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The heterogeneous mechanical response of a crystalline alloy with multiple
principal elements was investigated using molecular dynamics simulations.
The local configuration of the alloy in its quiescent state was characterized by
the variables derived from the gyration tensor and the atomic electronega-
tivity. A multivariate analysis identified the geometric and chemical factors
that influenced the atomic packing variations. Upon straining, the non-affine
displacement exhibited spatial heterogeneity. A statistical correlation was
established between the local yield events and the specific features of the local
configuration. Our findings, validated by the performance metrics analysis,
provided a structural criterion for the instability mechanisms in high-entropy
alloys (HEAs) and enhanced the understanding of their plasticity.

INTRODUCTION

The single-phase crystalline solid solutions,
AlCoCrCuFeNi1 and CoCrFeMnNi,2 discovered in
2004, initiated a new era in metallurgy. The concept
of multi-principal-elements with equiatomic ratios
opened a new avenue for designing alloys. These so-
called high entropy alloys (HEAs)3–5 have exhibited
a wide range of mechanical properties and have
become a prominent research topic in modern
metallurgy.6–8

The relationship between the mechanical proper-
ties and the microstructure of HEAs is a topic of great
interest.9–18 A key challenge is to identify the spatial
regions where strain localization is likely to occur
during mechanical processing. Conventional crys-
talline solids can be analyzed for crystallographic
defects, such as dislocations, stacking faults, free
surfaces, and grain boundaries, by looking for dis-
ruptions in spatial symmetry.19 Studies of amor-
phous solids have explored whether specific features
of packing patterns can promote localized mechanical

instability.20 One approach has been to treat the
disordered structure as a packing of polyhedra21,22

and investigate the relationship between local insta-
bility thresholds and topological features.23–25

A schematic two-dimensional projection of the
generic structural features of relaxed HEAs is illus-
trated in Fig. 1. The particle arrangement resembles
the configuration of crystalline solids at elevated
temperatures. As in amorphous solids, the transla-
tional invariance and rotational symmetries are not
strictly preserved in HEAs. Despite positional devi-
ations, the topological features inherent to the face-
centered cubic (FCC) structure remain intact. This
means that topological criteria used to identify elastic
anomalies in crystalline and amorphous solids can-
not be applied to HEAs. Therefore, a new descriptive
framework is needed to understand the structure–
property relationships in HEAs. This framework
should be based on variables most relevant to their
deformation behavior. The challenge of developing
such a framework motivates this study. In essence,
we aim to develop a new way of thinking about defects
in HEAs that is tailored to their unique structure.
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This could help us to better understand why HEAs
have such good mechanical properties and to design
even better HEAs in the future.

It is known in HEAs that, in addition to the
intrinsic lattice distortions, local chemical environ-
ment such as electronegativity also largely dictate
the system’s mechanical behaviors.26,27 Therefore,
in the present study, we have combined both local
structural and chemical information based on gyra-
tion tensor and electronegativity to describe the
structure of HEAs from molecular dynamics (MD)
simulation trajectories. We have used an explora-
tory data analysis approach to identify the specific
configurational features of HEAs that are associated
with defect nucleation and early stage plasticity in
this new reference frame. Our results provide new
insights into the deformation behavior of HEAs
from a statistical correlation perspective.

MATERIALS AND METHODS

Atomistic Simulation and Non-affine
Displacements Characterization

The initial configuration of the CoCrFeMnNi
HEA was prepared by randomly assigning element
types to each lattice point in the FCC perfect crystal
simulation cell with the X, Y, and Z principal axes
aligned with 100½ �, ½010� , and ½001� crystal orienta-
tions, respectively. Periodic boundary conditions
have been applied on all directions. The simulation
cell contains 30 � 30 � 30 FCC unit cells with
overall 108,000 constituent atoms. The simulation
procedures were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator
(LAMMPS) package.28 The force field developed by
Lee and coworkers29 was used to model the

interaction among the constituent atoms of the
CoCrFeMnNi HEA.30 After being equilibrated
under NPT ensemble at 77 K with zero external
pressure, energy minimization was performed on
the initial configuration based on the conjugate
gradient algorithm to obtain the quiescent state
structure. To investigate the connection between
the isolated plastic activity in a strained HEA and
the local geometric features at its quiescent state,
simulations of HEA subjected to constant-volume
tensile and shear deformation were carried out
under NVT ensemble at 77 K. In Cartesian coordi-
nates, the deformation gradient tensors J for ten-
sion applied in the z axis and shear on the xz plane
with a stretch c can be expressed as
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The strain rate used in this simulation was
5 � 108 s�1. Note that the tension along the x and y
axes, as well as shear on the xy and yz planes were
also performed. The simulation timestep was 0.001
ps and the trajectory was collected every 1 ps until c
reaching 0.4. The yield point was identified by
common neighbor analysis from the transition point
of the stress–strain curve where the von Mises stress
was seen to drop. The method proposed by Falk and
Langer was used to provide the non-affine measure of
particle displacements from the trajectories corre-
sponding to the yield point.31

Defining the Local Configurational Unit (LCU)
in the Multivariate Reference Frame

To describe the LCU, we use a second-order
gyration tensor R32 defined by:

Rab ¼ 1

n

X

n

I¼1

raI r
b
I : ð1Þ

where raI is the ath component of the position differ-
ence vector ri and n is the number of particles within
the nearest-neighbor cluster. The coordinate system
was selected to ensure that

Pn
I¼1 ri ¼ 0. Therefore, ri

can be considered as the positional difference
between the I-th nearest-neighbor particle and the
center of mass of this cluster. From Eq. 1, it is clearly
seen that R is the covariance matrix which gives the
spatial correlations among the constituent particles
of this system. Therefore, it provides a convenient
measure of the geometric features around a tagged
particle. At the initial stage of plastic deformation of
the HEA, the length scale of a local plastic event was
found to be around one mean inter-particle distance.
Therefore, for a tagged particle, we calculatedR from
the spatial range defined by its first coordinate shell
of pair distribution function g rð Þ and used it to
quantify the configurational characteristics of its
local environment, such as size, shape, and orienta-
tion, which reflect its interaction with neighboring

Fig. 1. Two-dimensional configurational projection of a (001) slice
from a general face-centered cubic (FCC) high-entropy alloy (HEA)
system, such as CoCrFeMnNi alloy. The displacement of each atom
from its lattice point indicates structural deviations from crystalline
perfection. Arrows indicate the orientations of local configurational
units (LCUs), and the opacity of the color represents the spatial
region used to calculate local physical quantities (Color
figure online).
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particles. To bypass the mathematical complications
caused by the abrupt length cutoff, a Gaussian-based
weight function, as schematically illustrated by the
color gradient in Fig. 1, has been used in calculating
R from the trajectories. By summing the weighted
contribution over all the N particles in our simula-
tion, Rab can be expressed as:

Rab ¼
PN

I¼1 wir
a
I r

b
I

PN
I¼1 wI

: ð2Þ

where wI ¼ e�
rij j2
2r2 is the weight function. The vari-

ance r has been chosen to be the position of the first
peak of g rð Þ to emphasize the contribution from the
nearest-neighbor particles. Because R is symmetric
positive semidefinite, according to the spectral
theorem33 R can be diagonalized as:

R ¼QKRQ
T : ð3Þ

In Eq. 3 KR is a diagonal matrix with three entries
k1, k2 and k3 in ascending order which are the
eigenvalues of R and often called principal
moments. Q is an orthogonal matrix whose three
columns are the orthonormal eigenvectors of R and
QT is the transpose of Q. Additionally, the sign of
each column in Q were selected to make Q33 > 0 and
det Qð Þ ¼ 1 to ensure the uniqueness and avoid
improper rotations. Taking Q as a rotation matrix,
following the zxz-convention it can be expressed as:

Q ¼ R1R2R3: ð4Þ
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where w, h , and / are the

Euler angles.

By decomposing R into its eigenvalues and eigen-
vectors to eliminate the off-diagonal entries, the
configurational features of R can be intuitively
identified in this eigenspace. The size and shape of
the local environment around a tagged particle,
which is termed as the LCU, can be directly linked
to the principal moments and its orientation can be
described by the Euler angles, as displayed by the
ellipsoids and arrows in Fig. 1. For a defect-free
FCC perfect crystal consisting of only one element,
R for any constituent atom is simply 1

3 tr Rð Þ � I3

because of the inherent octahedral symmetry. The
breakdown of structural symmetry in HEAs is the
result of complicated inter-particle interaction orig-
inating from the chemical difference between the
constituent atoms. In the context of excess local
electronegativity vh i, which is defined as the differ-
ence between the averaged electronegativity of
atoms in an LCU and the global average,26 we have
demonstrated a connection between the distribu-
tions of different types of atoms and the non-affinity
of local deformation. Therefore, in this study, vh i is
labeled to the tagged particle of each LCU to reflect
its compositional characteristics. Along with other
six structural variables of R, a vector space R7 is set
up to facilitate the interpretation of configurational
features of HEAs. The thus-constructed R7 space
also lays down the foundation of further principal
component analysis (PCA; see Appendix 1) to
extract insights into how those seven variables are
collectively determining the incipient of local plas-
ticity in HEAs.

RESULTS

Independent Variables Characterizing
the Local Configuration of HEA Identified
by PCA

Following the LCU characterization in section
‘‘Defining the Local Configurational Unit (LCU) in
the Multivariate Reference Frame,’’ each of the
108,000 particles within our simulated HEA system
has been individually labeled based on the corre-
sponding eigenvectors and eigenvalues of R, as well

Table I. The principal axes identified by PCA analysis

Principal components (PCs) 1 2 3 4 5 6 7

KR k1 � 0.36 0.00 0.00 0.00 0.48 � 0.70 � 0.39
k2 � 0.39 � 0.02 0.00 0.00 0.43 0.04 0.81
k3 � 0.43 0.00 0.00 0.00 0.36 0.71 � 0.43

Q / 0.00 0.00 � 0.60 0.80 0.01 0.00 0.00
h � 0.02 1.00 � 0.01 � 0.01 0.00 0.00 0.02
w � 0.01 0.02 0.80 0.60 0.00 0.00 0.00
vh i 0.73 0.01 0.01 0.00 0.68 0.09 � 0.01

Percentage of the total variance 28% 24% 18% 16% 8% 4% 2%

The percentages of total variance projected onto the principal axes are presented in descending order.
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as the excess local electronegativity denoted as vh i.
This data is structured into a 7 � 108; 000 feature
matrix, denoted as F. To eliminate potential inter-
correlations among input variables, we conducted
PCA.33,34 This analytical process re-expresses the
data as a set of new orthogonal variables, facilitat-
ing the extraction of crucial configurational infor-
mation from the original dataset.

Table I presents the singular vectors and vari-
ances from PCA. In the first and fifth principal
components, denoted as PC1 and PC5, an inverse
relationship is observed between vh i and the eigen-
values k1, k2 , and k3. Specifically, in PC1, the
rounded values of all lambda entries are �0.4.
Considering that the trace of KR corresponds to the
radius of gyration RG of the associated LCU, this
finding suggests that alterations in vh i predomi-
nantly impact the size of the LCU. This observation
underscores the influence of chemical disparities
among HEA atoms on configurational features,
primarily through changes in the average inter-
particle distance.

Furthermore, in PC1, the negative correlation
between vh i and the entries of KR indicates that an
LCU characterized by a more negative vh i tends to
be larger than those with less negative vh i. Despite
PC1 being the most significant principal component,
explaining 28% of the original data’s variance, it is
essential to note that this correlation does not imply
causation. This is evident in the positive correlation
revealed by PC5, which accounts for 8% of the
variance.

One can define the principal component score as
S � UTF ¼RVT where U and V are the left and
right singular vectors of F (see A). The Ith row of S,
which is denoted as SI, is the projection of the
centralized data on the Ith principal axes UI. The
fact that the data distributes within an ellipse area
in the R2 subspace subtended by U1 and U5 with an

aspect ratio of
ffiffiffiffiffiffiffi

3:5
p

in Fig. 2a demonstrates that vh i
is only correlated with, instead of proportional to,
the trace of KR.

Effect of Compositional Difference on Local
Geometric Features of HEA

Using trajectories obtained within proximity to
yield points, the non-affine parameter D2 for each
LCU is computed following the methodology pro-
posed by Falk and Langer.31 Subsequently, we
identify LCUs characterized by the 1st and 99th
percentiles of D2 in descending order. The geometric
attributes of these LCUs at the quiescent state are
then classified to establish their correlation with
local plasticity events.

For this analysis, we introduce ternary discrete
variables dj 2 0; 1; 2f g, where dj ¼ 1 signifies the jth

LCUs within the 1st percentile, dj ¼ 2 designates
LCUs within the 99th percentile, and dj ¼ 0 other-
wise. Consequently, the extreme groups can be

denoted as D2
1 � j j dj ¼ 1

� �

and D2
99 � j j dj ¼ 2

� �

,
respectively.

As indicated in Table I, the principal component,
S1, demonstrates its significance in the variations
within the feature matrix. It will be meaningful to
investigate how the local configurations will affect
the initiation of non-affine deformations by observ-
ing the distribution of D2

1 and D2
99 in the space of S1

and S5, which also represent the different combina-
tion of LCU size and vh i. The collection of 2-tuples
S1;S5ð Þ ¼ S1j;S5j

� �

j 1 � j � N \ j2 N
� �

for all
LCUs belonging to the two extreme groups were
extracted and are presented in Fig. 2a in the R2

space spanned by U1 and U5. The two perpendicular
coordinates are labeled S1 and S5. The up-pointing
triangles, right-pointing triangles, plus signs, and x
marks represent the data collected from LCUs that
underwent plastic deformation under uniaxial ten-
sile stress along the z direction, uniaxial tensile
stress along the x direction, shear stress along the
xz direction, and shear stress along the xy direction,

Fig. 2. (a) The joint distribution of S1;S5ð Þ for LCUs characterized by
the 1st percentile of D2 (red and yellow symbols) and 99th percentile
of D2 (gray symbols). The different loading conditions are
represented by the scheme of symbol given in Fig. 3a. A clustering
phenomenon of data belonging to the same percentile group is
clearly revealed. (b) The probability density functions for all LCUs
p S1ð Þ (black curve), and the probability density for the two extreme
groups, p S1jj 2 D2

1

� �

and p S1jj 2 D2
99

� �

. (c) The conditional
probabilities P j 2 D2

1 jS1

� �

and P j 2 D2
99jS1

� �

calculated from the
results given in (b). It is clearly seen that the spatial regions
characterized by negative anomalies of S1 are more likely to undergo
non-affine deformation and those characterized by higher S1 tend to
deform elastically (Color figure online).
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respectively, as schematically illustrated in Fig. 3a.
The red and yellow symbols represent the LCUs in
the 1st percentile of D2, and the gray symbols
represent the LCUs in the 99th percentile of D2.
Figure 2a shows that, regardless of the deformation
conditions, the results from the same percentile
group tend to cluster together.

To analyze the data in the U1 vector space, we
project them onto the S1 axis and compute the
probability density functions (PDFs) p S1ð Þ for all
LCUs from the quiescent state trajectories of HEA.
The PDFs of S1 conditioned on j 2 D2

1 and j 2 D2
99 are

denoted as p S1jj 2 D2
1

� �

and p S1jj 2 D2
99

� �

, respec-
tively. As shown in Fig. 2b, the PDF of S1 (black
curve) can be well approximated by a Gaussian

function with the form pðS1Þ ¼ 1
ffiffiffiffi

2p
p

r
exp � S2

1

2r2

h i

where

r2 ¼ 1:52. The bell-shaped curves of all p S1jj 2 D2
1

� �

and p S1jj 2 D2
99

� �

indicate that S1 follows a normal
distribution for both the two extreme groups in the
U1 vector space. The mean of p S1jj 2 D2

1

� �

is around
�2 for the LCUs that tend to undergo plastic
deformation under uniaxial tensile stress, and
around �1 for those that tend to yield under shear
stress. All the p S1jj 2 D2

99

� �

is around S1 ¼ 2 for the
LCUs that are more resistant to deformation.

The likelihood of an LCU undergoing yield based
on its configurational features described by S1 is not
immediately apparent from the various probability
distributions presented in Fig. 2b. Instead, Bayes’
theorem allows us to deduce the conditional prob-

abilities P j 2 D2
1jS1

� �

and P j 2 D2
99jS1

� �

, represent-
ing the susceptibility of LCUs when S1 is given. This

can be expressed as P AjBð Þ � p BjAð Þ
p Bð Þ PðAÞ, where the

uppercase P denotes discrete probability. Analyzing
the yellow and red symbols in Fig. 2c, a clear

monotonic decrease in P j 2 D2
1jS1

� �

is observed with
an increase in S1 across all deformation conditions.
Conversely, the gray symbols exhibit an opposite

trend in P j 2 D2
99jS1

� �

. This leads us to the conclu-
sion that spatial regions characterized by negative
anomalies of S1 are more prone to undergoing non-
affine deformation, while those characterized by
higher S1 tend to deform elastically. Importantly,
this observation differs intrinsically from the sta-
bility criterion of amorphous solids, where both
positive and negative anomalies of atomic level
volumetric strain could cause mechanical instabil-
ity.35,36 We attribute this discrepancy to the anhar-
monicity of the interaction potential employed in
our simulation, where the energy cost and restoring
force for compressive deformation are significantly
larger than those for tensile deformation in regions
characterized by lower S1, given the same amount of
strain.

Figure 3b presents an example of the spatial
distributions of S1. The non-affine deformation
within strained HEA is prominently localized

within the dark blue spatial regions where S1 falls
below its mean value of 0. Nevertheless, under
diverse deformation conditions, the precise locations
of irreversible particle rearrangement exhibit sig-
nificant variation and minimal overlap. The
insights derived from PCA, as outlined in Table I,
offer a preliminary understanding of the physical
basis of this phenomenon: nearly half of the original
data’s variance is captured by the second, third, and
fourth principal axes (PC2, PC3, and PC4). These
axes represent distinct linear combinations of w, h ,
and / (refer to ‘‘Defining the Local Configurational
Unit (LCU) in the Multivariate Reference Frame’’).
Thus, achieving a comprehensive understanding of
HEA plasticity requires a fundamental exploration
of the influence of LCU orientation on local plastic
activity.

Influence of Orientation of LCU
on the Plasticity of Strained HEA

In this investigation, the geometric configuration
of a LCU is elucidated through an ellipsoid charac-
terized by three principal axes corresponding to the
eigenvectors of KR, converging at the center of

Fig. 3. (a) Schematic of four loading conditions: uniaxial tensile
stress along the z direction (up-pointing triangle), uniaxial tensile
stress along the x direction (right-pointing triangle), shear stress
along the xz direction (plus sign), and shear stress along the xy
direction (x marks). (b) One example of the contour plot of S1. The
heterogeneity of its spatial distribution can be clearly revealed by the
blue gradient color scheme. The yellow and red symbols indicate the
locations of non-affiine particle rearrangements in CoCrFeMnNi
subjected to the mechanical loadings illustrated in (a) (Color
figure online).
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symmetry. Adhering to the framework proposed by
Theodorou and Suter to quantitatively define the
conformation of an unperturbed linear polymer
chain,37 we designate the axes of this configura-
tional ellipsoid as Q1, Q2 , and Q3, aligning with the
directions of minor, median, and major axes, respec-
tively. Consequently, the orientation of an LCU can
be precisely determined based on the alignment of
its Q3. Based on the methodology outlined in
Appendix B, we compute the coarse-grained proba-
bility distribution Pc Q3ð Þ. The azimuthal equidis-
tant projections, observed along the 4-fold axes (C4)
of 001h i, 3-fold axes (C3) of 110h i , and 2-fold axes
(C2) of 111h i crystallographic directions, are pre-
sented in Fig. 4a–c, respectively. Upon scrutinizing
the distribution of the projected data points, it is
clearly seen that the preferred orientation of Q3 for
all LCUs is aligned with the 001h i direction of the
FCC crystal structure.

In this study, we introduce a probability ratio RP

defined as
P j2D2

1jQ3ð Þ
Pðj2D2

1Þ
for the extreme group associated

with the 1st percentile of D2. This ratio serves to
assess the impact of LCU orientation on local plastic
events. The correlation between these statistical
events becomes apparent through the deviation of
RP from 1. Figure 5a–d illustrates the coarse-
grained distribution of RP on the unit sphere under
different loading conditions: uniaxial tensile stress
along the z direction, uniaxial tensile stress along

the x direction, shear stress along the xz direction,
and shear stress along the xy direction, respectively.
The gradient of the blue color indicates the magni-
tude of RP. Upon examining the distribution of light
blue domains, characterized by RP >1, in relation to
the corresponding deformation gradient, a clear
pattern emerges. It reveals that non-affine defor-
mations near each yield point are promoted by the
compatibility between the orientation of LCU and
the direction of applied loading. In all cases, the Q3

of LCUs undergoing non-affine deformation tends to
align with the major principal axis of applied strain
QE3, defined by E ¼ QEKEQ

T
E, where

E ¼ 1
2 JTJ � I3

� �

, representing the green strain ten-
sor of the deformation gradient J (refer to ‘‘Ato-
mistic Simulation and Non-affine Displacements
Characterization’’). For a HEA subjected to uniaxial
tensile stress, the corresponding QE3 aligns with the
tensile axes which is ½001� in Fig. 5a and ½100�
in 5(b). For a sheared HEA, in the zero-strain limit
c ! 0ð Þ, QE3 aligns with the angle bisector between

shear direction and normal vectors of shear plane
which is ½101� in Fig. 5c and ½110� in Fig. 5d.
Furthermore, we propose an approach to quantita-
tively measure the specific alignment between the
overall shape of LCUs and the principal strain
orientation using spherical harmonics expansions
as outlined in Appendix C.32 Leveraging the sym-
metric property of Y0

2 , it becomes evident that the
degree of alignment between the LCU orientation
and the direction of external strain can be quanti-
tatively assessed by the positive deviation of its
second moment G0

2 in the mass distribution function
in the principal strain coordinate.

Shape Distributions of LCU in the Quiescent
State of HEA

Having explored the static dimensions and orien-
tations of LCUs and their associations with the
plasticity of a strained HEA, we can now investigate
the impact of LCU shape on local particle arrange-
ments. Various methods exist to characterize the
shape of an object, and, in this study, the shape
distribution of LCUs is determined through the
probability distribution of the 6th and 7th principal
components (PC6 and PC7) of C , as detailed in
Table I. However, it is noteworthy that the variance
retained by PC6 and PC7 in the original data is only
4% and 2%, respectively. This observation leads to
the conclusion that the configurational differences
in local environments within HEA are too subtle to
be effectively discerned based on the shapes of LCUs
characterized by the geometric quantities associ-
ated with PC6 and PC7. In essence, the shapes of
various LCUs in a quiescent HEA, as depicted by
these principal components, are fundamentally
similar due to the limited variance captured by
PC6 and PC7.

Fig. 4. The probability distribution p Q3ð Þ viewed along the (a) 001h i,
(b) 111h i, and (c) 110h i directions. The results show that the
preferred orientation of LCUs is along the 001h i direction of FCC
crystal structure. The data are coarse-gained based on the approach
given in Appendix B.

Fig. 5. The spatial distributions of RP on the unit sphere for (a)
uniaxial tensile stress along the z direction, (b) uniaxial tensile stress
along the x direction, (c) shear stress along the xz direction, and (d)
shear stress along the xy direction.
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The geometric configuration of LCU can be quan-
tified through linear combinations of k1, k2 and k3 in
PC6 and PC7 provided by PCA, as outlined in
Table I. Denoting these linear combinations as the
dot product SI ¼ UI � k, where k ¼ k1; k2; k3ð Þ forms a
vector in R3 space following the proposal by Šolc and
Stockmayer.38 To facilitate the discussion, the 0.09
contribution of vh i to PC6 is considered a statistical
fluctuation due to its marginal influence. Conse-
quently, the unit vector of PC6, U6, is determined as
1
ffiffi

2
p �1; 0; 1ð Þ and S6 ¼ 1

ffiffi

2
p k3 � k1ð Þ. Geometrically,

this quantity measures the deviation of the shape
of an LCU from an elliptical form toward that of a
perfect sphere. Similarly, the unit vector of PC7, U7,
is established as 1

ffiffi

6
p �1; 2;�1ð Þ, yielding

S7 ¼ 1
ffiffi

6
p 2k2 � k1 þ k3ð Þ½ �. Given the circular symme-

try, U7 serves as an indicator to assess whether the
quadric surface of an LCU can be characterized as
oblate S7 > 0 or prolate S7 < 0.

Figure 6a illustrates the R2 subspace formed by
U6 and U7. It is noteworthy to mention that
Theodorou and Suter introduced two principal axes
of gyration, namely, asphericity b and acylindricity
c, to describe the instantaneous shape of a linear
polymer chain in a solution.37 Expressing b and c in
terms of dot product, b ¼ Ub � k and c ¼ Uc � k where
Ub ¼ ð� 1

2 ;� 1
2 ; 1Þ and Uc ¼ �1; 1; 0ð Þ. The outcomes

for all possible shapes are confined within the light
blue-marked right triangular region. The three
vertices correspond to three asymptotic geometric
shapes: a perfect sphere, a zero-thickness disc, and
a volumeless line. Given the ascending order of k1,
k2 , and k3, the collection of all possible 3D elliptical
shapes should form a right triangle. Here, the
hypotenuse, long leg, and short leg represent the
limits of k1 ¼ 0, k2 ¼ k1 and k3 ¼ k2, respectively.

In Fig. 6b, p S6;S7ð Þ for all LCUs at the quiescent
state, as well as the extreme groups
p S6;S7jj 2 D2

99

� �

and p S6;S7jj 2 D2
1

� �

for two defor-
mation conditions, are presented. All data points
cluster near the origin, indicating that the shapes of
all LCUs deviate only slightly from a perfect sphere.
Additionally, the data exhibits reflection symmetry
concerning the axis of S7 ¼ 0, and, from the distri-
bution, it can be concluded that no discernible
correlation exists between the shape of LCU and
the local plasticity of strained HEA.

Classification of Configurational Features
Using Linear Discriminant Analysis

Utilizing the independent configurational vari-
ables derived from PCA, we can further categorize
the LCUs based on their susceptibility to non-affine
displacement. Building upon the insights provided
in Figs. 2, 3, 4, 5, and 6, the information pertaining
to local configurations can be distilled and repre-
sented in a reference coordinate system comprising

the principal axes of S1, G0
2, and S6. This represen-

tation accounts for the influences of chemical com-
position, as well as size, orientation, and shape on
the LCUs. The dataset is structured as a 3 �
108; 000 feature matrix f ¼ S1; G0

2; S6

� �

¼

S1j; G0
2j; S6j

� �

j 1 � j � N \ j2 N
n o

within the

R3 Cartesian space, where each row is individually
converted to its corresponding standard scores.
Examining the outcomes presented in Fig. 7, it is
observed that the data from the D2

1 and D2
99 groups

exhibit distinct clustering. m1 ad m99, along with the
variances R1 and R99, contribute to the separation of
these groups.

In Fisher’s linear discriminant analysis,33,39 the
solution to classification problems involving two
classes entails identifying the optimal decision
plane defined by its normal vector v and a threshold
value cth. If vTf > cth, the sample is more likely to
belong to group D1; conversely, if vTf < cth, the
sample is assigned to group D99. The separation

Fig. 6. (a) The R2 subspace spanned by U6 and U7 contains all
possible ellipsoids with tr Rð Þ ¼ 1. The red vectors are U6 and U7

from PCA given in Table I and the blue vectors are the axes of
asphericity and acylindricity defined by Theodorou and Suter.37 (b)
The joint probability distribution of p S6;S7ð Þ normalized by tr Rð Þ for
the extreme groups D2

99 and D2
1 when subjected to tension and shear

deformation, respectively. Contours specify the 68% confident level
(Color figure online).
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ratio RS, quantifying the separation distance
between the two groups, is given by

RS ¼ vTm1�vTm99ð Þ2

vT R1þR99ð Þv . To maximize RS, the optimal

decision plane’s normal vector v is obtained by
solving the generalized eigenvalue problem, yield-

ing v ¼ R1 þ R99ð Þ�1 m1�m2ð Þ.
Table II presents the values of v for four distinct

deformation conditions. Notably, the magnitude of
the first component of v, associated with S1, is
approximately three times that of the second com-
ponent related to G0

2. The third component corre-
sponding to S6 is found to be negligible. The
table further underscores the compelling evidence
that the chemical composition, size, and orientation
of LCU are pivotal factors in understanding the
specific atomic packing features relevant to local
yielding events in a strained HEA.

To determine the optimal classification threshold
cth, we used the evaluation metrics described in
Appendix D to assess the efficacy of the classifica-
tion. Figure 8 shows the receiver operating charac-
teristic (ROC) curves39 for four different
deformation conditions. The optimal cth was chosen
to maximize accuracy (ACC). For the uniaxial
condition, the optimal cth produced an FPR;TPRð Þ
of approximately (0.1, 0.9), while the shear condi-
tion produced an FPR;TPRð Þ of approximately (0.2,
0.8). As defined in Appendix D, the area under the
ROC curve (AUC) is the probability that the vTf of a

randomly chosen conditionally positive sample (D2
1)

is higher than that of a randomly chosen condition-
ally negative sample (D2

99). Therefore, the AUC is
commonly used to measure the quality of a classi-
fication model. For uniaxial tension conditions, the
AUCs were around 0.98, and, for shear conditions,
they were around 0.87. The corresponding decision
boundaries are shown in the insets of Fig. 8. The
results demonstrate that our method can success-
fully discriminate the plasticity of LCUs based on
the extracted features.

DISCUSSION

This study’s consideration of structure–property
relationships in HEAs raises several aspects that
warrant further discussion. To further elucidate the
physical insights presented in Figs. 5, 7, and 8, we
employ the calculation of the potential energy
landscape (PEL) for HEA as an independent
approach. The PEL offers an alternative perspec-
tive, allowing the interpretation of elementary
topological fluctuations, such as collective rear-
rangements of particles. These fluctuations involve
the hopping between neighboring local minima in
the PEL.40–44 In this investigation, we employ the
activation relaxation technique (ART)45–47 to

Table II. The normal vector v, threshold value cth of
the decision plane and the separation ratio RS for
four loading conditions

JZZ JXX JXZ JXY

v1 � 1.5741 � 1.5784 � 0.8240 � 0.8292
v2 0.5569 0.4727 0.2866 0.3002
v3 � 0.0088 � 0.0317 0.0086 0.0017
RS 3.9618 3.9427 1.2751 1.4050
cth 0.45 0.45 0.00 0.05

Fig. 7. (a) Three-dimensional and (b) two-dimensional scatter plots
of independent configurational variables used to characterize LCU
morphologies. Extreme groups D2

1 (red) and D2
99 (gray) can be

separated by a properly chosen decision surface (light blue) (Color
figure online).

Fig. 8. Receiver operating characteristic (ROC) curves for uniaxial
tensile stress along the z direction (a), uniaxial tensile stress along
the x direction (b), shear stress along the xz direction (c), and shear
stress along the xy direction (d). Solid lines show true positive rate
(TPR) versus false positive rate (FPR) at different classification
thresholds cth, dashed lines show classification accuracy, red circles
indicate the conditions with maximum accuracy, and insets show
decision boundaries and 2D distributions of extreme group D2

1 (red
and yellow) and D2

99 (gray), where contours specify the 68%
confidence level and dots represent group means (Color
figure online).
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explore the PEL structures of HEA. This method
establishes key connections between neighboring
metastable states in the PEL, devoid of any pre-
sumptions about predetermined mechanisms. The
LCUs are categorized based on G0

2, and the distri-
butions of activation barriers, as identified by the
ART algorithms, are calculated. The results,
depicted in Fig. 9, encapsulate approximately 350
activation barriers from groups containing 50 LCUs
with the highest G0

2 (light blue dots) and those with
the lowest G0

2 (dark blue dots). For the four explored
loading conditions, the activation barriers associ-
ated with particle rearrangement can be partitioned
into a low-energy collective motion mode Ea < 1 eV
and a high-energy mode linked to the formation of
point defects from a perfect crystal, such as Frenkel
pairs. Notably, the PEL calculations suggest that
the alignment between LCUs and QE3 of the applied
load promotes the low-barrier collective motion
mode. This finding provides crucial validation,
underscoring the pivotal role of the inherent orien-
tation of LCUs in influencing the mechanical prop-
erties of highly distorted crystalline systems within
HEAs. We would like to note that here we only
report the probability distribution of the scalar-
valued energy barriers. It would also be meaningful
to examine the spatial correlation between LCU
orientations and the transformation events identi-
fied in ART in the future studies.

It is well acknowledged that the movement of pre-
existing crystal defects, like dislocations, signifi-
cantly impacts the mechanical properties of crys-
talline alloys. Computational studies indicate that
common defects, including pre-existing dislocations,
grain boundaries, and free surfaces, exhibit activa-
tion barriers within the range of 0.1–0.5 eV.48–50 On
the other hand, the barriers associated with sus-
tainable plasticity under laboratory strain rates,
were estimated to be around 25kBT,51 approxi-
mately 10�1 eV. When considering the number
density of pre-existing crystalline defects, typically
around 10�4 per atom, our calculations predict a
detectable population of low-energy collective
motions (around 10�1 eV) at approximately 10�1

per atom. These findings from the PEL calculations
suggest that the nucleation of defects linked to non-
affine collective motions in the D2

1 group are indeed
non-negligible.

Fig. 10. (a) The partition of the unit sphere based on the mirror
planes in an octahedron perpendicular to the 4-fold axes (C4) of
001h i (red curves) and 2-fold axes (C2) of 110h i (yellow curves). The
4-fold, 3-fold and 2-fold axes are specified by the green square
symbols, magenta triangle symbols, and cyan diamond symbols,
respectively, while the Voronoi boundaries are displayed as white
curves. The coarse-grained probability distribution pc Q3ð Þ viewed
along the (b) 001h i, (c) 111h i, and (d) 110h i directions (Color
figure online).

Fig. 11. The probability density functions for all LCUs p G0
2

� �

(black
curve), and the probability density for the two extreme groups,
p G0

2 jj 2 D2
1

� �

(red and yellow curves) and p G0
2 jj 2 D2

99

� �

(gray
curves) (Color figure online).

Fig. 9. Distributions of activation barriers for atomic rearrangements
in the 50 LCUs with the highest G0

2 (light blue dots) and with the
lowest G0

2 (dark blue dots) correspond to the loading conditions in
Fig. 5a–d. The profile of activation barriers is characterized by a low-
energy collective motion mode with Ea<1 eV, and a high-energy
mode related to formation of point defects such as Frenkel pair. In
the low-energy regime, the probability of observing the local particle
rearrangement in the LCUs aligned with the applied load is seen to
be statistically higher than that in the LCUs misaligned with applied
load. The results of this independent thermodynamic calculation
support the physical picture presented in Fig. 5 obtained from
configurational analysis (Color figure online).
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It is also worth noting that, at the current stage,
we are focusing solely on cryogenetic conditions,
where the static atomic structure predominantly
influences the overall mechanical behavior, and
thermal vibrations have minimal impact. At ele-
vated temperatures, the method of evaluating the
gyration tensor for LCUs can be adjusted by con-
sidering the time-averaged positions of particles.

CONCLUSION

Using atomistic molecular dynamics simulations,
we investigated the local packing of the CoCr-
FeMnNi high-entropy alloy (HEA). We have quan-
titatively described the local configuration using the
local coordination unit (LCU), which is defined by
the entries of the local gyration tensor and local
excess electronegativity vh i to emphasize the inter-
particle collectivity. Based on this descriptive
framework, we extracted the configurational fea-
tures of a pre-strained HEA and statistically corre-
lated them with the local plasticity in a strained
HEA using eigenvector-based multivariate analy-
ses. Our method was able to identify that the local
non-affine displacement in a strained HEA is essen-
tially determined by three key factors: the fluctua-
tion of vh i, the size of the LCU, and the orientational
compatibility between the LCU and the deformation
gradients of the applied strains. We provided evi-
dence that our approach is probabilistically capable
of forecasting the defect nucleation sites from the
compositional heterogeneous matrix, based on the
extracted configurational features. While the pre-
sent study only focuses on the Cantor alloy model,
we believe our findings could also be extrapolated to
other HEA systems. Considering that the local
composition of an N-element alloy can be expressed
in an N–1 dimensional space, the currently pro-
posed approach of evaluating averaged electroneg-
ativity effectively projects the LCU onto one of the
directions in this space. Therefore, the varying
affinity or bond strength between specific types of
elements can also be represented as the projection of
LCU composition in different directions. Addition-
ally, data mining approaches such as PCA can help
to identify the most significant combinations of
element types that impact mechanical strength in
future studies.

One particularly intriguing perspective is to
investigate the influence of missing or extra atoms
on the plasticity of HEAs. We hypothesize that the
local configuration near point defects will be signif-
icantly altered by the change in atomic coordina-
tion. The same approach could also be expanded to
label the heterogeneous local environment sur-
rounding extended defects in multicomponent solid
solutions and predict their properties. To pursue
this ambitious study, we would need to identify new
principal configuration variables and classify the
local atomic structure accordingly. Our methodology
provides a foundation for such inference studies.

While our simulation force field prevents a com-
prehensive discussion of the effect of chemical short-
range ordering (CSRO)17,52–54 on particle arrange-
ment, we believe that a predictive configurational
criterion can still be established to a priori identify
potential plastic yielding sites. We anticipate that
the salient configurational features most relevant to
the mechanical failure of CSRO-characterized
HEAs will be successfully identified through the
multivariate statistical analysis proposed in this
study.

Finally, our findings delineating the effect of local
cooperativity on plasticity are highly relevant to the
design of numerous emerging engineering alloys,
such as compositionally complex alloys (CCAs),55,56

based on the multi-element principle. Our work also
identifies a crucial aspect for future first-principle
theories of such complex multi-element alloys.
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APPENDIX A: PRINCIPAL COMPONENT
ANALYSIS (PCA) FOR FEATURE

EXTRACTION

With this descriptive framework given in ‘‘Defin-
ing the Local Configurational Unit (LCU) in the
Multivariate Reference Frame,’’ a methodology to
extract the configurational features from the trajec-
tories of the quiescent state can be established.
What is not known from our earlier computational
study is the influence of compositional difference on
the configurational features of LCU. One way to
provide a definite answer of this question is to
delineate the correlation of vh i with other input
variables from R in the R7 space via PCA: first, the
original data obtained from the trajectories of N
particles is partitioned into three groups: eigenval-
ues of KR, Euler angles, and vh i. The average value
of each group is respectively calculated then sub-
tracted from the original data so that the each
resulting variable will have a zero mean. This
processed data are further normalized by the vari-
ance of original variables of each group and
arranged into a 7 �N matrix F where three groups
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of processed variables are presented as columns.
Using singular value decomposition,33 F can be
decomposed into

F ¼ URVT : ð5Þ

where U and V are unitary matrices whose columns

are the eigenvectors of FFT and FTF respectively. R2

is a diagonal matrix whose entries are the eigen-

values of FFT. Because F is mean-centered, by

definition FFT

N�1 is the covariance matrix C with
dimensions of 7 � 7 which conceals the information
of correlation between different input variables. C
can be expressed by the following block matrix form:

C ¼ FFT

N � 1
¼

C11 C12 C13

C21 C22 C23

C31 C32 C33

2

6

4

3

7

5

: ð6Þ

where C ij �
FiFT

j

N�1 and the sub-matrix F i are the
processed variables of each group. The dimensions
of F i are therefore N �Mi where Mi is the number of
variables in each group. Because the data in F are
normalized, the trace of each sub-block C ii is equal
to Mi. This standardization process is required to
avoid the undesired complication, caused by the
difference in the dimensionality and unit of input
variables and ensure the comparability among the
correlations of different variables. From Eqs. 5 and

6, it is found that C can be expressed as C ¼ UR2UT

N�1 .
Given the physical meaning of Eq, 3, this eigende-
coposition of C can be equivalently considered as
spinning the data around onto a new basis which
has desired properties that facilitates the feature
extraction. In this regard, the column vectors in U
are the principal axes which form an orthonormal

basis in R7. The eigenvalues of R2

N�1 are the percent-
ages of the variance of the original data projected
onto each corresponding principal axis. In this
reference framework established by PCA, the con-
figurational features of HEA can be extracted from
the expressions of the basic vectors in terms of the
input variables and the variance projected onto
them.

APPENDIX B: THE COARSE GRAIN
SCHEME FOR PARTITIONING THE UNIT

SPHERE BY THE OCTAHEDRAL SYMMETRY
ELEMENTS

In order to keep the true relative sizes and the
orientation intact, we project the 3D orientation
distribution function (ODF) of Q3 onto a 2D space
based the method of azimuthal equal-area projec-
tion proposed by Lambert.57,58 The coordinates of

this 2D space are defined as u; vð Þ ¼ x
ffiffiffiffiffi

1�z
2

p
x2þy2 ;

y
ffiffiffiffiffi

1�z
2

p
x2þy2

	 


where x;y;zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2þy2þz2
p defines the orientation of Q3 in the

original 3D space. One can calculate the probability
density p Q3ð Þ from the ODF of Q3. From the data
presented in Fig. 2, the correlation between the
orientation of LCU at the quiescent state in terms of
Q3 and the local plastic activity can be best revealed
by the conditional probabilities. To avoid the unde-
sired singularity issue caused the presence of
marginal distribution of Q3, the results presented
in Fig. 10a need to be properly coarse-grained.
Specifically, as illustrated in Fig. 10a, the unit
sphere can be partitioned into eight spherical
triangles by the mirror planes perpendicular to the
C4 axes based on the octahedral symmetry of the
FCC structure.59 Each of these spherical triangles,
characterized by three right angles defined by three
geodesics, can be further partitioned into six scalene
triangles by the mirror planes perpendicular to the
C2 axes. Overall, the unit sphere is broken up into
48 triangular facets with the edges forming a
Delaunay network60 of the collection of the inter-
sections between the unit sphere and all C4, C3, and
C2 axes. Each triangular facet contains three ver-
tices corresponding to the C4, C3, and C2 axes,
respectively. Each facet is further divided into three
domains based on the scheme of Voronoi diagram.60

Each domain is used as the coarse-grained unit. The
total projections of Q3 for each domain associated
with the vertices corresponding to C4, C3, and C2

axes are recorded and accordingly the correspond-
ing coarse-gained probability distribution Pc Q3ð Þ
has been calculated and is illustrated in Fig. 10b–d.

APPENDIX C: ANGULAR MASS
DISTRIBUTION FUNCTION

OF A DEFORMED OBJECT EXPANDED
BY REAL SPHERICAL HARMONICS

EXPANSIONS (RSHE)

In terms of the principal coordinate QE, the
gyration tensor R defined in ‘‘Defining the Local
Configurational Unit (LCU) in the Multivariate
Reference Frame’’ can be transformed into
RE ¼ QT

ERQE. In this vector space, the angular
mass distribution function of an ellipsoid described
by RE can accordingly be expressed as:

q rð Þ ¼ 2pð Þ�
2
3exp � 1

2
rT REð Þ�1r

� �

: ð7Þ

In terms of real spherical harmonics, q rð Þ can be
expanded as:

q rð Þ ¼
X

l;m

qml rð ÞYm
l rð Þ: ð8Þ

where Ym
l is the real spherical harmonics of order l

and degree m. The second moment of qml rð Þ can be
defined as:32
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Gm
l ¼

R

drr2qml rð Þ
R

drr2
: ð9Þ

In terms of Gm
l , the nine entries of RE can be

expressed as:

RE ¼

�
ffiffi

5
p

15 G
0
2 þ 1

ffiffiffiffi

15
p G2

2
1
ffiffiffiffi

15
p G�2

2
1
ffiffiffiffi

15
p G1

2

1
ffiffiffiffi

15
p G�2

2 �
ffiffi

5
p

15 G
0
2 � 1

ffiffiffiffi

15
p G2

2
1
ffiffiffiffi

15
p G�1

2

1
ffiffiffiffi

15
p G1

2
1
ffiffiffiffi

15
p G�1

2
2
ffiffi

5
p

15 G0
2

2

6

6

6

4

3

7

7

7

5

þ tr REð Þ
3

� I3:

ð10Þ

From Eqs. 9 and 10, G0
2 is found to take the

following expression:

G0
2 ¼

ffiffiffi

5
p

2
2RE; 33 �RE; 11 �RE; 22

� �

: ð11Þ

In Fig. 11, we give the probability distribution
of G0

2 for the two extreme groups associated with 1st
percentile and 99th percentile of D2 which are

specified as p G0
2jj 2 D2

1

� �

and p G0
2jj 2 D2

1

� �

respec-

tively. The curves of p G0
2jj 2 D2

1

� �

are found to shift

positively from that of p G0
2jj 2 D2

99

� �

in both tension
and shear conditions.

APPENDIX D: CALCULATION OF RECEIVER
OPERATING CHARACTERISTIC (ROC)
CURVES AND AREA UNDER THE ROC

CURVE (AUC)

In a general binary classification problem, the
performance of classification model is affected by
the selection of decision threshold cth. One can
define the true positive rate (TPR) to represent the
sensitivity of a model:39

TPR ¼ N true positiveð Þ
N condition positiveð Þ : ð12Þ

Likewise, to represent the probability of false alarm,
the FPR is defined as

FPR ¼ N false negativeð Þ
N condition negativeð Þ : ð13Þ

where N true positiveð Þ, N condition positiveð Þ,
N false negativeð Þ and N condition negativeð Þ repre-
sent the instances of each event specified in the
parentheses. One can examine the tradeoff between
TPR and FPR as a function of cthfrom the ROC
curve where TPR are plotted against FPR. In our
study, if cth ¼ maxðvTf Þ, all the data will be classi-
fied negatively by our model classifies and thus
FPR;TPRð Þ ¼ ð0; 0Þ. Likewise, if cth ¼ minðvTf Þ, all

the data will be classified positively and
FPR;TPRð Þ ¼ ð1; 1Þ. A perfect classification model

is characterized by the maximum sensitivity with
giving no false alarm. Therefore FPR;TPRð Þ ¼ ð0; 1Þ
for this ideal condition. In our case,
N condition negativeð Þ ¼ N condition positiveð Þ ¼ 0:5.
The accuracy (ACC) can be defined as39

ACC � N true positiveð Þ þN true negativeð Þ
N condition positiveð Þ þN condition negativeð Þ

¼ 1

2
TPR� FPRþ 1ð Þ:

ð14Þ

APPENDIX E: SYMBOLS AND NOTATIONS
USED IN THIS PAPER

See Table III.

Table III. Summary of the key variables used in this paper along with their physical meanings

Symbol Meaning

R, Rab Gyration tensor and its entries
Q Eigenvectors of R
F 7 �N feature matrix
S Singular matrix of F
Gm

l Second moment of LCU associated with spherical harmonics of order l and degree m

D2 Non-affine parameter

D2
1, D2

99 Set of particle with the 1st and 99th D2

J Deformation gradient tensor
Ui Coefficients associated with LCU shapes
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