

Draft Genome Sequence of *Methanocalculus natronophilus* sp. strain Z-7105^T, an Alkaliphilic, Methanogenic Archaeon Isolated from a Soda Lake

4 Authors

1

- 5 Sabrina M. Elkassas^{a,b}, Margrethe H. Serres^a, Derrick Richardson^c, Tatyana N. Zhilina^d, and Julie
- 6 A. Huber^{a#}

7 Affiliations

- 8 a. Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution,
- 9 Woods Hole, MA, USA
- 10 b. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of
- 11 Technology, Cambridge, MA, USA
- 12 c. Department of Atmospheric and Ocean Sciences, University of California Los Angeles, Los
- 13 Angeles, CA, USA
- d. Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the
- 15 Russian Academy of Sciences, Moscow, Russia

16 Running title

17 Genome of *Methanocalculus natronophilus* Z-7105^T

18 Corresponding author's email address

19 #Address correspondence to Julie Huber, jhuber@whoi.edu

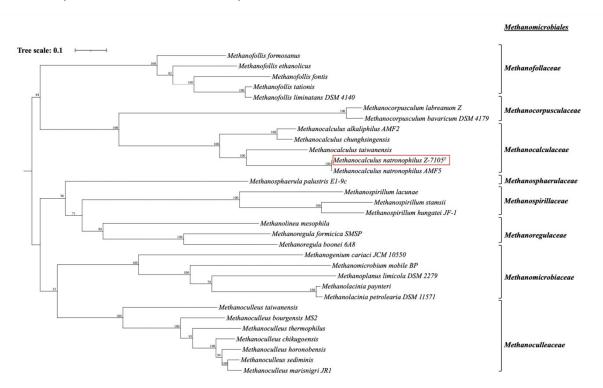
20 **Abstract**

- 21 A methanogenic archaeon was isolated from bottom sediments in the vicinity of Lake Tanatar II
- 22 (Altai, Russia), an alkaline soda lake. Here we present the draft genome sequence of
- 23 *Methanocalculus natronophilus* sp. strain $Z-7105^{T}$.

24 Announcement

- 25 Methanocalculus natronophilus sp. strain Z-7105^T is an alkaliphilic, hydrogenotrophic, and
- 26 halotolerant methanogenic archaeon isolated from bottom sediments in the vicinity of soda
- 27 lake Tanatar II (51.65189 N,79.829406 E, Kulunda Steppe region, Altai, Russia) (1, 2). It was
- originally isolated at 35°C in *Natrionella* medium (DSMZ medium 784) with a headspace of pure
- 29 H₂ (DSMZ medium 784-a). The isolate was acquired from the DSMZ-German Collection of

- 30 Microorganisms and Cell Cultures GmbH with isolate identifier DSM 25006. Within the
- 31 methanogens, little is known about genomic or physiological adaptations to high pH, thus the
- 32 genome of Methanocalculus natronophilus sp. strain Z-7105^T was sequenced to understand
- 33 how these ancient autotrophs are adapted to this pH extreme.
- 34 For DNA extraction, cells were grown anaerobically in 115 mL serum vials with 30 mL of
- medium. Prior to inoculation, the medium was reduced with 2.1 mL 2.5% Na₂S x 9H₂O and
- amended with 2.8 mL of Wolin's vitamin solution (3). Vials were topped off with a headspace of
- 37 80% H₂/20% CO₂ after inoculation. Cultures were incubated at 35°C for 12 days.
- 38 Genomic DNA was extracted from a single culture using the Qiagen DNeasy Ultraclean
- 39 Microbial kit, following manufacturer's instructions. The Illumina library was prepared at the
- sequencing center using the Accel-NGS 2S Plus DNA library preparation kit/MiSeq nanokit v2
- 41 following manufacturer's instructions. DNA was sequenced using short-read (Illumina MiSeg, PE
- 42 250 bp) sequencing technologies with a sequencing depth of 75x, resulting in 2,409,898 reads.
- 43 Post-processing bioinformatic analyses were conducted on the Department of Energy Systems
- 44 Biology Knowledgebase (KBase) (4). Default parameters were used for all analysis software.
- 45 Reads were trimmed using Trimmomatic v0.36 (5), resulting in 97.7% of paired reads surviving.
- 46 Reads were quality-checked using FastQC v0.12.1 (6), with 0 sequences flagged as poor quality.
- 47 The trimmed reads were assembled using SPAdes v3.15.3 (7), and the assembly was quality
- 48 checked using Quast v4.4 (8), resulting in 179 total contigs, an N₅₀ value of 273,644 bp, a
- 49 maximum contig length of 403,126 bp, a total length of 2,028,189 bp, and G+C content of
- 50 51.25%. CheckM v1.0.18 (9) was used to determine a genome completion of 100% and
- contamination of 3.65%. Sample metadata can be found in Table 1.
- Table 1. Metadata for *Methanocalculus natronophilus* sp. strain Z-7105^T


PARAMETER DATA

ENVIRONMENTAL DATA	
GEOGRAPHIC LOCATION	
REGION	Russian Federation Altai, Kulunda Steppe region, Tanatar soda lake II
GEOGRAPHIC COORDINATES	51.65189 N,79.829406 E
COLLECTION DATE	06/2008
BIOME	Alkaline soda Lake
LAKE NAME	Tanatar II
SAMPLE TYPE	Bottom sediments

SAMPLING METHOD	Water collector
PH	10.4
TOTAL MINERALIZATION	60 g/L
GROWTH CONDITIONS	DSMZ 784-a
SEQUENCING	
RNA/DNA QUANTIFICATION INSTRUMENT	Nanodrop UV/visible spectrophotometer (Thermo Fisher Scientific)
ILLUMINA LIBRARY	Accel-NGS 2S Plus DNA library preparation kit/MiSeq nanokit v2
SEQUENCING TECHNOLOGIES	Illumina MiSeq
NO. OF ILLUMINA READS	2,409,898
SEQUENCING CENTER	Microbial Genome Sequencing Center, University of Pittsburgh, Pittsburgh, PA, USA
SEQUENCING DEPTH	75x
ASSEMBLER	SPAdes v3.15.3
NO. OF CONTIGS	179
LARGEST CONTIG (BP)	403,126
CONTIG N50 (BP)	273,644
ORF CALLER	Prodigal v2.6.3
GENOMIC FEATURES	
GENOME SIZE (BP)	2,028,189
G+C CONTENT (MOL%)	0.5125
NO. OF PROTEIN-CODING GENES	1,968
NO. OF RNA GENES	47
NO. OF RRNA GENES	2
NO. OF 5S RRNA GENES	1

NO. OF 16S RRNA GENES	0
NO. OF 23S RRNA GENES	1
NO. OF TRNA GENES	45
NO. OF OTHER RNA GENES	2
NO. OF CRISPR LOCI	2

Assembled contigs were annotated using Prodigal v2.6.3 (10) within DRAM v0.1.2 (11), resulting in 1968 protein-coding genes predicted, 2 complete rRNA genes, 45 tRNA genes, and 2 CRISPR loci. *Methanocalculus natronophilus* sp. strain Z-7105^T has genes for the complete reductive acetyl-CoA (Wood-Ljungdahl) pathway for carbon fixation, methanogenesis via hydrogen oxidation and formate utilization, and multiple genes for proton transport, including the multicomponent Na+/H+ antiporter and V/A-type H+-transporting ATPase, presumably to maintain cell homeostasis in its alkaline environment. A phylogenomic tree constructed with GToTree v1.4.5 (12) with all RefSeq genomes from members of the order *Methanomicrobiales* is shown in Figure 1. *Methanocalculus natronophilus* sp. Z-7105^T is most closely related to another representative of *M. natronophilus*, strain AMF5.

FIGURE 1 Phylogenomic tree of all RefSeq genomes of cultivated representatives of the order *Methanomicrobiales* and the position of *Methanocalculus natronophilus* sp. Strain Z-7105^T (in red box) within that order. The tree was generated using maximum-likelihood estimates based

- on alignments of nucleotide sequences within GToTree (10). Bootstrap values above 40 are
- 68 shown.

69 Data availability statement

- 70 Raw sequence reads for the genome of *Methanocalculus natronophilus* sp. Strain Z-7105^T are
- 71 available at NCBI under BioProject accession number PRJNA1089169, BioSample accession
- 72 number SAMN40528436, and SRA accession number SRR28374704. Assembled contigs are
- 73 available under accession number JBCEXH010000000.

74 Acknowledgments

- 75 This research was supported by NASA grants #80NSSC19K1427 and 80NSSC22K1631 to J.A.H
- and NSF grant #2023192 to G.S and J.A.H. D.R. was supported by the Woods Hole Partnership
- 77 Education Program, sponsored by the Woods Hole Diversity Initiative.

78 References

79 80

81

82

83 84

85

86 87

88

89

90 91

92

93

94

95

96

97 98

99

100

- 1. Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganova TV. 2013. *Methanocalculus natronophilus* sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. *Microbiology* 82:698-706.
- 2. Samylina, OS, Kosyakova AI, Krylov AA, Sorokin DY, and Pimenov NV. 2024. Salinity-induced succession of phototrophic communities in a southwestern Siberian soda lake during the solar activity cycle. *Heliyon* 10:1-14.
- 3. Wolin EA, Wolin M, Wolfe RS. Formation of methane by bacterial extracts. 1963. *J Biol Chem* 238:2882-2886.
- 4. Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, *et al.* 2018. KBase: The United States Department of Energy Systems Biology Knowledgebase. *Nature Biotechnology*. 36: 566. doi: 10.1038/nbt.4163
- 5. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114-20.
- 6. Lo CC and Chain PS. 2014. Rapid evaluation and quality control of next generation sequencing data with FaQCs. *BMC Bioinformatics* 15:1-8.
- 7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* 19:455–477.
- 8. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. *Bioinformatics* 29:1072–1075.
- 9. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res* 25:1043–1055.

10. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. *BMC*Bioinformatics 11:1-1.

- 11. Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, Liu P, Narrowe AB, Rodríguez-Ramos J, Bolduc B, Gazitúa MC. 2019. DRAM for distilling microbial metabolism to automate the curation of microbiome function. *Nucleic Acids Res* 48:8883-900.
- 111 12. Lee MD. 2019. GToTree: a user-friendly workflow for phylogenomics. *Bioinformatics* 35:4162–4164.