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While the role of organizational learning in improving firm performance is well documented, there are still
questions on what drives technological learning. This is evident in the electricity industry where the growth of
Policy renewable energy technologies has been pervasive. Vicarious learning contributes to the adoption of emerging
Knowledge acquisition technologies through successful inter-firm knowledge sharing and transfer. However, there is hesitation to
Electricity industryJEL classification: . . N . . . . . . . :
014 adoption that characterizes vicarious learning especially in the context of intra-firm learning. This paper in-
D83 vestigates the differences in knowledge acquisition within and across electricity firms in the U.S. The learning
curve model is applied to a longitudinal study of 5573 plants belonging to 1542 U.S. electricity firms between
1998 and 2010. This study finds: (i) The capacity growth of the solar photovoltaic technology is positively
associated with intra-firm knowledge acquisition; (ii) The effect of financial incentives on the adoption of solar
and wind technologies is higher under inter-firm learning; (iii) The higher the stringency of policy mandates, the
more varied is the progress on technological change across technologies; (iv) Knowledge sharing between firms
are higher for wind technology than for solar technology. These findings combine to show disparities in the

learning trends of technologies across and within firms’ boundaries.

1. Introduction

Within the past decade, billions of dollars have been invested in
clean technologies. This has led to a clean energy revolution in the U.S.
electricity sector. Yet, sustaining market competition and maintaining
competitive advantage for U.S. electricity firms remain key issues.
Knowledge acquisition and technological innovation are becoming ef-
fective tools for harnessing competition and designing firms' profit
maximization strategies. This article seeks to explore the mechanisms of
knowledge acquisition, either between firms or within a firm, on the
adoption of energy technologies among U.S. electricity firms. For that
purpose, this study inspects the heterogeneity related to knowledge
acquisition within and across electricity firms. Furthermore, questions
of environmental regulations and firms' desire to innovate and max-
imize profits are complex and intricate. Thus, to shed more light on the
mechanisms underlying firm innovation, this paper borrows Vockell
(2001)'s modeling framework from psychology and applies Yelle
(1980)'s learning curve model. Combining these models allows us to
explain the transfer of learning and how organizations learn from (i) the
experience of others, and (ii) their own experience. However, this
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research differs from the existing literature on the transfer of knowl-
edge in service organizations, such as Darr et al. (1995), by focusing on
firms' electricity generating technologies. It carries out a longitudinal
study of 5573 plants belonging to 1542 U.S. electricity firms between
1998 and 2010 by generating seven models of the responses in cost per
electricity produced.

This paper demonstrates that the acquisition of new knowledge
through intra-firm learning by U.S. electricity firms is positively asso-
ciated with the improvement of a new technology, solar photovoltaic in
particular. This paper shows the fruitful relationship between financial
incentives for clean technologies and innovation in clean technologies
through inter-firm transfer of technology knowledge. The results show
that the improvement of knowledge acquisition for wind technologies
within electricity firms is stimulated by production tax credits. The
analysis further shows that complying with policy instruments often
produces diversity in terms of technological progress. The results fur-
ther demonstrate how inter-firm knowledge acquisition is more pre-
valent for wind technology than for solar technology, resulting in a
higher learning rate for wind technology. Policy mandates and financial
incentives have a positive impact on technological innovation. In the
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light of these findings, and given the economical and environmental
benefits of emissions reduction, policies designed to cost-effectively
grow the adoption of renewable energy are necessary.

The rest of this article is organized as follows. In section 2, the
theoretical framework is introduced and the rationale behind each
hypothesis is elaborated on. In this section, the article also reviews the
theory of organizational learning to further highlight the processes
driving how the firm advances along the learning curve. In section 3,
the article provides the econometric models with the implications of
policy instruments on technological learning or adoption. In this sec-
tion, the article also describes the research design, industry context, and
sources of data. In section 4, the results are presented. Section 5 con-
cludes.

2. Theoretical framework & hypotheses

Uncertainty about the benefits of new technology investment is an
essential part of a technology adoption decision. In this section, the
article analyzes the mechanisms of inter-firm and intra-firm learning in
a technology adoption decision under the condition of regulatory
mandates.

2.1. Technological adoption and uncertainty

Baker (2009) develops a model of incremental growth in technology
adoption. In this model, the decision maker must decide on the adop-
tion of a technology. Let's consider the following adoption decision
characterized by the decision variable t such that
m[ax E,[B(t, w)] — c(¢) 1)
where w is a random variable, E, is the expectation operator on w,
B(t, w) is the benefit of the adoption decision while c(¢) is its cost.
Without loss of generalization, assuming that this problem is well be-
haved, the first order condition is given by

S e}

c'(t)=E, [ dtB(t, w)] 2.2)

Let t* be the optimal decision, the solution of (2.2). It implies that
adoption occurs if, and only if, the marginal cost of adoption is equal to
the expected marginal benefit of adoption, or when the expected mar-
ginal benefit exceeds the marginal cost. Under conditions of un-
certainty, given the right hand-side of (2.2), the expected marginal
benefit is expected to increase for increases in the risk associated with
the adoption of the new technology. In the absence of this condition,
that is, increases in marginal benefit due to increases in risk, adoption
decisions may be infeasible. Thus, it is evident that when the marginal
benefit exceeds the marginal cost, the surplus of marginal benefit over
marginal cost constitutes a benefit. That is, the decision maker is better
off adopting the new technology. However, this outcome is dependent
on the change in the probability distribution of the random variable w.
This means that any change that increases (decreases) the expected
marginal benefits will cause the optimal decision ¢ to increase (de-
crease). Hence, for all increases in the likelihood of adoption, the ex-
pected marginal benefits of the decision will increase. But, this will only
happen if the adopted technology displays decreasing returns to scale
such that the benefits are convex. Whether or not the adoption of the
new technology yields a positive benefit is conditional on other factors.
Hence, it can be said that the marginal benefits of the decision on
technological adoption are neither strictly convex nor concave.

In a two-period learning model, Epstein (1980) shows that learning
yields an improvement over the existing technology and is given by

max E, | maxB(f, b, w) — ¢2(t) | — c1(t)
0 5 2.3)
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Equation (2.3) is an inter-temporal, but sequential decision making
problem. This is because the optimal second period decision ¢, depends
on the optimal first period decision . Regrettably, this dependence
rather complicates the resolution of the two-period learning model. As a
matter of fact, characterizing the marginal benefits is ambiguous given
the uncertainty generated by the distribution on w. The adoption of a
new technology is often accompanied by some risks. Some of these risks
are associated with uncertainties about benefits, costs, impact of the
technology overall and other parts of the business. It is still possible that
knowledge transfer within or among firms improves the likelihood of
adoption of a new technology. It is also possible that policy mandates
increase or decrease the uncertainty related to the adoption of a new
technology (Fabrizio, 2012).

2.2. Technological adoption — an example

This illustration illuminates the underlying mechanism on tech-
nology adoption decisions. Consider two firms, namely, F; and F,. Both
firms are making discrete and simultaneous improvements on an ex-
isting technology T to yield a new technology T; at cost C. Either of the
two firms may adopt the new technology but the firm (F) with the
breakthrough technology holds the rights to the new technology T,.
Moreover, the adoption of this new technology T, yields a benefit B.
This adoption is only possible if the payoff of the innovation satisfies
B — C > 0 (Fabrizio, 2012). Firm F, only leases it to another firm or
second firm F,, which assumes the role of a user. Thus, F, enjoys
benefits B because the payoff of adopting the new technology T, satisfies
B > C. If F, does not adopt the new technology, then F, still enjoys the
benefits B since it still regains the choice of leasing to a new firm. It
should be noted here that F; does not need to diffuse to create the
market for the new technology — the inherent benefits of the technology
are sufficient enough to promote adoption. Thus, benefits B may be
higher if F; is a monopolist. By holding the rights to the new tech-
nology, the profitability of the new adoption stays within the in-
novating firm or the first firm F,. This is a case of intra-firm learning.
On the other hand, by leasing the new technology, the innovating firm
diffuses its knowledge among other firms. This is an instance of inter-
firm learning. This illustration is consistent with, and succinctly sum-
marizes, the theory of technological innovation and adoption (Ghosh
et al., 2007; Teece, 2010).

2.3. Solar technology and intra-firm learning

Intra-firm learning is the process through which firms utilize a new
technology once they have adopted it. It enables teams and depart-
ments within the firm to transfer knowledge via an ad-hoc transfer
mechanism. For example, a new technology may be first incorporated
in one division of the firm and subsequently adopted by other business
units as the firm learns about the technology (Barden, 2012). On that
note, Fuentelsaz et al. (2003) provide evidence on the factors affecting
technology diffusion within firms. It is abundantly argued that the
firm's capacity to transfer knowledge has a positive impact on its per-
formance. Studies conducted by Baum and Ingram (1998) and Epple
et al. (1996) successfully illustrate that knowledge transfer is critical for
the firm's long-term survival. A salient characteristic of intra-firm
learning is tacit knowledge, which has to do with skills acquisition. As
demonstrated by Nelson and Winter (1982), tacit knowledge is an es-
sential part of people and teams within firms. For that matter, tacit
knowledge is inherently implicit in that players outside the firm have
difficulty in copying or imitating the techniques used inside the firm.

Tacit knowledge is personal and hard to formalize because it is
rooted in action, procedures and values (Seidler-de Alwis and
Hartmann, 2008). The inability to codify it implies that it is acquired by
sharing experiences, by observation and imitation (Balconi, 2002;
Kikoski and Kikoski, 2004; Kuan et al., 2015). However, it is essential to
note that tacit and explicit knowledge are complementary such that
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while a firm's competitive advantage is often dependent on its tacit
knowledge, but when made explicit, other firms can follow (Nonaka
and Toyama, 2015). Thus, in innovation, tacit knowledge initiates the
learning process or curve and provides competitive advantage (Kikoski
and Kikoski, 2004). Examples of this are predominant in electricity
market collusion (Cau and Anderson, 2003; Guerci et al., 2008), im-
proving operational standards (Perjanik, 2016), and learning how-to-
learn in the power industry (Carayannis, 1999). Thus, firms that have
organized themselves into networks or teams facilitate intra-firm
learning such that a new process is diffused with ease of access to in-
ternal knowledge. Outside of the electricity sector, we find that firms
that were not part of the networks already using Automatic Teller
Machines (ATMs) were late to benefit from that technology (Fuentelsaz
et al., 2003). It is also noteworthy that Garvin (1993) associates firm
learning with the creation, acquisition, and transfer of knowledge in-
ferring that intra-firm learning culminates in the enhancement of the
existing technology.

Technological improvement for solar photovoltaics highly depends
on the degree to which solar energy is harnessed. Nationwide, there is
still a significant room for improvement for commercial PV cells even
though the state of California has seen the greatest amount of market
penetration for solar PV installations. For example, the cumulative grid-
connected PV capacity grew to almost 300,000 kW by 2007 in
California alone (Hart and Birson, 2016). More and more firms in Ca-
lifornia are choosing to invest in solar technology. For example,
Ogunrinde et al. (2018) show that solar technology has a total capacity
addition of 7668.2 MW through 608 additional generators in the Cali-
fornia regional transmission organization network between 2006 and
2015. Hence, investigating how knowledge acquisition affects the
adoption of solar technology may open the way for further investments.
On that point, Bollinger and Gillingham (2014) have developed a model
that seeks to find how internal learning affects the cost of installing new
solar technologies. They find evidence of reductions in non-hardware
costs for solar PV installations due to learning by contractors within a
county.

We hypothesize that technological enhancement from internal firm
knowledge accumulation about the technology is more evident for the
solar technology than in other technologies. Studies such as Wright
(1936) and Zangwill and Kantor (1998) have demonstrated that tech-
nological innovation is the foundation of cost reduction and capital
efficiency. The introduction of new technologies has created significant
economies of scale or efficiency effects as witnessed in the installation
of new capacities in solar technology, for example, Bollinger and
Gillingham (2014). Furthermore, learning curve analysis have shown a
positive relationship between capital efficiency and the development of
new technologies (Yelle, 1979; Zangwill and Kantor, 2000). Mansfield
(1963) studied the impact of intra-firm learning on the adoption of new
technology. The paper finds that as some firms become more ac-
customed to a new innovation, they are likely to quickly replace their
old technology with the new technology while others are slower to
make the transition. For electricity firms, a network approach (within
their subsidiaries) to their specific experience in their existing tech-
nologies is required in order to perceive the intra-firm context of stra-
tegic planning. On that note, Karshenas and Stoneman (1995) point that
“as the diffusion process develops, the experience of firms with new
technologies leads them to update initial estimates of both risk and
returns and the level of use of the new technology.” Thus, the level of
intra-firm learning of an electricity firm is likely to enhance the de-
velopment of the existing technology. For example, learning to design
complete photovoltaic systems is at the core of the development of new
PV systems. However, because of competition, knowledge accrued in
one domain by one firm may not necessarily translate into knowledge
transfer to other firms.
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Hypothesis 1. The higher the level of intra-firm knowledge
creation, the higher is the technological improvement in solar
technology.

Firm-specific learning occurs in a firm within a geographical
boundary, defined as the state-level in this analysis. Intra-firm learning
is the knowledge that takes place in a multi-unit firm that has opera-
tions in different states and is attained by collaboration of groups within
the firm aggregated across state boundaries. Hypothesis 1 conveys that
such collaborations have benefited solar technology. On the other hand,
inter-firm knowledge is primarily achieved when aggregated knowl-
edge across different states is transferred between different firms on a
technology, thus contributing to knowledge diffusion. This type of
learning, particularly for the renewable technologies, wind and solar, is
enhanced by financial incentives such as elimination of sales taxes,
investment and production tax credits as explored in Hypothesis 2. This
is further explained in the following section.

2.4. Financial incentives: effects on technologies and knowledge spillover

Financial incentives frequently accompany regulatory policies for
far reaching clean energy designs. The hurdles hampering efficient
operations of renewable energy technologies can often be tackled with
financial incentives. These boost access to capital and decrease the load
of high initial operation costs. As a result, the creation of new electricity
markets and the innovation in more energy-efficient technologies are
spurred. Some of the important financial incentives include tax, rebates,
grants, performance-based incentives, loan programs, guarantees, and
credit enhancements (Cox, 2016). These incentives are part of a reg-
ulatory program that ultimately promotes the development of clean
technologies. Interestingly, resorting to comparative statics, Shittu et al.
(2015) find that investments in clean technologies are shaped by en-
vironmental policy choices.

There are several variables that influence the adoption of new
technologies by firms operating in the electricity market. These vari-
ables mostly represent networks that stimulate learning processes
through knowledge synergies. Knowledge synergies refer to scenarios in
which the total effects of the interactions between learning processes
contribute more to the adoption of the new technology than the in-
dividual effects, i.e., the whole is greater than the sum of the parts. This
is evident in value creation when firms combine independent knowl-
edge (Lu and Feng, 2010). To achieve this, electricity firms are in-
creasingly recognizing the value of inter-firm collaborative networks
(Baker et al., 2013). In particular, inter-firm knowledge spillovers have
contributed to the adoption of and innovation in clean technologies. For
example, inter-firm knowledge acquisition continues to spur the per-
formance ratio of PV technologies. Validating this point, after surveying
several analysis, Baker et al. (2013) observe that investments in solar
technologies depend on the degree of learning spillovers across firms
investing in solar energy.

In order to introduce renewable energy technologies into the energy
system, comparable firms in the electricity market have developed
successful collaborative approaches through knowledge-sharing
(McDowell, 2015). Within these approaches, productivity is measured
by the speed with which the firm can learn, and echoed by technolo-
gical differences across firms. Insofar as firms deploy efforts to share
knowledge, they create platform opportunities that open ways for the
different branches within them to share observations and experiences.
The resulting platform enables firms to boost their store of knowledge
by incorporating knowledge not previously available to them. In turn,
they are able to formulate new knowledge via interaction with other
organizations. Interestingly, David and Bunn (1988) remark that “the
opportunities for entry by firms sponsoring new technical sub-systems,
which may be either complementary to or substitutes for those already
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in the field, should be regarded as fostering the options for innovative
action.” An illustration is the cost-reducing benefits of wind capacity
installations boosted by inter-firm learning transfer. For example, due
to new knowledge acquisition in the wind sector, technological in-
novation has considerably helped drive down unit cost and even ef-
fectuated economies of scale in the wind industry (Partridge, 2018).
Pointing to successful collaborative approaches across wind firms,
Menza and Vachon (2006) observe that the cost of generating wind
power and delivering wind energy has steadily decreased over the past
decades. For example, Partridge (2018) reports that in the U.S, in-
vestment costs per kW for wind energy has fallen to about 27% below
the 2009-2010 peak. As a result, investments in wind technologies have
increased to the point that from 1990 to 2003, installed wind capacity
in the U.S. increased from 1525 MW to 6374 MW (Menza and Vachon,
2006). Thus, inter-firm learning equips firms in clean technologies with
the leverage necessary for technological improvement to occur.

Hypothesis 2. The higher the financial incentives for clean
technologies, the higher is technological improvement in wind
and solar technologies under inter-firm learning.

2.5. Tax credits and learning in wind

Intra-firm learning is achieved by shifting existing knowledge
through interaction with different teams within the firm. One of the
main metrics of firm learning is learning settings such as seen in groups
or teams. Identifying learning settings for knowledge sharing is im-
portant for measuring the effect of learning. Within the electricity in-
dustry, amendments of environmental regulation often demand that
electricity firms adapt their learning mechanisms. Case in point, Nyiwul
et al. (2015) find that regulatory scheme tends to improve environ-
mental performance through more stringent optimal standards. This
may be due to the fact that regulatory schemes sometimes require firms
to produce and share new knowledge. For instance, production tax
credits have kept wind energy appealing for investors willing to finance
new wind farms (Loomis et al., 2010). This is all the more notable as
demand for clean energy sources continues to grow. Referring to the
benefits of production tax credits on investments in wind technology,
Loomis et al. (2010) also note that the wind industry had grown tre-
mendously since the late 2000s with a plateau of about 10,000 MW of
new generating capacity online in 2009. However, the wind industry
will not be in this plateau indefinitely because the opportunity to in-
crease the actual potential of wind technology still exists. For example,
efforts on advanced storage technologies to ameliorate the inter-
mittency of wind power offers significant expansion opportunity (Jiang
et al., 2016; Baker et al., 2018). Thus, to successfully mitigate the un-
predictability of wind power, firms are developing more efficient wind
turbines integrated with battery storage technologies and these devel-
opments are fueled by subsidies and tax credits. These would subse-
quently contribute to increasing the potential of wind technology.
Hence, developing new intra-firm learning mechanisms in wind firms
can further the impact of renewable energy.

It is well established that one of the econometric implications of a
firm's learning is that unit costs decrease with cumulative production
Zangwill and Kantor (1998). A key observation is that technological
innovation is both incremental and cumulative and even more so in the
electricity industry. The tremendous effect of environmental require-
ments within the electricity industry is perceived in the development of
wind technology. Notably, using an “envelope-based modeling method”
applied to data from the California Independent System Operator
(CAISO), Jiang et al. (2016) not only quantify the capacity contribution
of wind sources but also demonstrate its enhancement of storage. An-
other endeavor of this paper is to show that production tax credits have
successfully fostered intra-firm learning within wind industries with
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positive results in storage capacities, for instance. As noted by Sharlin
(1963), this type of learning has increased the capacity of reliable
electricity.

Hypothesis 3. More financial tax credits generate more
investment-induced learning within firms for the wind
technology.

2.5.1. Regulation and learning

The 1963 Clean Air Acts not only initiated an array of environ-
mental regulations, it also gradually spurred technological innovation.
Gauging the impact of the Clean Air Acts on electricity firms’ capital
and productivity would enlighten policymakers on the relevance of
future viable amendments. Elaborating on possible actions by decision
makers, Shittu (2014) finds that learning uncertainty allows decision
makers to chart a more prudent intermediate path for energy techno-
logical growth. Discussing the effects of renewable portfolio standards
(RPS) mandates, Weigelt and Shittu (2016) also examine the ramifi-
cations of the party-leaning of state legislatures and governorships.
Ideally, regulatory mandates should be guided by technological pro-
gress in the energy sector as originally intended by the Clean Air Acts
(Greenstone, 2002). Progress in electricity generation technologies is a
key factor behind productivity and growth in the electricity industry.
Intensified competition from merchant electricity generators has sti-
mulated progress in clean technologies through the development of
numerous technologies within the electricity industry. For instance,
cost competitive wind and solar panels as well as cheap natural gas
have significantly lowered the cost of electricity generation. But the
question of whether or not technological progress will continue to
thrive as policy makers weaken some regulatory mandates is still lin-
gering.

This study contemplates that, in the process of complying with
policy instruments, the progress of the electricity sector in terms of
knowledge acquisition in the coal, gas, solar, and wind technologies
will be heterogeneous. This analysis further implies that the progress
induced by technological change within and across electricity firms
does not automatically translate into identically declining and in-
creasing economies of scale. After surveying firms in the Turkish elec-
tricity industry, Akkemik (2009) finds that scale economies exist
throughout the period of analysis to explain declining long-run average
costs. Yet, the paper indicates that this effect was reduced largely after
2002 making technological progress to deteriorate from 1984 to 1993
to 1994-2001. Since the electricity industry is always set on adopting
new efficient technology and business models, the possibility to si-
multaneously ascertain profits maximization while meeting regulatory
mandates is still attainable.

Regulatory uncertainty added to uncertainty in technological cost
makes decisions in technological learning not only necessary but
complex. It is quite evident that electricity firms revise their investment
decisions as they seek to adapt to regulatory mandates. Renewable
portfolio standards, for example, have spurred electricity firms to invest
in solar and wind technologies (Morris et al., 2016; Ogunrinde et al.,
2018). Given that short term investments in technological learning
could decrease future environmental costs, federal and state policies
instruments are intended to promote such investments. But, investment
in a current technology can potentially increase the future cost of that
technology because of the efficiency improvements. Thus, the interac-
tion between policy instruments and investments within and across
electricity firms can be conflicting if not designed appropriately. Case in
point, looking at more than 1592 electricity firms in the U.S., Weigelt
and Shittu (2016) discover that regulatory mandates dampen the effect
of competitors' new resource investments on a focal firm's new resource
investments. It is likely that this could be due to uncertain economic
parameters that policy making cannot exactly capture. But, using an
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optimal control model, Shittu and Baker (2009) observe that the in-
fluence of risk created by regulation on investment decisions under
uncertainty depends on model formulation. On the other hand, using a
two-stage stochastic programming with recourse (Kamdem and Shittu,
2017; DeLuque and Shittu, 2019), find that carbon abatement policy
can successfully be used to mitigate uncertainties in solar and gas
technologies. These studies reinforce the importance for firms to har-
ness technological learning through learning by doing, for example, to
alleviate the haphazardness created by policy instruments.

Hypothesis 4. The more stringent policy mandates are, the more
diverse is the effect of progress on technological change across
technologies.

2.6. Relationships among hypotheses

The hypotheses are related by two main premises: (i) financial and
tax impacts, and (ii) policy influences. Hypotheses 1 and 2 (H1 and H2)
highlight the effect of the strength or relevance of knowledge within
and between firms on solar technological improvement. While H1 de-
monstrates that improvements in solar technology and its adoption are
driven by knowledge acquisition within firms, H2 demonstrates that it
is financial incentives that strengthen such improvements between
firms. Thus, H1 and H2 highlight the different drivers of technological
improvement in solar be it within (H1) or between firms (H2). H2 and
H3 clearly demonstrate that financial incentives and credits have been
largely responsible for knowledge acquisition for wind technology. The
difference, however, between H2 and H3 is that financial incentives
have been influential to learning in wind technology between firms
(H2) while tax credits have supported wind learning within firms (H3).
H4 offers an umbrella relationship that focuses on the impact of policy.
Specifically, H4 relays the message that policy stringency offers a broad
spectrum of firm responses to technological learning and technological
change. The range of technical learning in this context is independent of
the firm's specific context, i.e., whether or not the learning is intra or
inter-firm. However, the heterogeneity of policies will affect firms dif-
ferently. For instance, policies that are broader and market based may
reinforce inter-firm learning at a deeper level than policies that are
tapered to individual firms (intra-firm). For example, the RPS policies
that are in some states are tailored to investor-owned utilities (IOUs) or
those policies specifically apply to the IOUs while the retail choice
market mandate applies to all firms in a state. These four hypotheses
combine to highlight the heterogeneous nature of learning in the energy
industry in the U.S. and projects the asymmetry to learning by tech-
nology types.

3. Methods

The three junctures that make up the electricity sector are genera-
tion, transmission and distribution. Electricity generation involves the
conversion of a fuel supply like coal, gas, or renewable resource like
wind or solar into electricity. Transmission involves the power lines
that allows the generated electricity to be transferred over long dis-
tances at high voltages (to minimize loses) from points of generation to
regions of consumption. Distribution entails delivering the transmitted
electricity at voltage levels suitable for consumption. This study focuses
on the generation and the percentage of renewable resources in a firm's
energy generation mix.

The context of this study is based on data from the electricity in-
dustry in the U.S. spanning from 1998 through 2010. The enactment of
the Public Utilities Regulatory Policies Act or PURPA of 1978 allowed
independent power production to sell electricity to utilities (Russo,
2001; Joskow, 1998). These included major electric utilities operated as
natural monopolies regulated on a state-by-state basis by public utility
commissions. Originally, electricity producers produced, transmitted,
and distributed electricity. However, over the last 30 years the
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electricity generation part of the U.S. energy industry has seen dereg-
ulation starting with PURPA in 1978. Then, the Energy Policy Act of
1992 followed, allowing independent power producer ownership by
both utilities and non-utilities. Currently, there are over 3000 electricity
utilities in the U.S. electricity industry. These utilities encompass in-
dependent power producers (IPPs), investor-owned utilities (IOUs),
cooperatives, municipal and government utilities. The IPPs originated
after the enactment of PURPA. As pointed out by Russo (2001), the
PURPA Act effectively created an entrepreneurial opportunity in the
private sector to build power plants for the generation of energy sold to
utilities. In 2009, the electricity industry supplied 4 million GWh of
electricity, of which 70.2% was from fossils such as coal, gas, and oil.
Nonetheless, renewable energy sources, other than conventional hy-
droelectric capacity, accounted for the largest capacity additions in
recent years.

During the period of our study, the generation of energy from re-
newable resources such as solar, biomass and geothermal technologies
is more costly in comparison to conventional coal and gas technologies.
To spur investments in renewable technologies, a total of 29 U.S. states
had enacted energy policies by 2011. These policy instruments can be
grouped into two categories, namely financial incentives and policy
mandates. Financial incentives are made up of tax incentives, produc-
tion credits, and rebates. Policy mandates encompass RPS. In this study,
the analysis focuses on financial incentives (renewable electricity pro-
duction tax credits and qualified energy conservation bonds) and
mandates (RPS and federal appliance standards). Policy instruments
like RPS mandates are less uncertain and more durable while others
such as energy bonds are temporary or easily phased out (Hunton and
Williams, 2010).

3.1. Data description

This study consists of a longitudinal analysis of data collected from
the Platts (2015)'s database. The article centers on data for 5573 elec-
tricity plants operating from 1998 through 2010. The dataset comprises
regulated utilities and private power companies across 50 U.S. states.
The firms in the dataset operate 26 different technologies that include
internal combustion engines, steam plants, fossil-fired technologies,
photovoltaic systems, wind turbines, and fuel cells. The data include
thousands of records on electricity output by firm, technology, and
state. The analysis captures the electricity output for each firm in each
state and, subsequently, estimates all coefficients within the different
regression models.

The data on electricity costs come from four sources. For conven-
tional fossil-based technologies, the technology cost data are extracted
from the values used in the calculation of the levelized cost of electricity
by the U.S. Energy Information Administration (EIA). Electricity price
data by technology type was extracted from the files in the State Energy
Data System (SEDS) for coal and gas technologies. The database is de-
tailed to the state level and spans all the years covered in the analysis.
Renewable electricity technology cost data were collected from the
Environmental Protection Agency (EPA) database on clean energy. The
data for wind and solar in the database are based on expert-re-
commended reports that contain cost information on renewables and
collated by the renewable energy team in the Climate Protection
Partnerships Division of the EPA. Data on wind in the database come
from sources that include the annual report on U.S. wind power in-
stallation, cost, and performance trends (Bolinger and Wiser, 2009;
Wiser, 2007), a Black and Veatch study on wind energy penetration on
costs in the U.S. (Bolinger et al., 2008; Hand, 2008). Solar technology
cost data was sourced from a study done by the Lawrence Berkeley
National Laboratory (LBNL), “Tracking the Sun: The Installed Cost of
Photovoltaics in the U.S. from 1998 to 2007 (2009)” (Wiser et al.,
2009); a study titled, “PV Technology, Performance, and Cost, 2007
Update” conducted by the Prometheus Institute and Greentech and
reported to the EPA on the $/W cost of solar technology (Maycock and
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Fig. 1. Historical technology cost.

Bradford, 2007); and the National Renewable Energy Laboratory
(NREL) System Advisor Model (Blair et al., 2014). The tracking of the
sun data reflects approximately 76% of all grid-connected PV capacity
installed in the U.S. from 1998 through 2007 with projections made for
the other years. Fig. 1 shows a snapshot of the cost data for the four
technologies. Data on financial incentives such as investment credits
and production credits are collected from the Database of State In-
centives for Renewable Energy (DSIRE). The presentation of all cost
data used in the analysis are shown in Table A2 for the sources of the
data, Tables A3 and A4 for some descriptive analysis.

3.2. Dependent variables

Technology costs over time are taken as U.S dollars per megawatt-
hour. The dependent variable is determined using the logarithm of
technology cost over unit electricity produced as applicable for the coal,
gas, solar, and wind technology. The article adopts the conventional
form of the learning curve described in (Darr et al., 1995). This fra-
mework captures cost reduction in electricity production across dif-
ferent technologies and firms. ¢ (y) is the total cost per unit to produce
the y-th MWh of electricity. It is determined by

(@) =dyF

§ is the total cost of producing the first MWh of electricity. y is the
cumulative number of electricity units produced. 8 is a measure of the
rate at which costs are reduced as cumulative output increases.  also
stands for the learning elasticity. To effectuate the estimation, equation
(3.1) is linearized by taking its logarithmic transform such that

log¢ () = log — B logy

In order to assess the testing hypothesis, 6 additional dependent
variables are formulated. Table 1 gives a summary of the variables and
parameters in the model.

B.1)

(3.2)

3.3. Independent variables

Data on cumulative electricity output make up the independent
variables. The cumulative electricity output is substituted for knowl-
edge acquired through production. Thus, learning, be it firm-specific or
intra-firm or inter-firm and by technology portray the independent
variables. The latter are lagged by one time period with respect to the
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Table 1
Nomenclature.

y - cumulative number of units produced

B — measure the rate at which costs are reduced

& — cost of producing the first MWh of electricity

k - technology

i - firm

s — state

t — year

nj; — number of states

Qi s,¢ — electricity output

Sis,¢ — Production, installation, & operating costs

Ry ¢ — percentage of RPS mandates

It — Republican state controlled legislature

Dg ¢ — Democratic governorship

P ¢k — renewable electricity production tax credits

Ag 1k — qualified energy conservation bonds

Ag 1 x — federal appliance standards

K - number of energy technologies k in the dataset

N - number of firms i in the study

Qy.is,T — firm-specific knowledge

FQg it — proxy for firm-specific knowledge in all states
FTQy, 1 — proxy for inter-firm learning in a specific technology
CTQr - progress of electricity sector in terms of knowledge gained
Ok,is,t — dummy variable for regression residual

& ise — error of the regression estimate

response variable.

Specifically, g, ; , represents the electricity output by technology k
for a given firm i by state of operation s in year t. Thus, aggregating this
output within state-delineated geographical boundaries produces Q. ;.1
which stands for the firm-specific knowledge in a given technology in a
given state over time. Thus, in practical terms, firm-specific learning is
knowledge accumulated over a given period by each firm in each
technology in each specific state that the firm operates in. In other
words, this is learning that is inherent to the different subsidiaries of the
same firm in a given state. It is evaluated using

T
Qris,7 = Z Qi 5,0

t=0

(3.3)

This firm-specific metric, Qx5 1, is the learning elasticity for a firm
within a state-level geographic boundary, and when it is aggregated to
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achieve the cumulative output across all states where that firm has a
production plant, the result is the intra-firm learning elasticity. Thus, in
contrast to firm-specific learning, intra-firm learning is the firm's cu-
mulative knowledge over a period for each technology in across all
state-level geographic boundaries in which the firm operates. This firm-
specific learning variable is important because it serves as a yardstick
for comparison between intra-firm learning and inter-firm learning.
Thus, the intra-firm learning is evaluated using

nir T

FQuir = Z Z Qi is.t

s=0 t=0

3.4)

Notice the absence of the state index in equation (3.4) that captures
intra-firm learning, the cumulative electricity output through year T for
all states s in which firm i operates by technology k. For inter-firm
knowledge estimation, the cumulative output across all firms is ag-
gregated using g, ;.. Thus, FTQ,r serves as a proxy for inter-firm
learning in a specific technology, and it is evaluated using

nig
FTQyr = Aici,s.t
. (3.5)

FTQy,r represents the knowledge that firms, independent of geographic
differences, have gained over the years in a specific technology. It also
captures the elasticity of knowledge spillover. Also, notice the absence
of the state and firm indices in equation (3.5) that captures inter-firm
learning. Finally, CTQr is a cumulative variable that determines how
the electricity sector has progressed in terms of knowledge gained. This
determination is done without specific emphasis on the electricity
sector in which technology portfolios interface. CTQr is evaluated using

K T
Z Z qk,i,s,t

1

N nit

)

i=1 s=0 k=0 t=

(3.6)

3.4. Control variables

The control variables are factored by the year and the state. They
encompass data on policy instruments, namely policy mandates and
financial incentives.

Renewable Portfolio Standards (RPS). A renewable portfolio stan-
dard, also known as renewable electricity standard, is one of the largest
state-level policies for the promotion of renewable energy. According to
NREL (2017), the RPS is “a regulatory mandate to increase production
of energy from renewable sources such as wind, solar, biomass and
other alternatives to fossil and nuclear electric generation.” Basically,
states devise RPS mandates to promote the use of a specific technology
through “carve out” provisions. The latter require that a limited per-
centage of produced electricity originates from non-fossil or nuclear
technologies. Several states have already carried through this mandate.
However, there are several factors that affect their implementation. For
example, each state uses its own criteria to stipulate the technologies
found eligible to count towards RPS requirements. Another instance is
that state policies diverge when it comes to the sources deemed eligible
to satisfy RPS requirements. Some states implement RPS requisites to all
its utilities while other states to only its investor-owned utilities (IOUs).
Besides, ensuring compliance can be a daunting procedure. In some
states, enforcement for RPS policies materializes in terms of financial
penalties like alternative compliance payments. In other states, it comes
in terms of procurement of renewable energy credits for the utilities by
a state central agency. All well considered, there are many aspects of
RPS mandates that have contributed to the adoption of renewable en-
ergy technology within electricity firms. We measure RPS as the target
set by percentage.

Legislature. PURPA and the Energy Policy Act of 1992 represent the
main federal energy legislations in the United States. In the past dec-
ades, they have opened the wholesale electricity market to competition
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from independent power producers (IPPs). But, by and large, electricity
generation is mostly regulated at the state level. Electricity firms' in-
vestments decisions are usually sensitive to prospective instability in
regulatory mandates. Most firms would align their investment strategies
under a platform that swiftly acclimatizes them to regulatory change. In
some cases, firms' decisions strategies will cause regulatory policies to
be less effective. Since new investments are the cornerstone of tech-
nology progress in electricity markets, this article argues that changes
in policy mandates in states could dampen firms’ reactions to those
policies. State governments have a substantial amount of authority over
electricity restructuring in their jurisdictions. In particular, state reg-
ulatory authorities over electricity markets have been quite con-
spicuous in state constitutional provisions and anti-trust laws.

The challenge for state legislatures has been and still is their capa-
city to reflect the political preferences of their constituents. Referring to
challenges facing policy makers in state legislatures, Brennan (2003)
remarks that “The goal is not to impose a right policy (e.g. promoting
efficiency) through a rhetorical back door, but to set up rules that
would best reflect constituent views.” In a broader context, the views of
the constituents create the agency problem. Brennan (2003) posits that
when interests are aggregated across larger groups of families, regional
communities or ethnic groups, it is often the case that ethical claims
may override individual interests. For example, ethical claims held by
those other than individuals — animal rights or ecosystems — apart from
the values persons place upon them. While these may not appear to play
a significant role in electricity restructuring decisions, they have been
found to be included in policy debates. Thus, the influence of special
interests also plays a strong role at the local level. For example, Brennan
(2003) highlights how very few of the constituents are likely to parti-
cipate in state Public Utility Commission (PUC) hearings on whether a
utility's proposed rate change is reasonable or justifiable. Ultimately,
the question of how much state legislators affect environmental reg-
ulations remains and should stay relevant. We measure legislature as a
dichotomous 0-1 variable with 1 representing Republican and O,
otherwise.

Renewable Electricity Production Tax Credit. The Renewable
Electricity Production Tax Credit is often referred to as PTC and was
originally enacted in 1992. According to IRS (2017), the Federal Re-
newable Electricity Production Tax Credit “is an inflation-adjusted per-
kilowatt-hour (kWh) tax credit for electricity generated by qualified
energy resources and sold by the taxpayer to an unrelated person
during the taxable year.” Practically, PTCs are federal performance-
based incentives. As indicated by Cox (2016), they are “credits for
onsite use of renewable energy for large-scale renewable energy that is
fed into the grid.” Cox (2016) further observes that “In relation to re-
newable energy, corporate investment tax credits are based on initial
cost of renewable energy systems, while production tax credits are
based on actual energy produced. Therefore, production tax credits can
be more effective in incentivizing maximization of energy production
over the long term.” The primary goal of PTCs is to advance the de-
velopment of renewable energy technologies. Electricity firms building
wind farms have greatly benefited from PTCs. The PTCs have kept wind
energy attractive as incentives for firms to build wind farms thus con-
tributing to the development of the wind turbine technology. This ex-
plains why, under the platform of financial incentives, this study de-
fends that intra-firm learning is reinforced. We measure the production
tax credit variable in actual dollar amounts.

Qualified Energy Conservation Bonds. Better known as QECB, a
Qualified Energy Conservation Bond is not a grant but a taxable bond.
OEERE (2017) defines QECB as “a bond that enables qualified state,
tribal, and local government issuers to borrow money at attractive rates
to fund energy conservation projects.” The main objective of QECBs is
to decrease energy consumption in public buildings. Since they are
taxable bonds, electricity investors have to pay federal taxes on inter-
ests received from QECBs. There are two options that make QECBs
particularly attractive. The first is that investors can structure their
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QECBs as bonds on which they can receive federal tax credits instead of
interest payments tax credit bonds. The second option is that “investors
can directly receive cash rebates from the U.S. Department of the
Treasury to subsidize their net interest payments.” For electricity firms,
QECB:s are enticing in that profits derived from these bonds can be used
to capitalize expenditures on firms’ innovation projects. OEERE (2017)
points that QECBs are great incentives for “implementing green com-
munity programs including loans, grants, or other repayment me-
chanisms such as efficient street lighting replacements and loan pro-
grams for residential energy efficiency improvements.” In deciding on
picking firms that are eligible for QECBs, special consideration is be-
stowed on firms with projects that demonstrate feasibility and readiness
and expand economic opportunities (Hunton and Williams, 2010).
Hence, notwithstanding that QECBs are employed to promote renew-
able energy-related research, they contribute to the transfer and ac-
quisition of knowledge only within the firms. We measure the bond
variable in the actual dollar amounts.

Federal Appliance Standards. The Federal Appliance Standards
(FAS) set minimum standards of energy efficiency for several appli-
ances. Most of these data account for 90 percent of residential energy
use, 60 percent of commercial, and 29 percent of industrial usage
(NRDC, 2014). The products covered by FAS range from refrigerators,
central AC and HP, gas furnaces, to dishwashers and washing machines.
Commercial and industrial equipment like electric motors and dis-
tribution transformers are also covered. FAS was established by the U.S.
Congress in the Federal Energy Policy and Conservation Act (EPCA) of
1975, and have been subsequently amended by succeeding energy
legislation, including the Energy Policy Act of 2005 and the Energy
Independence and Security Act of 2007 (DOE, 2017). FAS foster the
development of efficiency standards that will culminate into the best
energy savings. Since customers are often motivated by costs, by
choosing energy savings products, they can achieve costs saving and
efficiency at the same time. But, in some cases, appliances with energy-
efficient capability are not as cheap. However, if the electricity price is
lower, the customer can still be motivated to opt for an energy efficient
appliance. This analysis predicts that FAS by themselves may not have a
strong an effect as expected. Yet, the analysis still holds that some other
financial incentives would only favor learning within the electricity
firm. Ideally, it would be more effective to let electricity firms them-
selves find ways to boost the development of energy efficient technol-
ogies while their supply portfolios are reliable and efficient (Deluque
et al., 2018). This would catalyze innovation into cheaper energy op-
tions. We measure the FAS variable as a count.

3.5. Model

According to Darr et al. (1995), the cumulative output produced is a
proxy variable for knowledge acquired through production. Hence,
decreasing unit cost can be viewed as a function of organizational
knowledge. In this context, the electricity firm's acquired learning is
due to technological change. This concept is used to capture the elec-
tricity firms' rate of technological learning in specific technologies. The
same framework allows us to determine whether the evolution of
learning in a given technology is spatial-dependent. The spatial-de-
pendency may explain the uncertainties created by policy instruments
given their influence on adoption decisions. Finally, using the for-
mulated framework, the influence of learning on technology adoption
decisions is examined.

The electricity industry's specific knowledge in a given technology is
captured by aggregating firms' outputs in MW in that technology
through time. The impact of state-level policy prescriptions such as RPS
on the learning elasticity for a given technology is explored. According
to Ishii (2006), electricity firms share the properties of franchises. This
share-out is explained by the fact that electricity firms operate across
their regulated domains. They behave in the same manner in other
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states where they own independent power plants. Thus, the learning
elasticity for a specific firm, the subsidiary, may be accounted for by
aggregating the cumulative output across all states where that firm has
a production plant. This approach produces the intra-firm learning
elasticity. For inter-firm knowledge estimation, the cumulative output
across all firms is aggregated. Q;s; represents the firm-specific
knowledge in a given technology in a given state. It is evaluated using
least squares regression along with equations (3.1), (3.2) and (3.3),
(3.4), (3.5), and (3.6), seven models probe whether learning has oc-
curred and its associated effects are evaluated. The matrix equation of
the multivariate regression analysis is given by

M
log( ) =B+ Z B loga
m=1

The left hand side of (3.7) is the dependent variable. It represents
the cost per unit of electricity output by technology, state, and firm. The
right hand side is the summation of the appropriate variables in
(3.3)—(3.6). Accordingly, the basic model with appropriate lagging is
given by

log(

gk,i,x,t

i i,s.t 3.7)

S is,t+1
ks, t+1

) = By + B1log(Qu,is,) + Brlog(FQy,ie) + B5log(FTQ,) + B,10g(CTQy)

+ BurOkist + &g
(3.8)

4. Results

Table Al displays the means, standard deviations, and correlations
for the coal, gas, solar, and wind technologies, respectively. For the
solar technology, there is a positive correlation between energy bonds
with the proxy for inter-firm learning (r = 0.03). Production tax credits
positively correlate with the proxy for inter-firm learning (r = 0.07) for
the wind technology. However, energy bonds negatively correlate with
the proxy for technology progress for the coal technology (r = —0.03).
At the same time, RPS mandates positively correlate with the proxy for
technology progress for the solar technology (r = 0.08) but negatively
with that for the wind technology (r = —0.06). Another remark is that
production tax credits positively correlate with the proxy for firm-
specific knowledge (r = 0.64) for the wind technology. While assessing
these results on correlations, the analysis does not by any means de-
duces causality from correlation. Given the large values of the means
and standard deviations, a residual analysis is carried out. It is discussed
later in the study.

The objective QECBs (Qualified Energy Conservation Bonds) is the
reason for the positive correlation between energy bonds and inter-firm
learning for solar technologies. These bonds allow local government or
other bond issuers to borrow money at very competitive rates to fund
energy conservation projects. Since solar technologies are very viable to
such projects, collaboration among project participants across different
firms is enhanced. The same analysis can be made to explain the po-
sitive correlation between the firm specific learning and production tax
credits for the wind technology.

However, the ecological effects of electricity generation from coal
has dampened the demand for coal technology. Given that the coal
industry does not benefit from energy conservation bonds, It highlights
the negative correlation between energy bonds and technology progress
for the coal technology. The correlations between RPS mandates and
technology progress for the solar and wind technologies are respec-
tively positive and negative. A possible justification has to do with
widespread benefits that electricity generators using solar technology
have received from RPS mandates compared to those received by
electricity generators using wind technology. The widespread pre-
valence of solar renewable energy certificates (SRECS) further supports
the result.



E. Shittu, et al.

Energy Policy 132 (2019) 1034-1049

Table 2
Econometric analysis results — solar technology.
SOLAR
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Firm Specific Learning (5,) —0.1394 —0.1288 —0.1291 —0.1303 —0.0995 —0.1045 —0.1045
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Intra-Firm Learning (8,) —0.0394 —0.0294 —0.0295 —0.0301 —0.0317 —0.0316 —0.0315
(p-Values) (0.0123) (0.0615) (0.0605) (0.0555) (0.0436) (0.0435) (0.0445)
Inter-Firm Learning (8;) 1.9000 1.9206 1.9195 1.8632 1.8651 1.8720 1.8734
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Technology Progress (3,) —1.2515 —1.2852 —1.2856 —1.2633 —1.2724 —-1.2763 —1.2778
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
RPS Target Percentage (83s) 1.3785 1.3157 1.3512 1.2521 —0.0140 0.0190
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.9742) (0.9655)
Republican State Legislature (3;) —0.0499 —0.0804 —0.1234 —0.3122 —0.3146
(p-Values) (0.7249) (0.5741) (0.3892) (0.0384) (0.037)
Democratic Governor (§3;) —0.1454 —-0.1619 —0.1659 —0.1663
(p-Values) (0.1075) (0.0732) (0.0656) (0.0652)
Production Tax Credit (8g) —0.0002 —0.0002 —0.0002
(p-Values) (0.0006) (0.0006) (0.0005)
Qualified Energy Bonds (834) 0.0000 0.0000
(p-Values) (0.0001) (0.0001)
Federal Appliance Standards (8,,) 0.0054
(p-Values) (0.6777)
R-Square (R?) 0.0371 0.0483 0.0483 0.0491 0.0527 0.0575 0.0575

4.1. Cost effect

The cost effect provides two outcomes. First, as the existing tech-
nology improves because of the acquisition of new knowledge, the
technology cost reduces supporting Hypothesis 1. An example is the
development of off-grid solar panels. Fu et al. (2017) show the effects
created by the enhancement of the photovoltaic technology that in-
cludes declining equipment costs as well as operating and maintenance
costs. Second, given the impact of policies on the development and
adoption of renewable technologies, the cost reductions have been
significant. For instance, producers of electricity from wind have
benefited from production tax credits and they have also been ex-
empted from paying sales taxes. These combine to decrease operational
costs (Morris et al., 2016).

4.2. Hypothesis test

In Tables 2-5, the first three coefficients assess firm-specific
learning, intra-firm learning and inter-firm learning, respectively. The
fourth coefficient evaluates the degree of innovation in the electricity
sector. In this case, innovation is progress measured in terms of
knowledge gained without specific emphasis on technology portfolios.
The last three coefficients on these Tables estimate the impact of policy
mandates and financial incentives.

All coefficients are estimated in seven main models. The first model
is basic and represented by Equation (3.8). The second model accounts
for RPS mandates. The third and fourth model inspect the impacts of
states legislatures and governorships, respectively. The fifth model ex-
amines the effects of renewable electricity production tax credits. The

Table 3

Econometric analysis results — wind technology.
WIND

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Firm Specific Learning (3;) —0.2333 —0.2306 —0.2381 —0.2378 —0.2125 —0.2327 —0.2327
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Intra-Firm Learning (3,) 0.0054 0.0053 0.0034 0.0037 0.0030 0.0043 0.0043
(p-Values) (0.5558) (0.5639) (0.7382) (0.7136) (0.764) (0.6672) (0.6673)
Inter-Firm Learning (3;) —-1.2220 —-1.2127 —1.3288 —1.3098 —1.2645 —1.2094 —1.2094
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Technology Progress (3,) 0.7520 0.7445 0.8378 0.8250 0.7968 0.7429 0.7429
(p-Values) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0003) (0.0003)
RPS Target Percentage (3s) 0.2160 0.3392 0.3390 0.4137 —1.5804 —1.5791
(p-Values) (0.2025) (0.1259) (0.1261) (0.0622) (0.0000) (0.0000)
Republican State Legislature (84) 0.0792 0.0979 0.1215 —0.0900 —0.0899
(p-Values) (0.3945) (0.2984) (0.197) (0.3443) (0.3472)
Democratic Governor (3;) 0.0863 0.0949 —0.0210 —0.0209
(p-Values) (0.2137) (0.1712) (0.7627) (0.7655)
Production Tax Credit (8g) —0.0000 —0.0001 —0.0001
(p-Values) (0.0000) (0.0083) (0.0083)
Qualified Energy Bonds (839) 0.0000 0.0000
(p-Values) (0.0000) (0.0000)
Federal Appliance Standards (8,,) 0.0001
(p-Values) (0.9886)
R-Square (R?) 0.0854 0.0856 0.0932 0.0933 0.0958 0.106 0.106
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Table 4

Econometric analysis results — coal technology.
COAL

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Firm Specific Learning (5,) —0.0838 —0.0825 —0.0700 —0.0703 —0.0583 —0.0555 —0.0573
(p-Values) (0.0004) (0.0006) (0.0006) (0.0006) (0.0053) (0.0083) (0.0074)
Intra-Firm Learning (8,) 0.0786 0.0772 0.0625 0.0628 0.0555 0.0524 0.0544
(p-Values) (0.0016) (0.0026) (0.0037) (0.0036) (0.0105) (0.0163) (0.0144)
Inter-Firm Learning (3;) -0.1177 -0.1172 —0.1042 —0.1035 —0.1058 —0.1066 —-0.1079
(p-Values) (0.3209) (0.3239) (0.2948) (0.299) (0.2852) (0.2813) (0.2765)
Technology Progress (§,) 0.1578 0.1579 0.1531 0.1522 0.1573 0.1599 0.1603
(p-Values) (0.0878) (0.0882) (0.0483) (0.0505) (0.0421) (0.0387) (0.0385)
RPS Target Percentage (83s) 0.0173 —0.3690 —0.3634 —0.3343 —0.1969 —0.2450
(p-Values) (0.8208) (0.0000) (0.0000) (0.0000) (0.1427) (0.1435)
Republican State Legislature (3;) —0.4101 —0.4103 —0.4153 —0.4162 —0.4174
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Democratic Governor (§3;) —0.0044 —0.0070 0.0101 0.0115
(p-Values) (0.8429) (0.7546) (0.6967) (0.6613)
Production Tax Credit (8g) —0.0000 —0.0000 —0.0000
(p-Values) (0.0326) (0.0328) (0.0355)
Qualified Energy Bonds (834) —0.0000 —0.0000
(p-Values) (0.2059) (0.1941)
Federal Appliance Standards (8,,) —0.0026
(p-Values) (0.6294)
R-Square (R2) 0.461 0.461 0.624 0.624 0.63 0.633 0.633

qualified energy conservation bonds are investigated in the sixth model
while the effects of the federal appliance standards are analyzed in the
seventh model.

Hypothesis 1 is tested in Table 2 (3rd and 4th row). The results for
Hypothesis 2 are shown in Table 3 (3rd and 5th row) and Table 2 (3rd
and 5th row). Hypothesis 3 is tested in Table 3 (4th and 10th row).
Finally, Hypothesis 4 is tested in the 6th, 7th, and 8th row of Table 2,
Table 3, Table 4, and Table 5. The results are discussed in detail below.

Hypothesis 1 predicts that intra-firm knowledge acquisition in-
creases as technology improves in solar technology. 8, represents the
coefficient for firm-specific learning. The results for the solar tech-
nology are displayed in Table 2.

Under the foundational model (Model 1), g, is noticeably negative
(99% confidence interval). This simply shows that improvements to

existing technology are brought about by the acquisition of new
knowledge, culminating into declining costs. In all models, knowledge
acquisition occurs through cumulative installed electricity. 8, stands for
the coefficient for intra-firm learning. The negative sign of 5, indicates
that intra-firm knowledge acquisition defines the reduction in the unit
cost of electricity production. Furthermore, as 8, becomes significantly
more negative (model 5 to model 6), 3, increases (95% confidence in-
terval). The same finding is verified from model 5 to model 7. Thus,
Hypothesis 1 is justified all the more as empirical research shows that
successful enhancements to current technology are accompanied by
declining costs (Morris et al., 2016). The ensuing observation is that
electricity firms in the solar technology tend to reinforce learning
within themselves. Consequently, collaborations with other firms in-
vesting in solar technology dampen. However, Wilman et al. (2003)

Table 5

Econometric analysis results — gas technology.
GAS

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Firm Specific Learning (3;) 0.0042 0.0045 0.0045 0.0046 0.0041 0.0041 0.0040
(p-Values) (0.0000) (0.0000) (0.0000) (0.0000) (0.0006) (0.0006) (0.0008)
Intra-Firm Learning (3,) —0.0007 —0.0008 —0.0007 —0.0007 —0.0007 —0.0007 —0.0008
(p-Values) (0.4628) (0.4516) (0.473) (0.4713) (0.4743) (0.4746) (0.4417)
Inter-Firm Learning (3;) —6.5461 —6.3964 —6.5884 —6.7593 —6.7703 —6.7729 —6.4979
(p-Values) (0.1743) (0.1844) (0.1714) (0.1606) (0.1599) (0.1598) (0.1774)
Technology Progress (3,) 5.6617 5.5410 5.6987 5.8376 5.8465 5.8486 5.6274
(p-Values) (0.1453) (0.1541) (0.1426) (0.1332) (0.1326) (0.1325) (0.1477)
RPS Target Percentage (3s) 0.0292 0.0580 0.0611 0.0613 0.0621 0.0774
(p-Values) (0.0987) (0.0035) (0.0022) (0.0021) (0.0099) (0.0017)
Republican State Legislature (84) 0.0244 0.0266 0.0266 0.0267 0.0303
(p-Values) (0.0014) (0.0006) (0.0006) (0.0008) (0.0002)
Democratic Governor (3;) 0.0106 0.0106 0.0106 0.0107
(p-Values) (0.0886) (0.0885) (0.0895) (0.0853)
Production Tax Credit (8g) 0.0000 0.0000 0.0000
(p-Values) (0.4661) (0.4657) (0.5427)
Qualified Energy Bonds (839) —0.0000 0.0000
(p-Values) (0.9567) (0.3217)
Federal Appliance Standards (8,,) 0.0023
(p-Values) (0.0034)
R-Square (R?) 0.224 0.224 0.225 0.225 0.225 0.225 0.226
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point out that, ideally, cooperation among firms should eventually
allow them to successfully mitigate challenges related to technological
improvement. Comparably, Colombo et al. (2011) report how “firms
can improve their innovative performance by taking advantage of
knowledge residing in networks of external stakeholders.” By con-
centrating all their efforts into internal knowledge acquisition, elec-
tricity firms or utilities that generate electricity from solar are least
likely to collaborate with other firms.

The relevance of financial incentives for clean technologies is as-
sessed by Hypothesis 2. It infers that more financial incentives for clean
technologies enhance clean technologies through inter-firm learning
captured by ;. From Table 2 (Solar technology), 3, increases while S,
becomes more significantly negative from model 5 (production tax
credits) to model 6 (qualified energy bonds). Model 5 (production tax
credits) to model 7 (federal appliance standards) elicits the same result.
These findings reasonably support the argument that more financial
incentives for solar technology are likely to strengthen technological
improvement under the framework of inter-firm learning. From Table 3
(Wind technology), 3, increases from model 5 (production tax credits)
to model 6 (qualified energy bonds) and to model 7 (federal appliance
standards).

Concomitantly, 3, gets more significantly negative from model 5
(production tax credits) to model 6 (qualified energy bonds) and to
model 7 (federal appliance standards). These results demonstrate that,
to a measurable extent, for the wind technology, greater financial in-
centives are proportional to the level of technological progress when
knowledge is shared across firms. Consequently, Hypothesis 2 is cor-
roborated.

Hypothesis 3 supports that production tax credits benefit knowledge
acquisition within firms in wind technologies. In Table 3 (Wind tech-
nology), f3,, the coefficient for intra-firm learning, gets larger from
model 5 to model 6 (statistically not significant). Noteworthy is that g,
(production tax credits) also increases from model 5 to model 6, war-
ranting Hypothesis 4. Notably, through production tax credits, wind
technology is exempted from sales taxes, thus decreasing operational
costs.

The stringency of policy mandates is investigated in Hypothesis 4. It
posits that stringent policy mandates tend to create a diverse effect in
the progress on technological change across technologies. Technolo-
gical progress (f,) is maximized with firms’ investments in knowledge
acquisition. B, measures the impact of clean energy policies ratified by
Republican state legislatures across all states. From Table 4 (Coal
technology), as RPS mandates (3;) are strengthened, technological
progress (§3,) decreases (model 3 to model 4).

But, under the same circumstances, the impact of Republican state
legislatures (3;) is less acute. In Table 2 (Solar technology), as RPS
mandates (5;) get more exacting, technological progress (f3,) increases
(model 3 to model 4). However, from Table 2 (Solar technology), as
RPS mandates (§;) get more stringent (model 5 to model 2), technolo-
gical progress (8,) decreases. However, 3, remains in Table 3 (Wind
technology) as RPS mandates become pronounced (model 6 to model
7). The resulting diversity subsequently corroborates Hypothesis 4. Si-
milarly, in Table 5 (Gas technology), RPS mandates (3;) increase from
model 4 to model 5 although S, is unchanged.

The ensuing effects create ambivalence among firms as to whether
their investments in learning acquisition will pay off or not. Therefore,
in face of RPS stringency, the response of §, is versatile. Our Hypothesis
4 is supported. Kuhhen (2015) and Akkemik (2009) have also un-
covered asymmetries associated with progress in technological learning
acquisition. However, contexts in which electricity firms seek to adapt
to RPS mandates are crucial in achieving technological progress. A
forceful consequence is the resulting general state of uncertainty. The
latter is generated by the complexity of measuring the real effects of
policy mandates on learning dynamics. Among other things, Fabrizio
(2013) indicates that histories of policy adoptions and reversals in-
crease uncertainties and hazards in electricity markets. In such an
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environment, learning investments are likely to be depressed, which
ultimately affect the capacities of electricity firms to develop disruptive
technologies.

This study also inspects the effects of knowledge transfer within
firms (intra-firm learning) and across firms (inter-firm learning) on cost
per unit of electricity produced. For the solar technology (Table 2, 4th
row), the intra-firm learning coefficient (3,) is negative while it is po-
sitive for the wind technology (Table 3, 4th row). This means that
knowledge collaboration within electricity firms has contributed more
to the reduction in unit capital and operating costs of electricity pro-
duction for the solar technology than for the wind technology. This
finding suggests that, for the solar technology, knowledge transfer
within firms explains the decreases in the unit cost of electricity pro-
duction. Thus, more intra-firm knowledge acquisition occurs in solar
technology than in wind technology. Although revealing, this result is
not as unexpected. An example of study is the investigation by
McDowell (2015) of the impact of knowledge acquired through in-
stallation and generation on the productivity of solar and wind projects.
The author finds evidence of “substantial within-project learning” and
“within owner learning” for the solar technology.

In contrast, the analysis uncovers a negative coefficient for inter-
firm learning (3,) for the wind technology (Table 3, 5th row). But the
same coefficient is positive for the solar technology (Table 2, 5th row).
Besides, (,) is more significantly negative for the wind technology than
for the solar technology. This result shows that the adoption of wind
technology due to inter-firm learning leads to more reduction in the
unit cost of electricity produced than the adoption of solar technology
does. Therefore, knowledge acquisition via inter-firm learning accounts
more for cost-effective electricity production for the wind technology
than for the solar technology. It is notable to point out that Nemet
(2011) has also found existence of inter-firm knowledge spillovers for
the wind technology.

4.2.1. Implications of high p-values

For the gas technology, 8, and $, the coefficients for intra-firm and
inter-firm learning, respectively, are characterized by high p-values.
This implies that intra-firm and inter-firm knowledge acquisitions do
not significantly account for the decrease in the unit capital and oper-
ating cost of electricity production for the gas technology. The same
implication is valid for inter-firm learning for the coal technology and
intra-firm learning for the wind technology. Equally, high p-values for
B, with respect to the coal technology indicate that technology progress
for the coal technology is not statistically significant for the period
covered in the analysis.

4.3. Learning rates

Learning rates for the coal, gas, solar, and wind technologies are
computed using formula (4.1) from Rubin et al. (2015a,b). In (4.1), 2/
is the technology progress ratio where g, is the coefficient for firm-
specific learning. All results are illustrated in Fig. 2.

LR=1-2A 12)

As shown by Rubin et al. (2015a,b), the learning rate represents “the
fractional reduction” in capital cost “for each doubling of cumulative”
production of electricity. Our study finds that RPS mandates, more than
some financial incentives such as production tax credits, have a positive
effect on the learning rates of solar and wind technologies. This is
shown in Fig. 2. This finding is not surprising since the market pene-
tration for solar technology was not significant during the period cov-
ered in our analysis. Notably, Morris et al. (2016) state that with re-
levant policies, renewable technologies such as solar can achieve higher
learning rates. They further point to possible decreases in technology
cost that such policies could bring about. Furthermore, Barbose (2016)
observes that solar technology was the largest source for meeting the
RPS mandates in recent years. The study points to the creation of
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successful “residential solar program funded through RPS” as being the
main reason behind this attainment. However, as shown in Fig. 2,
compared to wind, much is yet to be accomplished to improve the
learning rate in solar technology. Therefore, policy instruments could
successfully be wielded to accelerate the pace of learning in these
technologies.

Also, as demonstrated by Fig. 2, the learning rate of the wind
technology is higher than the learning rate of the solar technology. This
result, on first check, appears contrary to an earlier study that finds the
mean learning rate for solar to be at least twice that for wind Rubin
et al. (2015b). First, Rubin et al. (2015b) only provides values based on
model estimates and not empirical data. Second, our result is to be
viewed from the lens of the implications of policy instruments in the
estimation of learning rates from actual electricity capacity data by
technology.

Interestingly, Rubin et al. (2015a,b) make similar observations after
undertaking a worldwide meta-analysis of the literature on learning
rates for electric power plants. While focusing on learning by re-
searching, they find a higher learning rate for onshore wind systems
(16.5%) than for PV systems (12%). These particularly high learning
rates are not as surprising as wind and solar technologies constitute
some of the fastest growing renewable energy technologies.

4.4. Residual analysis

The examination of the residuals of the coal technology, for ex-
ample, shows evidence of normal distribution. This is shown' by the
“Normal probability plot” of residuals in Fig. 3.

The “Histogram of residuals” displays symmetric residuals, which
confirms a reasonable fit to normally distributed residuals. From the
“Plot of residuals vs fitted values”, there are few unusual points in
comparison with points that lie together. Hence, the variation around
the estimated regression line is constant. This is confirmation of an
acceptable level of homoscedasticity. The “Plot of residuals vs lagged
residuals” exhibits no specific pattern in the residuals. This validates
independence amongst the residuals. Accordingly, there is no plausible
evidence of autocorrelation. This is confirmed by the Durbin-Watson
test. For a confidence level of a = 0.05, the p-value, 0.4114, of the
residuals in the coal technology is less than the Durbin-Watson t sta-
tistic (1.9381 =~ 2).

The initial analysis of the residuals of the gas technology does not

! llustrations of the residuals of other technologies are available and can be
provided upon request.
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uncover normality. For remedy, a new regression matrix of explanatory
variables is created by shifting the time base backwards by the number
of observations that did not display normality. Consequently, the ori-
ginal number of plant-year observations is truncated from 24,368 to
9368. This procedure also rectifies the serial correlation. Using the
Durbin-Watson test, a t-statistic closer to 2 than the original Durbin-
Watson t-statistic is found. This reduces autocorrelation since the closer
to 2 the Durbin-Watson t-statistic is, the less autocorrelation. The same
procedure is used for the solar and wind technologies. The only dif-
ference in this case is that fewer observations are not lost compared to
the gas technology.

A broad analysis of the coefficients of determination, R-Square,
shows heterogeneity among the models across the technologies. For the
coal technology, the average coefficient of determination is 0.6. This
indicates a non-negligible degree of variability between the response
and explanatory variables. The gas technology exhibits an average R-
square of 0.2. For the solar and wind technologies, the average coeffi-
cient of determination stands at 0.1. Insofar as R-square is non-trivial,
the regression coefficients correlate to the mean change in the response
of a unit of electricity produced.

5. Conclusion

The endeavor of this study is centered on the heterogeneous effects
of knowledge acquisition within the U.S. electricity industry. The aim of
this article is to deduce a framework in which policy along with tech-
nological knowledge acquisition become the main driving forces behind
energy technological innovation. Notably, Griliches (1960) has hy-
pothesized and demonstrated that technological change reinforces the
economies of scales. This finding catalyzed the work of Mansfield
(1968) on the adoption of new technology across firms in the manu-
facturing and transport sectors. Specifically, the author found that
“larger firms tend to adopt innovations sooner than do their smaller
counterparts.” Building on this work, this article extends the theory of
technological adoption to U.S. electricity firms. It posits that intra-firm
knowledge acquisition is proportional to technological improvement in
solar technology. This study also postulates that more financial in-
centives for clean technologies generate more technological improve-
ment in clean technologies under inter-firm learning. Further, we hy-
pothesize that more stringent policy mandates lead to more variation in
the progress of technological change across different technologies.

Applying the learning curve model, this study has developed several
regression models that have been applied to a longitudinal analysis of
5573 U.S. electricity plants belonging to 1542 U.S. electricity firms
between 1998 and 2010. The analysis has uncovered heterogeneities in
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Fig. 3. Residual analysis — coal technology.

learning dynamics within and across electricity firms in the U.S.
Particularly, this paper brings to light the positive relationship between
the acquisition of new knowledge through intra-firm learning in elec-
tricity firms and the enhancement of the existing solar technology. This
work also uncovers a beneficial association between financial in-
centives for clean technologies and improvement in clean technologies
under inter-firm learning. Furthermore, the analysis brings to light the
importance of production tax credits in improving knowledge acquisi-
tion within electricity firms for the wind technology. Finally, this paper
unwinds the differences related to complying with policy instruments.
It specifically notices that, as electricity firms seek ways to comply with
policy instruments, the progress of the electricity sector in terms of
knowledge acquisition is diverse. The study gauges the strains created
by policy instruments due to their susceptibility to induce diversity in
technologies improvement and development. Thus, it reveals the pos-
sible turmoil generated by policy instruments in depressing learning
investments to develop disruptive new technologies. This work is en-
lightening in that it draws out the importance of knowledge colla-
boration across firms in developing new technologies. Moreover, this
study shows that knowledge spillovers across firms prevail more for
wind technology than for solar technology. The study subsequently
derives a higher learning rate for the wind technology than for the solar
technology irrespective of the intervention or non-intervention of
policy instruments. A key takeaway is the possibility for firms investing
in wind technologies to gain from the knowledge generated by the
experience and investment of other wind technology firms.

The policy implications can be clustered into four main aspects.
First, policy mandates and financial incentives should continue to be
promoted because they contribute to technological improvement.
Second, local governments should have more control and power in
managing financial incentives such as production tax credits for better
effects on technological innovation in developing new renewable en-
ergies. Third, federal regulators should seek more effective strategies to
incentivize electricity firms to collaborate in order to foster the
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development of disruptive technologies while still effectively re-
sponding to policy mandates. Fourth, given the economic benefits of
pollution emissions reductions, much is yet to be done policy-wise.

This study, while uncovering learning heterogeneities in U.S. elec-
tricity firms, offers a valuable exposition of the dynamics of knowledge
acquisition. The outcome of this paper is not to say that the sole driver
of technological cost declines is due to learning. Instead, we are pos-
tulating the underlying characteristics of the different tenets or scopes
of learning on the cost reduction experienced across different technol-
ogies conditioned on the a priori assumption that innovation and cost
decline are inextricable. Other preliminary studies such as Christensen
and Greene (1976) indicate that “technical change unrelated to
economies of scales deserves the primary attribution for declines in the
cost of production.” Our argument is that if that was true between 1955
and 1970, it may not necessarily be so today. Nonetheless, our study
finds that financial incentives are good motivators when it comes to
implementing renewable energy technologies. However, as discussed in
Cox (2016), a key challenge facing policy makers is to align each fi-
nancial incentive with each state's or city's circumstances. This is rather
intricate yet necessary for better efficiency and risk management. An
unintentional consequence of policy mandates are the risks created by
the adopt-repeal or the push-pull effects that could discourage firms
from investing in new renewable technologies. Hence, designing in-
centives or models that would bring about strategies that are immune to
uncertainties in policies are needed.
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Appendix

Table Al
Measure Characteristics and Correlations

Coal Technology

Mean SD Min Max 1 2 3 4 5 6 7 8 9 10
1 Cumulative electricity 144.67 299.68 0.01 2000.00 1.00
output over years
2 Cumulative of 1 over states  630.60 1360.34 0.01 7712.08 0.82 1.00
3 Cumulative of 2 over firms  6.38104 5.86.104 574.13 1.82.105 0.21 0.32 1.00
4 Cumulative of 3 over tech-  4.60.108 5.03-108 9.7410° 1.5410° 0.20 0.32 0.99 1.00
nologies
5 Renewable portfolio stan- 0.40 0.15 0.00 0.50 0.14 0.17 -0.03 -0.03 1.00
dard
6 Republicans in legislature 0.10 0.30 0.00 1.00 -0.12 -0.10 0.02 0.02 -0.50 1.00
7 Democratic Governors 0.58 0.49 0.00 1.00 -0.01 -0.05 -037 -0.38 043 -0.24 1.00
8 Production tax credits 3038.09 6293.37 0.21 4.20-104 1.00 0.82 0.21 0.20 0.14 -0.12 -0.01 1.00
9 Energy bonds 6.59-107 1.5810% 1.37-10 3.81.108 0.12 0.18 -0.04 -0.03 0.87 —-0.44 0.60 0.12 1.00
10 Appliance standards 5.05 3.39 2.00 16.00 -0.09 -0.14 0.02 0.02 -0.84 0.38 -0.32 -0.09 -0.74 1.00
Gas Technology
Mean SD Min Max 1 2 3 4 5 6 7 8 9 10
1 Cumulative electricity 413.85 1147.62 0.00 1.68104 1.00
output over years
2 Cumulative of 1 over states  3575.40 1.40.104 0.01 3.0510° 0.03 1.00
3 Cumulative of 2 over firms  1,7.107 1.65107 1.11:10° 5.11.107 0.14 0.19 1.00
4 Cumulative of 3 over tech-  4.49.108 4.9610°% 9.7410° 1.54.10° 0.14 0.18 1.00 1.00
nologies
5 Renewable portfolio stan- 0.19 0.17 0.00 0.55 —-0.10 0.01 0.00 0.00 1.00
dard
6 Republicans in legislature 0.36 0.48 0.00 1.00 0.02 -0.03 -0.13 -0.14 -0.46 1.00
7 Democratic Governors 0.45 0.50 0.00 1.00 -0.02 -0.01 -0.06 -0.06 0.03 -0.17 1.00
8 Production tax credits 8690.88 2.41.104 0.04 3.5310° 1.00 0.03 0.14 0.14 —0.10 0.02 —0.02 1.00
9 Energy bonds 5.26:107 1.0810% 5.53.10° 3.81.108 —0.01 0.01 0.01 0.01 0.51 —-0.12 0.04 —-0.01 1.00
10 Appliance standards 10.50 4.56 2.00 16.00 0.08 0.00 0.01 0.01 -0.39 0.11 —-0.10 0.08 —-0.50 1.00
Solar Technology
Mean SD Min Max 1 2 3 4 5 6 7 8 9 10
1 Cumulative electricity 9.31 48.40 0.00 1107.50 1.00
output over years
2 Cumulative of 1 over states 54.11 319.36 0.00 5670.00 0.10 1.00
3 Cumulative of 2 over firms  7.99.104 4.46.104 1591.16 142105 —0.02 0.02 1.00
4 Cumulative of 3 over tech-  7.42.108 5.46.108 9.7410° 1.5410° —0.01 0.01 0.98 1.00
nologies
5 Renewable portfolio stan- 0.33 0.19 0.00 0.55 -0.12 -0.06 0.09 0.08 1.00
dard
6 Republicans in legislature 0.18 0.39 0.00 1.00 0.00 0.00 -0.15 -0.14 -0.62 1.00
7 Democratic Governors 0.50 0.50 0.00 1.00 —0.06 0.00 -033 -0.33 0.17 —-0.18 1.00
8 Production tax credits 195.60 1016.39 0.02 2.33.104 1.00 0.10 -0.02 -0.01 -0.12 0.00 —0.06 1.00
9 Energy bonds 2.11-108 1.56108 6.4510° 3.81.108 —0.09 -—0.04 0.03 0.02 0.74 -0.29 0.11 —-0.09 1.00
10 Appliance standards 6.86 4.60 2.00 16.00 0.11 0.02 0.00 0.01 -0.63 0.33 -0.11 0.11 -0.68 1.00
Wind Technology
Mean SD Min Max 1 2 3 4 5 6 7 8 9 10
1 Cumulative electricity 111.84 387.13 0.00 1.02.104 1.00
output over years
2 Cumulative of 1 over states  480.88 2862.21 0.00 1.57.10° 0.00 1.00
3 Cumulative of 2 over firms 145106 1.36.10° 1.40-10*% 4.09-106 0.19 0.12 1.00
4 Cumulative of 3 over tech-  4.96108 5.16.108 9.7410° 1.5410° 0.18 0.12 0.99 1.00
nologies
5 Renewable portfolio stan- 0.27 0.19 0.00 0.55 -0.06 -0.01 -0.06 -0.06 1.00
dard
6 Republicans in legislature 0.26 0.44 0.00 1.00 0.04 0.00 -0.11 -0.10 -0.55 1.00
7 Democratic Governors 0.49 0.50 0.00 1.00 -0.02 -0.02 -0.12 -0.12 0.14 -0.18 1.00
8 Production tax credits 136.21 644.29 0.00 2.46:104 0.64 —0.01 0.07 0.07 —0.06 0.04 —0.02 1.00
9 Energy bonds 1.48108 1.43108 5.53105 3.81.108 0.01 -0.01 -0.07 —0.06 0.65 -0.25 0.20 0.00 1.00
10 Appliance standards 8.90 5.06 2.00 16.00 0.00 0.02 0.05 0.05 —-0.58 0.22 -0.21 0.02 —-0.61 1.00
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Table A2
Summary of Technology Costs

Energy Policy 132 (2019) 1034-1049

TYPE

SOURCE

Conventional Fossil-Based Technologies
Electricity Price by Technology Type
Renewable Electricity Cost

Wind and Solar (Electricity)

Wind

Solar

Financial Incentives

Energy Information Administration (EIA)

State Energy Data System (SEDS)

Environmental Protection Agency (EPA)

Climate Protection Partnerships Division (EPA)

U.S. Wind Power Installation, Cost, and Performance
Lawrence Berkeley National Laboratory (LBNL)
Database of State Incentives for Renewable Energy

Table A3
Descriptive Analysis of Cost Data ($/kW), all states by technology
Mean Std Dev Min Max Range
Coal 1.59 0.43 1.11 2.32 1.21
Gas 5.61 2.02 2.57 9.11 6.54
Solar 8591.45 1717.26 5941.60 11,140.00 5198.40
Wind 1660.58 302.57 1253.78 2158.30 904.52
Table A4
Descriptive Analysis of Cost Data ($/kW), by year and technology
Mean Standard Deviation
Coal Gas Solar Wind Coal Gas Solar Wind
1998 1.19 2.59 11,140.00 1593.00 1998 0.43 0.66 0.00 0.00
1999 117 4.18 10,000.00 1603.00 1999 0.41 1.07 0.00 0.00
2000 1.21 4.55 10,519.40 1265.88 2000 0.47 1.66 74.95 48.65
2001 1.26 3.54 9775.40 1466.76 2001 0.49 0.73 108.89 29.98
2002 1.32 5.36 8936.80 1336.74 2002 0.55 1.20 118.79 19.37
2003 1.38 5.95 8517.60 1563.04 2003 0.57 1.24 483.64 268.63
2004 1.52 8.30 7993.20 1600.48 2004 0.67 1.79 526.44 230.72
2005 1.66 6.93 7940.00 1630.18 2005 0.70 1.39 843.83 217.91
2006 1.77 6.91 7858.40 1647.72 2006 0.73 1.42 848.75 193.51
2007 2.07 8.99 5977.60 1921.20 2007 0.89 1.91 2652.30 87.65
2008 2.21 4.83 6439.00 2144.00 2008 0.97 1.15 2695.07 0.00
2009 2.28 5.16 8000.00 2155.00 2009 0.98 0.93 0.00 0.00
Range Max
Coal Gas Solar Wind Coal Gas Solar Wind
1998 211 3.72 0.00 0.00 1998 2.11 3.72 11,140.00 1593.00
1999 1.87 5.81 0.00 0.00 1999 1.87 5.81 10,000.00 1603.00
2000 2.27 9.28 530.00 344.00 2000 2.27 9.28 10,530.00 1603.00
2001 1.99 4.74 770.00 212.00 2001 1.99 4.74 10,530.00 1471.00
2002 2.96 7.48 840.00 137.00 2002 2.96 7.48 9760.00 1471.00
2003 2.66 7.67 3700.00 952.50 2003 2.66 7.67 9300.00 2182.50
2004 3.08 10.27 3700.00 751.51 2004 3.08 10.27 9300.00 2182.50
2005 2.78 10.12 5800.00 751.51 2005 2.78 10.12 9100.00 2182.50
2006 2.94 9.10 5500.00 635.17 2006 2.94 9.10 8800.00 2066.16
2007 3.71 11.81 7300.00 315.95 2007 3.71 11.81 8300.00 2066.16
2008 4.01 7.71 7090.00 0.00 2008 4.01 7.71 8090.00 2144.00
2009 4.16 7.12 0.00 0.00 2009 4.16 7.12 8000.00 2155.00
References Lawrence Berkeley National Laboratory.
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