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ARTICLE INFO ABSTRACT

This paper investigates the influence of different configurations of the offshore wind farms (OWF) network
on the optimal capacities of battery energy storage systems (BESS) in the face of high-impact low-probability
(HILP) events that cause short- to medium-term outages. Large-scale OWFs have garnered increasing attention
from investors due to their smaller land footprint and higher energy production potential. However, the
external environment, the internal installation, and the long distance from the onshore facilities pose significant
challenges to the operations of the OWFs and the stability of the energy supply. These factors render systems
highly susceptible to HILP contingencies, while timely post-disaster management, such as addressing subsea
transmission cable failures, is challenging. Although BESS has long been considered a viable strategy to
improve the resilience of the system, the decision-making process to determine the optimal BESS capacity is
underexplored. This is more pronounced when considering the diverse OWF topologies that can significantly
impact energy supply efficiency and, consequently, impact the stable operation of BESS. This study employs a
methodology based on sequential “planning + operational” modeling approach that integrates Agglomerative
Hierarchical Clustering (AHC), an optimal OWF network configuration algorithm, a stochastic system failure
scenario generation approach, and an optimal BESS capacity model. Comprehensive profiles of optimal BESS
capacity are derived corresponding to different clustering levels. Applying the proposed model to three different
OWF cases derived the optimal BESS capacity, balancing resilience enhancement and economic considerations.
In the context of the modeling settings in this study, this optimal capacity is approximately 16% of the
daily electricity generation at full capacity, excluding the capacity factor. Optimal BESS capacity not only
standardizes and facilitates the design process of more resilient OWFs to short- and medium-term system
failures, but also provides policymakers with a basis to consider and implement strategies to coordinate the
use of OWF energy and other available power generation technologies in the market. This study bridges the
research gap between OWF topology studies and discussions on system resilience while shedding light on the
relationship between optimal BESS capacities and the ideal number of clusters.
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1. Introduction of energy systems and fortify their resilience [5-7]. One of the well-

investigated approaches is the use of storage technologies. Despite their

The primary objective of this study is to investigate the optimal ca-
pacity of the battery energy storage system (BESS) within independent
offshore wind farms (OWF) with the aim of bolstering their resilience.
There is no doubt that clean energy policies continue to yield the
dividends of decarbonizing the power sector through the increasing
proportion of electricity generated from renewable sources, such as
wind turbines (WT) and photovoltaic systems [1-4]. However, the
inherent intermittency of renewable energy resources, coupled with
the escalating occurrence of extreme weather events and malicious
human attacks, presents a challenge on how to ensure the stability

growing prominence and adoption, there are still challenges related
to determining their optimal sizes and capacities [8,9]. Specifically,
oversized storage could imply under-utilization of funds for excess
capacities, while under-sized storage could portend inadequacies. Both
situations could have negative impacts on both operations and resource
utilization.

This study is motivated by the global trend of increasing wind
energy development, where large-scale wind farms located in remote
areas such as mountains, deserts, and coastal regions are drawing
increasing interest from investors [10,11]. Among these developments,
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Acronyms list

Acronyms Description

AHC
BESS
HILP
HPLI
LCOE
OCP
OWF
SUB
WT

Agglomerative hierarchical clustering
Battery energy storage systems
High-impact,Low-probability
High-probability,Low-impact

Levelized cost of electricity

Onshore substation/Onshore common point
Offshore wind farms

Offshore substation

Wind turbine

OWFs receive considerable attention due to their lower land footprint
and higher energy production potential driven by stronger offshore
winds, which leads to a more extensive deployment of large-scale
OWFs [11-13]. For example, the capacity of US offshore wind energy
projects under development and currently operational in 2023 has
increased by 15% compared to 2022, reaching more than 52 GW. If
fully developed, these projects could provide enough energy to power
more than 18 million American homes [14]. However, OWFs face
threats both from the external environment and from internal technical
flaws [15]. Among all system faults, WTs failures and subsea trans-
mission cables faults are the primary issues that significantly impact
system operations. Although the failure rate for WTs is higher than
that for subsea transmission cables — 9.06 failures per turbine per
year [16] compared to 0.003 failures per kilometer per year [17] — the
consequences of transmission cable failures are more severe. In general,
80% of all financial losses and insurance claims are attributed to power
cable failures [18,19]. Depending on the specific failure situation, the
associated repair time for transmission cable failures can range from a
few hours to several months [18,20]. In some severe cases, repairing
interarray cables takes about 40 days and incurs approximately $2
million in damage costs. For export cables, repairs take around 60 days,
with damage costs ranging from $10 million to $30 million. In any
circumstance, the long distance from the onshore facilities makes the
post-disaster restoration process for OWFs more challenging and costly
than for the onshore technologies [21]. Therefore, it is imperative to
improve the resilience of OWFs and mitigate the threats posed by
high-impact, low-probability (HILP) events [22].

It should be mentioned that the concept of resilience has been
widely accepted as an indicator to assess dynamic restoration per-
formance after normal operation of a system has been disrupted by
HILP events [23]. Unlike statistical indices such as reliability that
measure a system’s ability to hedge against high-probability but low-
impact (HPLI) contingencies, resilience evaluation typically includes
four stages: prevention, degradation, restoration, and adaptation [24].
Applying this framework to OWFs, a notable challenge arises in the
form of the need for long-distance transmission cables to link all WTs
and connect them to the onshore power grid [25,26]. As mentioned
above, a fault cable can stop the transmission of electricity generated
from a group of WTs, exemplifying a HILP event for OWFs [10].
Interestingly, the layout of the transmission cables in the OWF is
closely related to its design topology [27], which ultimately affects the
efficiency of energy production. Therefore, it is imperative to explore
the relationship between resilience-oriented system planning and OWF
topology.

Numerous strategies have been investigated to enhance the re-
silience of power systems [7,28-30], encompassing optimal power
distribution from multiple energy sources, the establishment of net-
worked microgrids with adaptable structural configurations, and the
active participation of electricity consumers. However, when it comes
to OWFs, which are often far from energy consumers and operate in a
relatively isolated manner, traditional methods for improving resilience
may not be applicable. BESS stands out as one of the most popular

solutions for addressing the intermittency of renewable energy sources,
predictive errors, and participation in the electricity market [1]. BESS
not only contributes to the improvement in power system reliability,
but also shows compatibility with a variety of energy technologies [31,
32]. Technically, the interoperability of OWFs and BESS has been stud-
ied and verified as a feasible solution to provide black start capability
to power grids [33,34]. Economically, a battery integrated with a wind
farm can create greater value than a standalone battery [35]. This
is supported by the conclusion of another study that OWFs with a
larger number of WTs are more resilient when economic capacity is
sufficient [36]. Hence, considering the practical feasibility of BESS in
terms of service duration, BESS emerges as a robust option to improve
resilience against short- to medium-term system failures, which can
result in degraded system operation lasting from a few hours to a few
days at most.

To our knowledge, there is a gap in the existing literature on the
assessment of BESS capacities with a resilience-oriented approach in
various OWF layout structures and the exploration of their relation-
ships. Concisely, the central research question posed in this study is
as follows: How do OWF topologies influence the determination of
the optimal BESS capacity? This study employs a sequential mod-
eling approach that encompasses both the planning and operational
phases. During the planning phase, the optimal network configuration
for OWFs is determined, while in the operational phase, the optimal
BESS capacity is determined. The operational phase also integrates
HILP event scenarios, simulating system faults that disrupt the normal
operations of OWFs. The optimal BESS capacity is expected to vary de-
pending on various OWF topologies. However, through the systematic
construction of various OWF topologies, a comprehensive profile of the
optimal BESS capacity can be obtained, allowing the identification of
an appropriate BESS capacity for the system as a whole. This ultimate
BESS capacity is designed to compensate for energy shortfalls resulting
from HILP events, and it can adapt to any scenario where the collection
system needs reconfiguration to mitigate the cascading effects of a
system fault. A detailed methodology describing these processes is
presented in Section 3.

The proposed methodology has been applied to three OWFs with
varying layouts and installed capacities. The modeling results reveal
several key findings: (1) the OWF topologies do, in fact, influence the
decision on the optimal BESS capacity; (2) as the number of WT clusters
increases, the profile of the optimal BESS capacity tends to converge,
indicating that there are diminishing returns to the cluster sizes in
terms of storage; and (3) the optimal BESS capacity, in the context
of the modeling settings in this study, is approximately 16% of the
daily electricity generation at full capacity of the entire OWF, without
considering the capacity factor.

This study makes three significant contributions. First, the proposed
methodology bridges the research gap that has traditionally separated
studies on OWF configurations from those focused on OWF resilience.
Second, it shifts the perspective on BESS capacity from a deterministic
variable tailored to a specific system structure to a more versatile and
generalized approach applicable to a wide range of OWF topologies.
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Third, it elucidates the relationship between the optimal BESS capacity
and the optimal WT cluster number, revealing that these two ele-
ments need not be synchronized and can be independently selected in
practical applications.

2. Literature review

Previous research on OWFs can be broadly categorized into two
main streams: planning phase studies and operational phase stud-
ies. Planning phase studies primarily focus on configuring the col-
lector systems, while operational phase studies tend to assess system
performance under uncertain conditions. Furthermore, there is also
room for joint consideration of both phases in the context of reliabil-
ity assessment studies. Some studies have highlighted the importance
of strengthening resilience when integrating OWFs into conventional
power grids. These works have undeniably provided valuable insight
into OWFs from both theoretical and practical standpoints. However,
a noticeable research gap persists, characterized by a disconnect be-
tween resilience-oriented investigations and comprehensive “planning
+ operation” studies in OWFs.

First, in OWF planning phase studies, the primary focus lies in
optimizing the system topology. These studies aim to minimize invest-
ment costs and often involve the comparison of different computational
algorithms as their main research objectives. Research in this domain,
which focuses on optimizing the layout of wind farms and the con-
figuration of the collector system, has been extensively reviewed in
previous works [37-39]. In summary, the general objective of opti-
mizing the layout of an OWF usually revolves around minimizing the
total length of transmission cables [40] and/or reducing the overall
economic cost of establishing the entire network of the system [41].
Within this body of work, the clustering of WTs has emerged as an effec-
tive strategy to ease computational burdens and improve the reliability
of the energy supply [42]. Furthermore, the design and placement of
multiple offshore substations are gaining traction among researchers,
as they help streamline the solution search space for network configu-
rations [43]. These configuration studies, to some extent, align more
closely with principles from graph theory and operations research,
somewhat distancing themselves from the intricate characteristics of
energy systems.

Second, in recognition of the significant uncertainties that arise
from unpredictable environmental factors that influence power genera-
tion, such as wind speed, typhoon trajectories, and wake effects, certain
studies focus on developing predictive models to accurately capture
these environmental characteristics [44,45]. Their objective is to im-
prove energy supply stability by modifying existing OWF structures or
designing optimal OWF topologies, all while considering those uncer-
tainties. However, it is essential to note that the results of these studies
may be constrained by the low resolution of available data samples or
limited in generalizability due to unique geological conditions [39].
Nevertheless, it is noteworthy that, from a macro-perspective, the
energy production from OWFs exhibits relative smoothness over time,
particularly when compared to solar energy, which follows a parabolic
pattern with periods of zero solar insulation during the evening hours.
In this broader context, despite the presence of environmental un-
certainties, power generation can still be regarded as a continuous
output, provided that the research objective does not require absolute
numerical accuracy.

Third, studies focusing on the reliability of OWFs can be viewed
as a harmonious blend of both the planning and operational phases,
with environmental uncertainties serving as significant external drivers
affecting system performance. For example, methodologies described
in works like [46,47] share a common approach to designing the eco-
nomic outer and inner layers of OWFs. Their objective is to minimize
the sum of construction costs, power losses, maintenance expenses,
and reliability costs, all while accounting for cable outages initiated by
uncertain external impacts. In addition, the reliability assessment also
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includes considerations of topology. For example, in [48], the feasibil-
ity of achieving a balance between economical planning and reliable
operation through the interconnection of WTs in a multi-loop config-
uration with cables of small cross-sectional areas has been confirmed.
They also explore the possibility of reducing transformer capacity and
sharing it through cross-substations. In another study [49], the failure
rate of the components of the collector system and their correspond-
ing repair rates are integrated into the reliability evaluation process.
Here, primary evaluation indices include power generation rates and
expected energy not supplied. These insights derived from reliabil-
ity studies offer robust support for further research oriented towards
enhancing resilience, particularly when accounting for post-disaster
scenarios.

Studies on OWF resilience have gained significant traction, encom-
passing a wide spectrum of aspects. These investigations span from the
technical design of robust WT components [50] to bolstering resilience
in power systems through the integration of OWFs into onshore power
grids. They even extend to post-disaster maintenance and recovery
support management for OWFs [21], slightly veering into aspects be-
yond the purely technical domain. Although component design and
human-based support management studies lie outside the scope of
the current research objective, it is valuable to review the remaining
resilience-oriented studies that focus on OWF operations, particularly
restoration strategies. With the rapid advancement of grid-connection
technology, OWFs are increasingly integrated into provincial power
grids to enhance generation capacity and improve penetration of clean
energy. For example, studies such as [51] demonstrate that accepting
the limited risks associated with participation of OWFs in the power
grid restoration process can significantly reduce restoration time and
minimize user losses. Furthermore, the resilience of the power system
during extreme typhoon events can be strengthened through coordi-
nated on/off states and active power output of conventional onshore
units, multiple offshore OWFs, and energy storage stations. This co-
ordination is based on a robust distributional chance constraint-based
model proposed in [52]. However, it is important to note that these
resilience-oriented studies often treat OWFs as vital components or
subsystems within a larger power grid context, as exemplified in [53].
In such cases, decision-making models are designed to improve the ro-
bustness of optimal power flow in the presence of OWFs. Those studies
do not position OWFs as independent systems. In other words, while the
overall resilience performance or the coordination of subsystems within
an integrated system is addressed, the intrinsic resilient operational
performance of OWFs themselves is not the primary focus.

In the context where OWFs are considered independent energy
supply systems, the importance of BESS becomes evident in bolstering
system resilience by ensuring a continuous energy supply to consumers
during power outage scenarios. For example, in [1], the characteristics
of fluctuation of the power play a central role in determining the
optimal storage capacity within a hybrid wind-battery energy system.
Similar investigations of the BESS capacity for wind power have been
conducted using stochastic models in [54,55]. However, these optimal
solutions tend to be deterministic and lack generalizability, as they are
tailored to specific systems, akin to the earlier discussion on optimal
topology design under uncertainties. Recognizing this limitation, a
standardized multi-objective decision making framework is introduced
in [13]. This framework allows OWF planners to select the most suit-
able BESS from a given range of capacities. Its primary objective is to
minimize the discrepancy between forecasted and actual power output,
a discrepancy influenced by uncertain wind speeds and wake effects. In
particular, in this study, the BESS capacity is treated as a predetermined
parameter, rather than a stochastic decision variable, limiting its flex-
ibility and adaptability in system design. As also underscored in [13],
while many studies have emphasized the economic and operational
aspects of BESS, not enough attention has been paid to reliability issues
when determining the capacity of BESS.



W. Pan and E. Shittu

Table 1

Taxonomy of methodologies for selected OWF studies and their key conclusions. (Note x shows absence).
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References Model Optimal Placement of Operational Backup Key research conclusion(s)
objective(s) configuration SUB/WTs uncertainty capacity

[1] min(System X X Wind speed, Unknown The optimal battery capacity can be
cost), min(Power wake effect capacity determined on the basis of long-term wind
mismatch) speed data and WT layout.

[13] min(Power X X Wind speed, Given A long-duration BESS is better for avoiding
output wake effect, WT capacity energy issues and power cuts, but a
mismatch) failures medium-duration BESS gives a higher financial

return.

[51] Load restoration X X WT failures to X Adding OWFs to power grids can shorten
typhoon and restoration time and provide financial benefits,
lightning stroke with system inertia and repair costs being

important factors.

[49] Reliability X X Unpredictable X Seasonal wind speed and collection system
evaluation on wind speed component failures are key factors in assessing
power the reliability of OWFs.
generation

[53] min(Power X X Installed X OWF location impacts costs; higher generation
purchase cost) capacities of sensitivity lowers uncertainty tolerance, while

OWFs, OWF higher procurement costs allow greater
location uncertainty.
uncertainty

[26] Reliability X X Components X Having alternative transmission paths enhance
evaluation on failure reliability during faults, but a meshed DC grid
configuration is costly. Bipole transmission offers a more
design cost-effective solution for mitigating HILP

failures.

[52] Optimal power X X Uncertain X Jointly optimizing the on/off states and power
dispatch typhoon outputs of conventional units, WTs, and energy

parameters storage stations can enhance resilience during
extreme typhoon events.

[41] min(LCOE of Genetic X X X Even with higher energy output,
non- algorithm non-homogeneous turbine layouts may not be
homogeneous cost-effective for developers in terms of LCOE.
OWF)

[40] min(Capital Shortest path Kmeans++ X X The sequential design approach for inter-array
cost), clustering cables in OWFs efficiently automates and
Capacitated MSP optimizes the layout by dividing it into smaller

problems.

[43] min(Investment Prim’s Genetic X X Encoding OWF topology into a binary string
cost) algorithm algorithm efficiently considers optimal connections and

reduces infeasible configurations, thereby
streamlining the search for solutions.

[56] min(Investment X Particle Wind speed and X The developed wake model effectively
cost), swarm direction calculates wake losses and optimizes
max(Energy algorithm regular-shaped wind farm layouts using the
output) (PSO) PSO algorithm.

[42] Optimize Meshed PSO, Fixed outage X A novel two-level approach using the average
configuration, connection Hierarchical rate linkage AHC algorithm effectively determines
Enhance clustering optimal cabling and connection topologies for
reliability HVDC-connected offshore wind farms.

This study min(Investment Minimal Hierarchical Stochastic power Unknown OWF configurations significantly impact the
and operational spanning tree clustering curtailment capacity decision-making process to determine the
cost) method scenarios optimal capacity of BESS to improve system

resilience.

A taxonomy of methodologies for the selected OWF studies and
their key conclusions is presented and compared in Table 1. The link
between studies that emphasize OWF configurations and those that
focus on OWF reliability and resilience remains somewhat obscure.
There is potential value in simultaneously exploring the OWF topology
and improving resilience. In light of this research gap, this study aims to
investigate the fundamental connections between the optimal capacity
of the BESS and the OWF configuration structures.

3. Methodology

In summary, in this study, OWFs are treated as independent systems,
with onshore BESS serving as the only technology capable of ensuring

the stability of the energy supply when normal operations are compro-
mised. BESS is assumed to be located at an onshore substation. This
assumption is supported by a previous study, which concluded that the
battery system generated higher revenues when located onshore [57].
As mentioned earlier, considering the varying repair times required
for different maintenance categories, as summarized in Table 2, and
the practical operational duration of BESS, this study focuses only on
short- to medium-term degraded system failures, which typically last
from hours to a few days at most. Long-term system failures, which last
from weeks to months, are impractical for BESS to effectively address
to maintain the energy supply over such extended periods and are thus
beyond the scope of this study.
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Table 2
Taxonomy of OWF maintenance categories and associated repair times. (Note indicates a match).
Maintenance categories Estimated repair Short/Medium- Long-
time term term
Repair for WT 2~20 h [20,58] v
Replacement of WT components 8~40 h [20,58] v
Repair in transformer station 4~60 h [20] v
Repair to foundation/scour protection 4~12 h [20] v
Cable replacement 20 h~60 days [18,20] v v

Energy from
available
generation
capacities

Energy from
BESS storage

Energy
demand

» Time

__Original steady
operation

Fault
occurrence

__ _ Degraded operation _
& System restoration !

New steady»

—_— -
: phase

System
recovery

Fig. 1. Illustrative resilience concept.

The resilience concept in this study is visually depicted in Fig. 1.

In this scenario, the backup energy from BESS is utilized to com-
pensate for the energy not supplied due to the disconnection of the
entire impacted cluster of WTs resulting from a main transmission cable
fault. During the phase of degraded system operation, a post-disaster
management team plays a crucial role in restoring the system. Once
the system’s normalcy is restored, BESS discharging is deactivated, and
recharging continues until full capacity is reached. In theory, the maxi-
mum BESS capacity can be identified in the worst-case scenario, where
the entire OWF is disconnected from the onshore substation. However,
conducting a comprehensive assessment that incorporates economic
considerations and time-dimensional uncertainties with respect to HILP
events complicates the decision-making process to determine the opti-
mal capacity of BESS. Likewise, while this worst-case scenario might
offer the requisite BESS capacity, it should be noted that the likelihood
of such catastrophic system-wide collapse only exists at the tail of the
distribution of failures to OWFs. As such, making decisions on that total
capacity may be exorbitant or cost-inefficient. However, inadequate
BESS capacity may also not meet the desired expectation of achieving
resilience in the aftermath of a failure. Hence, the optimal sizing of
the BESS is based on the expected capacity required to address likely
system failure scenarios.

To explore the impact of optimal OWF topology on the decision-
making process for optimal backup BESS capacity planning, with the
goal of improving the resilience of the system, this study employs a se-
quential modeling approach. By integrating the likelihood of HILP con-
tingencies occurring throughout the decision-making process, the pro-
posed methodology simultaneously addresses both the system planning

phase and the operational phase. The primary objective is to reinforce
the validity of final decisions conditioned on both economic consider-
ation and technical implication. The entire methodology framework,
including the modeling flowchart, objectives, methods, assumptions,
rationales, and available data sources, is illustrated in Fig. 2.

In implementing this sequential modeling methodology, certain
assumptions need to be stated at each step, either to simplify the
modeling process, reduce computational burden, or eliminate factors
irrelevant to the research objectives. These assumptions, along with
their rationales or justifications, are presented in Fig. 2. Among them,
two main assumptions must be emphasized. First, uncertainties from
external environmental factors, such as wind speed and wake effect, are
ignored to simplify the modeling complexity and reduce computational
burden. Instead, these uncertainties, which impact the output of the
system generation, are captured as a measurement called the capacity
factor [9], with a numerical value between 0 and 1. This assumption
leads to a constant generation output profile from OWFs, as illustrated
in Fig. 3. Second, the decision on the topology of the OWFs is based
solely on their geographic locations, regardless of the aforementioned
resource uncertainties. A fixed topology is established as a necessary
step in modeling system operations. In this study, optimizing the topol-
ogy of the system for resilience enhancement is not a focus but could
be a potential direction for future research.

In the planning phase, all WTs within a given OWF are clustered
using the Agglomerative Hierarchical Clustering (AHC) method [59].
This clustering process is crucial in this study because: (1) it forms the
basis for subsequent optimal topology planning at a fixed clustering
level, (2) it facilitates the examination of how topology variations
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Assumption(s) on the geographic distribution of capacities of WTs +  Euclidean distance. S PTEISD. related to the system failure duration
B Ls arr?gnored for i« Cable crossings are mcas_urcd by total power generation and the total length of impacted
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purposes. i algorithm. O L B storing energy in the BESS.
+ Environmental uncertainties and generation q 5
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. : : verified as an effective method for ctor measurement [9]. A P ECR A ) resilience that considers the
Rationales & Justifications system topology optimization [42]. * The conceptual system topology does not 'four phases [7], and e ﬁmc_bawdn::;cyb”ﬁc process of
correspond to the actual system configuration in is not treated as an independent phase. S %
the rea‘;oworld [43] i e HIHC e )
+ System structure data are obtained + The LCOE cost for BESS is sourced
Data S The Linkage function embedded in The cost-related information for transmission from previous modeling steps. from [69] and [70].
ata sources Matlab tool [73]. cables is provided by [68]. * WT generation data are obtained from » The unit cost for system recovery is
selected test systems [65] [66]. sourced from [21].

*Initial WT conditions include the number, placement, and installed capacities of WTs; the location of the OCP; and the hourly power demand.

Fig. 2. Methodology framework and modeling step summaries.

Power
&

Installed capacity

( Fitted generation profile: Installed capacity times capacity factor )

+ Time

Fig. 3. Illustrative generation profile with capacity factor.

affect decisions regarding BESS capacity, and more importantly, (3)
it prepares for modeling subsequent power curtailment scenarios by
assuming transmission cable faults and isolating the fault zone during
the operational phase. The AHC method dendrogram tree displays all
possible combinations of WT clusters at each level of clustering. At
a specified clustering level, optimal OWF topology planning involves

configuring the connections among all WTs within each cluster and
determining the placement for the offshore substation (SUB) that aggre-
gates all clusters and connects to the onshore common point (onshore
substation, OCP). The detailed AHC process and the methodology for
achieving optimal OWF topology are presented in Sections 3.1 and 3.2,
respectively.
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Once the entire OWF topology is determined, HILP contingencies
are introduced to influence system operations, with the aim of de-
termining an optimal BESS capacity. The impacts of HILP events are
generated using a scenario-based method that incorporates various
power curtailment levels and all combinations of time dimensions
for HILP events. The optimization model for determining the opti-
mal BESS capacity is formulated as a two-stage mixed-integer linear
programming problem, with the BESS capacity serving as the first-
stage decision variable, and system operations, such as actual power
generation amounts and the state of the battery system, being the
second-stage decision variables. The scenario generation method is
detailed in Section 3.3, and the optimization model for the optimal
capacity of BESS is clarified in Section 3.4.

To justify the selection of two-stage stochastic programming in
modeling the operational phase, the authors of this study acknowl-
edge the existence of other modeling approaches. However, different
approaches are intended to solve various problems and achieve dif-
ferent research objectives in the field of OWF studies. For example,
with sufficient historical data, uncertainties such as wind speed can
be modeled using Monte Carlo techniques and probabilistic analytical
methods, as demonstrated in previous work [1,13,26,49]. In contrast,
when data availability is limited, a discrete scenario-based approach
can be used to capture uncertainties [60]. In such cases, two-stage
stochastic programming is an effective tool to solve problems when the
sample size of scenarios is under good control, as shown in previous
research related to resilience enhancement [7,51,61].

The entire “planning + operational” modeling process will be im-
plemented iteratively by selecting different clustering topologies from
the AHC procedure, and will be terminated after exhausting all cluster
topologies. This methodology allows for the derivation of a comprehen-
sive profile of BESS capacities across different OWF topologies, with the
aim of addressing the proposed research question.

3.1. Agglomerative hierarchical clustering (AHC)

The AHC method has been proven to be effective in previous
studies in determining the optimal cabling and suitable topologies for
OWFs [42]. The implementation of WT clustering within an OWF,
based on AHC, is based solely on the geographic distribution of WTs,
regardless of their energy generation capacities. The flexibility of AHC
enables visualization of all possible clustering scenarios, making it a
valuable preliminary step in the methodology of this study. A complete
illustration of the AHC process is provided in Fig. 4.

The entire OWF is positioned within a Cartesian coordinate system,
where each WT is assigned specific X and Y coordinates. The AHC
algorithm automatically calculates the Euclidean distance between WTs
and establishes the distance range for each possible cluster at varying
levels of n clusters.

To illustrate, consider a small OWF with nine WTs, as depicted in
Fig. 4. In the output of the AHC process, at the first level (n = 1), all
WTs are treated as elements within a single cluster. At the third level
(n=23), WTy, WTy, WTz, WTs, and WTg form a cluster, while WT;
and WT, constitute another cluster, and WT, and WT; form the final
cluster.

Technically, the AHC process can continue until each individual
WT is treated as a separate and independent cluster. However, in the
context of this investigation, this scenario is considered invalid and is
excluded. In other words, in this study, the smallest cluster needs to
contain at least two WTs. In the illustration, the smallest valid cluster
number is four, i.e., n = 4. For generalization purposes, in an OWF with
P WTs, the maximum number of clusters is defined as ng.
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3.2. Optimal OWF topology

The optimal OWF topology comprises two main aspects: the optimal
configuration of WTs network and the optimal planning of WT clusters
(the optimal placement of SUB). Regarding the former, the objective
is to establish connections among all WTs within each cluster while
minimizing the total length (and total cost) of the transmission cables.
This aspect is addressed using the classical minimum spanning tree
algorithm [62,63], which has been used in prior studies on OWFs
and is appropriate given that it is assumed that all WTs experience
uniform environmental conditions in the open ocean [40]. This differs
from onshore wind farms, where WTs may be located in complex
terrains, making connection planning more intricate. The mathematical
formulation is presented in Egs. (1) to (9), with the corresponding
nomenclature provided in Table 8 in Appendix B.

min 2 Length, )
ceQClu
where
Length, = DWT, WT;? - Link(WT,, WT)) 2
DWT,WT)? = Xy, = Xyr) + Yy, = Yy ®)
s.to.
FiC;lu‘. - AM(, j)
j€Clu,
’ Clu, Clu, Cl (4)
= ) F“-AM@,i+b ¢ Vee QM ieClu,

Jj€Clu,

R -1
! card(Clu.) -1

M, - LinkWT,,WT,)- AM(i, j)
Clu, (6)

i # Start point inside Clu, ©)
i = Start point inside Clu,

> F " AMG,j) Vce Qi j e Clu,
0<F“ <M, VeeQ™ijeCl, @
Link(WT,,WT)) = Link(WT;, WT,)  Vee Qi jeClu, ®

where

M, = (card(Clu,) —1)  Vce Q™ (©)

To reduce computational burden, this model is formulated as a
mixed-integer linear program (MIP). The objective function aims to
minimize the sum of the squares of the lengths of transmission cables
connecting all WTs within each cluster, as presented in Egs. (1) to (3).
The decision variable Link(WT,,WT);) in this model determines the
connection status among the WTs within each cluster, with 1 indicating
a connection and 0 indicating a disconnect. Eq. (4) imposes a constraint
on balancing the net flow at each node, where the parameter biC]"“
depends on the selection of the start terminal, as illustrated in Eq. (5).
Egs. (6) and (7) define the bounds of the net flow within each cluster.
Eq. (8) ensures the symmetry of the output of decision variables as the
model processes all nodes.

The adjacency matrix, denoted A M, contains predetermined param-
eters that indicate the feasible connection status among the WTs. Each
WT can only connect to neighboring WTs, with 1 indicating a possible
connection and O indicating an absolute disconnection. In the OWF
example with nine WTs shown in Fig. 4, WTs could be potentially
connected to any of the other eight WTs, as indicated by 1 in the matrix
AM. However, ultimately, it can only be connected to one of those
eight WTs, and this final connection status is reflected in the variable
Link. On the other hand, WT; could only be potentially connected to
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Coordinated WT layout from an OWF
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Fig. 4. Illustrative AHC process.
WT,, WT,, and WTs, and it is absolutely prohibited to connect to other
WTs, as indicated by 0 at the corresponding positions of the matrix AM. s.to.
Concerning the latter (optimal cluster planning model), the goal is Z Link(WTE, Sub) = 1 Ve € QCl 13
to determine the location of SUB, where all clusters are aggregated and i€ Clu,
connected to OCP, while minimizing the total length (and total cost) of
the main transmission cables. The optimal cluster planning model is KXsus » Ysup 20 a4+

presented in Egs. (10) to (14), with the corresponding nomenclature
provided in Table 9 in Appendix B.
CS4=9¢r . D(Sub, Ocp)® +

min Cosrrransmission

10)
CClu=Sub Z z D(WT,.C,Sub)z . Link(WTf,Sub)
ceQClu i€ Clu,
where
D(Sub’ OCp)2 = (XS“b - XOCP)2 + (YSub - YOcp)2 (11)
DWT.Sub? = (Xwre = Xsuw) + Yre = Ysu)* a2

In Eq. (10), the objective function is formulated as the total cost of
constructing the transmission cables that connect each cluster to the
SUB and connect the SUB to the OCP. The length of the transmission
cables is assumed to be the Euclidean distance between the respective
destination points, as presented in Eqgs. (11) and (12). This model
is subject to the constraint that within each cluster, only one WT
is selected as the point of connection with the SUB, as presented in
Eq. (13). The binary variable Link(WTf, Sub) is used to determine
the connection status of each WT with the SUB, with 1 indicating a
connection and 0 indicating a disconnect.
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Table 3
Definition of power curtailment severity.
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System failure severity level

Power curtailment severity range

Level,
Level,
Levels
Level,

(0%, 25%)] of installed capacity at OWF
(25%, 50%)] of installed capacity at OWF
(50%, 75%] of installed capacity at OWF
(75%, 100%] of installed capacity at OWF

Table 4
Combination of fault occurrence time and degraded system duration.
Index (Time, Index (Time, Index (Time, Index (Time,
Duration) Duration) Duration) Duration)
Com, (0:00 a.m, 6 h) Comg (6:00 a.m, 6 h) Comy (12:00 p.m, 6 h) Com,, (18:00 p.m, 6 h)
Com, (0:00 a.m, 12 h) Comg (6:00 a.m, 12 h) Comy (12:00 p.m, 12 h)
Comy (0:00 a.m, 18 h) Com, (6:00 a.m, 18 h)
Com, (0:00 a.m, 24 h)

3.3. Scenario generation

The purpose of this study is to determine the optimal backup BESS
capacity for OWFs to prepare for the impact of unexpected HILP contin-
gencies. Constructing a valid scenario that captures the characteristics
of HILP events and represents the resilience of OWFs is crucial to de-
veloping an optimal capacity decision-making model. Two key aspects
require emphasis: (1) the results of HILP contingencies are more severe
than those of other HPLI events, such as the failure of individual WT
components or the sporadic distribution of failed turbines across the
entire OWF; and (2) HILP events exhibit greater stochasticity in terms
of their occurrence times and durations. To address these concerns, the
definition of power curtailment severity and the integration of the time
dimensions of the stochastic process of HILP events are presented in
Tables 3 and 4, respectively.

In Table 3, the severity of the fault is defined as the proportional
range of the affected generation capacity relative to the installed ca-
pacity at the OWF. This severity is categorized into four distinct levels.
It should be noted that, in this study, failure of the entire cluster
is considered the affected unit, rather than failure of a single WT.
In other words, if the main transmission cable connecting the WT
cluster to the SUB is disrupted, there is no way to deliver the energy
generated in the impacted clusters to the OCP to meet the energy
demand. Consequently, depending on the number of clusters, the total
generation capacity of a WT cluster (or multiple clusters) needs to be
aggregated to assess their suitability for the severity level of power
curtailment when impacted by HILP events. A detailed mechanism for
categorizing clusters into various levels is presented in Step #2 of the
subsequent scenario generation framework, as illustrated in Fig. 5.

In Table 4, the time dimensions of stochasticity for HILP events
encompass both the fault occurrence time and the duration during
which the system experiences degraded operational conditions. These
dimensions jointly capture the system’s resilience performance, incor-
porating the interruption time and recovery period. The time scale used
to model the HILP events in this study is 24 h, with an hour as the
time step. To facilitate computational efficiency, four levels of fault
occurrence time and degraded system duration are selected to represent
the temporal stochasticity. The shortest power-curtailment duration is
6 h, while the longest is 24 h. As indicated in the table, there are a total
of 10 different combinations of temporal scenarios. The integration
of the severity of power curtailment with the time dimensions of the
scenarios is illustrated in Step #3 of the scenario generation framework
(Fig. 5).

By combining Tables 3 and 4, the authors of this work believe
that this is the simplest and most straightforward approach to capture
the severity characteristics of HILP events. This remains true even for
the least severe power curtailment scenario, a 6-h power curtailment
with a 25% loss of generation capability, emphasizing the significant
impact of the proposed system failure scenario on the OWF’s generation

capability. Although a 6-h or even 24-h duration cannot fully capture
post-disaster management for a transmission cable fault in reality, this
assumption significantly reduces the computational burden and aligns
with the scenarios mentioned in other studies [60,64]. Moreover, the
proposed models are robust enough that the modeling timescale can
be easily adjusted to any desired value, allowing the incorporation of
real-world case parameters.

The scenario generation method proposed in this study consists of
four main steps, as shown in Fig. 5, with the corresponding nomencla-
ture in Table 10 in Appendix B.

The Step #1 involves reordering the WT clusters according to the
total installed capacity of the incorporated WTs. Assuming a fixed clus-
tering level, there are n WT clusters derived from the aforementioned
AHC method, denoted as C;, C,, ..., and C,, with the corresponding
total installed capacities denoted as ZieCl (Capp)™s, ZiGCZ(Capi)’”S, e,
and Ziecn(Cap,.)I s respectively. These clusters are then reordered into
a sequence, where the WT cluster with the minimum total capacity
is indicated as Ord(1), and the WT cluster with the maximum total
capacity is denoted as Ord(n).

In Step #2, n WT groups are categorized into different severity levels
of HILP power reduction, as defined in Table 3. Starting from the WT
cluster Ord(1) to the WT cluster Ord(m), where m < n, the clusters are
included in the severity of system failure Level; if the installed capac-
ities accumulated of these clusters satisfy both conditions presented in
Egs. (15) and (16). These conditions are checked iteratively for the four
levels of severity of power curtailment until all » clusters are assigned
to at least one severity level. Fig. 6 provides a simple example of five
WT clusters to illustrate the process of categorizing affected WTs into
each severity level.

Ord(m)
25% - (L—1)- Caplli, . < 2 (Cap)™ <25%- L-Capls, .
Ord(1) ieCluster
(15)
Ord(m+1)
25%- L-Capgy, < . Y, (Cap)'™ (16)

Ord(l) i€Cluster

In Step #3, the severity levels of the power cut are integrated with
the time dimensions of the HILP contingencies, as described in Table 4.
When the cluster number is fixed, there are 41 scenarios, including one
scenario that represents normal operations without any impact from
HILP events.

The final Step #4 involves assigning probabilities to each scenario.
Scenario probabilities are determined on the assumption that events
with more severe outcomes have lower probabilities, and vice versa.
These probabilities are calculated by considering the ratio of the re-
maining generation capacities that still function properly for each
scenario to the total remaining generation capacities in all scenarios.
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Fig. 5. Scenario generation framework.
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Fig. 6. Demonstration of power curtailment scenarios.

10



W. Pan and E. Shittu

The mathematical form of this probability assignment is presented
in Eq. (17), while Eq. (18) details the computation of the remaining
generation capacity in real time that functions properly for the entire

OWF in scenario s at each time ¢.

i (Capleny +1

Pr, = Vs € QSeen a7
T E Capleny + 1)
where
CapGen _ Capg'[/;/ﬁ‘ _ Z z (Capln_v) Vi e QTime,S c QScen
ke Trs Teqrs
18)

and

; Pry=1 19)
seScen

Three key points need to be emphasized regarding the assignment
of probabilities. First, to ensure the positive characteristics of the
probabilities assigned to all scenarios, the constant 1 is added to the
real-time generation capacity in both the numerator and the denom-
inator in Eq. (17). For example, in the scenario where the duration
of the degraded system is 24 h, Y\~ ?4(CapGe”) becomes zero. Without
the inclusion of this constant in the formulation, the probability under
this scenario would also be zero, which contradicts the validity of sce-
nario construction. Second, the sum of probabilities from all scenarios
equals 1, as illustrated in Eq. (19). Third, in Eq. (18), the remaining
available generation capacity (CapGe”) is calculated by subtracting the
total impacted WTs’ capacity from the entire OWF system installed
capacity (Cap!"$ ). This calculation reflects the reduction in real-time

oW F
generation capacity due to the degraded state of the system.

3.4. Optimal BESS capacity

The purpose of this model is to minimize the total resilience cost of
planning the optimal capacity for a backup BESS while considering the
system’s resilience performance under the impact of HILP events. The
objective function and related constraints are presented in Egs. (20) to
(30), with the definitions of parameters and variables utilized in this
model listed in Table 11 in Appendix B.

min Cost = C' . B+
CRee . Z Z Pry-T/4 . TL(Level,) -

seQScen ;e QTime (20)
CRew . Z 2 Pr, PGen .

seQScen tcQTime
s.to.
Bs,t = Bs.t—l + SOCSI Pfrhu * Vi

Discha Time Scen (21)

- sop,, - BP vie Q'™ s e Q
PC" . v, - SOC,, - P - v, 2
+SOD,, - BP5ha > pe, vt e QT s € QS
SOC,, +SOD,, <1  Vre Qlm s QSeen (23)
Psc;ha < PsGten vVt e QT[me’s e QScen (24)
BSDTi.vcha < B_x,t vVt € _QTime’s e QScen (25)
PSGren < Cap?[en = QTime’ se QScen (26)

Pr,,-B,,<B  VteQlm @7)
seQScen
B, o =Caplls, .- 24  Vse Q5 (28)
Byiyy 2 Dey Vs Q5" (29)
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|

. B le)tiSCha , Psten szha >0 vVt e QTime’S = QScen (30)

st )

The objective function consists of three terms, as illustrated in
Eq. (20). The first term calculates the capital cost of installing a backup
BESS with a specific capacity B. The second term computes the total
system recovery cost required to restore the affected WT clusters to
their normal state. This cost is influenced by the total length of the
impacted transmission cables connecting the corresponding clusters to
the SUB (T L(Level,)’), and it is assumed that it will increase with a
longer duration of system restoration in a certain scenario of power
reduction (T7/%). The third term incentivized energy storage in the
battery, prioritizing the utilization of power generated by the WTs over
the consumption of energy stored in the BESS. It can be interpreted in
multiple ways. For example, it can be treated as income obtained from
selling WT-generated electricity to energy consumers or as a financial
reward applied to store more energy inside BESS. Regardless of the
interpretation adopted, the ultimate goal is to ensure that sufficient
energy is stored inside BESS to address unexpected system faults.

The battery operation constraint, as depicted in Eq. (21), defines
the real-time energy stored in the battery. This energy storage depends
on the (dis)charging state, the residual energy remaining in the battery
from the previous time step (defined as #—1), and the power generation
at the current time (denoted as 1).

The energy balance constraint, as illustrated in Eq. (22), ensures
that the total energy supply can meet the energy demand. The time
step of this model is one hour (v, = 1 h), which facilitates a conve-
nient conversion from the unit of power (kW) to the unit of energy
(kWh). The energy supply sources are exclusively limited to the power
generated by WTs (Pff”) and/or the energy stored in the BESS from
the previous time step (B,,_;), depending on the (dis)charging state.
For example, when discharging is active, SOD;, takes a value of 1,
resulting in the charging state, SOC;,, being set to 0, according to
the constraint presented in Eq. (23). In this scenario, both WTs and
the BESS, specifically the energy discharged from the battery (Bf,"“h"),
collaborate to achieve the energy balance.

If the charging state is active, indicating that the power generated
by the WTs caters sufficiently to energy consumers and can additionally
supply surplus energy for storage in the BESS (denoted as Pfrh"), it
is entirely plausible that both SOD,, and SOC;, are inactive. This
signifies that there is no need for the BESS to charge (or the full capacity
is reached), while simultaneously ensuring that the power generated by
the WTs is adequate to attain energy balance.

Although PG and BPis*"* are free variables in the model, they are
constrained by thelr respectlve upper bounds, as presented in Egs. (24)
and (25), respectively. To be more specific, the total power charged
into the battery at time 7 must not exceed the actual power generated
by WT at that time (PS™), and the total energy discharged from
the BESS at time 7 must not exceed the remaining energy from the
previous time step (B,,_;). In other words, these two constraints limit
the (dis)charging rate to no more than 1.

The constraint, as illustrated in Eq. (26), imposes restrictions on
the real-time power generated from WTs when HILP events lead to the
isolation of (some or even all) WT clusters, reducing the overall capac-
ity available for electricity generation during the system degradation
phase. The real-time generation capacity (CapGe") is obtained from step
#4 of the scenario generation process.

Eq. (27) establishes the relationship between the first-stage decision
variables and the second-stage decision variables. For each time ¢, the
real-time stored energy in the BESS, accumulated in the scenarios, must
not exceed the planned BESS capacity, denoted as B.

It is worth mentioning the significance of the initial and terminal
battery energy conditions, as they play a crucial role in maintaining the
feasibility of the proposed mixed-integer linear program. In this study,
the initial stored energy in the BESS is assumed to be sufficiently large,
allowing the program to begin even under the worst-case scenario of
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Case-1: 80WTs
Installed capacity per WT: 6MW
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Fig. 7. Layout of test OWFs.

a 100% power outage occurring at the first time step for 24 h, as
presented in Eq. (28). The terminal condition is designed to ensure that
the stored battery energy at the end of the day is sufficient to meet
the energy demand at the first time step, indicating that it has been
prepared for use at the beginning of the following day, as presented in
Eq. (29).

4. Test cases and data

In this study, three different OWFs are selected as test cases to verify
the proposed methodology. The layout of the WTs and the location of
the OCP have been visualized in Fig. 7. All WTs are evenly distributed
geographically and have been placed in the Cartesian coordinate system
accordingly. The distances between every two WT along the X axis and
the Y axis, denoted v, and v, respectively, are uniform.

The OWF in Case-1 is derived from a real OWF network called
Banc de Guérance, which was constructed in France in 2015 [65]. It
comprises WTs, each with an installed capacity of 6 MW. In Case-2
and Case-3, both cases represent OWFs consisting of 80 WTs located
in the vicinity of research platforms in the North and Baltic Seas
(FINO3), located 80 km west of the German island of Sylt [66]. The
primary distinction between Case-2 and Case-3 is that in Case-2, the
WTs have homogeneous individual installed capacities, while in Case-
3, the WTs are nonhomogeneous, featuring three different levels of
installed capacities and being randomly distributed within the network
(26 WTs with 8 MW, 28 WTs with 10 MW, and 26 WTs with 12 MW).

Adopting these three distinct OWFs is advantageous for conducting
a comparative study. The comparative assessment of system perfor-
mance between Cases 1 and 2 is valuable in examining the influence
of different WT layouts on the optimal BESS capacity. The comparison
between Cases 2 and 3 aims to investigate the impact of unbalanced
generation capacities within OWFs on the decision-making process to
determine the optimal BESS capacity. Although wind speed and wake
effects are not directly considered in this study, the design of Case-
3 also seeks to account for these external uncertainties that lead to
varying WT generation capacities.

Fig. 8 shows the hourly energy demand of end users onshore, which
can only be supplied by OWF and BESS within the context of this study,
represented as a percentage of the installed capacity of OWF over a
24-h period. These demand data represent the average of the complete
demand data sample provided in a study that constructed a benchmark
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test system for network microgrids [67]. For reference purposes, the
complete demand data is also provided in Appendix A of this study
(Table 7). This demand change curve will be applied to all three OWF
cases.

Several cost-related parameters in the model need to be assigned
values. In the optimal OWF configuration model, three different types
of transmission cables are used: the cable connecting the WT, the
cable connecting the WT clusters to the SUB and the cable connecting
the SUB to the OCP. The total transmission cost depends not only
on the required cable length but also closely relates to the type of
cables used for different purposes. In this study, the first two types
adopt 50-HZ alternating-current (AC) transmission cables, while the
last type uses high-voltage direct current (HVDC) cables. The appendix
in the study [68] provides a complete selection of transmission cables
with the corresponding unit costs. The reference values selected for
the case study are presented in Table 5. Considering that the total
installed capacity of the Case-1 network is smaller than that of Case-
2 and Case-3, the transmission cables used for Case-1 are thinner than
those used for Case-2 and Case-3, resulting in lower corresponding unit
costs. Furthermore, it is expected that the sizes of the transmission
cables within each WT cluster will vary, with the thickness of the
transmission cable increasing as it approaches the connection point
connected to the SUB. However, this study does not consider these
differentiated characteristics of transmission cables within WT clusters
for two reasons: (1) regardless of how the cluster network is configured,
as long as the total length of transmission cable remains the same, the
total cost of transmission cable inside the cluster remains the same,
and (2) the transmission cost inside the WT cluster does not necessarily
impact the research question in this study.

In the optimal BESS capacity model, three cost-related parameters
are also considered: the unit capital cost for BESS, the unit cost for
system restoration, and the unit incentives for prioritizing the use
of energy generated from WTs instead of the consumption of energy
stored in BESS. This model integrates both the planning phase and the
operational phase. To avoid dominance of the parameters of the plan-
ning phase, the Levelized Cost of Electricity (LCOE) is selected for the
planning phase parameters. First, utility-scale lithium ion batteries are
chosen as the technology for BESS due to their yearly declining LCOE,
with the most recent reference data indicating $150 per megawatt
hour [69,70]. Second, assessing the unit cost for system restoration is
challenging as it encompasses both human-based support management
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Parameter CWT-WT [68] CClu=Sub [68] CSub=Ocr [68] I [69,70] CRee [21] CRew [71,72]
(k$/km) (k$/km) (k$/km) ($/MWh) ($/km h) ($/kWh)

Technology 50HZ-AC 50HZ-AC HVDC Lithium-ion - -

Case-1 1600 2251 1424 150 2025.64 0.1512

Case-2 & Case-3 2089 2659 1755 150 2025.64 0.1512

costs and technical restoration strategies. The study in [21] provides
a variety of post-disaster maintenance support strategies for OWFs. It
concludes that the most cost-effective strategy involves providing the
maintenance team with offshore accommodation, 24/7 work shifts, and
the availability of helicopters and crew transfer vessels, resulting in
a total cost of €16.4M/year. This figure can be converted to approx-
imately $2025.64/h. Considering the time dimension of post-disaster
scenarios in this study, a new unit is introduced to this parameter:
the unit system restoration cost per main transmission cable length
(km) per hour (h). This unit reflects that the longer the impacted
main transmission cable (connecting WT clusters to the SUB) and the
longer the degraded system period, the higher the system restoration
cost. Third, in relation to the financial incentive to conserve energy
within BESS, the average electricity price for the residential sector in
the year 2022, 15.12 cents/kWh [71,72], is adopted as the value of this
parameter. The reference values selected in this study are also listed in
Table 5.

5. Results and discussion

In terms of specific modeling platforms, the AHC method and the
stochastic scenario generation method are performed using MATLAB
(R2022b version). The Linkage function embedded in Matlab offers
great convenience in realizing the AHC method [73]. The minimum
spanning tree model, the optimal clustering planning model, and the
optimal BESS capacity model are implemented using the AMPL (A
Mathematical Programming Language) modeling platform, utilizing
Gurobi, Bonmin, and Gurobi solvers, respectively. The simulation is
conducted on a machine equipped with an Intel(R) Core(TM) i7-7700
CPU @ 3.60 GHz and 16 GB of RAM.

The results are presented in the following sequence: first, the visu-
alization of the optimal BESS capacity profile; second, an elucidation
of the significant number of clusters; third, a discussion of the optimal
cluster number; fourth, a sensitivity analysis of cost-related parameters

on the proposed optimization model; and fifth, a validation of the
proposed scenario generation method is conducted based on a compar-
ison of modeling outputs from different system failure time-dimension
settings.

In addition, it is worth mentioning the numerical probabilities as-
signed to each scenario during the modeling process. When examining
the numerical probabilities across 41 scenarios, two key points need to
be highlighted. Firstly, the difference in numerical probabilities is very
small; the highest probability (non-fault scenario) is only 3.5%, and
the lowest probability (most severe blackout scenario) is below 0.1%.
The probability distribution of all other scenarios exhibits a monotonic
trend within this range (with more severe power-curtailment outcomes
having lower probabilities of occurrence). Secondly, these numerical
observations are sufficient to justify that all scenarios are treated
relatively fairly, eliminating the situation where the entire scenario
is biased toward one with a superlarge probability. Combined with
the previous comments on the severity of proposed power curtailment
scenarios in Section 3.3, this evidence jointly corresponds to the con-
cept that all scenarios are characterized by the “Low-Probability” but
“High-Impact” principle.

5.1. Profiles of optimal capacity

The optimal BESS capacity profiles, presented as the ratio of optimal
capacity to daily electricity generation at full capacity of the entire
OWF without considering the capacity factor, are displayed as blue
dots in Fig. 9. Simultaneously, the values of the objective function
(total resilience cost) from the optimal BESS capacity model under
corresponding clustering level are highlighted as red lines in Fig. 9.

As the number of clusters increases, the total cost profile shows an
upward trend. This is primarily due to the additional costs incurred
when a greater number of cluster transmission cables are affected
by HILP events and require rehabilitation. However, optimal BESS
capacity profiles will eventually stabilize or converge within a narrow
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range of numerical variations. By comparing the profiles across the
three test OWFs, a crucial observation can be detected: the optimal
BESS capacity is approximately 16% of the daily electricity generation
at the full capacity of the OWF (without considering the capacity
factor). The capacity factor of the OWF is not included in the proposed
modeling process, yet the observed result can be readily and validly
generalized. That is, for an OWF with a capacity factor indicated by
c.f, the optimal BESS capacity is ( 166%) of the daily generation at full
capacity. For example, the average global capacity factor of OWFs is
42% [74], indicating that the optimal BESS capacity should be 38% of
the daily generation at full capacity.

5.2. Significant number of cluster

For each OWF case, a significant number of clusters can be identi-
fied in Fig. 9. Beyond this significant number, the profiles of optimal
BESS capacities are treated as stabilized, and the total cost at this point
reaches a relatively (local) minimal value. For example, in Case-1, a
cluster number of 29 can be considered significant, while in Case-2, a
cluster number of 25 serves as a significant threshold. In Case-3, the
significant cluster number is 26. To improve clarity, Fig. 10 presents
a comparison of the dispersion of optimal BESS capacities under all
cluster conditions and the stabilization phases for all OWF cases.

Considering the characteristics of different OWFs, it is crucial to
highlight three important points regarding the validity of the proposed
modeling methodology. First, the proposed model effectively captures
the true optimal BESS capacity profile, as it demonstrates a consistent
convergent variation trend regardless of the installed capacities of the
OWF. Second, when comparing the results between Case-1 and Case-2,
it is evident that the optimal BESS profile achieves a better convergence
when the WT layout is coordinated, in contrast to cases where the WT
layout is scattered. Third, a comparison between Case-2 and Case-3 re-
veals that the optimal BESS profile exhibits stronger convergence when
all WTs have homogeneous installed capacities. This phenomenon may
be attributed to environmental uncertainties, such as wind speed, which
can negatively affect the decision-making process for the optimal BESS
capacity (Case-3). However, despite these challenges, the convergent
trends observed in all cases validate the robustness of the proposed
modeling methodology.

The conceptual and alternative practical OWF configurations for
each test case, under the significant number of clusters, are presented in
Fig. 11. There are three points worth discussing with respect to OWF
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configurations. First, a significant number of clusters does not neces-
sarily correspond to the optimal cluster number for OWF configurations
in practice. Although a significant number of clusters provides valuable
information on determining optimal BESS capacities using the proposed
methodology, it is entirely possible to configure the OWF structure with
an optimal cluster number that differs from this significant number of
clusters while still installing the optimal BESS capacities obtained from
the modeling process.

Second, the configuration within each cluster is determined using
the minimum spanning tree algorithm, with the primary objective
being the minimization of transmission length (and associated costs).
Actually, this study considers all possible configurations, the cost-
minimizing outcomes happen to be the radial topologies. Nonetheless,
there are alternative layout structure options that aim to improve
system operational reliability, but these are beyond the scope of this
research study. However, the configurations within each cluster, as
shown in Fig. 11, are not unique and can be adjusted to improve
reliability, although at the expense of a higher investment cost. This
trade-off is demonstrated in Fig. 12, where the meshed layout for the
WT cluster is shown to be more reliable, as discussed in [42].

Third, the presence of crossing transmission lines in the conceptual
configuration subfigure in Fig. 11 is easily noticeable. One of the
assumptions in the optimal OWF topology modeling step is that cable
crossings are allowed to simplify the computational burden of the
algorithms, and Euclidean distances are used to represent the length
of transmission cables. As stated previously, this study does not aim
to optimize the OWF topology for resilience enhancement, but rather
to explore the impact of various OWF configurations on decision-
making regarding optimal BESS capacities. Therefore, the assumption
of allowing cable crossings facilitates capturing a complete spectrum of
OWF configurations, from the fewest to the greatest number of clusters.
This assumption is also supported by the previous study [43]. However,
in practical applications, the layout of actual transmission cables is
more flexible, as illustrated on the right side of Fig. 11, allowing for
adjustments in path selection and installation methods without cable
crossing. This approach was also deemed acceptable in the research
study [43].

5.3. Optimal cluster number

As mentioned previously, the significant number of clusters does
not necessarily equal the optimal cluster number for OWFs. In practice,
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the optimal cluster number can be determined by considering both the
WT layout and the maximum transmission cable capacity. Specifically,
the capacity of the transmission cable imposes an upper limit on the
power generated from the entire WT cluster, resulting in a predeter-
mined minimum number of WT clusters for the entire OWF. Once
the minimum number of clusters is established, classical clustering
criteria can be used to evaluate the optimal number of clusters based
on the geographical layout of the WTs. As clarified in Section 3.1, in
this study, the minimum number of clusters for all test OWFs is set
at n = 4 (because there are four power curtailment severity levels),
indicating the utilization of the maximum capacity of transmission
cables under that scenario. It should be noted that, to present a broader
spectrum of optimal BESS capacity profiles at various clustering levels,
this study does not consider specific transmission cable capacities as
decision variables. However, addressing this aspect in future studies can
contribute to practical improvements in the proposed model.

The optimal cluster number can also be theoretically determined by
employing graph theory and comparing total transmission cable costs.
Fig. 13 provides a visual representation of the optimal cluster number
based on three classical clustering methods: Elbow method, gap statistic
method, and Silhouette method [75]. Furthermore, Fig. 14 visually
represents the total transmission cable costs profiles for all OWFs in
this study.

In Fig. 13, the optimal cluster numbers for OWFs using different
clustering methodologies are indicated by arrow icons. The Elbow
method identifies the optimal cluster when a threshold is reached,
while the gap statistic method identifies it when the gap statistic is
at its highest. The silhouette method, on the other hand, determines
the optimal cluster number when the silhouette value reaches its peak.
It should be noted that the optimal cluster size for each OWF is
considerably smaller than the significant number of clusters identified
in previous discussions. For clarity, if the transmission cable capacity
were introduced as a constraint in the model, as the maximum transmis-
sion cable capacity decreases, the spectrum of valid clustering profiles
would narrow. This could potentially lead to a change in the optimal
cluster number for configuring OWFs.

In Fig. 14, it is evident that the total cost of the transmission cable
within the WT cluster (i.e., connecting the WTs) is numerically lower
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than the total cost of the transmission cable outside the WT cluster
(ie., connecting the WT cluster to the SUB and connecting the SUB to
the OCP). This indicates that the total cost of the transmission cable is
primarily influenced by the cost of the transmission cable outside the
WT cluster. Similarly, this numerical comparison validates that there is
no need to emphasize the network configuration within the WT cluster
for this study, aligning with the assumption mentioned in Section 4.

5.4. Sensitivity analysis

To validate the proposed optimal BESS capacity model, a sensitivity
analysis was performed to assess the influence of variations in cost-
related parameters on the optimal BESS capacity and the corresponding
total resilience cost. This sensitivity analysis is specifically applied to
Case-1, within the context of its significant number of clusters, as
defined in Section 5.2.

The results of the sensitivity analysis verify the robustness of the
proposed optimal BESS capacity model in determining the optimal
BESS capacity, as illustrated in Fig. 15, where variations in cost-related
parameters do not significantly influence the output of the optimal
decision variable. In terms of the total resilience cost, it is more sensi-
tive to the unit post-disaster recovery cost, but not dominated by the
BESS LCOE and the unit incentives parameter. From an optimization
perspective, research on optimizing post-disaster system restoration
costs is a topic of future interest, but it does not inherently impact the
decision-making process regarding optimal BESS capacity.

5.5. Validity of scenario generation

The time dimensions of the stochasticity for HILP contingencies in
this study are other important factors that influence the optimization
model. These dimensions not only determine the computational size of
the model, but also affect the probabilities assigned to system failure
scenarios under varying severity levels. Consequently, a comparison of
the results of the modeling under different time dimensions has been
made based on Case-2, with the alternative time dimension parameters
presented in Table 6. The BESS profiles in different system failure
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Table 6

Modifications in alternative system failure scenario generation.

Scenario Original Alternative-1 Alternative-2
Modeling duration 24 h 24 h 48 h
Shortest system failure period 6 h 3h 6 h

Total number of scenarios 41 145 145

Daily power generation at full capacity 19200 MWh 19200 MWh 38400 MWh

(800 MW x 24 h)

(800 MW x 24 h) (800 MW x 48 h)

scenarios are presented in Fig. 16. As illustrated, the numerical values
of the BESS profiles in alternative scenarios deviate from those in the
original scenario. However, the trend of variation remains consistent,
as the profiles converge beyond the same number of clusters.

It is necessary to justify these numerical variations under different
scenarios of system failure time dimensions. In two-stage stochastic pro-
gramming with recourse, the first-stage decision variables are largely
independent of the uncertainties in the second-stage variables. In this
study, second-stage scenarios are characterized by uncertainties in
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the occurrence and duration of HILP contingencies. The probabilities
associated with each second-stage uncertainty scenario play a crucial
role in determining the optimal first-stage decision variables. Fig. 17
illustrates the comparison of probability distributions for system failure
scenarios across different settings of time dimension. The upper plots
show the number of scenarios categorized into each range of severity of
the power cut and the accumulated probability of all scenarios within
each category. The lower plots show the distribution of numerical
probabilities for scenarios within each category of power restriction.
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Fig. 16. Comparison of optimal BESS profiles under different system failure scenarios (Demonstration for Case-2).

One of the assumptions for scenario generation is that more se-
vere system failures have lower failure probabilities. As illustrated in
the plots on the bottom row, this assumption is confirmed across all
conditions, with probabilities for scenarios involving greater power
curtailment decreasing regardless of the time-dimension settings. How-
ever, as the shortest system failure duration decreases (Alternative-1) or
the overall modeling duration is extended (Alternative-2), the number
of less severe scenarios increases, leading to a skew and bias in the
overall uncertainties toward less severe scenarios. In contrast, in the
original scenario generation setting, the number of scenarios in differ-
ent power curtailment ranges remains relatively unbiased, mitigating
the risk of bias in the ultimate optimal values.

Furthermore, when the modeling duration is extended to 48 h, as
demonstrated in Alternative-2, scenarios with a longer failure dura-
tion require that the BESS capacity be sufficient to meet the power
demand over the extended period. Consequently, this results in higher
ultimate values compared to the original setting, albeit at the cost of
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increased economic investment in larger BESS capacities. Hence, it is
still appropriate to adopt the original scenario generation setting, as
it helps mitigate biased modeling outputs. Furthermore, the modeling
methodology used in this study is robust, as the ultimate BESS profiles
converge in a consistent pattern. The specific parameter settings depend
on stakeholders’ estimations of practical OWF situations and the power
demands that have to be satisfied.

6. Summary and conclusions

In this study, a sequential “planning + operational” model is pro-
posed to investigate the influence of the optimal network topology on
determining the optimal BESS capacity for independent OWFs. The
objective is to improve the resilience of the system in the face of
HILP events that cause short- to medium-term outages. The planning
phase includes an AHC approach that illustrates all clustering levels
and an optimal OWF configuration model under each clustering level.
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Fig. 17. Comparison of system failure probability across different failure time dimensions (Demonstration for Case-2 under significant number of cluster conditions).

Within this phase, the network configuration within clusters and the
aggregation of clusters to SUB are treated as two independent modeling
sectors. Once the optimal network topology is fixed under a given
cluster number, stochastic power curtailment scenarios are generated
by assuming the disconnect of the main transmission cables connecting
the WT clusters with the SUB, resulting in a degraded power gen-
eration period. In this scenario, the optimal BESS capacity model is
implemented to determine the BESS capacity while minimizing the total
resilience cost as the main operational target.

For each distinct OWF, the optimal BESS capacity varies in cor-
respondence with different clustering levels. However, the eventual
convergence of the BESS profiles remains consistent between different
test systems as the size of the WT clusters decreases. This consistent
trend verifies the validity of the proposed model. They also illustrate
the ultimate convergent profile of BESS capacities as the size of WT
clusters decreases. This marks the existence of an optimal BESS capacity
(approximately 16% of the daily electricity generation at full capacity
without considering the capacity factor in the context of the modeling
settings in this study) for the OWFs in various configuration circum-
stances, thus enhancing the resilience of the system. The sensitivity
analysis of cost-related uncertainties in the modeling results, along with
the comparison of outcomes under different time-dimension settings,
verifies the robustness of the optimization model and the scenario
generation method, further consolidating the generalizability of the
proposed modeling approach.

Clarifying the difference between the significant number of clus-
ters identified and the optimal number of clusters provides valuable
information to system planners and operators. Although the significant
number of clusters marks the optimal BESS capacity, OWFs do not
necessarily have to be constructed under that clustering level. Instead,
several other criteria are considered to determine the optimal cluster
number, such as WT layout, evaluation of transmission cable costs,
and reliability evaluation of different network topologies within each
cluster, among others. However, in the event of contingencies, OWFs
may undergo system reconfiguration to isolate affected zones and
reduce cascading impacts. In such cases, the optimal BESS capacity
derived from the proposed modeling remains unaffected by system
reconfiguration, further confirming the validity of the results.
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This study also offers several practical and managerial insights for
system planners and policymakers. For system planners, recognizing
the role of energy storage in expanding renewable-based generation
technologies is essential for sustainable development, both technically
and economically. Energy storage systems can be shared among dif-
ferent generation sources, jointly providing energy to end-users via
the grid and enhancing the resilience of the entire integrated energy
system. For policymakers, it is imperative to enact the right instruments
to support the installation of optimal energy storage capacity that is
crucial to stabilizing the electricity market with higher renewable pen-
etration. This includes allowing negative pricing strategies to manage
excessive energy output and promoting adaptive day-ahead market
designs between renewable-based utilities and conventional utilities
that still supply most of energy to end-users.

Undeniably, there is no consensus on the definition and specific
quantification of the resilience of the system [76]. In our study, the
duration of the system failure is used as a simplified metric that
encompasses all four stages of the resilience process to create sce-
narios of energy supply shortages. Depending on different research
objectives, researchers can focus on one of these phases or treat the
entire resilience process as a unified whole. Our study adopts the
latter approach. However, once the optimal BESS capacity profile is
identified, our research could be further expanded to investigate the
specific regulation of BESS energy usage during the system restoration
phase only. This regulation could also be influenced by the coordination
of other available power generation technologies, BESS installation lo-
cations, and modifications to the management of the electricity market
during emergencies [77]. Furthermore, considering various aspects of
the installation of a utility-scale BESS, such as environmental impacts,
including ecological footprint, recycling, and disposal issues, the con-
cept of resilience in the implementation of BESS can expand beyond
technical performance. This expansion would extend to multiobjective
measurement and could eventually lead to a co-design framework for
OWFs integrated with BESS [78].

This study helps bridge the gap between the analysis of the OWF
topology and considerations to improve resilience. The optimal BESS
capacity is no longer treated as a deterministic modeling outcome;
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Table 7
Hourly load data in percentage of installed capacity of OWF (%) [67].
Time Summer Summer Monsoon Monsoon Autumn Autumn Winter Winter Average
Wkdy Wknd Wkdy Wknd Wkdy Wknd Wkdy Wknd

1:00 am 81 66 86 65 80 71 80 73 75.25

2:00 am 77 68 86 63 81 70 75 64 73.00

3:00 am 80 72 84 72 82 73 78 65 75.75

4:00 am 79 72 83 77 84 72 80 65 76.50

5:00 am 79 75 84 82 86 77 83 67 79.13

6:00 am 82 75 84 88 86 81 86 75 82.13

7:00 am 84 77 87 90 89 83 89 80 84.88

8:00 am 87 78 90 93 90 86 90 87 87.63

9:00 am 90 83 95 94 92 94 92 94 91.75

10:00 am 94 89 98 94 94 94 95 97 94.38

11:00 am 95 88 99 96 96 94 94 97 94.88

12:00 pm 94 88 98 97 95 94 96 98 95.00

1:00 pm 93 88 96 96 94 89 96 97 93.63

2:00 pm 91 86 92 94 92 86 94 89 90.50

3:00 pm 88 84 89 94 90 84 90 86 88.13

4:00 pm 87 86 87 88 90 86 90 81 86.88

5:00 pm 91 93 90 89 92 90 93 85 90.38

6:00 pm 95 97 95 94 100 96 96 96 96.13

7:00 pm 98 100 99 100 100 100 100 100 99.63

8:00 pm 100 95 100 96 100 98 100 100 98.63

9:00 pm 97 93 99 98 97 91 99 94 96.00

10:00 pm 94 85 97 95 93 85 94 92 91.88

11:00 pm 84 72 90 82 83 70 84 80 80.63

12:00 am 88 74 93 73 83 71 83 80 80.63

Table 8
Nomenclature for the minimal spanning tree model (Section 3.2).

Type Symbol Description Unit
Set Qcl Set of clusters under a fixed clustering level -
Set Clu, Set of WTs inside the cluster ¢ -
Parameter DWT,WT),) The (Euclidean) distance between the i th WT and the j th WT km
Parameter Xwr> Ywr, X and Y coordinates of the i th WT -
Parameter AM(, j) The adjacent matrix of the entire OWF binary
Parameter card(Clu,) The number of nodes (WTs) inside the cluster ¢ -
Parameter M, Required number of connecting acres inside cluster ¢ -
Parameter b,““‘ Right-hand side (exogenous net inflow) of WT; inside cluster ¢ -
Variable F, c»;m‘ Flow from WT, to WT; inside the cluster ¢ -
Variable Link(WT,,WT);) Connection status between the i th WT and the j th WT binary
Variable (intermediate) Length, Square of total length of transmission cables connecting km?

all WTs inside the cluster ¢

instead, the relationship between network configuration planning and
resilient operations is thoroughly explored. In addition to the poten-
tial future expansions on system resilience mentioned above, these
contributions also have the potential for significant improvements to
the proposed model in several areas, including the construction of
multiterminal OWFs and the coordination of other onshore energy
production technologies.
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Table 9

Nomenclature for the optimal cluster planning model (Section 3.2).
Type Symbol Description Unit
Set Qe Set of clusters under a fixed cluster number -
Set Clu, Set of WTs inside the cluster ¢ -
Parameter CSub=Ocp Unit cost for transmission cables connecting SUB and OCP $/km
Parameter CClu=Sub Unit cost for transmission cables connecting the cluster and SUB $/km
Parameter Xocps Yoep X and Y coordinates of OCP -
Parameter XV, YW X and Y coordinates of the WT, that belongs to the Cluster, -
Variable X supr Ysup X and Y coordinates of SUB -
Variable Link(WT{, Sub) Connection between W Ty and SUB binary
Variable (intermediate) D(Sub, Ocp) The (Euclidean) distance between SUB and OCP km
Variable (intermediate) D(W'T, Sub) The (Euclidean) distance between the WT¢ and SUB km

Table 10

Nomenclature for scenario generation process (Section 3.3).
Type Symbol Description Unit
Set QTime Set of time -
Set QScen Set of scenarios -
Set QYT Set of impacted WTs under scenario s -
Set Qs Set of fault occurrence time under scenario s -
Index Level The Lth level of power curtailment severity -
Index Com, The ith combination of time dimensions of stochastic process of HILP events -
Parameter Capps, Total installed capacity of the entire OWF kw
Parameter Capl"s Installed capacity of WT, kw
Parameter Caplf? Installed capacity of the affected WT, at the degraded system time T kw
Variable Capler Real-time generation capacity of OWF in scenario s at time ¢ kw
Variable Pry Probability of scenario s -

Table 11

Nomenclature for the optimal BESS capacity model (Section 3.4).
Type Symbol Description Unit
Parameter Cclns Levelized cost for utility-scale BESS $/kWh
Parameter CRec Unit post-disaster recovery cost for the affected transmission line $/km h
Parameter CRew Unit reward for storing battery energy $/kWh
Parameter De, Energy demand at time ¢ kWh
Parameter Capff" Real-time generation capacity of OWF in scenario s at time ¢ kw
Parameter T/ Duration of system degradation in scenario s h
Parameter T L(Level )’ Total length of impacted transmission lines in scenario s km
Parameter v, Modeling time step h
Parameter Pry Probability of scenario s -
Variable (first-stage) B Capacity of battery kWh
Variable (second-stage) B, Energy stored in the battery in scenario s at time ¢ kWh
Variable (second-stage) BPischa Energy discharged from the battery in scenario s at time ¢ kWh
Variable (second-stage) PpGen Power generation from OWF in scenario s at time ¢ kW
Variable (second-stage) PCha Power generation for charging the battery in scenario s at time ¢ kW
Variable (second-stage) SOC,, State of charging in scenario s at time ¢ binary
Variable (second-stage) SOD,, State of discharging in scenario s at time ¢ binary

Appendix B. Nomenclature tables

See Tables 8-11.

Data availability

Data will be made available on request.
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