-
getic calculations in atomistic simulations [18,19] show that Mg can
strongly bond with Si to form stable co-clusters in primary Al. Indeed, β
phase precipitates, e.g., Mg2Si and Mg5Si6 have been widely reported in
as-cast and heat-treated Al-Si-Mg alloys in experiments [20–23]. How-
ever, recent studies show that those β″ or β particles are absent in the
Al-Si-Mg alloys solidified at high cooling rate. Instead, a significant
amount of Si-enriched precipitates in primary Al have been observed in

the alloys fabricated with high-pressure die casting (HPDC) and selec-
tive laser melting (SLM) [24–26], implying the early-stage nucleated
clusters are also rich in Si. Indeed, high-resolution Atom Probe To-
mography (APT) measurements show that the Mg:Si ratio in the pre-
cursor of those Si precipitates is around 1:4.5 [24], which is much lower
than that observed in the β particles. Since the components produced
using HPDC and SLM in industrial applications are often not solution
heat treated, the misprediction on the nucleation of precipitates could
inhibit our understanding of how the alloys would respond to the sub-
sequent thermal exposures and their corresponding mechanical
properties.

While there are speculations [26] that the absence of β particles may
be related to the solidification rate and heat treatment, a mechanistic
understanding is still missing. Intuitively, the manufacturing processes
with extremely fast cooling rate can result in a higher level of super-
saturated Si solutes in Al. However, whether the excess amount of Si
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solutes would lead to pronounced Si-rich precipitates is not self-evident.
From the kinetics perspective, the migration barriers of Si and Mg in
primary Al do not differ significantly in the classical linear interpolation
approximation (LIA) model [27], implying the microstructural evolu-
tion of precipitates should be dominated by the thermodynamics driving
force. Correspondingly, the LIA-based kinetic Monte Carlo (kMC) sim-
ulations show that the early-stage precipitates exhibit comparable
fractions of Mg and Si [27]. Therefore, the formation mechanism of the
heavily Si-enriched early-stage precipitates, as well as their sensitivity to
the initial composition in primary Al, remain elusive.

In the present study, we develop an integrated computational
framework that combines atomistic modeling, energy landscape sam-
pling and lattice-based on-the-fly kMC simulation to investigate the
vacancy diffusion-mediated microstructural evolution and precipitate
nucleation in an Al-Si-Mg model system. The vacancy migration barriers
needed in kMC are calculated using both the classical LIA model and the
realistic nudged elastic band (NEB) algorithm, and a comparative
analysis is thus made. Machine learning (ML) based surrogate models
using multi-layer perceptron are also employed to accelerate the
exploration of the vast phase space encompassing the vacancy’s complex
local chemical environments along with its diffusion and precipitate
development. We discover that, compared with the classical LIA model,
the realistic vacancy migration barriers calculated by NEB span a much
broader range, and in particular the vacancy-Si migration barriers are
significantly lower than the vacancy-Mg or vacancy-Al migration bar-
riers. We further show that the strong deviation from the simple and
perfect correlation between kinetics (e.g. migration barrier) and ther-
modynamics (e.g. configurations energy difference) assumed in LIA, in
conjunction with an initial high-level supersaturation of Si solutes, make
the early-stage precipitate clusters significantly different from β parti-
cles. In our findings, the early-stage clusters are Si-enriched with the Si:
Mg ratio up to 5~6, consistent with the recent experiments mentioned
above. Our simulations also demonstrate that, if the initial supersatu-
ration level of Si solutes is less extreme then Mg-Si co-clusters would
form, a phenomenon observed in traditionally cast or heat-treated Al-Si-
Mg alloys. The sensitivity of Si content in the early-stage precipitate
clusters to the solutes’ concentration is also investigated. This integrated
computational framework provides a physics-based predictive tool for
the microstructural evolution in Al alloys processed under high cooling
rates, which may lead to enhanced efficiency in alloy design for state-of-
art structural castings in various industry sectors.

Materials and methods

Atomistic model setup and lattice-based on-the-fly kMC simulation

The scope of the present study focuses on vacancy diffusion-
mediated microstructural evolution, so the key parameters ensuring a
reliable modeling prediction are the vacancy migration barriers in the
presence of various local chemical environments. Here we consider an
Al-Si-Mg alloy model using a recently developed neural network inter-
atomic potential [27] that has been more comprehensively calibrated
with first-principle calculations compared with conventional potential
developed using the embedded-atom method. A vacancy is created in a
simulation box of 8 × 8 × 8 face-centered cubic (FCC) unit cells with a
periodic boundary condition, and the remaining lattice sites are
randomly assigned to one of the three element types (i.e. Al, Si, Mg)
based on the prescribed composition. Each of these atomic configura-
tions is then allowed to evolve by conjugate gradient energy minimi-
zations using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) software. In the present study, we assume the
vacancy can only exchange with one of its 12 nearest neighbors.

As discussed in Sec. 1, two different methods are utilized to calculate
the vacancy migration barriers. The first method is the widely adopted
LIA model [27–29], in which the vacancy migration barrier, ΔEm, is
defined as:

ΔEm = ΔEm(Al) +
(
Efinal −Einit

)/
2 (1)

where Einit and Efinal are the system’s initial and final configurational
energies, corresponding to before and after the vacancy migration,
respectively. ΔEm(Al) represents the vacancy migration barrier in a
reference pure-Al matrix.

The other method employed is NEB [30], a potential energy land-
scape sampling algorithm that directly probes the minimum energy
paths and hence identifies the migration barriers between the prescribed
initial and final states. In this study, we use the NEB algorithm imple-
mented in LAMMPS with 15 replicas and a force convergence criterion
of 1 × 10−6. Note that the LIA model essentially assumes a perfect and
linear correlation between the kinetic diffusion barrier and thermody-
namic energetics, while no such assumption is made in the NEB method
and the migration barriers calculated by NEB are thus more reliable and
physics-based.

In terms of computational costs, since the LIA model only needs the
energetics calculations for the initial and final states instead of mapping
the potential energy landscape, it is much faster than NEB. That said, to
calculate the on-the-fly energetics and/or migration barriers at each
vacancy hopping for millions of overall migration steps is still formi-
dable, regardless of whether the LIA or NEB model is used. Therefore,
two ML surrogate models are trained respectively based on the atomistic
simulation results of the LIA and NEB methods, and these surrogate
models are then adopted to efficiently obtain the needed migration en-
ergy barriers in kMC simulations. The detailed ML algorithms can be
found below in Sec. 2.2.

The obtained chemical environment-sensitive migration barriers are
then fed into a standard 1st-order kMC model to predict the vacancy-
mediated microstructural evolution and early-stage precipitate nucle-
ation. For each kMC step, the vacancy moves to one of its 12 nearest
neighboring sites following the designated probabilities of:

Pi =
Ri

∑12
k=1Rk

, i = 1, 2, ⋯12 (2)

where Pi is the probability of vacancy moving to its ith nearest neigh-
boring site during a given time step in kMC simulation. The corre-
sponding migrating rate of this move, Ri, is given by

Ri = Γ0exp
(

−
ΔEmi
kBT

)

(3)

where Γ0 is the attempt frequency chosen here from earlier first-
principle calculations in the order of Debye frequency ~1013 s−1 [31],
kB is the Boltzmann constant, T is the temperature, and ΔEmi is the
migration barrier for the vacancy to jump to the ith nearest neighboring
site. The time for each kMC step is calculated as

Δt =
−ln(r)

∑12
k=1Rk

(4)

where r is a random variable uniformly distributed within (0, 1].
It is worth noting that the simple implementation of such a 1st-order

kMC algorithm in multi-component alloys may sometimes lead to
trapping situations [32], and to address the problem a 2nd-order resi-
dence time algorithm [33–35] and kMC implementation are employed
in the present study when needed. Further details of the hopping algo-
rithms in kMC are included in the Appendix.

ML prediction of vacancy migration barriers

Typical kMC models may need millions of steps to capture the
clustering phenomenon in a dilute alloy model [27,36–39]. Therefore,
even though LIA is faster than NEB as discussed in Sec. 2.1, it is still
computationally insurmountable to calculate the configurational
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energies at each single step over the entire kMC simulation. In other
words, regardless of LIA or NEB, it is imperative to develop and employ
ML surrogate models that do not rely on actual interatomic force-field
calculations to obtain the configurational energies and migration bar-
riers to ensure computationally effective simulation.

The training dataset consists of ~40k atomistic simulations with
different compositions and configurations. The scope of the present
study focuses on typical cast Al-Si alloys with 7~10 % Si and <1 % Mg,
e.g. AlSi7MgMn which has been widely used in large HPDC structural
components in the automotive industry. Therefore, the compositional
space concerned here is more extended in Si axis than in Mg axis.
Considering the local chemical environment (e.g. near a vacancy) could
be more extreme than the global composition of an entire sample, we
thus probe a broader compositional space as marked in Fig 1.a. More
specifically, as indicated by the blue squares in the left panel of the
figure, the applicable compositional space is sampled uniformly. Based
on each of these unique compositions, 1000 atomistic samples with
random configurations are created, for which the configurational en-
ergies and vacancy migration barriers are calculated in LAMMPS. As
illustrated in the right panel of Fig 1.a, we build an architecture of multi-
layer perceptron, namely an artificial neural network (ANN) consisting
of three hidden layers, where the number of hidden units in each
consecutive hidden layer is L1 = 32, L2 = 16, and L3 = 8, and the
Rectified Linear Unit (ReLU) activation function is applied on each
hidden layer. The input layer and output layer are adjusted accordingly
to the key information needed in LIA or NEB. In particular, the input is a
vectorized encoding sequence representing the sample’s configuration
(LIA model) or local chemical environment surrounding the vacancy-
migrating atom pair (NEB model), and the output layer is represented
by a single value of the sample’s configuration energy (LIA model) or
vacancy migration barrier (NEB model).

For example, LIA concerns the sample’s energy at a given atomic
configuration, and thus the input was chosen to be a vectorized repre-
sentation of the sample’s configuration while the output is the sample’s
configuration energy. Here we use a bond-counting model, which
essentially encodes the various types of bonds in a given sample (e.g.
vacancy-Al, vacancy-Mg, vacancy-Si, Al-Al, Mg-Mg, Si-Si, Al-Mg, Al-Si,
Mg-Si) and their numbers into a 63 × 1 column vector as the training
input (see Appendix for more details).

As for the training of surrogate model for NEB method, since the
target is the migration barrier for a local vacancy hopping along a spe-
cific direction, caution has to be exercised when encoding the input
vector. For example, assuming a vacancy migration direction of [0 −1/2
−1/2], as illustrated in Fig 1.b, the local chemical environment sur-
rounding the vacancy-migrating atom pair is then ranked into a
sequence based on their relative positions. More specifically, as shown in
Fig 1.b, the migrating atom is labeled as position 0, while the four atoms
closest to the vacancy and migrating atom are ranked 1–4, and the two
atoms labeled as ‘5’ and ‘6’ are the nearest neighbors of the vacancy but
the second nearest neighbor of the migrating atom. We label a total
number of 101 atoms until the 5th nearest neighboring shell of the
vacancy-migrating atom pair, in effect neglecting the influence of the
atoms beyond the 5th shell on the vacancy’s migration barrier. The
sequence of those atoms is thus encoded into a 101 × 1 column vector,
serving as the training input. If the vacancy is migrating along a different
direction, then the surrounding 101 atoms need to be re-labeled through
a coordination transformation to ensure a consistent encoding sequence.
More details are provided in the Appendix. The atomistic samples and
the ground-truth results are divided into 11 groups, in which the last
group is used as the test datasets for evaluating the goodness of ML
prediction shown below in Sec. 2.3, while the other groups of data are
used for training the ML model through a 10-fold cross-validation

Fig. 1. (a) Schematic illustration of the computational framework that trains a surrogate ML model (right panel) based on LIA and NEB results (left penal). The left
panel shows the phase space encompassing the chemical compositions of atomistic samples. The right panel shows the architecture of the artificial neural network for
predicting the configurational energies and vacancy migration barriers. Three hidden layers are used to establish the non-linear relationships between the input
vector and output. (b) Schematic illustration of how the local chemical environment surrounding the vacancy-migrating atom pair is encoded. Note that in the
simulations, the local environment up to the 5th nearest neighboring shells is encoded, while here in this illustrative schematic only partial environments are
displayed to avoid the plot from being too crowded. The letter v denotes the vacancy, the numbers in the left panel denote the position of the atom in the encoding
sequence, and the arrows show the vacancy migration direction. The color of atoms representing the encoding is based on their distance to the vacancy-migrating
atom pair. The left and right panels correspond to encoding with different vacancy migration directions of [0 −1/2 −1/2] and [1/2 0 −1/2], respectively.
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method. It is worth noting that the reason of selecting 5 nearest shells
here is twofold: First, earlier literatures show that 3~7 nearest shells are
sufficient to provide reliable predictions on the vacancy migration
barriers in multi-components alloys [37,38]; Second, from the
perspective of computational efficiency, including atoms beyond the 5th
neighboring shell into the encoding sequence would considerably in-
crease the number of parameters and training efforts. Moreover, higher
number of parameters may lead to the risk of overfitting, which could
compromise the accuracy and robustness of the machine learning
model, thus requiring much larger training dataset. Therefore, consid-
ering that 5 nearest shells already entail quality information with
acceptable errors (see Sec. 2.3 for further discussions), we hence adopt
such a cut-off to strike a balance between the computational accuracy
and efficiency.

Self-Consistency alignment on the ML-Predicted vacancy migration
barriers

Fig 2a shows the performance of the ML model for the sample
configuration energies (to be used mainly in LIA-based kMC) and the
vacancy migration barriers (to be used in NEB-based kMC). Both pre-
dictions are in good agreement with the ground-truth results directly
calculated by LAMMPS. Within the same ML architecture, the energy
prediction yields higher accuracy (i.e. larger R2 value) than the migra-
tion barrier prediction does. Before passing these surrogate model-
predicted results to kMC simulations, a self-consistency alignment has
to be implemented to make certain the inevitable ML-prediction errors
do not compromise the real physics. More specifically, as illustrated in
Fig 2b, in a real physical two-state hopping process in the energy
landscape, the states’ configurational energetics and their connecting
migration barriers have to strictly follow the condition:

ΔEmA→B − ΔEmB→A ≡ Econf ,A − Econf ,B (5)

where ΔEmA→B and ΔEmB→A are the migration barriers associated with the
forward and backward jumps between A and B states, while Econf ,A and
Econf , B are the system configurational energies at A and B states,
respectively.

In the surrogate model trained based on LIA, the migration barriers
are not directly calculated but instead interpolated on the configura-
tional energies of states A and B. Therefore, the self-consistency
requirement mentioned above is naturally satisfied. In other words, as
long as a given configuration can be encoded into a unique input vector,

no additional alignments regarding the kinetics-thermodynamics con-
sistency need to be implemented. It is worth noting, though, such a
numerical self-consistency does not necessarily lead to more reliable
results, as aforementioned in Sec. 2.1.

On the other hand, in the surrogate model trained based on NEB
calculations, the self-consistency requires extra caution. In particular,
inconsistency may occur if the prediction error for ΔEmA→B cannot be
completely canceled by the prediction error for ΔEmB→A. To address such
an issue and enforce the consistency, we make the following correction/
alignment:

ΔEmA→B,c ≡ ΔEmA→B +
ΔEmB→A − ΔEmA→B + Econf ,B − Econf ,A

2
(6)

With such alignment, it is guaranteed that ΔEmA→B,c − ΔEmB→A,c ≡ Econf ,B −

Econf ,A. The so-aligned ΔEmA→B,c is thus fed into the NEB-based kMC
simulation in the present study. Note that compared with the 1st term on
the right hand side of Eq. (6), the alignment term is much smaller (more
details in Appendix 4).

Before presenting the main results in Sec. 3, it is worth discussing a
few remarks on the ML training and alignment introduced above.
Admittedly, there is room for further optimization on the training/pre-
dicting results, e.g. by increasing the volume of the training dataset, by
encoding larger shell information into the present ML model, or even by
employing alternative ML architectures [40–41,42]. That said, the main
objective of the present study is not to pursue the highest numerical
precision, but to reveal the underlying physics of the formation of non-β″
early-stage precipitates within an acceptable numerical error range. In
this regard, the 0.04 eVMAE of the predicted vacancy migration barriers
is comparable to the ~35 meV-level MAE in other multi-component
alloys studies [38] and hence acceptable.

Results and discussions

Sensitivity of vacancy migration barriers to chemical environments and
fast Si diffusion

The vacancy migration barriers calculated based on LIA and NEB
methods from the training dataset are compared in Fig 3. The three
plots in Fig 3.a show the distributions of activation barriers for
different migrating atoms. First, it can be seen that the LIA results do
not show a strong dependence on chemistry, and all three distributions
exhibit relatively narrow and symmetric profiles with respect to

Fig. 2. (a) Scatter plots illustrating the comparison between ML predictions and real values for vacancy migration barriers ΔEm (left panel) and configurational
energies E (right panel). The inset in the middle panel shows a zoomed view of the comparison between predicted and real configurational energies within a narrow
range marked by the red square. The MAE and RMSE for the training on vacancy migration barriers are 0.04 eV and 0.06 eV, respectively. While for the training of
the system’s configurational energy, the MAE and RMSE are 0.37 meV/atom and 0.56 meV/atom, respectively. Note that while the R2 of the model is not ideal (0.79),
considering the physics complexity of such a problem, the quality of the ML surrogate model is reasonably good. (b) Schematic illustration of a two-state hopping
between state A and state B in the energy landscape.
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ΔEm(Al) = 0.61 eV (i.e. the vacancy migration barrier in a reference
pure-Al matrix). Note that given the definition of the LIA model dis-
cussed above in Sec. 2.1, this result is as expected. On the other hand,
the NEB results are remarkably different and much more broadly
distributed, including some very low-barrier migrations. The NEB re-
sults also reflect strong chemical sensitivity, and in particular, the
migration barriers for the vacancy to nearby Si sites are considerably
lower (in a statistical sense, see Appendix 5 for more details) than
those to nearby Al or Mg sites. Fig 3.b shows the correlation between
the ΔEm computed using NEB and LIA methods for the same hopping
process. For the vast majority of atomic configurations in the data set,
the migration energy barriers from NEB calculations are smaller than
those computed using LIA method.

To better understand the deviations between the LIA and NEB results
(defined as ε = ΔEmLIA − ΔEmNEB), as well as their variations in the
chemical space, in Fig 3.c and 3.d we plot the average value and stan-
dard deviation of ε, respectively, in the ternary phase diagram. For the
avg(ε) plot, it can be seen that the LIA-NEB differences disappear in the
dilute limit (i.e. almost pure Al environment) but gradually increase in
more Si-enriched environment, indicating Si diffusion should be sys-
tematically faster in NEB-based kMC than in LIA-based kMC. In other
words, this suggests that the conventional LIA-based kMCmodeling may
lead to mispredictions of the formation of early-stage clusters, specif-
ically in the range of initial Si composition of the interest of this study.
As for the std(ε) plot, the results again vanish in the dilute limit. How-
ever, the largest standard deviation does not occur in the Si-enriched
region but instead is present in the Mg-enriched region, indicating a
more complex role of Mg in vacancy-mediated diffusion. While the
initial condition with significant Mg supersaturation in primary Al is not
within the scope of the present study, this observation might be worthy
of further investigation when the material of interest is Al-Mg casting
alloy families.

Formation of Si-rich clusters in the early-stage precipitation in NEB-based
kMC

With the vacancy migration barriers obtained from the ML models in
Sec. 3.1, a series of kMC simulations is then conducted, as discussed in
this and the following sections, to systematically investigate the
nucleation of early-stage precipitates under different model assump-
tions and various initial conditions. It was found that NEB-based kMC in
general yields more Si-enriched clusters than LIA-based kMC does, and
quantitative differences between the two models are sensitive to the
initial content of Si solute in the system. As a representative example,
Fig 4.a shows the significant differences in the energy evolution curves
predicted by the two models at 300 K and over 20 million kMC steps
from an identical initial random solid solution state at 5 at% Si and 0.5
at% Mg. More specifically, in LIA-based kMC, the energy of the system
manifests a steady descending trend from the very early stage, indi-
cating that a low-barrier hopping is very likely to lead to an energy
reduction. Such a strong kinetics-thermodynamics coordination is not
surprising because, as discussed above in Sec. 2.1, the kinetic diffusion
barrier in the LIA model adopts a perfect and linear correlation with the
thermodynamic energetics. In contrast, the energy evolution curve in
NEB-based kMC almost remains flat in the early stage and does not start
to descend until after 105 kMC steps. This suggests that the fast diffusion
paths of vacancy in Al-Si-Mg alloys, at least in the solid solution states,
do not necessarily align with the thermodynamic driving force in a
simple manner as assumed in the classical picture. As discussed below,
this could have significant implications for the development of early-
stage precipitates in alloys subjected to far-from-equilibrium process-
ing conditions.

In addition to the energy evolution curves, the microstructures of the
early-stage precipitates predicted by the two models are also distinct
from each other. As seen in Fig 4.b, the cluster nucleated in LIA-based
kMC simulation contains Si and Mg with a ratio ~1.5; while in NEB-

Fig. 3. (a) Distribution of vacancy migration barriers towards different migrating atoms calculated from NEB (red) and LIA (blue) methods; (b) One-on-one cor-
respondence between NEB and LIA results; (c) Distribution of average, and (d) standard deviation of the difference between LIA and NEB results in the ternary
phase diagram.
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based kMC, the nucleated cluster is considerably Si-enriched with a Si:
Mg ratio larger than 3. This is because the LIA-based kMC is essentially
driven by thermodynamics only, and with the low energetics nature of
Mg-Si co-clusters [18,19], the early-stage precipitates include a com-
parable amount of Si and Mg even though more Si atoms than Mg atoms
(5 at% vs. 0.5 at%) present in the initial random solid solution state. On
the other hand, the vacancy-mediated Si diffusion is much faster than
other species in NEB-based kMC (Fig 3.a). Hence, with the initial
high-level supersaturation, Si solutes very likely agglomerate first
without much reduction in the energetics. Then, the fast-moving small Si
clusters become significantly stabilized when they meet Mg solutes in
the matrix. This explains why in NEB-based kMC the energy evolution
profile is almost flat in the beginning and drops later, and why the
nucleated precipitates are decorated with only a minor amount of Mg.

To further illustrate how LIA- and NEB-based kMC simulations lead
to significantly different compositions in the nucleated clusters, we trace

the time evolution of vacancy’s local chemical environments (i.e.within
5th nearest neighboring shell) in the ternary phase diagram. As exem-
plified in Fig 5, both simulations start from the same initial configura-
tion, and yet the evolution trajectories are remarkably different from
each other. In the LIA-based kMC, there is no clear trend/direction of the
evolution, except that Al content near the vacancy decreases, indicating
the forming of Mg-Si co-clusters. In contrast, there exhibits a strong and
consistent trend towards a Si-rich region in the NEB-based kMC, and
such a consistent enrichment of Si surrounding the vacancy explains the
observed high Si:Mg ratio in Fig 4.b.

Effect of initial Si supply on the Si:Mg ratio in the early-stage precipitate
clusters

We further investigate the effect of initial composition by con-
ducting a series of kMC simulations at various Mg and Si concentra-

Fig. 4. (a) Evolutions of system energy versus step for NEB- and LIA-based kMC simulations. Each simulation is performed 3 times from independent initial atomic
configurations with fixed composition (5 at% Si and 0.5 at% Mg). (b) Representative atomic configurations of the solute clusters after the LIA- and NEB-based kMC
simulations. Individual solute atoms and clusters containing 2 atoms are not shown.

Fig. 5. Evolution of the local chemical composition within the 5th nearest neighboring shell surrounding the vacancy during kMC simulations. (a) and (b) are results
predicted from LIA- and NEB-based kMC simulations, respectively, for the same starting atomic configuration. The points are colored based on the log of the kMC
step. The initial and final chemical compositions surrounding the vacancy are remarked by red star and triangle, respectively.
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tions while keeping the Al content fixed (94.5 at%). For each initial
composition, three independent simulations are performed with
random atomic configurations. Fig 6.a shows the dependence of Si:Mg
ratio in the early-stage precipitate clusters on the levels of initial Si
solute supply. It can be seen that, as long as the initial Si solute con-
centration is not extremely high (i.e. xSi/

(
xSi + xMg

)
< 0.75), LIA- and

NEB-based kMC results do overlap. Both models yield comparable
amounts of Si and Mg in the nucleated clusters with the Si:Mg ratio
between 1 and 2, which are in line with the conventionally observed
Guinier-Preston zones or β″ clusters. However, by further increasing the
relative initial concentration of Si solute, the two models predict
remarkably different results. More specifically, the LIA-based kMC only
exhibits a very mild increase of Si content in the nucleated clusters;
while the NEB-based kMC shows a much more pronounced enrichment
of Si, due to the preferential vacancy-mediated Si diffusion discussed
above. In particular, the clusters’ Si:Mg ratio predicted by the NEB-
based kMC can go beyond 5, which is consistent with the recent
HPDC experiments [24].

We show in Fig 6.b-c a few representative trajectories of the vacan-
cy’s local chemical environment evolution at different initial xSi /

(
xSi +

xMg
)
, namely (i) 0.64, (ii) 0.82, and (iii) 0.91. For scenario (i) where the

initial Si level is not extremely high, both LIA- and NEB-based kMC give
analogous ending positions in the ternary phase diagram (seen in Fig 6.
b1 and c1), indicating similar Si:Mg participation ratio in the develop-
ment of early-stage precipitates. For scenario (ii), the ending position in
Fig 6.b2 is generally more Mg-rich than that in Fig 6.c2, indicating again
that the LIA-based kMC is essentially driven by thermodynamics alone.
For scenario (iii) with an even higher level of initial Si solute supply, the
contrasts of the ending positions in these two models become more
obvious, with a much higher level of Si enrichment in the NEB-based
kMC results. To summarize, these results demonstrate that, due to its
inability to describe the accurate vacancy-diffusion kinetics, the LIA-
based kMC cannot capture the significantly Si-enriched precipitates

observed in recent experiments. In other words, the nucleation of
significantly Si-enriched precipitates relies on two stringent conditions:
first, there needs to be a very high level of supersaturated Si solutes in
the primary Al from the beginning; second, the vacancy-mediated
diffusion of Si must be much faster than the diffusion of other species
in Al-Si-Mg alloys. This can explain why Si-enriched precipitates are
only observed in the alloys with far-from-equilibrium processing his-
tories without solution heat treatment [24–26], but not in conventional
cast and/or heat-treated alloys, and why they have never been predicted
by earlier LIA-based modeling studies [27].

Conclusions

This study investigates the nucleation of early-stage precipitates in
Al-Si-Mg alloys with high levels of supersaturation of Si solute using ML-
augmented kMC simulations. The main conclusions of the present study
are summarized below:

• The conventional LIA model, which assumes a simple and perfect
correlation between kinetics (e.g. vacancy migration barriers) and
thermodynamics (e.g. configurational energetics differences before
and after vacancy hopping), displays grave shortcomings in
modeling early precipitation in Al-Si-Mg alloys. In particular, in
contrast to LIA predictions, the migration energy barriers predicted
using NEB method for vacancy-mediated diffusion of Si atoms are
significantly smaller than the diffusion of Al or Mg atoms.

• The observed preferential migration of Si atoms, in conjunction with
an initially high supply of supersaturated Si solutes (i.e. xSi/

(
xSi +

xMg
)

> 0.75), could lead to a remarkable enrichment of Si in the
early-stage precipitate clusters with the Si:Mg ratio up to 5~6, which
significantly deviates from the compositions in conventional β″ or β
particles.

Fig. 6. (a) Predictions of the Si:Mg ratio in early-stage precipitates by kMC simulations as a function of initial Si solute content, indicated by xSi /
(
xSi + xMg

)
. The

data points are calculated as the average ratio from 3 independent kMC simulations, and the error bars represent the standard deviation of the mean values. Red
circles correspond to NEB-based kMC simulations, and blue diamonds correspond to LIA-based kMC simulations. (b, c) Evolution of the local chemical composition
within the 5th nearest neighboring shell surrounding the vacancy during the (b) LIA-based and (c) NEB-based kMC simulations. The initial values of xSi /

(
xSi +xMg

)

are shown above the panels. Three independent random configurations are generated for each initial composition, and the results for each simulation are plotted by
hexagons, triangles, or crosses, and colored based on the log of the kMC step.
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• These findings not only provide a viable understanding of the
recently observed Si-enriched precipitates in HPDC and SLM exper-
iments, but also explain the formation of Mg-Si co-clusters in tradi-
tionally cast or heat-treated alloys. Therefore, our findings present an
essential improvement to physics-based predictive capabilities that
would ultimately allow synergistic utilization of alloy chemistry and
processing conditions to fully understand and optimize the micro-
structural evolution in Al alloys.
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Appendix

1. 2nd-order algorithm for kMC simulations

In the conventional 1st-order kMC algorithm, each vacancy jump considers only its first nearest neighbor sites. The simplicity of such an algorithm
may under some circumstances lead to two issues. The first issue is the so-called trapping situation, where the system continues visiting the same few
states. We illustrate in Fig A1a one of the trapping scenarios observed in our present study using the 1st-order kMC algorithm. More specifically, there
are 5 states (A, B, C, D and E) involved in this situation, and the associated inter-state migration probabilities are listed along with the migration paths.
Once the system jumps from state A to state B due to stochastic hopping, it will keep circulating among states B through E. Residence probabilities at
different states are also marked in the graph. Because the sum of probabilities from any one of these states to hop to the other three states is >99%, it is
almost impossible for the system to escape from the cluster of these states. As a result, it becomes very inefficient to capture the microstructural
development. The second issue is that, once the trapping scenario occurs and the involved migration barriers are too low (with respect to temper-
ature), then the advance of timeclock in the kMC would become ineffective.

Here we adopt a 2nd-order residence time algorithm [32–35] to address these issues. In contrast to the 1st-order algorithm, where each va-
cancy jump is only determined by the migration barriers towards its 12 nearest neighbors, the 2nd-order algorithm accounts for two-step vacancy
jumps, from the previous state j to the current state k, and further to the next state i. The probabilities for the vacancy migrating to state i are
modified as:

P(2)

i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β f
ki

1 − Pkj
γbkj
β f
k

, i = j

β f
ki

1 − Pkj

(

1 +
γbkj
β f
k

)

, i ∕= j

(S1)

where Pkj is the probability for the vacancy migration from state k to state j, β f
ki = Pki(1−Pik) corresponds to the probability that the vacancy does not

jump back to the current state k, βbki = PkiPik denotes the probability that the vacancy jumps from k to i and then jumps back to k, β f
k =

∑
iβ
f
ki denotes the

probability that the vacancy will not jump back, βbk =
∑

iβ
b
ki is the probability that a backward jump occurs, γ fkj =

∑
i∕=jβ

f
ki and γbkj =

∑
i∕=jβ

b
ki. It can be

proved that
∑

iP
(2)

i =
γ fkj+γbkj
1−Pkj = 1. Following such second-order residence time algorithm, the time for each kMC step is then modified as

Δt(2) =
−ln(r)
1 − Pkj

[

γ fkjΔtk
(1)

+ γbkj

(

Δtk
(1)

+ tsj +
βbk
β f
k

ts

)]

(S2)

Δtk
(1)

= 1∑12
i=1

Ri
is the average time for vacancy migration from current state k to next state i with the first-order algorithm, tsj = 1

γbkj

∑
i∕=j(Δtk

(1)
+

Δti
(1)

)βbki, and ts = 1
γbkj

∑
i(Δtk

(1)
+ Δti

(1)
)βbki.

To compare the efficacy of timeclock advance in the 1st- and 2nd-order algorithms, we show the histograms of time advances (in unit of s) for every
1000 kMC steps. It can be seen that the 2nd-order algorithm exhibits a bell-shape distribution with the mean value around 0.1–1 μs; while the 1st-order
algorithm yields a broader distribution with a long tail in the very small timescale, indicating a less effective timeclock advance. The inset plot in Fig
A1b shows the timeclock evolution as a function of kMC steps, and it is clear that the 2nd-order algorithm is more effective in reaching to longer
timescale compared with the conventional algorithm.
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Fig. A1. (a) Illustration of a vacancy trapping situation observed in the 1st-order kMC simulation. The percentages of time the vacancy resides in various states are
marked in black. The arrows with numbers show the direction and probability of the vacancy hopping, colored based on the starting state of the jumps. (b) His-
tograms of the timeclock advance for every 1000 kMC steps in the 1st- and 2nd-order algorithms. Inset plot shows the timeclock evolution as a function of kMC steps.

2. Bond-counting method for predicting the sample configurational energy

In this study, machine learning models based on the ANN architecture (Fig 1a) are built to predict the configurational energy andmigration barrier
based on the local chemical environment. To train the ML model for the system’s configurational energy, a surrogate bond-counting method is used to
encode the system atomic configuration as an input of the ANN. In particular, the number of different interatomic bonds is counted and vectorized to
represent the atomic configuration. For each atom, we count the interatomic interactions within each nearest neighboring shell, up to the 7th
neighboring shell. In the Al-Si-Mg systemwith a vacancy, 9 types of interacting pairs (vacancy-Al, vacancy-Mg, vacancy-Si, Al-Al, Mg-Mg, Si-Si, Al-Mg,
Al-Si, Mg-Si) are considered. As a result, the atomic configuration can be represented by a vector with a length of 9 × 7 = 63, in which each element
corresponds to the number of certain interatomic pairs in a certain neighboring shell.

3. Encoding of local chemical environment and coordination transformation

In the kMC simulations, the vacancy can jump to any of its 12 nearest neighbors, resulting in 12 possible migration directions. For the migration
direction of [0 −1/2 −1/2] (benchmark), the migration barrier can be directly predicted from the ML model trained on NEB data, in which an
encoding algorithm is implemented to convert the atom types surrounding the vacancy-migrating atom pair into a ranked input sequence, as seen in
the left panel of Fig 1b. For a migration direction different from [0 −1/2 −1/2], the training input vector needs to be rearranged to ensure a consistent
encoding sequence, in which the rank of each atom in the sequence is based on the same type of mapping from its relative position to the vacancy-
migrating atom pair. For example, as shown in the right panel of Fig 1b, in which the migration direction is changed to [1/2 0 −1/2], the four atoms
ranked 1–4 in the left panel of Fig 1b are no longer nearest neighbors of the vacancy and migrating atom. However, the system for [1/2 0 −1/2]
migration direction can be regarded as a rotation of the benchmark system by 90◦ about the z-axis. Therefore, the new atomic coordinates relative to
the vacancy in the encoding sequence can be transformed utilizing x′ = -y, y′ = x, and z′ = z, where x, y, and z are the atomic coordinates relative to the
vacancy in the benchmark system. Under such coordinate transformation, the atoms ranked 1–4 in the sequence are changed from the light blue atoms
in the left panel to those in the right panel in Fig 1b. Table A1 shows the coordinate transformations for all 12 possible migration directions. By
applying these transformations on the coordinates relative to the vacancy for all 101 atoms in the encoding sequence in the benchmark system, a new
sequence of atomic coordinates relative to the vacancy can be obtained, resulting in a consistent representation of atomic configurations surrounding
the vacancy-migrating atom pair but with a different migration direction.

Table A1
Coordinate transformations for different migration directions, corresponding to a rotational operation of the benchmark system (with the migration direction of [0 −1/
2 −1/2]), from which a consistent atomic sequence representing the local chemical environment can be obtained compared to the benchmark system.

Migration Direction Rotational Operation x Coordinate Transformation y Coordinate Transformation z Coordinate Transformation

[0 −1/2 −1/2] ​ ​ ​ ​
[0 1/2 −1/2] 90◦ around x x’ = x y’ = -z z’ = y
[0 1/2 1/2] 180◦ around x x’ = x y’ = -y z’ = -z
[0 −1/2 1/2] 270◦ around x x’ = x y’ = z z’ = -y
[−1/2 0 −1/2] 270◦ around z x’ = y y’ = -x z’ = z
[1/2 0 −1/2] 90◦ around z x’ = -y y’ = x z’ = z
[1/2 0 1/2] 270◦ around x, 90◦ around z x’ = -z y’ = x z’ = -y
[−1/2 0 1/2] 270◦ around x, 270◦ around z x’ = z y’ = -x z’ = -y
[−1/2 −1/2 0] 90◦ around y x’ = z y’ = y z’ = -x
[−1/2 1/2 0] 270◦ around y, 180◦ around z x’ = z y’ = -y z’ = x
[1/2 −1/2 0] 270◦ around y x’ = -z y’ = y z’ = x
[1/2 1/2 0] 90◦ around y, 180◦ around z x’ = -z y’ = -y z’ = -x
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4. Alignment term in Eq. (6)

In Fig A2 below, we show the correlation between the non-alignedmigration barrier (the 1st term in Eq. (6)) and the alignment (the 2nd term in Eq.
(6)) for all our ML training data, as well as their own distributions in the inset plot. It can be seen that, the alignment term is distributed very narrowly
and symmetrically around 0 with the half-peak width ~0.05 eV, while the 1st term distributes broadly between 0 and 1 eV. In addition, according to
the scattered plot there are no meaningful correlations between the two terms, meaning the alignment won’t lead to statistical bias to the kinetics
prediction of the kMC results.

Fig. A2. The correlation between the alignment term (2nd term in Eq. (6)) and the non-aligned barrier (1st term in Eq. (6)), as well as their own distributions. It can
be seen that the alignment term only gives a very small and non-biased minor correction to the 1st term, which does not largely impact the kMC results.

5. Compositional dependence of V-Si and V-Mg migration barriers

In the main text it has been shown that statistically the vacancy-Si migration barriers are lower than that for V-Mg migrations. That said, it is still
possible that, at the same composition the V-Mg barrier could be lower than that of V-Si. At first, even at a fixed nominal composition of the entire
sample, the atomic-level local environments are still diverse and, subsequently, lead to a distribution of migration barriers. More specifically, at the
same nominal composition, we calculated the minimum barrier for Mg migration, ΔEmMg, min, the minimum barrier for Si migration, ΔEmSi, min, the

average barrier for Mg migration, ΔEmMg, avg, and the average barrier for Si migration, ΔEmSi, avg. The differences of
(

ΔEmMg, min −ΔEmSi, min
)

and
(

ΔEmMg, avg −ΔEmSi, avg
)
across various nominal compositions are shown below in Fig A3. It can be seen that, in some compositional space (e.g. blue

regions in the left panel), the minimum value of Mg migration barrier could be smaller than that of the minimum Si migration barrier, although
statistically the average Si migration barriers are always lower than the average Mg migration barriers (seen in the right panel).

Fig. A3. The differences of ΔEmMg, min − ΔEmSi, min (left) and ΔEmMg, avg − ΔEmSi, avg (right) across various nominal compositions.
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