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Abstract—Modern computers heavily rely on caches as one
of the means to achieve higher performance. As a result, cache
management has been the topic of extensive research. Compared
to cache replacement and prefetching, cache indexing has re-
ceived far less interest over the years. Being in the critical path,
a good cache index function must exhibit a high performance
while having a minimal computational delay. Previous indexing
schemes fall short of these requirements, having either moderate
performance or a prohibitively expensive delay. We propose
ENTROPYINDEX, an entropy-based cache indexing scheme that
can deliver superior performance while maintaining a minimal
computational cost. ENTROPYINDEX is based on the idea of
constructing the index function dynamically at runtime using
the address bits with the highest entropy (randomness) to
maximize the balance of the cache access distribution. The
entropy of the address bits is measured by determining which bits
change between two subsequent cache misses. ENTROPYINDEX
periodically compares the entropy of different bits and selects the
ones that change the most. This dynamic selection scheme allows
ENTROPYINDEX to adapt to different types of applications.

Our experimental results show that ENTROPYINDEX outper-
forms previous indexing schemes both with and without hardware
prefetching. For SPEC 2006, SPEC 2017, PARSEC 3.0 and
GAP benchmarks without prefetching, ENTROPYINDEX delivers
a geometric mean IPC improvement of 3.39% (with the highest
being 52.2%), compared to a 1.74% improvement of the state-
of-the-art index function (PRIME) and a 1.76 % improvement of
a commercialized indexing scheme (XORHASH) over the baseline
power-of-two modulo scheme. With prefetching, ENTROPYINDEX
is the only indexing scheme with a substantial performance gain
of 1.42% (with the highest being 30.1%), compared to a 0.41%
improvement of PRIME and a 0.49% improvement of XORHASH
over the same baseline. For non-uniform applications and no-
prefetching, ENTROPYINDEX gives an IPC speed up of 5.58%,
compared to a 2.26% speed up of PRIME and a 2.23% speed up
of XORHASH. For non-uniform applications with prefetching, the
IPC speed up of ENTROPYINDEX is 2.08 %, compared to a 0.35%
speed up of PRIME and a 0.53% speed up of XORHASH. For CVP
workloads without prefetching, ENTROPYINDEX delivers a speed
up of 3.04% over the baseline compared to a 1.52% of PRIME
and a 2.04% of XORHASH. For CVP workloads with prefetching,
ENTROPYINDEX improves the IPC by 1.60%, compared to 0.63 %
of PRIME and 1.07% of XORHASH.

Index Terms—last level cache, indexing, hashing, entropy.

I. INTRODUCTION

A. Motivation

Cache memory is designed to hold frequently used memory
references for fast accessing, bridging the gap between the
processor speed and the main memory latency. As modern
programs are becoming increasingly memory intensive, the

cache system shows an even greater impact on the overall
system performance. To improve the cache performance, the
common tendency is to increase the cache size. However,
such an approach may not always be effective due to the
manufacturing challenges and increased latency associated
with the bigger cache. Additionally, many modern data center
applications’ working set size is now far beyond the LLC
capacity [19]. Therefore, it is important to improve the caches
through innovative microarchitectural research.

When it comes to cache memory research, the two dominant
techniques are replacement [16], [18], [20], [22], [35], [39],
[41] and prefetching [11], [12], [17], [24], [26], [27], [30],
[37], [43]. Such impressive research efforts in both areas
have improved the cache performance significantly, but, at
the same time, come closer to their own eventual limit. For
instance, recent studies in cache replacement show that they
have reached an IPC speed up of 5.7%, being 0.3% away
from the 6.0% unrealizable IPC improvement of the oracle
replacement policy [38]. Hence, it is crucial to find other
avenues to keep pushing the cache performance forward.

Indexing is one of the design aspects of cache memory
that has received relatively less attention. Cache indexing is
essentially a hashing problem where every memory address
is an input and the corresponding set index is the output. A
better index function may help lower the number of conflict
misses. Unfortunately, prior work in conflict misses reduction
mostly focuses on proposing alternative cache organizations,
including skewed-associative caches [6], [34], [36], column-
associative caches [4], or pseudo-associative caches [3]. De-
spite being the most commonly used cache organization in
modern processors [13], there are limited studies on improving
the index function of set-associative cache to reduce conflict
misses, especially in recent years. This paper aims to change
that by revisiting the indexing problem of set-associative
caches.

B. Formulation of Cache Index Function

Finding an ideal hash function for set-associative caches
is a non-trivial task. A good cache index function must
possess two qualities: (1) it must exhibit a high performance
against different workloads even under pressure (such as
hardware prefetching), and (2) it must have a minimal compu-
tation latency. Generally, a high quality hash function should
have a more even distribution in its output, thus leading to



fewer cache conflicts (collisions). The conventional Power-
of-2 modulo function (DEFAULT) has a simple computation,
but pathological patterns found in several applications cause a
significant increase in hashing collisions [23].

1.05

default =

X 104 prime-real =
= prime-ideal B
r_% 1.03 xorhash 1
‘©
2 102
9]
>
O 101
o
3
® 1
Q
@ 0.99
30
a

0.98

spec06 spec17 parsec gap overall
(a) No prefetching
1.05
default S

X 104 prime-real =
= prime-ideal B
E 1.03 xorhash 1
©
2 102
2
O 101
a
3
® 1
@
o
@ 0.99
(&)
a

0.98

overall

spec06

specl7 parsec gap

(b) With prefetching

Fig. 1: Geometric mean IPC improvement of various Last
Level Cache (LLC) index functions normalized to the baseline
(prefetchers used: Next-Line in L1D, Signature Path Prefetch-
ing (SPP) [24] in L2). The baseline is power-of-two modulo
index function (DEFAULT).

Prime-modulo function (PRIME) holds unique mathematical
characteristics that help it to have a better output distribution,
therefore providing a better performance. In fact, PRIME has
been considered to be one of the functions with the lowest
number of conflicts [33]. The main problem of PRIME is that
it requires complicated computations in hardware. Our analysis
using the Synopsys Design Compiler NXT [1] shows that the
prime-modulo calculation based on the Polynomial method
proposed in [23] requires 5 cycles to complete for a system
running at 3.0GHz. To understand the impact of this latency,
let us consider Figure 1. The figure shows the performance
of different index functions with and without prefetching. Hy-
pothetically, PRIME index with zero latency (PRIME-IDEAL)
has better performance than DEFAULT. However, the 5-cycle
increased latency eliminates all the potential benefits (PRIME-
REAL). Therefore, we set out to find a solution that is capable
of providing a high performance hashing capability while
being hardware friendly.
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Fig. 2: Example of one of the most commonly used XOR-hash
indexing schemes [23].

Towards that end, we investigate a family of hash functions
based on the XOR operation (XORHASH). XOR-hashing tech-
niques have been extensively studied [6], [32], [42] and imple-

mented in commercial processors [2], [28], [29]. XORHASH is
built on the idea that the XOR operation will increase the ran-
domness of the output, leading to a more balanced distribution.
XORHASH performs comparable to PRIME-IDEAL (Figure 1)
while having a far more efficient hardware implementation
(Figure 2).

Inspired by these results, we introduce ENTROPYINDEX,
a dynamic indexing scheme based on the idea of maximizing
randomness. We hypothesize that a more balanced distribution
of the set indices can be achieved by increasing the random-
ness of the set index bits. As a result, at runtime, if we can
identify the bits in the cache access addresses with the most
random behavior and use them to form the index function, we
will get better performance.
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Fig. 3: Index function formulations for ENTROPYINDEX.
Assume [, is the set index of address a. For the Uni-sequence
index function, I, is the sequence of NN highest entropy
block address bits. For the Dual-sequence index function,
I, = X,®Y, (X, and Y, are the sequences of N highest and
N next highest entropy bits selected from the block address
(N = loga(num_set)). The Dual-sequence index function
results in significantly better performance (Figure 4).

We come up with two generalized index hashing functions
under the umbrella of ENTROPYINDEX, as shown in Figure 3.
The first index function (Figure 3a) uses the highest random
bits from the block address directly as index. We refer to this
as the Uni-sequence Index. The second function (Figure 3b)
performs an XOR operation between the highest (green color)
and the next highest (purple color) random bits from the block
address to get the final set index. With the use of more bits
and an XOR operation, this formulation (referred to as the
Dual-sequence Index) adds even more randomness to the set
index. As a result, it delivers significantly better performance
over the Uni-sequence, as shown in Figure 4 (more detail in
Section II-A), so we opt to use the Dual-sequence as the final
index formulation of ENTROPYINDEX.



C. Maximizing Randomness: ENTROPYINDEX

Entropy is a measure of randomness [44]. In our indexing
problem, the most random address bits are those that have
the highest entropy. To measure the entropy of individual bits,
each address bit is associated with an Entropy Counter (EC).
These counters are updated upon every miss to the cache.
The address bits of the current cache miss are compared with
those of the previous one. The bits that differ between these
two addresses exhibit a tendency of being more random than
the other bits. Therefore, the EC corresponding to those bits
are incremented. ENTROPYINDEX evaluates these counters at
regular intervals during the program execution, selects the bits
with the highest entropy, and uses them to form the index
function for the subsequent interval. When the new index
function is installed, the CEASER-based gradual remapping
process [31] is triggered to reallocate existing cache lines to
their new set indices. Additionally, since these updates and
the bit selection processes can be done off the critical path,
ENTROPYINDEX does not have any perceivable impact to the
cache access latency and cycle time.

Our empirical results indicate that ENTROPYINDEX sig-
nificantly outperforms previous indexing schemes in both
prefetching and no-prefetching scenarios. For SPEC 2006,
SPEC 2017, PARSEC 3.0 and GAP benchmarks without
prefetching, ENTROPYINDEX provides a geometric mean IPC
improvement of 3.39% over DEFAULT (with the highest being
52.2%), compared to a 1.76% improvement of XORHASH and
a 1.74% improvement of PRIME-IDEAL. In the presence of
hardware prefetching, ENTROPYINDEX delivers a substantial
performance gain of 1.42% (with the highest being 30.1%),
compared to a 0.49% improvement of XORHASH and a 0.41%
improvement of PRIME-IDEAL. For non-uniform applications
from the SPEC 2006, SPEC 2017, PARSEC 3.0 and GAP
benchmark suites, ENTROPYINDEX gives an IPC speed up
of 5.58%, compared to a 2.23% speed up of XORHASH and
a 2.26% speed up of PRIME-IDEAL (no-prefetching). With
prefetching, these numbers are 2.08% for ENTROPYINDEX,
0.53% for XORHASH and 0.35% for PRIME-IDEAL. For CVP
benchmarks without prefetching, ENTROPYINDEX delivers a
geometric mean speed up of 3.04%, compared to a 2.04% of
XORHASH and a 1.52% of PRIME-IDEAL. with prefetching,
ENTROPYINDEX improves the IPC of CVP workloads by
1.60%, compared to 1.07% of XORHASH and 0.63% of
PRIME-IDEAL.

We also conduct a head-to-head performance comparison
between a 16-way set-associative LLC with ENTROPYINDEX
and a 16-way skewed-associative LLC (SKEWEDCACHE).
Simulation results show that the set-associative cache with EN-
TROPYINDEX outperforms SKEWEDCACHE by a substantial
margin: 3.39% versus 1.44% IPC improvement over DEFAULT
(no-prefetching), and 1.42% versus 0.30% IPC improvement
over DEFAULT (with prefetching). Our solution works seam-
lessly with single and multiprogram workloads.

Compared to previous indexing schemes, ENTROPYINDEX
exhibits the ideal qualities for a good index function. First,

ENTROPYINDEX provides a consistently high performance
against a variety of applications both with and without hard-
ware prefetching. Second, ENTROPYINDEX does not incur
extra latency to the cache since all of the counters updating
and bit selection computations can be taken off the critical
path. ENTROPYINDEX also has a straightforward hardware
implementation.

The generalized XOR-based index formulation in Figure 3
also provides us with a systematic approach to find an optimal
or near-optimal performing XOR-hashing configuration for
each application. Particularly, we use the Genetic Algorithm to
search for a near-optimal XOR-hashing configuration for each
application (NEAR-OPTIMAL). These NEAR-OPTIMAL index
configurations found by the Genetic Algorithm represent an
empirical estimation of the overall performance potential of
the XOR-based cache indexing schemes.

D. Contributions
In summary, we make the following major contributions:

o We formulate cache indexing as a general XOR-hashing
problem. Our formulation provides a systematic approach
to find a high performance XOR-hashing configuration
for an application dynamically at runtime.

o With the XOR-hashing formulation, we use the Genetic
Algorithm to find the NEAR-OPTIMAL index function for
each application. These NEAR-OPTIMAL index configu-
rations serve as an empirical estimation of the overall
performance gain potential of the XOR-based cache in-
dexing schemes.

o We propose a robust, adaptive cache indexing scheme
based on the notion of entropy, called ENTROPYINDEX.
At runtime, ENTROPYINDEX tracks the entropy of mul-
tiple bits in the addresses of cache accesses, then selects
the highest entropy bits to form the index function. This
is the first work that looks at entropy to design an XOR-
based cache indexing scheme. We provide an efficient
and detailed implementation of our solution in hardware.

e We provide the first performance analysis of different
cache indexing schemes in the presence of hardware
prefetching.

e« We conduct an in-depth performance analysis of EN-
TROPYINDEX using various benchmark suites. For SPEC
2006, SPEC 2017, PARSEC 3.0, and GAP benchmarks
without prefetching, ENTROPYINDEX delivers a geomet-
ric mean IPC improvement of 3.39% over DEFAULT
(with the highest being 52.2%), compared to a 1.74% im-
provement of the state-of-the-art index function (PRIME-
IDEAL) and a 1.76% improvement of a commercial-
ized indexing scheme (XORHASH). With prefetching,
ENTROPYINDEX delivers a performance gain of 1.42%
over DEFAULT (with the highest being 30.1%), compared
to a 0.49% improvement of XORHASH and a 0.41%
improvement of PRIME-IDEAL. For non-uniform appli-
cations and no-prefetching, ENTROPYINDEX provides an
IPC speed up of 5.58%, compared to a 2.26% speed up
of PRIME-IDEAL and a 2.23% speed up of XORHASH.



For non-uniform applications with prefetching, the IPC
speed up of ENTROPYINDEX is 2.08%, compared to a
0.35% speed up of PRIME and a 0.53% speed up of
XORHASH. ENTROPYINDEX also outperforms SKEWED-
CACHE: 3.39% versus 1.44% IPC improvement over
DEFAULT (no-prefetching), and 1.42% versus 0.30% IPC
improvement over DEFAULT (with prefetching). For CVP
workloads, ENTROPYINDEX delivers a speed up of up to
6.79% without prefetching and 4.13% with prefetching
compared to the baseline.

II. MAIN IDEA: ENTROPYINDEX

At the high level, ENTROPYINDEX works by continuously
monitoring the entropy of multiple individual address bits
during the execution. Periodically, ENTROPYINDEX evaluates
the entropy of these bits and selects the highest entropy bits
to form the new index function. In this section, we will
go through the detailed design of ENTROPYINDEX. Each
subsection corresponds to a question about a design choice
or trade-off that we made during the design process.

Particularly, Section II-A explains (/) how ENTROPYINDEX
keeps track of the entropy of the individual address bits and (2)
how many bits we should track. Section II-B demonstrates (3)
how ENTROPYINDEX manages the existing cache blocks in the
event of an index function change. Section II-C explains (4)
how ENTROPYINDEX minimizes the cost of the index function
changes. We then put them all together with the explanation
on the general workflow of ENTROPYINDEX in Section II-D.

Finally, Section II-F gives a detailed demonstration on
how we use the Genetic Algorithm to search for the NEAR-
OPTIMAL XOR-hashing index configuration for each program.
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Fig. 4: The impact of the number of tracked block address
bits (T') to the performance of ENTROPYINDEX for a 2MB
16-way set-associative cache.

A. The Cost-Effective Per-Bit Entropy Tracking Mechanism

At its core, ENTROPYINDEX maintains an array of T
Entropy Counters (ECs) to measure the entropy of the block
address bits. Each counter corresponds to a single bit of the
block address. As a result, there are T block address bits
being tracked. Figure 4 shows the impact of T" on the overall
performance of ENTROPYINDEX. For a 2MB 16-way set-
associative cache, the index size is 11 bits. Thus, T" > 22
for the Dual-sequence index formulation and 7" > 11 for the
Uni-sequence index formulation. In general, when 7' is greater,
it adds more flexibility to ENTROPYINDEX, therefore leading
to more performance. The simulation results also show that

the Dual-sequence index formulation is superior regardless of
the value of T'. Thus, we opt to use the Dual-sequence index
formulation in the design of our solution. We do not see any
more substantial performance benefit when 7" gets higher than
32. At the same time, increasing 7" over 32 would require a
larger multiplexer, which will lead to more power and higher
delay (more in Section III). Thus, we use 7' = 32 in our
design.

ENTROPYINDEX updates the ECs upon every cache miss.
Figure 5 demonstrates an EC update process. Assume
blk_addr ., 1s the block address of the current cache miss,
blk_addry,s: 1s the block address of the last cache miss, then:

For each bit ¢ in blk_addr. . (i =0 — T):

EC[i] += (blk_addr ey [i] © blk_addriasi]).

The idea behind this update policy is that the more frequent
a bit flips, the higher the entropy of that bit. Thus, the counter
ECYi] is incremented upon every time the bit ¢ — th flips.
block_addr

Entropy Counters (T)

mis_ade, [T o] (T
last
— +=
D —— (I
f__\
mis_ader INHERY
curr

number of tracked bits (T)
Fig. 5: ENTROPYINDEX updates the Entropy Counters upon
every cache miss. 7' is the number of block address bits that
are being tracked.

B. Cache Remapping Strategy

When a new index function is applied to the cache at the
beginning of an interval, existing valid cache blocks need to
be moved to their new locations to keep them consistent with
the new mapping. This transition must be handled carefully in
order to avoid excessive data movement. We use the gradual
remapping scheme proposed in CEASER [31], as shown in
Figure 6.

Next

Move interval

Move B

AC =100
Interval 0

AC =200
Interval 0

AC =300
Interval 0

AC =400
Interval 0

AC = 1000
Interval 1
Fig. 6: Example of the gradual cache remapping. Whenever the
Access Counter (AC) reaches a threshold R, the set pointed at
by Set Pointer (SP) is remapped, and SP is incremented. After
AC reaches the interval size M, we enter the next interval, and
SP is reset. Dirty lines are denoted by the prime notation.
To minimize the number of writebacks, if the source line is
clean and the destination line is dirty, we evict the source line
(example: By and CY).

We maintain an Access Counter (AC) and a Set Pointer
(SP) to keep track of the number of accesses to the cache



and the next set to remap, respectively. After every cache
access, the counter AC is incremented. The parameter R is
the pre-configured remapping rate of the system. When AC
reaches R, the set pointed to by SP is remapped using the
new index function. In Figure 6, R is set to 100, therefore
when AC reaches 100, set 0 is remapped (A4( from set 0 to set
2). After all cache lines in set 0 have been reallocated, SP is
incremented. Similarly, when AC reaches 200, all cache lines
in set 1 are reallocated (B, from set 1 to set 3). At this point,
there is a conflict between By and C{). We use the dirty bit as
the tie-breaker. We will keep the dirty lines. If both lines are
dirty, we keep the line at the source set and evict the line at
the destination set. This process continues until every cache
set is remapped.

When there is a cache request during the remapping process,
we compute the set index using the current index function. If
this set index is greater or equal to the SP, we know that this
set has not yet been remapped, so we serve the cache request
with this set index. Otherwise, we use the new index computed
by the new index function.

C. Minimizing The Cache Remapping Cost

The expected extra miss rate due to the gradual cache
remapping is a function of the remapping rate R and the cache
associativity (let us call it W) [31]. Specifically, the average
miss rate increase due to the remapping process is W/R. For
example, in a 2MB 16-way set-associative cache, if R = 1600,
the extra miss rate generated by the gradual remapping process
is W/R = 16/1600 = 1%. This implies that the new index
function must improve the cache miss rate by at least the same
amount to break even the cost. Thus, we should only switch
to the new index function if its potential miss rate reduction
is higher than the remapping cost. Assume the potential cache
miss rate reduction of an index function is P, then the index
function change is justified if P > W/R.

The problem is that there is no easy way to determine P
at runtime. As a result, we use the total entropy of the index
function to approximate P. Assume f; is the current index
function, f;1 is the new index function, F; and E; are the
entropy sum of all bits in f; and f;; 1 respectively, then:

P, appror — M

In our design, since our remapping rate R = 80, and the
associativity W = 16, therefore the expected extra miss
rate due to cache remapping is W/R = 16/80 = 20%.
Thus, to justify the remapping cost, ENTROPYINDEX only
switches from f; to f;11 when Pypproe > 20%. We dedicate
Section IV-B4 and Figure 15 to discuss about the index
function change frequency observed in our experiments.

D. General Workflow of ENTROPYINDEX

Figure 7 demonstrates the overall workflow of ENTROPY-
INDEX at runtime. During the program execution, ENTROPY-
INDEX continuously tracks the entropy of 7' block address
bits by updating the ECs upon every cache miss. At the end
of an interval 7, ENTROPYINDEX ranks the tracked bits based

on their EC value, then selects the top N bits as the X;
sequence and the next N bits as the Y;; sequence. As such,
the new index function candidate for the next interval could
be represented as f;+1 = X;1+1 ®Y;11. ENTROPYINDEX then
computes F; and F;; (the entropy sum of all bits in f; and
fiz1). If E+ELE > 20%, ENTROPYINDEX will apply the
new index function fi+1 to the cache and trigger the cache
gradual remapping process.

Initialization

Update the ECs upon Execute for M Rank the block address
every cache miss accesses bits based on the ECs

!

Select the highest N bits as va
the next highest N bits as Y,
The new index function f_: X @Y,

Application starts

Is the new X, and Y7
better enough than the
current X; and Y,
to justify the change?

No

Initiate gradual cache Change the index
remapping function f, — f_,

Fig. 7: General workflow of ENTROPYINDEX. M is the
interval size, measured in terms of cache accesses.

E. ENTROPYINDEX For Banked Shared Cache

In this work, we assume a monolithic cache with uniform
timing across all locations. In modern multi-core architectures,
the LLC is split into several banks and distributed across the
chip. This banked LLC design uses some bits from the block
address to index to the cache banks. For this scheme, we have
two possible implementations for ENTROPYINDEX.

The bank-agnostic implementation of ENTROPYINDEX will
treat the cache as if it is monolithic. Thus, the implementation
is similar to Figure 3b. In this design, the set index function
will also determine the bank index. During remapping, cache
lines can be relocated from one bank to another.

The bank-aware implementation of ENTROPYINDEX will
ignore the bank index bits, as shown in Figure 8. In this
scheme, we only modify the set index function, while keep-
ing the bank index function untouched. As a result, X, &
Y, determines the set index within a bank, and N =
loga(num_sets_per_bank). In some modern architectures,
the slice index function may consist of a large amount of
address bits [29], leaving too few remaining bits for the set
index function formulation, therefore indirectly affecting the
performance of ENTROPYINDEX. For these architectures, we
can consider a hybrid design in which some slice index bits
can be reused in the set index function. One possible design
could be tracking a preset number of highest entropy bits from
the slice index, along with the unused address bits for the set
index function formulation.

F. Estimating The Full Potential of ENTROPYINDEX Using
the Genetic Algorithm

In microarchitectural research, it is often useful to have a
theoretical or empirical standard upper bound as a reference.
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Fig. 8: Bank-aware index function formulation. Address bits
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This performance standard gives an estimate of the full poten-
tial of an optimization technique, as well as how much benefit
we have realized. For example, the Belady algorithm serves as
the theoretical performance standard for all replacement policy
research. Unfortunately, the problem of finding the optimal set
of index bits has been demonstrated to be NP-complete [33].
As such, we attempt to find an empirical near-optimal indexing
solution using the Genetic Algorithm.

1) Genetic Algorithm Problem Formulation: The Genetic
Algorithm works by first generating a population of random
candidates (i.e., potential solutions of an optimization prob-
lem). A fitness function is designed to estimate the quality of
each candidate. Higher quality candidates should have higher
fitness scores. In every training iteration, each candidate in the
population is evaluated and ranked based on its fitness score.
The highest quality candidates are retained in the population.
Mutation and Crossover are then performed on these quality
candidates to produce the next generation of candidates. The
Genetic Algorithm uses this process to evolve the candidates
from one generation to the next until it discovers a near-
optimal solution to the problem at hand. To apply the Genetic
Algorithm to our indexing problem, we need to define two key
components: (1) the candidate representation, (2) the definition
of the fitness function and fitness score.

Let us revisit the formulation shown in Figure 3b. Here, X,
and Y, are sequences of bits extracted from the block address
of a. We can represent X, as:

Xa = G[XN_l] a[XN_g]...a[Xl] a[Xo}

where a[X;] denotes the X; — th bit of the address a, and
N = loga(num_set). Similarly, Y, can be represented as:

Ya = (Z[YN_l] a[YN_Q]...a[Yl] a[Yo}.
As such, a candidate G can be represented as:

G=[XNn_1,XN_2,.., X0, YN_1,YN_2,..., Y0].

An optimal XOR-hashing would choose the bit indices
XN_1,...,X1,X0 and Yn_1,..., Y7, Yy such that the number
of cache misses are minimized for a given application. The
lower the number of cache misses is, the better the candidate
should be. Therefore, we use the negative of total cache misses
as the fitness score.

2) Genetic Algorithm Training Process: To evaluate a
candidate, we execute an application with a cache indexing

G1 X1N-1 X1u Y1N-1 Y1o
Mutation l
G'1 ‘ X‘m X"n Y'N-1 ‘ Y‘o
G1 G2
X‘N 1 X10 Y1N-1 Y10 XZN 1 XZ() YZN-‘\ YZ()
H Crossover ................ por
G,‘ ' PYSPEL L Gyz v ....... »
‘ X1N-1 ‘ X1u Y2N~| Yzo ‘ XZN-1 ‘ X2 Y‘N-1 Y1D

Fig. 9: An example of how Mutation and Crossover can be
done with two candidates G and Gs.

scheme based on that particular index function candidate and
count the total number of cache misses. The fitness score of
the candidate will be the negative of the total misses.

In every iteration of the Genetic Algorithm, the candidates
are evaluated to determine their quality. They are then sorted
based on the fitness score. A number of top scoring candidates
are kept and mutated and crossed over in an attempt to
produce better quality candidates for the next iteration. Let us
consider two candidates -G =X, XY LYY
and Go = [X%_,,..., X3, Y3 ,,...,Y{]. Mutating G; can be
done by randomly choosing an index inside the candidate and
changing it to a different valid index as shown in Figure 9.
Here index X{ is changed to a different index X{'. Crossover
can be done by swapping half of one candidate Gy with similar
half of another candidate Gs.

For every application, we use the Genetic Algorithm to find
the set of bits for X, and Y, that has the lowest number
of cache misses. We refer to the solutions found by the
Genetic Algorithm as NEAR-OPTIMAL and include them in
our experiments as a comparison reference.

G. Quantitatively Measuring the Balance of The Cache Access
Distribution

A high-performance hash function would provide a more
even output distribution, leading to less conflicts. Thus, the
balance of the cache access distribution is one of the metrics
to evaluate the quality of the cache index function. We adopt
the ratio stdev/mean from [23] to quantitatively measure
the balance of the cache access distribution. Particularly,
assume ag,ay,...,a, are the number of accesses to the sets
S0, S1, .-, Sn, and a is the mean access count across all sets,
then the ratio stdev(a;)/a represents the balance of the cache
access distribution. Additionally, previous studies show that
sophisticated indexing schemes work better for applications
with an uneven cache access distribution between cache sets,
since there are more opportunities to reduce the cache con-
flicts [23], [45].

In Figure 10, 473.astar with ENTROPYINDEX has a more
even LLC access distribution compared to DEFAULT, rep-
resented by a smaller standard deviation. In this example,
the LLC access stdev/mean ratio of 473.astar reduces from
0.171 with DEFAULT to 0.086 with ENTROPYINDEX. This
improvement in the distribution leads to an IPC speed up
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Fig. 10: LLC access distribution of ENTROPYINDEX and
DEFAULT in no prefetching scenario. The red line is the mean
accesses per set, the blue lines are the upper and lower standard
deviation of the cache accesses.

of 1.75%. Similarly, the LLC access stdev/mean ratio of
fluidanimate and 628.pop2_s reduces from 0.142 to 0.065 and
0.307 to 0.247, leading to a performance gain of 18.7% and
2.09%, respectively. In Section IV-B3, we evaluate the perfor-
mance of ENTROPYINDEX on the subset of workloads with
imbalanced access distribution, measured by the stdev/mean
ratio.

III. IMPLEMENTATION

In this section, we demonstrate the ENTROPYINDEX im-
plementation for a 2MB 16-way set-associative cache. The
hardware design of ENTROPYINDEX consists of two parts: the
Entropy Tracking Module (ETM) and the modified Set Index
Resolution Logic (SIR) of the cache controller. The ETM can
be implemented in a separate circuit, lying off the critical path.
The ETM is responsible for updating the Entropy Counters
upon every cache miss, and determining the bits with the
highest entropy to form the index function f for the next
interval. The SIR logic is part of the cache controller circuitry
and is responsible for calculating the set index of every cache
request.

tag index offset

| 11 bits |

21 bits

______ l
}—D‘ update new address |
e e i
I Entropy Tracking
Module (ETM)
cg @7 l
|
[ T [ T 1 |
log,(num_sets)
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Fig. 11: Hardware implementation of the SIR logic for a 2MB
16-way set-associative cache.
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A. Entropy Tracking Module (ETM)

The ETM consists of an array of 32 Entropy Counters and
a register holding the block address of the most recent cache
miss. Every time there is a new cache miss, the new missed
address is compared with the most recent missed address and
the Entropy Counters are updated accordingly. At the end of
an interval, the ETM will find the 22 block address bits with
the highest Entropy Counters and return them to the cache
controller. Since the ETM can be implemented in a separate
circuitry, it has no impact on the cache access latency as well
as the cache cycle time.

B. Set Index Resolution Logic (SIR)

The SIR logic is implemented as a parallel array of 32:1
multiplexers, as shown in Figure 11. The index function
configuration f from the ETM is decoded to some bit se-
quence and saved in the Index Selection Register (ISR). This
bit sequence is used as selection bits for the multiplexers.
Appropriate bits are selected to form the bitmasks X; and
Y;. The set index is then computed as X; & Y;.

32:1 multiplexers can be implemented using transmission
gates [21]. Prior work shows that a 16:1 multiplexer imple-
mented using transmission gates can achieve a delay of 19.8
picoseconds [33]. As such, the delay of a 32:1 multiplexer
using transmission gates would be approximately 39.6 picosec-
onds. As a reference, the cycle time of a system running
at 3.0 GHz is 334 picoseconds. In Table II, we provide the
performance of ENTROPYINDEX in both cases: zero delay and
1-cycle delay. For power consumption, our analysis using the
Synopsys Design Compiler NXT [1] shows that the dynamic
and static combined power of ENTROPYINDEX is only 1.064
mW. We use the 28nm technology in our synthesis.

IV. EVALUATION

[ Parameter ] Value |

1 and 4-core @ 3.0 GHz, FetchWidth=6,
DecodeWidth=6, ExecWidth=6, RetireWidth=4,
352-entry ROB, 128-entry LQ, 72-entry SQ.
32KB (per-core), 2-way, 2-cycle latency.

Processor

L1 cache (I/D)

L2 cache 128KB (per-core), 4-way, 8-cycle latency.
LLC (shared) 2MB and 8MB, 16-way, 32-cycle latency.
Prefetchers L1D: Next-Line Prefetching,

L2: Signature-Path Prefetching [24].
Replacement Least Recently Used (LRU).
DRAM tRP=tRCD=tCAS=24.

TABLE I: Simulated hardware parameters. LLC latency num-
ber is obtained from CACTI 7.0 [14].
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Fig. 12: Single-core performance gain of ENTROPYINDEX compared to other schemes.

A. Methodology

1) Simulator: We evaluate ENTROPYINDEX using the
ChampSim simulation framework [7]. ChampSim is widely
used in cache microarchitecture research and competitions [7],
[10], [16], [17], [25]1, [31], [35], [38]-[40]. Parameters of the
simulated hardware are shown in Table I.

2) Benchmarks: We test our solution using a diverse set
of memory-intensive applications from SPEC 2006, SPEC
2017, PARSEC 3.0, and GAP [5]. For SPEC 2006 and
2017, we reuse the traces from the 2nd Cache Replacement
Championship (CRC-2) [7] and the 3rd Data Prefetching
Championship (DPC-3) [10]. For PARSEC 3.0, we profile
the applications in single-threaded mode, since ChampSim
does not support multi-threaded program simulation. For all
benchmark suites, we exclude the failed traces and those that
have the misses-per-kilo-instruction (MPKI) less than 1. We
end up using a total of 32 applications in our evaluation.
We also evaluate ENTROPYINDEX on the workloads from
the Championship Value Prediction (CVP) benchmark suite
provided by Qualcomm [8]. Since the entire suite has over
1000 traces, we choose the top 10 workloads with the highest
stdev/mean ratio from each of the compute-int and compute-
fp benchmark suites.

For each benchmark, we warm up the cache for 2 million
LLC accesses, then collect the simulation results of the next
1 billion instructions. For the single-core experiments, we use
an interval size of 1 million LLC accesses.

3) Multiprogram Setup: We evaluate the performance of
ENTROPYINDEX when 4 different workloads are run on 4
different cores simultaneously. We randomly generate 100 sets
of 4 workloads from the set of 32 benchmarks that we have.
For this 4-core experiment, we use an interval size of 4 million
LLC accesses. We first warm up the cache for 8 million LLC
accesses, then run each mix until each application in the mix
has executed at least 250 million instructions. If an application
reaches the end of its trace, the corresponding core repeats the
simulation of that trace from the beginning until every other
benchmark in the set has executed 250 million instructions.
This multiprogram evaluation methodology is similar to prior
work [16], [35], [39].

4) Baseline and Comparison Work: We use the power-of-2
modulo index (DEFAULT) as the baseline. We compare our
solution against different hash functions for set-associative
caches, including XORHASH, PRIME, and CEASER. For
XORHASH, we implement the XOR scheme presented in
Figure 2. For PRIME, we compare against both the theoretical
zero-delay case (PRIME-IDEAL) and the realistic, 5-cycle
delay, Polynomial Method-based prime modulo proposed in
the paper [23] (PRIME-REAL). For CEASER, we implement
the proposed 4-stage Feistel Network cipher with dynamic
remapping scheme from the original work [31]. We also
use the latency of 2 cycles mentioned in the paper. The
NEAR-OPTIMAL index function configurations found by the
Genetic Algorithm serve as the reference for our experiments,
indicating the estimated overall potential performance gains of
ENTROPYINDEX.



For deeper analysis, we also give a performance com-
parison between a 16-way set-associative cache with EN-
TROPYINDEX index and a 16-way skewed-associative cache
(SKEWEDCACHE). The 16-way SKEWEDCACHE uses a total
of 16 hash functions, one per cache way. These hash functions
are generated from the perfect shuffle operations proposed in
the original paper [6].

B. Results

1) Overall Single-core: Figure 12 shows the IPC im-
provement of different indexing schemes compared to the
DEFAULT index function in single-core applications. Without
prefetching, ENTROPYINDEX provides a 3.39% speed up over
DEFAULT, outperforming both XORHASH and PRIME-IDEAL
significantly. The highest speed up is 52.2%, achieved in body-
track. With prefetching, ENTROPYINDEX provides an IPC
improvement of 1.42%, compared to a 0.49% improvement
of XORHASH, and a 0.41% improvement of PRIME-IDEAL.
PRIME-REAL has a negative overall performance gain in both
scenarios due to the 5-cycle delay of the prime division compu-
tation. Similarly, CEASER degrades performance in almost all
applications because of the 2-cycle extra delay caused by the
index decryption calculation. Additionally, the index function
selection in CEASER is completely random, therefore resulting
in unpredictable performance.

H Index Function ‘ No prefetching H With prefetching H

-0.88% -2.12%
-0.84% -1.46%
1.74% 0.41%
1.76% 0.49%
3.39% 1.42%
2.85% 0.97%
7.23% 3.73%

CEASER

PRIME-REAL

PRIME-IDEAL

XORHASH

ENTROPYINDEX
ENTROPYINDEX (worst-case)
NEAR-OPTIMAL

a) IPC improvement over DEFAULT

H Index Function ‘ No prefetching H With prefetching H

-4.22% -5.50%
0.42% 0.38%
0.42% 0.29%
0.59% 0.58%
3.08% 1.79%
3.08% 1.80%
8.39% 5.71%

CEASER

PRIME-REAL

PRIME-IDEAL

XORHASH

ENTROPYINDEX
ENTROPYINDEX (worst-case)
NEAR-OPTIMAL

b) MPKI reduction over DEFAULT

H Index Function ‘ No prefetching H With prefetching H

-3.39% -4.56%
0.41% 0.52%
0.41% 0.15%
0.53% 0.42%
2.80% 1.30%
2.80% 1.40%
8.23% 4.99%

CEASER

PRIME-REAL

PRIME-IDEAL

XORHASH

ENTROPYINDEX
ENTROPYINDEX (worst-case)
NEAR-OPTIMAL

c) Estimated uncore energy reduction over DEFAULT

TABLE II: Geometric mean speed up, MPKI reduction and
estimated uncore energy saving of different set-associative
cache indexing schemes for all 32 benchmarks in the study.
To be on the safe side, we also evaluate the worst-case
implementation of ENTROPYINDEX which has a 1-cycle delay.

The per-app NEAR-OPTIMAL index configurations found
by the Genetic Algorithm provide an overall speed up of
7.23% (no-prefetching) and 3.73% (with prefetching) over
the baseline. However, there are some applications where

NEAR-OPTIMAL underperforms ENTROPYINDEX. There are
two possible explanations for these results. First, the Genetic
Algorithm could have converged to a local maxima, resulting
in a sub-optimal indexing configuration. Second, previous
studies have shown that the set indices that suffer from
conflicting accesses can change from one execution phase to
another within the same application [33]. ENTROPYINDEX has
a more fine-grained control over the index function, being able
to change it during the execution. Hence, ENTROPYINDEX has
more flexibility to adapt to any change in the program phases,
leading to better performance in some applications.

Table II presents the overall performance gain, MPKI
and estimated uncore energy reduction rate of different set-
associative cache indexing schemes evaluated in this study.
Adding one cycle delay reduces the performance of ENTROPY-
INDEX by approximately half a percent, even though the MPKI
is not affected. Nevertheless, this worst-case scenario imple-
mentation of ENTROPYINDEX still substantially outperforms
previous index functions.

To estimate the energy consumption, We make two as-
sumptions: (1) every LLC access consumes 1 unit of energy
and (2) every DRAM access consumes 25 unit of energy on
average. These estimation numbers have been used in prior
work [38], [46]. Overall, ENTROPYINDEX can reduce the
uncore energy by 2.80% (no prefetching) and 1.30% (with
prefetching), thanks to the reduction in DRAM traffic.
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Fig. 13: Performance comparison between ENTROPYINDEX
and other indexing schemes in 100 mixes of 4-core workloads.

2) Overall Multi-core: Figure 13 shows the performance
of different indexing schemes in the multi-core setup. When
there is no prefetching, the geometric mean performance gain
of ENTROPYINDEX is 1.07% over the baseline, compared to a
0.76% improvement of XORHASH and a 0.69% improvement
of PRIME-IDEAL. With prefetching, the geometric mean per-
formance gain of ENTROPYINDEX is 0.42% over the baseline,
compared to a 0.25% improvement of XORHASH and a 0.14%
improvement of PRIME-IDEAL.
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Fig. 14: Performance of ENTROPYINDEX compared to other
indexing schemes in non-uniform workloads.

3) Non-uniform Applications: In this study, we define
non-uniform applications as those that have the LLC access
stdev /mean ratio to be more than 0.1 under the DEFAULT in-
dex function. The experimental results show that ENTROPYIN-
DEX significantly outperforms other indexing schemes for non-
uniform applications, with and without prefetching, as shown
in Figure 14. In the no-prefetching scenario, ENTROPYINDEX
provides an IPC improvement of 5.58%, compared to a 2.23%
improvement of XORHASH, a 2.26% improvement of PRIME-
IDEAL, and a 12.25% improvement of NEAR-OPTIMAL. With
prefetching, the geometric mean speed up of ENTROPYINDEX
is 2.08%, compared to a 0.53% improvement of XORHASH,
a 0.35% improvement of PRIME-IDEAL, and a 6.12% im-
provement of NEAR-OPTIMAL. These results indicate that
the non-uniform applications generally do get more benefits
from complex indexing schemes, but not all cases. There are
uniform applications, such as 459 and cc.web, still showing
considerable performance gains.

4) Number of Index Function Changes: Figure 15 shows
the frequency of index function changes observed in our study.
For many applications, ENTROPYINDEX only switches the
index function a few times before it enters the stable phase.
During this phase, new index functions found in later intervals
are mostly skipped because either they are the same as the
one in place, or they do not pass the preset entropy difference
threshold (i.e. % < 20%). In our study, we see that
during the stable pﬁase, the entropy sum difference between
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Fig. 15: Number of index function changes during execution
of different applications. ENTROPYINDEX will skip the new
index function if it is either (1) the same as the current
function (num-index-skipped-identical), or (2) the difference
% < 20% with E; ;1 and E; are the entropy sum of all
bits in the new function fi+1 and current function f; (num-

index-skipped-under-threshold).

the new index functions and the current function being used
is usually less than 2%.

5) LLC Traffic Cost Due to Cache Remapping: Figure 16
shows the impact of the gradual remapping on the overall LLC
traffic. We measure the total extra cache reads and writebacks
caused by ENTROPYINDEX and divide by the total number of
LLC accesses. Without hardware prefetching, ENTROPYIN-
DEX only generates an extra 0.29% traffic to the LLC. When
hardware prefetching is on, the total LLC traffic increases
significantly due to the prefetching requests. Thus, the extra
traffic due to gradual remapping accounts for just 0.12% of
the total LLC traffic. In both scenario, the remapping cost
stays below 3.0% for all applications. Setting the threshold
% > 20% helps reducing the number of unnecessary
index function changes, minimizing the remapping cost.

6) Compared with SKEWEDCACHE: Figure 17 shows that
a 16-way set-associative LLC with ENTROPYINDEX out-
performs the same-sized 16-way SKEWEDCACHE with and
without hardware prefetching. In the no-prefetching scenario,
ENTROPYINDEX yields an overall IPC speed up of 3.39% over
DEFAULT, compared to a 1.44% speed up of SKEWEDCACHE.
In the presence of hardware prefetching, ENTROPYINDEX
achieves a mean speed up of 1.42% over DEFAULT, com-
pared to a 0.30% improvement of SKEWEDCACHE. Overall,
SKEWEDCACHE performance is extremely polarized. Specifi-
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cally, in the no-prefetching scenario, most of the performance
gain of SKEWEDCACHE comes from 3 applications: 482,
bodytrack, streamcluster. Similarly, with prefetching, most of
the SKEWEDCACHE performance gain comes from 5 appli-
cations: 403, 470, 482, bodytrack, streamcluster. The rest of
the applications do not benefit from the multi-index-function
scheme of SKEWEDCACHE, resulting in performance losses
compared to the DEFAULT indexing scheme. On the contrary,
ENTROPYINDEX provides a more uniform performance im-
provement across all applications, therefore having a better
overall result.

7) Performance In The CVP Workloads: Figure 18 shows
the single-core results of ENTROPYINDEX in the CVP work-
loads compared to other schemes. Without prefetching, EN-
TROPYINDEX provides a geometric mean speed up of 3.04%
(with the highest being 6.79%) over the baseline, compared to
a 2.04% of XORHASH, 1.52% of PRIME-IDEAL, and 5.93%
of SKEWEDCACHE. With prefetching, the geometric mean
IPC gain of ENTROPYINDEX is 1.60% (with the highest
being 4.13%), compared to a 1.07% of XORHASH, 0.63% of
PRIME-IDEAL, and 3.42% of SKEWEDCACHE. We observe
that the compute-fp applications in our study generally have
a much higher LLC miss rate and also get more bene-
fits from the advanced indexing schemes compared to the
compute-int applications. Despite having the highest overall
IPC gain, SKEWEDCACHE performance is highly polarized
for CVP workloads, similar to other benchmarks. Most of
SKEWEDCACHE improvement is concentrated in only five
compute-fp benchmarks. In several compute-int workloads,
SKEWEDCACHE gives negative IPC gain over the baseline.
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Fig. 17: Performance comparison between a 16-way set-
associative LLC with ENTROPYINDEX and a 16-way skewed-
associative LLC (SKEWEDCACHE).
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Fig. 18: Performance comparison between different cache
indexing schemes in CVP workloads.

V. BACKGROUND AND RELATED WORK

A. Index Functions for Set Associative Caches

In many workloads, the conventional power-of-two modulo
indexing scheme gives an uneven cache access distribution,
leading to increased conflict misses. Thus, shared LLCs often



use more advanced hash functions to better spread out cache
blocks [15]. The caveat here is that these advanced hash
functions require more power and area. XOR-based index
functions (XORHASH) should increase the randomness of the
index selection, thereby decreasing the likelihood of conflict
misses. XORHASH has been utilized in conflict reduction [42]
as well as skewed [6] and multi-banked [32] caches.

Alternatively, PRIME [23] uses the function: set index =
(address) mod (prime), where prime is the largest prime
that is less than the number of cache sets. PRIME is shown to
improve cache access distribution and is considered the lowest-
conflict function due to it’s minimal number of divisors [9].
The drawback of PRIME is that it is difficult to implement
in a way that is time efficient. One such implementation
is Arbitrary Modulus Indexing [9], which uses the binary
reciprocal array multiplication mechanism to compute the
index for PRIME and other non power-of-2 modulo schemes.
In our experiments, we compare to both PRIME as well as a
configuration with no latency called PRIME-IDEAL to gauge
the full potential of this scheme in a zero-delay scenario.

B. Alternative Cache Organization Methods

The hash-rehash method [3] attempts to increase cache
access distribution with the use of two independent hash
functions. The first function is used until there is a conflict
miss, at which point the second hash function will be used
to place the conflicting block elsewhere. By using two hash
functions, this scheme is mimics two-way set associative
behavior in a direct-mapped cache. The problem with this
approach is that all accesses must check two index locations,
increasing hit time, and possibly undoing any improvement in
IPC. Much like hash-rehash, the column-associative cache [4]
utilizes an additional index function to circumvent conflict
misses. The inclusion of a “rehashed” bit for each cache
line indicates whether or not that line was placed using the
first or second function. Like the hash-rehash method, the
column-associative cache will experience increased hit time
over a direct-mapped cache with one hash functions. The
skewed-associative cache [6], [36] takes the opposite approach
to hash rehash and column-associative cache by attempting
to mimic direct-mapped behavior in a cache with higher
associativity. Each way in the cache has it’s own hash function,
providing the increased distribution of using multiple index
functions along side the inherent conflict avoidance of set
associative caches. B-Cache [47] attempts to reduce conflict
misses by using a programmable decoder instead of multiple
hash functions. Two fields of the cache block address are
selected, one is used in standard operation and the other is
dynamically set to select the bits that correspond to an empty
cache line in the event of a conflict miss.

Z-cache [34] expands upon the skewed-associative cache
idea of using separate hashing functions for each way by
increasing the number of replacement candidates when a
conflict miss occurs. First-level blocks are cache blocks whose
index directly conflicts with that of the incoming block and
second-level blocks are cache blocks that conflict with the

first-level blocks. First-level and second-level blocks are all
considered candidates for replacement, and the block that was
least recently used is evicted to make room for the incoming
block. The candidates then have to be relocated so that the
incoming block can be placed in a line that matches its
index. The number of levels to consider is arbitrary and can
include all of the cache blocks; however, each additional layer
increases the miss penalty of the cache.

VI. CONCLUSION

Cache index optimization has received far less attention
compared to other cache-related research topics over the
years. We identify the two most important characteristics
of a good cache index function: (1) high performance, and
(2) minimal computational latency. Existing cache indexing
schemes fall short of these two requirements, having either
moderate performance or an impractical, expensive delay.
To address this challenge, we propose ENTROPYINDEX, an
adaptive entropy-based cache indexing scheme that provides
superior performance while having a minimal computational
cost. ENTROPYINDEX provides a cost-effective mechanism to
track the entropy of multiple address bits during the program
execution, then selects the highest entropy bits to form the
index function. When the new index function is installed, EN-
TROPYINDEX triggers the CEASER-based gradual remapping
process [31] to reallocate existing cache lines to their new
set indices. These processes are done dynamically at runtime,
allowing ENTROPYINDEX to adapt to different applications.

We then conduct an in-depth analysis to evaluate the
performance of ENTROPYINDEX. For SPEC 2006, SPEC
2017, PARSEC 3.0, and GAP benchmarks without prefetching,
ENTROPYINDEX delivers an IPC improvement of 3.39% (with
the highest being 52.2%), compared to a 1.74% improve-
ment of the state-of-the-art index function (PRIME) and a
1.76% improvement of a commercialized indexing scheme
(XORHASH) over the baseline power-of-two modulo scheme.
With prefetching, ENTROPYINDEX is the single indexing
scheme with a substantial performance gain of 1.42% (with
the highest to be 30.1%), compared to a 0.41% improvement
of PRIME and a 0.49% improvement of XORHASH over the
same baseline. For non-uniform applications from the SPEC
2006, SPEC 2017, PARSEC 3.0, and GAP benchmark suite
and no-prefetching, ENTROPYINDEX provides an IPC speed
up of 5.58%, compared to a 2.26% speed up of PRIME and a
2.23% speed up of XORHASH. With prefetching on the same
workloads, the IPC speed up of ENTROPYINDEX is 2.08%,
compared to a 0.35% speed up of PRIME and a 0.53% speed up
of XORHASH. For CVP workloads, ENTROPYINDEX delivers
a speed up of up to 6.79% without prefetching and 4.13% with
prefetching compared to the baseline, outperforming previous
schemes.
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