
Customizing Cache Indexing through

Entropy Estimation

Kevin Weston, Avery Johnson, Vahid Janfaza, Farabi Mahmud, Abdullah Muzahid

Texas A&M University

College Station, USA

{kevin.weston, averyjohnson, vahidjanfaza, farabi, abdullah.muzahid}@tamu.edu

Abstract—Modern computers heavily rely on caches as one
of the means to achieve higher performance. As a result, cache
management has been the topic of extensive research. Compared
to cache replacement and prefetching, cache indexing has re-
ceived far less interest over the years. Being in the critical path,
a good cache index function must exhibit a high performance
while having a minimal computational delay. Previous indexing
schemes fall short of these requirements, having either moderate
performance or a prohibitively expensive delay. We propose
ENTROPYINDEX, an entropy-based cache indexing scheme that
can deliver superior performance while maintaining a minimal
computational cost. ENTROPYINDEX is based on the idea of
constructing the index function dynamically at runtime using
the address bits with the highest entropy (randomness) to
maximize the balance of the cache access distribution. The
entropy of the address bits is measured by determining which bits
change between two subsequent cache misses. ENTROPYINDEX

periodically compares the entropy of different bits and selects the
ones that change the most. This dynamic selection scheme allows
ENTROPYINDEX to adapt to different types of applications.

Our experimental results show that ENTROPYINDEX outper-
forms previous indexing schemes both with and without hardware
prefetching. For SPEC 2006, SPEC 2017, PARSEC 3.0 and
GAP benchmarks without prefetching, ENTROPYINDEX delivers
a geometric mean IPC improvement of 3.39% (with the highest
being 52.2%), compared to a 1.74% improvement of the state-
of-the-art index function (PRIME) and a 1.76% improvement of
a commercialized indexing scheme (XORHASH) over the baseline
power-of-two modulo scheme. With prefetching, ENTROPYINDEX

is the only indexing scheme with a substantial performance gain
of 1.42% (with the highest being 30.1%), compared to a 0.41%
improvement of PRIME and a 0.49% improvement of XORHASH

over the same baseline. For non-uniform applications and no-
prefetching, ENTROPYINDEX gives an IPC speed up of 5.58%,
compared to a 2.26% speed up of PRIME and a 2.23% speed up
of XORHASH. For non-uniform applications with prefetching, the
IPC speed up of ENTROPYINDEX is 2.08%, compared to a 0.35%
speed up of PRIME and a 0.53% speed up of XORHASH. For CVP
workloads without prefetching, ENTROPYINDEX delivers a speed
up of 3.04% over the baseline compared to a 1.52% of PRIME

and a 2.04% of XORHASH. For CVP workloads with prefetching,
ENTROPYINDEX improves the IPC by 1.60%, compared to 0.63%
of PRIME and 1.07% of XORHASH.

Index Terms—last level cache, indexing, hashing, entropy.

I. INTRODUCTION

A. Motivation

Cache memory is designed to hold frequently used memory

references for fast accessing, bridging the gap between the

processor speed and the main memory latency. As modern

programs are becoming increasingly memory intensive, the

cache system shows an even greater impact on the overall

system performance. To improve the cache performance, the

common tendency is to increase the cache size. However,

such an approach may not always be effective due to the

manufacturing challenges and increased latency associated

with the bigger cache. Additionally, many modern data center

applications’ working set size is now far beyond the LLC

capacity [19]. Therefore, it is important to improve the caches

through innovative microarchitectural research.

When it comes to cache memory research, the two dominant

techniques are replacement [16], [18], [20], [22], [35], [39],

[41] and prefetching [11], [12], [17], [24], [26], [27], [30],

[37], [43]. Such impressive research efforts in both areas

have improved the cache performance significantly, but, at

the same time, come closer to their own eventual limit. For

instance, recent studies in cache replacement show that they

have reached an IPC speed up of 5.7%, being 0.3% away

from the 6.0% unrealizable IPC improvement of the oracle

replacement policy [38]. Hence, it is crucial to find other

avenues to keep pushing the cache performance forward.

Indexing is one of the design aspects of cache memory

that has received relatively less attention. Cache indexing is

essentially a hashing problem where every memory address

is an input and the corresponding set index is the output. A

better index function may help lower the number of conflict

misses. Unfortunately, prior work in conflict misses reduction

mostly focuses on proposing alternative cache organizations,

including skewed-associative caches [6], [34], [36], column-

associative caches [4], or pseudo-associative caches [3]. De-

spite being the most commonly used cache organization in

modern processors [13], there are limited studies on improving

the index function of set-associative cache to reduce conflict

misses, especially in recent years. This paper aims to change

that by revisiting the indexing problem of set-associative

caches.

B. Formulation of Cache Index Function

Finding an ideal hash function for set-associative caches

is a non-trivial task. A good cache index function must

possess two qualities: (1) it must exhibit a high performance

against different workloads even under pressure (such as

hardware prefetching), and (2) it must have a minimal compu-

tation latency. Generally, a high quality hash function should

have a more even distribution in its output, thus leading to



fewer cache conflicts (collisions). The conventional Power-

of-2 modulo function (DEFAULT) has a simple computation,

but pathological patterns found in several applications cause a

significant increase in hashing collisions [23].
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Fig. 1: Geometric mean IPC improvement of various Last

Level Cache (LLC) index functions normalized to the baseline

(prefetchers used: Next-Line in L1D, Signature Path Prefetch-

ing (SPP) [24] in L2). The baseline is power-of-two modulo

index function (DEFAULT).

Prime-modulo function (PRIME) holds unique mathematical

characteristics that help it to have a better output distribution,

therefore providing a better performance. In fact, PRIME has

been considered to be one of the functions with the lowest

number of conflicts [33]. The main problem of PRIME is that

it requires complicated computations in hardware. Our analysis

using the Synopsys Design Compiler NXT [1] shows that the

prime-modulo calculation based on the Polynomial method

proposed in [23] requires 5 cycles to complete for a system

running at 3.0GHz. To understand the impact of this latency,

let us consider Figure 1. The figure shows the performance

of different index functions with and without prefetching. Hy-

pothetically, PRIME index with zero latency (PRIME-IDEAL)

has better performance than DEFAULT. However, the 5-cycle

increased latency eliminates all the potential benefits (PRIME-

REAL). Therefore, we set out to find a solution that is capable

of providing a high performance hashing capability while

being hardware friendly.

Fig. 2: Example of one of the most commonly used XOR-hash

indexing schemes [23].

Towards that end, we investigate a family of hash functions

based on the XOR operation (XORHASH). XOR-hashing tech-

niques have been extensively studied [6], [32], [42] and imple-

mented in commercial processors [2], [28], [29]. XORHASH is

built on the idea that the XOR operation will increase the ran-

domness of the output, leading to a more balanced distribution.

XORHASH performs comparable to PRIME-IDEAL (Figure 1)

while having a far more efficient hardware implementation

(Figure 2).

Inspired by these results, we introduce ENTROPYINDEX,

a dynamic indexing scheme based on the idea of maximizing

randomness. We hypothesize that a more balanced distribution

of the set indices can be achieved by increasing the random-

ness of the set index bits. As a result, at runtime, if we can

identify the bits in the cache access addresses with the most

random behavior and use them to form the index function, we

will get better performance.

(a) Uni-sequence index function formulation

(b) Dual-sequence index function formulation

Fig. 3: Index function formulations for ENTROPYINDEX.

Assume Ia is the set index of address a. For the Uni-sequence

index function, Ia is the sequence of N highest entropy

block address bits. For the Dual-sequence index function,

Ia = Xa⊕Ya (Xa and Ya are the sequences of N highest and

N next highest entropy bits selected from the block address

(N = log2(num set)). The Dual-sequence index function

results in significantly better performance (Figure 4).

We come up with two generalized index hashing functions

under the umbrella of ENTROPYINDEX, as shown in Figure 3.

The first index function (Figure 3a) uses the highest random

bits from the block address directly as index. We refer to this

as the Uni-sequence Index. The second function (Figure 3b)

performs an XOR operation between the highest (green color)

and the next highest (purple color) random bits from the block

address to get the final set index. With the use of more bits

and an XOR operation, this formulation (referred to as the

Dual-sequence Index) adds even more randomness to the set

index. As a result, it delivers significantly better performance

over the Uni-sequence, as shown in Figure 4 (more detail in

Section II-A), so we opt to use the Dual-sequence as the final

index formulation of ENTROPYINDEX.



C. Maximizing Randomness: ENTROPYINDEX

Entropy is a measure of randomness [44]. In our indexing

problem, the most random address bits are those that have

the highest entropy. To measure the entropy of individual bits,

each address bit is associated with an Entropy Counter (EC).

These counters are updated upon every miss to the cache.

The address bits of the current cache miss are compared with

those of the previous one. The bits that differ between these

two addresses exhibit a tendency of being more random than

the other bits. Therefore, the EC corresponding to those bits

are incremented. ENTROPYINDEX evaluates these counters at

regular intervals during the program execution, selects the bits

with the highest entropy, and uses them to form the index

function for the subsequent interval. When the new index

function is installed, the CEASER-based gradual remapping

process [31] is triggered to reallocate existing cache lines to

their new set indices. Additionally, since these updates and

the bit selection processes can be done off the critical path,

ENTROPYINDEX does not have any perceivable impact to the

cache access latency and cycle time.

Our empirical results indicate that ENTROPYINDEX sig-

nificantly outperforms previous indexing schemes in both

prefetching and no-prefetching scenarios. For SPEC 2006,

SPEC 2017, PARSEC 3.0 and GAP benchmarks without

prefetching, ENTROPYINDEX provides a geometric mean IPC

improvement of 3.39% over DEFAULT (with the highest being

52.2%), compared to a 1.76% improvement of XORHASH and

a 1.74% improvement of PRIME-IDEAL. In the presence of

hardware prefetching, ENTROPYINDEX delivers a substantial

performance gain of 1.42% (with the highest being 30.1%),

compared to a 0.49% improvement of XORHASH and a 0.41%

improvement of PRIME-IDEAL. For non-uniform applications

from the SPEC 2006, SPEC 2017, PARSEC 3.0 and GAP

benchmark suites, ENTROPYINDEX gives an IPC speed up

of 5.58%, compared to a 2.23% speed up of XORHASH and

a 2.26% speed up of PRIME-IDEAL (no-prefetching). With

prefetching, these numbers are 2.08% for ENTROPYINDEX,

0.53% for XORHASH and 0.35% for PRIME-IDEAL. For CVP

benchmarks without prefetching, ENTROPYINDEX delivers a

geometric mean speed up of 3.04%, compared to a 2.04% of

XORHASH and a 1.52% of PRIME-IDEAL. with prefetching,

ENTROPYINDEX improves the IPC of CVP workloads by

1.60%, compared to 1.07% of XORHASH and 0.63% of

PRIME-IDEAL.

We also conduct a head-to-head performance comparison

between a 16-way set-associative LLC with ENTROPYINDEX

and a 16-way skewed-associative LLC (SKEWEDCACHE).

Simulation results show that the set-associative cache with EN-

TROPYINDEX outperforms SKEWEDCACHE by a substantial

margin: 3.39% versus 1.44% IPC improvement over DEFAULT

(no-prefetching), and 1.42% versus 0.30% IPC improvement

over DEFAULT (with prefetching). Our solution works seam-

lessly with single and multiprogram workloads.

Compared to previous indexing schemes, ENTROPYINDEX

exhibits the ideal qualities for a good index function. First,

ENTROPYINDEX provides a consistently high performance

against a variety of applications both with and without hard-

ware prefetching. Second, ENTROPYINDEX does not incur

extra latency to the cache since all of the counters updating

and bit selection computations can be taken off the critical

path. ENTROPYINDEX also has a straightforward hardware

implementation.

The generalized XOR-based index formulation in Figure 3

also provides us with a systematic approach to find an optimal

or near-optimal performing XOR-hashing configuration for

each application. Particularly, we use the Genetic Algorithm to

search for a near-optimal XOR-hashing configuration for each

application (NEAR-OPTIMAL). These NEAR-OPTIMAL index

configurations found by the Genetic Algorithm represent an

empirical estimation of the overall performance potential of

the XOR-based cache indexing schemes.

D. Contributions

In summary, we make the following major contributions:

• We formulate cache indexing as a general XOR-hashing

problem. Our formulation provides a systematic approach

to find a high performance XOR-hashing configuration

for an application dynamically at runtime.

• With the XOR-hashing formulation, we use the Genetic

Algorithm to find the NEAR-OPTIMAL index function for

each application. These NEAR-OPTIMAL index configu-

rations serve as an empirical estimation of the overall

performance gain potential of the XOR-based cache in-

dexing schemes.

• We propose a robust, adaptive cache indexing scheme

based on the notion of entropy, called ENTROPYINDEX.

At runtime, ENTROPYINDEX tracks the entropy of mul-

tiple bits in the addresses of cache accesses, then selects

the highest entropy bits to form the index function. This

is the first work that looks at entropy to design an XOR-

based cache indexing scheme. We provide an efficient

and detailed implementation of our solution in hardware.

• We provide the first performance analysis of different

cache indexing schemes in the presence of hardware

prefetching.

• We conduct an in-depth performance analysis of EN-

TROPYINDEX using various benchmark suites. For SPEC

2006, SPEC 2017, PARSEC 3.0, and GAP benchmarks

without prefetching, ENTROPYINDEX delivers a geomet-

ric mean IPC improvement of 3.39% over DEFAULT

(with the highest being 52.2%), compared to a 1.74% im-

provement of the state-of-the-art index function (PRIME-

IDEAL) and a 1.76% improvement of a commercial-

ized indexing scheme (XORHASH). With prefetching,

ENTROPYINDEX delivers a performance gain of 1.42%

over DEFAULT (with the highest being 30.1%), compared

to a 0.49% improvement of XORHASH and a 0.41%

improvement of PRIME-IDEAL. For non-uniform appli-

cations and no-prefetching, ENTROPYINDEX provides an

IPC speed up of 5.58%, compared to a 2.26% speed up

of PRIME-IDEAL and a 2.23% speed up of XORHASH.



For non-uniform applications with prefetching, the IPC

speed up of ENTROPYINDEX is 2.08%, compared to a

0.35% speed up of PRIME and a 0.53% speed up of

XORHASH. ENTROPYINDEX also outperforms SKEWED-

CACHE: 3.39% versus 1.44% IPC improvement over

DEFAULT (no-prefetching), and 1.42% versus 0.30% IPC

improvement over DEFAULT (with prefetching). For CVP

workloads, ENTROPYINDEX delivers a speed up of up to

6.79% without prefetching and 4.13% with prefetching

compared to the baseline.

II. MAIN IDEA: ENTROPYINDEX

At the high level, ENTROPYINDEX works by continuously

monitoring the entropy of multiple individual address bits

during the execution. Periodically, ENTROPYINDEX evaluates

the entropy of these bits and selects the highest entropy bits

to form the new index function. In this section, we will

go through the detailed design of ENTROPYINDEX. Each

subsection corresponds to a question about a design choice

or trade-off that we made during the design process.

Particularly, Section II-A explains (1) how ENTROPYINDEX

keeps track of the entropy of the individual address bits and (2)

how many bits we should track. Section II-B demonstrates (3)

how ENTROPYINDEX manages the existing cache blocks in the

event of an index function change. Section II-C explains (4)

how ENTROPYINDEX minimizes the cost of the index function

changes. We then put them all together with the explanation

on the general workflow of ENTROPYINDEX in Section II-D.

Finally, Section II-F gives a detailed demonstration on

how we use the Genetic Algorithm to search for the NEAR-

OPTIMAL XOR-hashing index configuration for each program.
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Fig. 4: The impact of the number of tracked block address

bits (T ) to the performance of ENTROPYINDEX for a 2MB

16-way set-associative cache.

A. The Cost-Effective Per-Bit Entropy Tracking Mechanism

At its core, ENTROPYINDEX maintains an array of T
Entropy Counters (ECs) to measure the entropy of the block

address bits. Each counter corresponds to a single bit of the

block address. As a result, there are T block address bits

being tracked. Figure 4 shows the impact of T on the overall

performance of ENTROPYINDEX. For a 2MB 16-way set-

associative cache, the index size is 11 bits. Thus, T ≥ 22
for the Dual-sequence index formulation and T ≥ 11 for the

Uni-sequence index formulation. In general, when T is greater,

it adds more flexibility to ENTROPYINDEX, therefore leading

to more performance. The simulation results also show that

the Dual-sequence index formulation is superior regardless of

the value of T . Thus, we opt to use the Dual-sequence index

formulation in the design of our solution. We do not see any

more substantial performance benefit when T gets higher than

32. At the same time, increasing T over 32 would require a

larger multiplexer, which will lead to more power and higher

delay (more in Section III). Thus, we use T = 32 in our

design.

ENTROPYINDEX updates the ECs upon every cache miss.

Figure 5 demonstrates an EC update process. Assume

blk addrcurr is the block address of the current cache miss,

blk addrlast is the block address of the last cache miss, then:

For each bit i in blk addrcurr (i = 0 → T ):

EC[i] += (blk addrcurr[i]⊕ blk addrlast[i]).

The idea behind this update policy is that the more frequent

a bit flips, the higher the entropy of that bit. Thus, the counter

EC[i] is incremented upon every time the bit i− th flips.

Fig. 5: ENTROPYINDEX updates the Entropy Counters upon

every cache miss. T is the number of block address bits that

are being tracked.

B. Cache Remapping Strategy

When a new index function is applied to the cache at the

beginning of an interval, existing valid cache blocks need to

be moved to their new locations to keep them consistent with

the new mapping. This transition must be handled carefully in

order to avoid excessive data movement. We use the gradual

remapping scheme proposed in CEASER [31], as shown in

Figure 6.

Fig. 6: Example of the gradual cache remapping. Whenever the

Access Counter (AC) reaches a threshold R, the set pointed at

by Set Pointer (SP) is remapped, and SP is incremented. After

AC reaches the interval size M, we enter the next interval, and

SP is reset. Dirty lines are denoted by the prime notation.

To minimize the number of writebacks, if the source line is

clean and the destination line is dirty, we evict the source line

(example: B0 and C ′

0).

We maintain an Access Counter (AC) and a Set Pointer

(SP) to keep track of the number of accesses to the cache



and the next set to remap, respectively. After every cache

access, the counter AC is incremented. The parameter R is

the pre-configured remapping rate of the system. When AC

reaches R, the set pointed to by SP is remapped using the

new index function. In Figure 6, R is set to 100, therefore

when AC reaches 100, set 0 is remapped (A0 from set 0 to set

2). After all cache lines in set 0 have been reallocated, SP is

incremented. Similarly, when AC reaches 200, all cache lines

in set 1 are reallocated (B0 from set 1 to set 3). At this point,

there is a conflict between B0 and C ′

0. We use the dirty bit as

the tie-breaker. We will keep the dirty lines. If both lines are

dirty, we keep the line at the source set and evict the line at

the destination set. This process continues until every cache

set is remapped.

When there is a cache request during the remapping process,

we compute the set index using the current index function. If

this set index is greater or equal to the SP, we know that this

set has not yet been remapped, so we serve the cache request

with this set index. Otherwise, we use the new index computed

by the new index function.

C. Minimizing The Cache Remapping Cost

The expected extra miss rate due to the gradual cache

remapping is a function of the remapping rate R and the cache

associativity (let us call it W ) [31]. Specifically, the average

miss rate increase due to the remapping process is W/R. For

example, in a 2MB 16-way set-associative cache, if R = 1600,

the extra miss rate generated by the gradual remapping process

is W/R = 16/1600 = 1%. This implies that the new index

function must improve the cache miss rate by at least the same

amount to break even the cost. Thus, we should only switch

to the new index function if its potential miss rate reduction

is higher than the remapping cost. Assume the potential cache

miss rate reduction of an index function is P , then the index

function change is justified if P ≥ W/R.

The problem is that there is no easy way to determine P
at runtime. As a result, we use the total entropy of the index

function to approximate P . Assume fi is the current index

function, fi+1 is the new index function, Ei and Ei+1 are the

entropy sum of all bits in fi and fi+1 respectively, then:

Papprox = Ei+1−Ei

Ei

In our design, since our remapping rate R = 80, and the

associativity W = 16, therefore the expected extra miss

rate due to cache remapping is W/R = 16/80 = 20%.

Thus, to justify the remapping cost, ENTROPYINDEX only

switches from fi to fi+1 when Papprox ≥ 20%. We dedicate

Section IV-B4 and Figure 15 to discuss about the index

function change frequency observed in our experiments.

D. General Workflow of ENTROPYINDEX

Figure 7 demonstrates the overall workflow of ENTROPY-

INDEX at runtime. During the program execution, ENTROPY-

INDEX continuously tracks the entropy of T block address

bits by updating the ECs upon every cache miss. At the end

of an interval i, ENTROPYINDEX ranks the tracked bits based

on their EC value, then selects the top N bits as the Xi+1

sequence and the next N bits as the Yi+1 sequence. As such,

the new index function candidate for the next interval could

be represented as fi+1 = Xi+1⊕Yi+1. ENTROPYINDEX then

computes Ei and Ei+1 (the entropy sum of all bits in fi and

fi+1). If
Ei+1−Ei

Ei

≥ 20%, ENTROPYINDEX will apply the

new index function fi+1 to the cache and trigger the cache

gradual remapping process.

Fig. 7: General workflow of ENTROPYINDEX. M is the

interval size, measured in terms of cache accesses.

E. ENTROPYINDEX For Banked Shared Cache

In this work, we assume a monolithic cache with uniform

timing across all locations. In modern multi-core architectures,

the LLC is split into several banks and distributed across the

chip. This banked LLC design uses some bits from the block

address to index to the cache banks. For this scheme, we have

two possible implementations for ENTROPYINDEX.

The bank-agnostic implementation of ENTROPYINDEX will

treat the cache as if it is monolithic. Thus, the implementation

is similar to Figure 3b. In this design, the set index function

will also determine the bank index. During remapping, cache

lines can be relocated from one bank to another.

The bank-aware implementation of ENTROPYINDEX will

ignore the bank index bits, as shown in Figure 8. In this

scheme, we only modify the set index function, while keep-

ing the bank index function untouched. As a result, Xa ⊕
Ya determines the set index within a bank, and N =
log2(num sets per bank). In some modern architectures,

the slice index function may consist of a large amount of

address bits [29], leaving too few remaining bits for the set

index function formulation, therefore indirectly affecting the

performance of ENTROPYINDEX. For these architectures, we

can consider a hybrid design in which some slice index bits

can be reused in the set index function. One possible design

could be tracking a preset number of highest entropy bits from

the slice index, along with the unused address bits for the set

index function formulation.

F. Estimating The Full Potential of ENTROPYINDEX Using

the Genetic Algorithm

In microarchitectural research, it is often useful to have a

theoretical or empirical standard upper bound as a reference.



Fig. 8: Bank-aware index function formulation. Address bits

that are used to index to the banks are ignored (gray colored

boxes).

This performance standard gives an estimate of the full poten-

tial of an optimization technique, as well as how much benefit

we have realized. For example, the Belady algorithm serves as

the theoretical performance standard for all replacement policy

research. Unfortunately, the problem of finding the optimal set

of index bits has been demonstrated to be NP-complete [33].

As such, we attempt to find an empirical near-optimal indexing

solution using the Genetic Algorithm.

1) Genetic Algorithm Problem Formulation: The Genetic

Algorithm works by first generating a population of random

candidates (i.e., potential solutions of an optimization prob-

lem). A fitness function is designed to estimate the quality of

each candidate. Higher quality candidates should have higher

fitness scores. In every training iteration, each candidate in the

population is evaluated and ranked based on its fitness score.

The highest quality candidates are retained in the population.

Mutation and Crossover are then performed on these quality

candidates to produce the next generation of candidates. The

Genetic Algorithm uses this process to evolve the candidates

from one generation to the next until it discovers a near-

optimal solution to the problem at hand. To apply the Genetic

Algorithm to our indexing problem, we need to define two key

components: (1) the candidate representation, (2) the definition

of the fitness function and fitness score.

Let us revisit the formulation shown in Figure 3b. Here, Xa

and Ya are sequences of bits extracted from the block address

of a. We can represent Xa as:

Xa = a[XN−1] a[XN−2]...a[X1] a[X0]

where a[Xi] denotes the Xi − th bit of the address a, and

N = log2(num set). Similarly, Ya can be represented as:

Ya = a[YN−1] a[YN−2]...a[Y1] a[Y0].

As such, a candidate G can be represented as:

G = [XN−1, XN−2, ..., X0, YN−1, YN−2, ..., Y0].

An optimal XOR-hashing would choose the bit indices

XN−1, ..., X1, X0 and YN−1, ..., Y1, Y0 such that the number

of cache misses are minimized for a given application. The

lower the number of cache misses is, the better the candidate

should be. Therefore, we use the negative of total cache misses

as the fitness score.

2) Genetic Algorithm Training Process: To evaluate a

candidate, we execute an application with a cache indexing

Fig. 9: An example of how Mutation and Crossover can be

done with two candidates G1 and G2.

scheme based on that particular index function candidate and

count the total number of cache misses. The fitness score of

the candidate will be the negative of the total misses.

In every iteration of the Genetic Algorithm, the candidates

are evaluated to determine their quality. They are then sorted

based on the fitness score. A number of top scoring candidates

are kept and mutated and crossed over in an attempt to

produce better quality candidates for the next iteration. Let us

consider two candidates - G1 = [X1
N−1

, ..., X1
0 , Y

1
N−1

, ..., Y 1
0 ]

and G2 = [X2
N−1

, ..., X2
0 , Y

2
N−1

, ..., Y 2
0 ]. Mutating G1 can be

done by randomly choosing an index inside the candidate and

changing it to a different valid index as shown in Figure 9.

Here index X1
0 is changed to a different index X ′1

0 . Crossover

can be done by swapping half of one candidate G1 with similar

half of another candidate G2.

For every application, we use the Genetic Algorithm to find

the set of bits for Xa and Ya that has the lowest number

of cache misses. We refer to the solutions found by the

Genetic Algorithm as NEAR-OPTIMAL and include them in

our experiments as a comparison reference.

G. Quantitatively Measuring the Balance of The Cache Access

Distribution

A high-performance hash function would provide a more

even output distribution, leading to less conflicts. Thus, the

balance of the cache access distribution is one of the metrics

to evaluate the quality of the cache index function. We adopt

the ratio stdev/mean from [23] to quantitatively measure

the balance of the cache access distribution. Particularly,

assume a0, a1, ..., an are the number of accesses to the sets

s0, s1, ..., sn, and ā is the mean access count across all sets,

then the ratio stdev(ai)/ā represents the balance of the cache

access distribution. Additionally, previous studies show that

sophisticated indexing schemes work better for applications

with an uneven cache access distribution between cache sets,

since there are more opportunities to reduce the cache con-

flicts [23], [45].

In Figure 10, 473.astar with ENTROPYINDEX has a more

even LLC access distribution compared to DEFAULT, rep-

resented by a smaller standard deviation. In this example,

the LLC access stdev/mean ratio of 473.astar reduces from

0.171 with DEFAULT to 0.086 with ENTROPYINDEX. This

improvement in the distribution leads to an IPC speed up
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Fig. 10: LLC access distribution of ENTROPYINDEX and

DEFAULT in no prefetching scenario. The red line is the mean

accesses per set, the blue lines are the upper and lower standard

deviation of the cache accesses.

of 1.75%. Similarly, the LLC access stdev/mean ratio of

fluidanimate and 628.pop2 s reduces from 0.142 to 0.065 and

0.307 to 0.247, leading to a performance gain of 18.7% and

2.09%, respectively. In Section IV-B3, we evaluate the perfor-

mance of ENTROPYINDEX on the subset of workloads with

imbalanced access distribution, measured by the stdev/mean
ratio.

III. IMPLEMENTATION

In this section, we demonstrate the ENTROPYINDEX im-

plementation for a 2MB 16-way set-associative cache. The

hardware design of ENTROPYINDEX consists of two parts: the

Entropy Tracking Module (ETM) and the modified Set Index

Resolution Logic (SIR) of the cache controller. The ETM can

be implemented in a separate circuit, lying off the critical path.

The ETM is responsible for updating the Entropy Counters

upon every cache miss, and determining the bits with the

highest entropy to form the index function f for the next

interval. The SIR logic is part of the cache controller circuitry

and is responsible for calculating the set index of every cache

request.

Fig. 11: Hardware implementation of the SIR logic for a 2MB

16-way set-associative cache.

A. Entropy Tracking Module (ETM)

The ETM consists of an array of 32 Entropy Counters and

a register holding the block address of the most recent cache

miss. Every time there is a new cache miss, the new missed

address is compared with the most recent missed address and

the Entropy Counters are updated accordingly. At the end of

an interval, the ETM will find the 22 block address bits with

the highest Entropy Counters and return them to the cache

controller. Since the ETM can be implemented in a separate

circuitry, it has no impact on the cache access latency as well

as the cache cycle time.

B. Set Index Resolution Logic (SIR)

The SIR logic is implemented as a parallel array of 32:1

multiplexers, as shown in Figure 11. The index function

configuration f from the ETM is decoded to some bit se-

quence and saved in the Index Selection Register (ISR). This

bit sequence is used as selection bits for the multiplexers.

Appropriate bits are selected to form the bitmasks Xi and

Yi. The set index is then computed as Xi ⊕ Yi.

32:1 multiplexers can be implemented using transmission

gates [21]. Prior work shows that a 16:1 multiplexer imple-

mented using transmission gates can achieve a delay of 19.8

picoseconds [33]. As such, the delay of a 32:1 multiplexer

using transmission gates would be approximately 39.6 picosec-

onds. As a reference, the cycle time of a system running

at 3.0 GHz is 334 picoseconds. In Table II, we provide the

performance of ENTROPYINDEX in both cases: zero delay and

1-cycle delay. For power consumption, our analysis using the

Synopsys Design Compiler NXT [1] shows that the dynamic

and static combined power of ENTROPYINDEX is only 1.064

mW. We use the 28nm technology in our synthesis.

IV. EVALUATION

Parameter Value

Processor 1 and 4-core @ 3.0 GHz, FetchWidth=6,
DecodeWidth=6, ExecWidth=6, RetireWidth=4,
352-entry ROB, 128-entry LQ, 72-entry SQ.

L1 cache (I/D) 32KB (per-core), 2-way, 2-cycle latency.
L2 cache 128KB (per-core), 4-way, 8-cycle latency.
LLC (shared) 2MB and 8MB, 16-way, 32-cycle latency.
Prefetchers L1D: Next-Line Prefetching,

L2: Signature-Path Prefetching [24].
Replacement Least Recently Used (LRU).
DRAM tRP=tRCD=tCAS=24.

TABLE I: Simulated hardware parameters. LLC latency num-

ber is obtained from CACTI 7.0 [14].
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Fig. 12: Single-core performance gain of ENTROPYINDEX compared to other schemes.

A. Methodology

1) Simulator: We evaluate ENTROPYINDEX using the

ChampSim simulation framework [7]. ChampSim is widely

used in cache microarchitecture research and competitions [7],

[10], [16], [17], [25], [31], [35], [38]–[40]. Parameters of the

simulated hardware are shown in Table I.

2) Benchmarks: We test our solution using a diverse set

of memory-intensive applications from SPEC 2006, SPEC

2017, PARSEC 3.0, and GAP [5]. For SPEC 2006 and

2017, we reuse the traces from the 2nd Cache Replacement

Championship (CRC-2) [7] and the 3rd Data Prefetching

Championship (DPC-3) [10]. For PARSEC 3.0, we profile

the applications in single-threaded mode, since ChampSim

does not support multi-threaded program simulation. For all

benchmark suites, we exclude the failed traces and those that

have the misses-per-kilo-instruction (MPKI) less than 1. We

end up using a total of 32 applications in our evaluation.

We also evaluate ENTROPYINDEX on the workloads from

the Championship Value Prediction (CVP) benchmark suite

provided by Qualcomm [8]. Since the entire suite has over

1000 traces, we choose the top 10 workloads with the highest

stdev/mean ratio from each of the compute-int and compute-

fp benchmark suites.

For each benchmark, we warm up the cache for 2 million

LLC accesses, then collect the simulation results of the next

1 billion instructions. For the single-core experiments, we use

an interval size of 1 million LLC accesses.

3) Multiprogram Setup: We evaluate the performance of

ENTROPYINDEX when 4 different workloads are run on 4

different cores simultaneously. We randomly generate 100 sets

of 4 workloads from the set of 32 benchmarks that we have.

For this 4-core experiment, we use an interval size of 4 million

LLC accesses. We first warm up the cache for 8 million LLC

accesses, then run each mix until each application in the mix

has executed at least 250 million instructions. If an application

reaches the end of its trace, the corresponding core repeats the

simulation of that trace from the beginning until every other

benchmark in the set has executed 250 million instructions.

This multiprogram evaluation methodology is similar to prior

work [16], [35], [39].

4) Baseline and Comparison Work: We use the power-of-2

modulo index (DEFAULT) as the baseline. We compare our

solution against different hash functions for set-associative

caches, including XORHASH, PRIME, and CEASER. For

XORHASH, we implement the XOR scheme presented in

Figure 2. For PRIME, we compare against both the theoretical

zero-delay case (PRIME-IDEAL) and the realistic, 5-cycle

delay, Polynomial Method-based prime modulo proposed in

the paper [23] (PRIME-REAL). For CEASER, we implement

the proposed 4-stage Feistel Network cipher with dynamic

remapping scheme from the original work [31]. We also

use the latency of 2 cycles mentioned in the paper. The

NEAR-OPTIMAL index function configurations found by the

Genetic Algorithm serve as the reference for our experiments,

indicating the estimated overall potential performance gains of

ENTROPYINDEX.



For deeper analysis, we also give a performance com-

parison between a 16-way set-associative cache with EN-

TROPYINDEX index and a 16-way skewed-associative cache

(SKEWEDCACHE). The 16-way SKEWEDCACHE uses a total

of 16 hash functions, one per cache way. These hash functions

are generated from the perfect shuffle operations proposed in

the original paper [6].

B. Results

1) Overall Single-core: Figure 12 shows the IPC im-

provement of different indexing schemes compared to the

DEFAULT index function in single-core applications. Without

prefetching, ENTROPYINDEX provides a 3.39% speed up over

DEFAULT, outperforming both XORHASH and PRIME-IDEAL

significantly. The highest speed up is 52.2%, achieved in body-

track. With prefetching, ENTROPYINDEX provides an IPC

improvement of 1.42%, compared to a 0.49% improvement

of XORHASH, and a 0.41% improvement of PRIME-IDEAL.

PRIME-REAL has a negative overall performance gain in both

scenarios due to the 5-cycle delay of the prime division compu-

tation. Similarly, CEASER degrades performance in almost all

applications because of the 2-cycle extra delay caused by the

index decryption calculation. Additionally, the index function

selection in CEASER is completely random, therefore resulting

in unpredictable performance.

Index Function No prefetching With prefetching

CEASER -0.88% -2.12%
PRIME-REAL -0.84% -1.46%
PRIME-IDEAL 1.74% 0.41%
XORHASH 1.76% 0.49%
ENTROPYINDEX 3.39% 1.42%
ENTROPYINDEX (worst-case) 2.85% 0.97%
NEAR-OPTIMAL 7.23% 3.73%

a) IPC improvement over DEFAULT

Index Function No prefetching With prefetching

CEASER -4.22% -5.50%
PRIME-REAL 0.42% 0.38%
PRIME-IDEAL 0.42% 0.29%
XORHASH 0.59% 0.58%
ENTROPYINDEX 3.08% 1.79%
ENTROPYINDEX (worst-case) 3.08% 1.80%
NEAR-OPTIMAL 8.39% 5.71%

b) MPKI reduction over DEFAULT

Index Function No prefetching With prefetching

CEASER -3.39% -4.56%
PRIME-REAL 0.41% 0.52%
PRIME-IDEAL 0.41% 0.15%
XORHASH 0.53% 0.42%
ENTROPYINDEX 2.80% 1.30%
ENTROPYINDEX (worst-case) 2.80% 1.40%
NEAR-OPTIMAL 8.23% 4.99%

c) Estimated uncore energy reduction over DEFAULT

TABLE II: Geometric mean speed up, MPKI reduction and

estimated uncore energy saving of different set-associative

cache indexing schemes for all 32 benchmarks in the study.

To be on the safe side, we also evaluate the worst-case

implementation of ENTROPYINDEX which has a 1-cycle delay.

The per-app NEAR-OPTIMAL index configurations found

by the Genetic Algorithm provide an overall speed up of

7.23% (no-prefetching) and 3.73% (with prefetching) over

the baseline. However, there are some applications where

NEAR-OPTIMAL underperforms ENTROPYINDEX. There are

two possible explanations for these results. First, the Genetic

Algorithm could have converged to a local maxima, resulting

in a sub-optimal indexing configuration. Second, previous

studies have shown that the set indices that suffer from

conflicting accesses can change from one execution phase to

another within the same application [33]. ENTROPYINDEX has

a more fine-grained control over the index function, being able

to change it during the execution. Hence, ENTROPYINDEX has

more flexibility to adapt to any change in the program phases,

leading to better performance in some applications.

Table II presents the overall performance gain, MPKI

and estimated uncore energy reduction rate of different set-

associative cache indexing schemes evaluated in this study.

Adding one cycle delay reduces the performance of ENTROPY-

INDEX by approximately half a percent, even though the MPKI

is not affected. Nevertheless, this worst-case scenario imple-

mentation of ENTROPYINDEX still substantially outperforms

previous index functions.

To estimate the energy consumption, We make two as-

sumptions: (1) every LLC access consumes 1 unit of energy

and (2) every DRAM access consumes 25 unit of energy on

average. These estimation numbers have been used in prior

work [38], [46]. Overall, ENTROPYINDEX can reduce the

uncore energy by 2.80% (no prefetching) and 1.30% (with

prefetching), thanks to the reduction in DRAM traffic.
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Fig. 13: Performance comparison between ENTROPYINDEX

and other indexing schemes in 100 mixes of 4-core workloads.

2) Overall Multi-core: Figure 13 shows the performance

of different indexing schemes in the multi-core setup. When

there is no prefetching, the geometric mean performance gain

of ENTROPYINDEX is 1.07% over the baseline, compared to a

0.76% improvement of XORHASH and a 0.69% improvement

of PRIME-IDEAL. With prefetching, the geometric mean per-

formance gain of ENTROPYINDEX is 0.42% over the baseline,

compared to a 0.25% improvement of XORHASH and a 0.14%

improvement of PRIME-IDEAL.
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Fig. 14: Performance of ENTROPYINDEX compared to other

indexing schemes in non-uniform workloads.

3) Non-uniform Applications: In this study, we define

non-uniform applications as those that have the LLC access

stdev/mean ratio to be more than 0.1 under the DEFAULT in-

dex function. The experimental results show that ENTROPYIN-

DEX significantly outperforms other indexing schemes for non-

uniform applications, with and without prefetching, as shown

in Figure 14. In the no-prefetching scenario, ENTROPYINDEX

provides an IPC improvement of 5.58%, compared to a 2.23%

improvement of XORHASH, a 2.26% improvement of PRIME-

IDEAL, and a 12.25% improvement of NEAR-OPTIMAL. With

prefetching, the geometric mean speed up of ENTROPYINDEX

is 2.08%, compared to a 0.53% improvement of XORHASH,

a 0.35% improvement of PRIME-IDEAL, and a 6.12% im-

provement of NEAR-OPTIMAL. These results indicate that

the non-uniform applications generally do get more benefits

from complex indexing schemes, but not all cases. There are

uniform applications, such as 459 and cc.web, still showing

considerable performance gains.

4) Number of Index Function Changes: Figure 15 shows

the frequency of index function changes observed in our study.

For many applications, ENTROPYINDEX only switches the

index function a few times before it enters the stable phase.

During this phase, new index functions found in later intervals

are mostly skipped because either they are the same as the

one in place, or they do not pass the preset entropy difference

threshold (i.e.
Ei+1−Ei

Ei

< 20%). In our study, we see that

during the stable phase, the entropy sum difference between
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Fig. 15: Number of index function changes during execution

of different applications. ENTROPYINDEX will skip the new

index function if it is either (1) the same as the current

function (num-index-skipped-identical), or (2) the difference
Ei+1−Ei

Ei

< 20% with Ei+1 and Ei are the entropy sum of all

bits in the new function fi+1 and current function fi (num-

index-skipped-under-threshold).

the new index functions and the current function being used

is usually less than 2%.

5) LLC Traffic Cost Due to Cache Remapping: Figure 16

shows the impact of the gradual remapping on the overall LLC

traffic. We measure the total extra cache reads and writebacks

caused by ENTROPYINDEX and divide by the total number of

LLC accesses. Without hardware prefetching, ENTROPYIN-

DEX only generates an extra 0.29% traffic to the LLC. When

hardware prefetching is on, the total LLC traffic increases

significantly due to the prefetching requests. Thus, the extra

traffic due to gradual remapping accounts for just 0.12% of

the total LLC traffic. In both scenario, the remapping cost

stays below 3.0% for all applications. Setting the threshold
Ei+1−Ei

Ei

≥ 20% helps reducing the number of unnecessary

index function changes, minimizing the remapping cost.

6) Compared with SKEWEDCACHE: Figure 17 shows that

a 16-way set-associative LLC with ENTROPYINDEX out-

performs the same-sized 16-way SKEWEDCACHE with and

without hardware prefetching. In the no-prefetching scenario,

ENTROPYINDEX yields an overall IPC speed up of 3.39% over

DEFAULT, compared to a 1.44% speed up of SKEWEDCACHE.

In the presence of hardware prefetching, ENTROPYINDEX

achieves a mean speed up of 1.42% over DEFAULT, com-

pared to a 0.30% improvement of SKEWEDCACHE. Overall,

SKEWEDCACHE performance is extremely polarized. Specifi-
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Fig. 16: Extra LLC traffic cost due to cache remapping (%).

LLC traffic is the sum of all LLC accesses of all types

(demand/prefetch/writeback).

cally, in the no-prefetching scenario, most of the performance

gain of SKEWEDCACHE comes from 3 applications: 482,

bodytrack, streamcluster. Similarly, with prefetching, most of

the SKEWEDCACHE performance gain comes from 5 appli-

cations: 403, 470, 482, bodytrack, streamcluster. The rest of

the applications do not benefit from the multi-index-function

scheme of SKEWEDCACHE, resulting in performance losses

compared to the DEFAULT indexing scheme. On the contrary,

ENTROPYINDEX provides a more uniform performance im-

provement across all applications, therefore having a better

overall result.

7) Performance In The CVP Workloads: Figure 18 shows

the single-core results of ENTROPYINDEX in the CVP work-

loads compared to other schemes. Without prefetching, EN-

TROPYINDEX provides a geometric mean speed up of 3.04%

(with the highest being 6.79%) over the baseline, compared to

a 2.04% of XORHASH, 1.52% of PRIME-IDEAL, and 5.93%

of SKEWEDCACHE. With prefetching, the geometric mean

IPC gain of ENTROPYINDEX is 1.60% (with the highest

being 4.13%), compared to a 1.07% of XORHASH, 0.63% of

PRIME-IDEAL, and 3.42% of SKEWEDCACHE. We observe

that the compute-fp applications in our study generally have

a much higher LLC miss rate and also get more bene-

fits from the advanced indexing schemes compared to the

compute-int applications. Despite having the highest overall

IPC gain, SKEWEDCACHE performance is highly polarized

for CVP workloads, similar to other benchmarks. Most of

SKEWEDCACHE improvement is concentrated in only five

compute-fp benchmarks. In several compute-int workloads,

SKEWEDCACHE gives negative IPC gain over the baseline.
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Fig. 17: Performance comparison between a 16-way set-

associative LLC with ENTROPYINDEX and a 16-way skewed-

associative LLC (SKEWEDCACHE).
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Fig. 18: Performance comparison between different cache

indexing schemes in CVP workloads.

V. BACKGROUND AND RELATED WORK

A. Index Functions for Set Associative Caches

In many workloads, the conventional power-of-two modulo

indexing scheme gives an uneven cache access distribution,

leading to increased conflict misses. Thus, shared LLCs often



use more advanced hash functions to better spread out cache

blocks [15]. The caveat here is that these advanced hash

functions require more power and area. XOR-based index

functions (XORHASH) should increase the randomness of the

index selection, thereby decreasing the likelihood of conflict

misses. XORHASH has been utilized in conflict reduction [42]

as well as skewed [6] and multi-banked [32] caches.

Alternatively, PRIME [23] uses the function: set index =
(address) mod (prime), where prime is the largest prime

that is less than the number of cache sets. PRIME is shown to

improve cache access distribution and is considered the lowest-

conflict function due to it’s minimal number of divisors [9].

The drawback of PRIME is that it is difficult to implement

in a way that is time efficient. One such implementation

is Arbitrary Modulus Indexing [9], which uses the binary

reciprocal array multiplication mechanism to compute the

index for PRIME and other non power-of-2 modulo schemes.

In our experiments, we compare to both PRIME as well as a

configuration with no latency called PRIME-IDEAL to gauge

the full potential of this scheme in a zero-delay scenario.

B. Alternative Cache Organization Methods

The hash-rehash method [3] attempts to increase cache

access distribution with the use of two independent hash

functions. The first function is used until there is a conflict

miss, at which point the second hash function will be used

to place the conflicting block elsewhere. By using two hash

functions, this scheme is mimics two-way set associative

behavior in a direct-mapped cache. The problem with this

approach is that all accesses must check two index locations,

increasing hit time, and possibly undoing any improvement in

IPC. Much like hash-rehash, the column-associative cache [4]

utilizes an additional index function to circumvent conflict

misses. The inclusion of a ”rehashed” bit for each cache

line indicates whether or not that line was placed using the

first or second function. Like the hash-rehash method, the

column-associative cache will experience increased hit time

over a direct-mapped cache with one hash functions. The

skewed-associative cache [6], [36] takes the opposite approach

to hash rehash and column-associative cache by attempting

to mimic direct-mapped behavior in a cache with higher

associativity. Each way in the cache has it’s own hash function,

providing the increased distribution of using multiple index

functions along side the inherent conflict avoidance of set

associative caches. B-Cache [47] attempts to reduce conflict

misses by using a programmable decoder instead of multiple

hash functions. Two fields of the cache block address are

selected, one is used in standard operation and the other is

dynamically set to select the bits that correspond to an empty

cache line in the event of a conflict miss.

Z-cache [34] expands upon the skewed-associative cache

idea of using separate hashing functions for each way by

increasing the number of replacement candidates when a

conflict miss occurs. First-level blocks are cache blocks whose

index directly conflicts with that of the incoming block and

second-level blocks are cache blocks that conflict with the

first-level blocks. First-level and second-level blocks are all

considered candidates for replacement, and the block that was

least recently used is evicted to make room for the incoming

block. The candidates then have to be relocated so that the

incoming block can be placed in a line that matches its

index. The number of levels to consider is arbitrary and can

include all of the cache blocks; however, each additional layer

increases the miss penalty of the cache.

VI. CONCLUSION

Cache index optimization has received far less attention

compared to other cache-related research topics over the

years. We identify the two most important characteristics

of a good cache index function: (1) high performance, and

(2) minimal computational latency. Existing cache indexing

schemes fall short of these two requirements, having either

moderate performance or an impractical, expensive delay.

To address this challenge, we propose ENTROPYINDEX, an

adaptive entropy-based cache indexing scheme that provides

superior performance while having a minimal computational

cost. ENTROPYINDEX provides a cost-effective mechanism to

track the entropy of multiple address bits during the program

execution, then selects the highest entropy bits to form the

index function. When the new index function is installed, EN-

TROPYINDEX triggers the CEASER-based gradual remapping

process [31] to reallocate existing cache lines to their new

set indices. These processes are done dynamically at runtime,

allowing ENTROPYINDEX to adapt to different applications.

We then conduct an in-depth analysis to evaluate the

performance of ENTROPYINDEX. For SPEC 2006, SPEC

2017, PARSEC 3.0, and GAP benchmarks without prefetching,

ENTROPYINDEX delivers an IPC improvement of 3.39% (with

the highest being 52.2%), compared to a 1.74% improve-

ment of the state-of-the-art index function (PRIME) and a

1.76% improvement of a commercialized indexing scheme

(XORHASH) over the baseline power-of-two modulo scheme.

With prefetching, ENTROPYINDEX is the single indexing

scheme with a substantial performance gain of 1.42% (with

the highest to be 30.1%), compared to a 0.41% improvement

of PRIME and a 0.49% improvement of XORHASH over the

same baseline. For non-uniform applications from the SPEC

2006, SPEC 2017, PARSEC 3.0, and GAP benchmark suite

and no-prefetching, ENTROPYINDEX provides an IPC speed

up of 5.58%, compared to a 2.26% speed up of PRIME and a

2.23% speed up of XORHASH. With prefetching on the same

workloads, the IPC speed up of ENTROPYINDEX is 2.08%,

compared to a 0.35% speed up of PRIME and a 0.53% speed up

of XORHASH. For CVP workloads, ENTROPYINDEX delivers

a speed up of up to 6.79% without prefetching and 4.13% with

prefetching compared to the baseline, outperforming previous

schemes.
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