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ABSTRACT 9 

Metal-organic frameworks (MOFs) promise to engender technology-enabling properties for numerous applications. However, one 10 

significant challenge in MOF development is their overwhelmingly large design space, which is intractable to fully explore even 11 

computationally. To find diverse optimal MOF designs without exploring the full design space, we develop Vendi Bayesian optimization 12 

(VBO), a new algorithm that combines traditional Bayesian optimization with the Vendi Score, a recently introduced interpretable 13 

diversity measure. Both Bayesian optimization and the Vendi Score require a kernel similarity function, we therefore also introduce a 14 

novel similarity function in the space of MOFs that accounts for both chemical and structural features. This new similarity metric enables 15 

VBO to find optimal MOFs with properties that may depend on both chemistry and structure. We statistically assessed VBO by its 16 

ability to optimize three NH3-adsorption dependent performance metrics that depend, to different degrees, on MOF chemistry and 17 

structure. With ten simulated campaigns done for each metric, VBO consistently outperformed random search to find high-performing 18 

designs within a 1,000-MOF subset for i) NH3 storage, ii) NH3 removal from membrane plasma reactors, and iii) NH3 capture from air. 19 

Then, with one campaign dedicated to finding optimal MOFs for NH3 storage in a “hybrid” ~10,000-MOF database, we identify twelve 20 

extant and eight hypothesized MOF designs with potentially record-breaking working capacity ∆NNH3 between 300 K and 400 K at 1 21 

bar. Specifically, the best MOF designs are predicted to i) achieve ∆NNH3 values between 23.6 and 29.3 mmol/gm, potentially surpassing 22 

those that MOFs previously experimentally tested for NH3 adsorption would have at the proposed operation conditions, ii) be thermally 23 

stable at the operation conditions and iii) require only ca. 10% of the energy content in NH3 to release the stored molecule from the 24 

MOF. Finally, the analysis of the generated simulation data during the search indicates that a pore size of around 10 Å, a heat of 25 

adsorption around 33 kJ/mol, and the presence of Ca could be part of MOF design rules that could help optimize NH3 working capacity 26 

at the proposed operation conditions. 27 
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1. INTRODUCTION 30 

Metal-organic frameworks (MOFs) are a class of porous 31 

materials that could be bestowed with properties that could 32 

enable technological breakthroughs in energy, environment, 33 

and other fields.1–4 The idea is that judicious selection of MOF 34 

constituent nodes and linkers could yield whichever 35 

architecture and/or chemistry is required to engender the 36 

necessary material property or behavior to enable the 37 

breakthrough.5 However, one persisting challenge in MOF 38 

development has been that the combinatorics of constituent 39 

building blocks creates an overwhelmingly large material 40 

“design space,”6,7,8 To expedite the navigation of the MOF 41 

design space, for longer than a decade, MOF development has 42 

been aided by high throughput computation instead of solely 43 

relying on experiments.9–11 44 

High throughput computation in MOFs has usually 45 

relied on exhaustively predicting key performance-relevant 46 

properties in all MOFs in a database—usually using molecular 47 

simulation.12,13 Some notable databases  have been created out 48 

of experimentally reported MOF structures (i.e. extant MOFs)14 49 

curated from the Cambridge Structure Database, or 50 

hypothesized MOF structures outputted by crystal creation 51 

codes (i.e. MOF prototypes).6,15–17 Notable databases of extant 52 

MOFs have been created by Chung et al.14 (~20k MOFs) and 53 

by Moghadam et al.18 (~70k MOFs). On the other hand, notable 54 

databases of hypothesized MOFs include those created by 55 

Wilmer et al.15 (~137k MOFs), Colon et al.19 (~13k MOFs),  56 

Boyd et al.20 (~280k MOFs), among others. Note, however, that 57 

the size of these databases is very small compared to the 58 

vastness of the MOF design space, which some estimate to span 59 

at least one trillion MOFs. 21  60 

Indeed, current computational capabilities only allows 61 

evaluating a small number of MOFs relative to the MOF design 62 

space size. For instance, the work by Simon et al.13only 63 

managed to predict methane adsorption in ~650k materials, 64 

even though methane adsorption is one of the fastest properties 65 

to predict by simulation.22 Calculation of other properties have 66 

proven even more limiting. For instance, prediction of charge 67 

distribution through density functional theory (DFT) by 68 

Nazarian et al.23 was limited to ~3k structures. Prediction of 69 

band gaps via DFT by Rosen et al.24 was limited to ~20k 70 

structures. Prediction of thermal conductivity by Islamov et al.9 71 

via molecular dynamics was limited to ~10k structures. 72 
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Predictions of hexane isomer mixture adsorption by Chung et 1 

al.25 was limited to ~500 structures. Moreover, in the case of 2 

adsorption applications, computational limits may be even 3 

more restrictive since screening for such properties for a given 4 

application may require considering different conditions in 5 

temperature, pressure, and composition (in the case of 6 

mixtures).  7 

 One can argue that the discovery of technology-8 

enabling MOFs have been hampered by the inability to explore 9 

the MOF design space at large. One way that researchers have 10 

attempted to expand the number of MOFs considered in a given 11 

study is through hierarchical screening. But the latter first 12 

requires the calculation of an inexpensive descriptor which 13 

(hopefully) points to (smaller) regions of the MOF design space 14 

where the property of interest may have desirable values.25–27 15 

Therefore, hierarchical screening presents caveats such as: i) 16 

requiring extensive “domain knowledge” to identify an 17 

effective, inexpensive “descriptor”28 ii) still being unlikely that 18 

the descriptor can be calculated on the MOF design space at 19 

large, iii) due to a probably imperfect correlation, still being 20 

possible that the descriptor calculation may overlook regions of 21 

design space where the property of interest could have desirable 22 

values.  23 

Hence, there is growing interest in methods that allow 24 

exploring the MOF design space efficiently, while still relying 25 

solely on direct property calculations. For instance, genetic 26 

algorithms (GAs) have been explored to evolve an initial small 27 

subset of MOFs into new subsets of MOFs with optimized 28 

values of the property of interest (e.g.,  pre-combustion CO2 29 

capture  properties,29 or CH4 storage properties21).  However, it 30 

is understood that GAs tend to require a larger number of 31 

evaluations and are slower than other sophisticated 32 

search/optimization methods. GAs thus may become rapidly 33 

intractable as property calculation becomes more 34 

computationally expensive. In contrast, Bayesian optimization 35 

is known to be a more sample-efficient method,30 and hence is 36 

finding success in tasks such as screening molecules with high 37 

power conversion efficiency for clean energy,31 optimizing 38 

reactions for molecular synthesis32, and finding  low-energy 39 

molecular conformers,33 among others.34–36  40 

The potential benefits of Bayesian methods to 41 

optimize porous materials have been suggested by work by 42 

Simon and coworkers.37 Working with the data from previously 43 

screened ~70k covalent-organic frameworks (COFs), these 44 

authors showed that Bayesian optimization could find ca. 50% 45 

of the top-100 adsorbents for methane storage only exploring 46 

ca. 1% of the COFs. However, the approach used by these 47 

authors may not generalize well to searches aiming to optimize 48 

other material properties. For instance, their representation of 49 

the adsorbent consisted of a 12-component vector of five 50 

common (global) textural properties and simple counts of seven 51 

specific chemical elements. Such simple representation likely 52 

leverages that methane adsorption is primarily a (relatively) 53 

smooth function of textural properties. However, it may not be 54 

suitable when the property of interest also depends strongly on 55 

material chemistry.  56 

On the other hand, traditional Bayesian optimization 57 

is designed to find one single optimal solution, which may turn 58 

out to correspond to a MOF design that may not be 59 

experimentally synthesizable or stable, or for which the 60 

performance prediction may have turned out to be unreliable. 61 

The task of optimizing a MOF performance metric while 62 

ensuring other properties (e.g., synthesizability and stability) 63 

also have desirable values can be framed as a multi-objective 64 

optimization problem. Such formulation, however, assumes 65 

that all relevant metrics are known a priori and can be evaluated 66 

in similar manners.26,38 Multi-objective optimization cannot be 67 

realized, however, if some objectives can only be evaluated 68 

after screening is completed, or if we cannot anticipate all 69 

possible factors that should be accounted for during the search 70 

(i.e., prediction reliability for each particular MOF). We thus 71 

take a different approach: finding multiple MOFs, different 72 

from one another, with desirable predicted values for the 73 

primary property of interest.  74 

Specifically, in this work, we build a general and 75 

efficient framework for searching and finding several optimal 76 

MOF designs that are distinct from each other. Our framework 77 

is designed to be amenable to performance metrics that depend 78 

strongly on either MOF chemistry or textural properties, or both. 79 

More specifically, we combine the traditional tools of Bayesian 80 

optimization with the Vendi Score—a statistical measure of 81 

diversity developed by Friedman and Dieng39—to find a 82 

diverse set of promising MOF designs, each yielding a 83 

sufficiently high value for the metric of interest, instead of 84 

committing to a single optimal MOF that may not be 85 

synthesizable or stable. This comes in the form of promoting 86 

more exploration in the behavior of our optimization algorithm, 87 

selecting MOFs that are diverse from those already inspected. 88 

We name this framework Vendi Bayesian optimization (VBO). 89 

We first statistically test the efficacy of combining a 90 

chemistry- and structure-aware MOF representation with VBO, 91 

using a randomly drawn subset of ~1,000 MOFs as a testbed. 92 

We conducted these tests on the optimization of three 93 

performance metrics depending on the adsorption of NH3. We 94 

chose metrics involving this molecule because NH3 is important 95 

for our society as a precursor to fertilizers,40 and could gain 96 

further prominence in the near future as an energy vector.41 97 

From an application perspective, the three chosen metrics are 98 

relevant to rank MOFs for their potential to help make the 99 

synthesis of NH3 sustainable and carbon-free,42 and NH3 100 

storage and transportation easy, energy-efficient and safe.43–45 101 

From a methods perspective, the three chosen metrics pose 102 

different challenges to our developed search method. Namely, 103 

the polarity of ammonia46 and the different adsorption 104 

conditions associated with each application (Fig. 1) make the 105 

different metrics to balance differently their dependence on 106 

MOF chemistry and textural properties (vide infra). On the 107 

other hand, each metric present different (mathematical) 108 

complexity on their relation to adsorption loadings.  109 

Upon statistical testing of VBO efficacy, we finish this 110 

work with a real search campaign on a ~10,000-MOF hybrid 111 

database (i.e., containing extant and hypothesized structures) to 112 

find MOFs with outstanding predicted NH3 storage 113 

performance.  We chose this application for the real search due 114 

to the growing interest of experimentalist chemists in the use of 115 

MOFs for NH3 storage as reflected by the growing number of 116 

NH3 adsorption measurements at 1 bar and 300 K (i.e., ambient 117 

conditions) reported in recent years. For instance, Moribe et al.  118 
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Figure 1. Applications for which NH3 adsorption-based MOF performance metrics were optimized to test the efficacy of our Vendi Bayesian 3 

optimization (VBO) framework. a) Adsorptive NH3 storage at ambient conditions with release at 400 K. b) Membrane-based NH3 removal from plasma 4 

reactors during NH3 synthesis at 400 K and 1 bar. c) Dilute NH3 capture from air in adsorbent traps at ambient conditions. Gas-phase composition 5 

relevant to each application indicated at the top.  The three chosen metrics present different levels of dependence on MOF chemistry and structure.6 

reported 10.5 mmolNH3/gMOF in Ga-PMOF,47 Guo et al. 12.8 7 

mmolNH3/gMOF in MIL-160,48 Kim et al. 23.9 mmolNH3/gMOF in 8 

Mg-MOF-7449 and 23.5  mmolNH3/gMOF in Ni_acryl_TMA50, 9 

and Shi et al. 33.9 mmolNH3/gMOF in LiCl-MIL-53,51 among 10 

others.52,53  But despite growing interest, not much has been 11 

done to leverage search algorithms to identify promising MOFs 12 

for NH3 storage. Thus, here we show how our developed VBO, 13 

a novel search algorithm for MOFs, can be used to fill such 14 

knowledge gaps. Furthermore, our analysis of the MOFs 15 

explored by our VBO provides new design rules to guide 16 

experimentalists developing MOFs for NH3 storage. 17 

2. SIMULATION METHODS 18 

2.1. MOF database About 12,000 structures from the 2019 19 

CoRE MOF database14 and about 3,000 structures created 20 

earlier using ToBaCCo-3.06 were used as a starting point to 21 

ultimately create a hybrid database of ~10,000 structures. These 22 

MOF sources are complementary. CoRE MOFs are extant 23 

structures with high, but non-systematic, chemical and 24 

structural diversity that tend to feature small pores.54 ToBaCCo 25 

MOFs are hypothesized structures with systematic, but medium, 26 

chemical and structural diversity that feature medium to large 27 

pores.54 All MOFs underwent characterization of their void 28 

fraction, surface area, and pore size distribution using zeo++. A 29 

probe radius of 1.3 Å was used by zeo++ to determine the 30 

accessibility of pores through the percolation algorithm.55 Then 31 

a probe of same size was used to determine the characteristic of 32 

the accessible pores. Note that the radius of 1.3 Å is adopted to 33 

match the kinetic radius of NH3.56 Failures during 34 

characterization calculations and assignment of charges to 35 

MOF atoms (see Section 2.2) ultimately reduced the total 36 

number of structures available for this work to around 10,000.  37 

2.2. Monte Carlo simulations.  38 

Monte Carlo simulations were done using RASPA-2.0.57,58 39 

Grand canonical Monte Carlo (GCMC) was used to predict 40 

adsorption loadings. Temperature and partial pressures of 41 

adsorbates in the gas phase were kept constant at the values 42 

relevant for the adsorption conditions of interest. Each 43 

simulation consisted of 10,000 equilibration cycles, followed 44 

by 10,000 production cycles. Each cycle consisted of as many 45 

Monte Carlo moves as molecules there are in the simulation box, 46 

but never less than 20. Moves corresponded to 47 

insertion/deletion, translation, and rotation (and swap for 48 

mixture cases). The Widom insertion method,59 with at least 49 

10,000 insertion moves, was used to calculate Henry’s 50 

constants at the temperature of interest. Molecular interactions 51 

were modeled using the Lennard-Jones (LJ) and Coulomb 52 

potential. A cutoff of 12.8 Å was used for the LJ potential, and 53 

12.0 Å for the Coulomb potential, after which distance Ewald 54 

summation was used.60,61 LJ parameters and charges for NH3 55 

and N2 molecules were assigned according to the TraPPE force 56 

field62,63 for H2O according to the TIP4P model,64–66 whereas 57 

for H2 were obtained from the work by Levesque et al.67,68 LJ 58 

parameters for MOF atoms were assigned according to the 59 

Dreiding force field,69 or universal force field70 if parameters 60 

from Dreiding were unavailable. LJ parameters for cross-61 

interactions were obtained using Lorentz-Berthelot mixing 62 

rules. Note that the above LJ parameter selection have been 63 

used by Snurr and coworkers, and several others, to model NH3 64 

adsorption in MOFs.71–75 Charges for MOF atoms were 65 

assigned based on the best method available for each MOF 66 

subset. Thus, charges in ToBaCCo MOFs were assigned in 67 
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earlier work using the MBBB method,76 whereas for atoms in 1 

CoRE MOFs, charges were assigned using PACMOF.77 MBBB  2 
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Figure 2. Workflow for our VBO framework. An initial GP, trained with data for two randomly chosen MOFs, is used to predict the performance 5 

metric in the starting database. k+1 MOFs are selected for molecular simulation evaluation based on the upper confidence bound (UCB) acquisition 6 

function. One MOF is chosen as the MOF scoring the highest UCB just as in standard Bayes optimization. The remaining k MOFs are selected based 7 

on UCB but only after 10% of the database is pruned. The MOFs pruned from the database are the MOFs that would increase the least the Vendi Score 8 

of the cumulative set of MOFs evaluated by molecular simulation. The top k+1 MOFs selected are then evaluated using molecular simulations. To 9 

perform a new iteration, the molecular simulation data for the newly evaluated k+1 MOFs are added to the data for training the GP, and the MOF 10 

selection process is repeated. 11 

is based on DFT calculations on MOF building blocks, which 12 

are directly inherited by the MOF, when constructed by 13 

ToBaCCo. PACMOF, on the other hand, is a machine learning 14 

model that was trained by Snurr and coworkers, from DFT 15 

calculations on complete MOF unit cells, to predict charges in 16 

MOF atoms, with an accuracy of 0.02e in mean absolute error 17 

(R2 = 0.99). Moreover, the higher accuracy of PACMOF over 18 

other fast charge assignments was recently shown by Liu and 19 

Luan.78  Example comparison between simulated adsorption 20 

isotherms using the methods herein against experimental ones 21 

are shown in Fig. S2. 22 

2.3. Assessed performance metrics. 23 

NH3 storage. The incumbent method to store NH3 relies on 24 

condensation at temperatures in the 238 to 253 K range, under 25 

pressures in the 10 to 15 bar range.38,79 Exploration of 26 

adsorptive NH3 storage in the literature coincide on storing NH3 27 

at ambient conditions (300 K and 1 bar), but do not present 28 

consensus on the desired conditions for the release. Importantly, 29 

however, the performance of an adsorbent for ammonia storage 30 

depends on both the amount of NH3 trapped at the storage 31 

conditions, NNH3
ads, and that retained in the  32 

adsorbent at the release conditions, NNH3
des. The difference 33 

between these two quantities defines the working (effective) 34 

storage capacity ∆NNH3 as: 35 

  ∆NNH3 = NNH3
ads - NNH3

des   (1) 36 

Due to its technical simplicity, here we consider the release of 37 

ammonia to be done simply by heating the adsorbent to 400K 38 

at 1 bar (Fig. 1a). Note that as having enough space in the MOF 39 

pore is paramount to this application, ∆NNH3 is expected to be 40 

strongly influenced by MOF textural features such as pore size, 41 

void fraction and so forth.  42 

NH3 removal during plasma-assisted synthesis. The 43 

incumbent method to make NH3 typically uses a pressure of 150 44 

bar and a temperature of 650 K. However, as it turns out, 45 

sustainable, carbon-free NH3 production requires synthesis at 46 

mild conditions.80–82 A promising method for NH3 synthesis at 47 

1 bar and 400 K is plasma-assisted synthesis in dielectric barrier 48 

discharge (DBD) reactors. In these reactors, low synthesis 49 

temperature is enabled by the accelerated breakdown of 50 

reactant molecules (N2 and H2) due to collisions with 51 

high-energy electrons in the plasma. But these electrons can 52 

also break down some of the freshly formed ammonia. Thus, a 53 

plasma reactor configuration that incorporates a porous 54 

membrane that remove ammonia as it forms, could protecting 55 

NH3 from plasma decomposition (Fig. 1b), increasing energy 56 

efficiency.83,84 One of the desirable characteristics for the 57 

porous membrane are high adsorption of ammonia NNH3 at the 58 

reaction conditions, but with high adsorption selectivity for 59 

ammonia αNH3 over N2 and H2, where: 60 

αNH3 = (NNH3/yNH3)/((∑Ni)/(∑yi))     (2) 61 

where yNH3 is the molar fraction of NH3 in the gas phase, and Ni 62 

and yi are the adsorbed loading and molar fractions in the gas 63 

phase, respectively, of all other species i. Assuming a 3:1 H2:N2 64 

feed ratio and a conversion of 10 %, here yNH3, yN2 and yH2 are 65 

assumed to be 0.06, 0.23, 0.71, respectively. Seeking to account 66 

for both adsorption and selectivity, here we use MATS as a 67 

performance metric where:  68 

MATS = αNH3 × NNH3 (3) 69 

Note that selectivity, αNH, is a reflection of the attraction of the 70 

MOF to NH3 relative to N2 and H2, and hence is expected to be 71 

strongly influenced by chemistry. On the other hand, the 72 

adsorption capacity NNH3 at non-dilute conditions is expected to 73 
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also be influenced by MOF pore space. Thus, the complete 1 

metric MATS is expected to be influenced by both MOF 2 

chemistry and textural features. Also note that diffusion 3 

selectivity is an important aspect of choosing a material for a 4 

membrane. This selectivity could be incorporated into the 5 

performance metric (or could be considered in a subsequent 6 

screening step). However, for the purpose of testing the VBO 7 

framework, we decided to focus on the adsorption aspects of 8 

the membrane.  9 

NH3 capture from air. NH3 leakage during storage and 10 

transportation is a persistent risk. The maximum NH3 11 

concentration that individuals can safely breath for 1h is 1,500 12 

ppm.85 One way to mitigate the risk is to accompany storage 13 

and transportation infrastructure with adsorbent traps that can 14 

selectively adsorb substantial amounts of dilute NH3 over other 15 

molecules in air, including water (Fig. 1c). Preferential NH3 16 

adsorption over H2O is most challenging because H2O is polar 17 

like NH3, but it would be present at a higher concentration in air. 18 

Thus, we decided to consider a MOF to be potentially useful 19 

only if it is hydrophobic, for which we calculate:   20 

δHPHB = 1, if KH2O ≤ 5 x 10-6 mol kg-1Pa-1         (4)  21 

δHPHB = 0, if KH2O ≥ 5 x 10-6 mol kg-1Pa-1     (4) 22 

where KH2O is the adsorption Henry’s constant of H2O at 300 K 23 

and δHPHB equal to one (zero) indicates that the MOF is 24 

hydrophobic (hydrophilic), in consistency with the KH2O 25 

threshold for MOF hydrophobicity determined by Moghadam 26 

et al. 86 Then, we use as performance metric:    27 

MATSTH = MATS × δHPHB           (5) 28 

where MATS is calculated from Eq. 3 and Eq. 2, with i 29 

corresponding to N2, O2 and Ar. Adsorption loadings are 30 

calculated for a N2/O2/Ar/NH3 mixture with yN2 = 0.78, yO2= 31 

0.21, yAr = 0.0075 Ar and yNH3 = 0.0015 (i.e., 1500 ppm NH3) 32 

at 300 K and 1 bar. The above metric circumvents the need to 33 

calculate H2O adsorption in MOFs, which is known to require 34 

extremely long simulations.87 Note that an analogous strategy 35 

to the above was used by Smit and coworkers to discover MOFs 36 

for CO2 capture from wet flue gas.26 Note that as having enough 37 

space in the MOF pore to store the dilute quantities of NH3 38 

originally in air is not a concern, MOF performance, and thus 39 

MATSTH is expected to be primarily influenced by the ability of 40 

the MOF to attract NH3, and hence by MOF chemistry. 41 

3. DIVERSITY-DRIVEN MOF OPTIMIZATION  42 

3.1. Workflow overview.  43 

An overview of our diversity-driven MOF optimization/search 44 

framework is presented in Fig. 2. To start a MOF (design) 45 

optimization campaign, we randomly draw two MOFs and 46 

calculate their performance metrics using molecular 47 

simulations. These two datapoints are then used to train a 48 

Gaussian Process (GP) regression model88 whose kernel is 49 

designed to account for both chemistry and physics (see Section 50 

3.2). The GP is trained to predict the performance metric and 51 

provide the uncertainty associated with the prediction. This 52 

fitted GP is then used to predict the performance of all MOFs 53 

in the hybrid database. From these predictions, our Vendi 54 

Bayesian Optimization (VBO) algorithm selects the next most 55 

promising MOF candidates for which to calculate the 56 

performance metric using molecular simulations.  57 

The first candidate that VBO selects is the one 58 

corresponding to the most “optimistic” performance prediction 59 

made by the trained GP. The remaining candidates are selected 60 

only after we prune 10% of the database. The pruning is done 61 

by taking out of the database 10% of the MOFs that, if added to 62 

the set of MOFs previously chosen by VBO and assessed via 63 

molecular simulations, would yield the lowest diversity change 64 

of that set. In our workflow, diversity of a MOF set is calculated 65 

using the Vendi Score (see Section 3.3). The lower the Vendi 66 

score, the lower the diversity of the set. Thus, the MOFs 67 

removed from the database are those that would yield the lowest 68 

Vendi Score if added to the set of MOFs that have been selected 69 

by our VBO algorithm.  70 

Given that for each MOF the GP predicts a distribution 71 

of possible performance metric values, our VBO algorithm uses 72 

the upper confidence bound (UCB) criterion to assess the 73 

“potential” of a MOF.  Specifically, the UCB is the mean value 74 

(µ) of the distribution of predictions for the MOF plus two times 75 

the standard deviation (σ). Ideally, upon evaluation with 76 

molecular simulation, some of the MOF selected by our VBO 77 

algorithm should have a higher value of the performance metric 78 

than the MOFs previously evaluated in this same manner. 79 

Regardless, upon completion of the evaluation with molecular 80 

simulation for MOFs that had been selected by the VBO 81 

algorithm, a new GP model is trained leveraging the newly 82 

generated data, and selection of new candidates is done again 83 

using the same procedure as described above. This procedure is 84 

repeated either until a preset target number of iterations is 85 

achieved or the highest value of the performance metric in the 86 

MOFs evaluated with molecular simulation no longer improves.  87 

3.2. MOF representation. 88 

Each MOF is chemically characterized by the Morgan 89 

fingerprints89 of its constituent building blocks (nodes and 90 

linkers), which are extracted from each MOF using MOFid.7 91 

MOFid provides the SMILES strings90 of the building blocks, 92 

which are used as input for RDKit to provide the fingerprints. 93 

Here, each fingerprint is a vector whose components describe 94 

the atom groups of the corresponding node or linker. Each MOF 95 

is also structurally characterized by its detailed pore size 96 

distribution and global textural properties usually used in the 97 

MOF field. Namely, specific pore volume, void fraction, 98 

specific surface area, largest and diffusion-limiting pore 99 

diameters, and metal-to-nonmetal content ratio. We design a 100 

specific similarity kernel for MOFs. This new kernel is the one 101 

we use for the GP and the calculation of the Vendi Score in our 102 

VBO framework. More specifically, if we denote two different 103 

MOFs by x1 and x2, then the similarity between these MOFs is 104 

given by a specialized kernel function K that is an average of 105 

four different kernels, where each kernel Ki specializes in one 106 

particular aspect of MOFs and is weighted by a factor wi. 107 

Namely, the kernel similarity between two MOFs x1 and x2 is 108 

defined as: 109 

𝐾(𝑥1, 𝑥2) = 𝑤1𝐾𝑛𝑜𝑑𝑒(𝑥1, 𝑥2) + 𝑤2𝐾𝑙𝑖𝑛𝑘𝑒𝑟(𝑥1, 𝑥2) 110 

                +𝑤3𝐾𝑔𝑙𝑜𝑏𝑎𝑙(𝑥1, 𝑥2) + 𝑤4𝐾𝑃𝑆𝐷(𝑥1, 𝑥2) (6) 111 

Knode and Klinker are each a kernel function computing the 112 

Tanimoto similarity91 between the Morgan fingerprints of either 113 

two nodes or two linkers, respectively (Fig. 3a). The Tanimoto 114 

similarities between Morgan fingerprints have been found to  115 

https://sciwheel.com/work/citation?ids=16197428&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14503545&pre=&suf=&sa=0&dbf=0
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https://sciwheel.com/work/citation?ids=7973837&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6839737&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=174108&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14441293&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=2283316&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1609558&pre=&suf=&sa=0&dbf=0
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 1 

Figure 3. Schematic representation of methods to calculate kernel similarity between MOFs. a) Chemical similarity (Knode and Klinker kernels) obtained 2 

by decomposing two MOFs into their building blocks, and calculating the Tanimoto index between the Morgan fingerprints of their building blocks. 3 

b) Global textural properties similarity (Kglobal kernel) obtained by calculating the radial basis function Kernel of the Euclidean distance between the 4 

property vectors of two MOFs. c) Detailed pore structure similarity (KPSD kernel) obtained by calculating the difference between one and the Jensen-5 

Shannon divergence between the pore size distributions (PSDs) of two MOFs. The different kernels cover different aspects of MOFs, and by tuning 6 

the weights of each Kernel, the representation is adaptable to prediction of properties with different level of dependence on MOF chemistry and 7 

structure.8 

capture important differences in molecule chemistry, and has 9 

been shown effective at guiding machine learning models for 10 

search purposes in other areas.92 As a MOF could have more 11 

than one type of node or linker, we do all possible pairwise 12 

comparisons and use the average value of Knode or Klinker. On the 13 

other hand, Kglobal operates on the global textural properties, and 14 

is defined to be the exponential of the Euclidean distance 15 

between the two vectors containing the (normalized) values of 16 

the above properties for the two MOFs being compared (Fig. 17 

3b). This is analogous to what Simon and coworkers did for 18 

COFs.93 Finally, KPSD is a new kernel proposed by us, which 19 

computes the difference between the pore size distributions 20 

(PSDs) of the two MOFs being compared. We do this by using 21 

the Jensen–Shannon divergence (JSD).94 Given two PSDs P 22 

and Q, this function returns: 23 

𝐽𝑆𝐷(𝑃, 𝑄) =
1

2
(𝐾𝐿𝐷(𝑃, 𝑀) + 𝐾𝐿𝐷(𝑄, 𝑀))  (7) 24 

where 𝑀 =
1

2
(𝑃 + 𝑄) is a mixture distribution of the original 25 

two P and Q and:  26 

𝐾𝐿𝐷(𝑃, 𝑄) =  ∑ 𝑃(𝑠)log (
𝑃(𝑠)

𝑄(𝑠)
)𝑆∈𝑆        (8) 27 

refers to the Kullback–Leibler divergence (KLD) between P and 28 

Q. Here S is the set of possible pore sizes, and P(s) and Q(s) 29 

give the probability of a particular pore size s in each of the two 30 

MOFs. JSD computes the distance between the two 31 

distributions, giving a symmetric and bounded metric for their 32 

difference. Our kernel KPSD subsequently calculates the 33 

similarity between the two distributions as (1 − 𝐽𝑆𝐷). 34 

3.3. Vendi Score. 35 

The Vendi score (VS) is key to encourage our optimization 36 

framework to find many diverse solutions, hence avoiding 37 

commitment to a single MOF design “solution” that might be 38 

infeasible to produce and test experimentally. The VS is a 39 

function whose input is the 𝑛 × 𝑛  similarity matrix 𝐾 40 

representing data points in a set of size 𝑛. The VS is calculated 41 

as the exponential of the Shannon entropy of the normalized 42 

eigenvalues of 𝐾, denoted by 𝜆𝑖, as follows: 43 

𝑉𝑆(𝐾) =𝑒𝑥𝑝 (− ∑ 𝜆𝑖 𝑙𝑜𝑔 𝜆𝑖
𝑛
𝑖=1 )          (9) 44 

Friedman and Dieng39 showed that the VS is a mathematically 45 

well-defined diversity metric and quantifies the effective 46 

number of unique elements in a set.39 Here, the elements of the 47 

similarity matrix are calculated using Eq. 6, meaning that the 48 

GP model and the VS use the same underlying mathematical 49 

object. To keep the output of the kernel function consistent 50 

across calculations of the VS, we set the weights wi in Eq. 6 to 51 

all be equal to 0.25. However, note that the weights in Eq. 6 52 

take different values when training the GP model, where they 53 

are optimized for prediction. 54 

3.4. Vendi Bayesian optimization (VBO) Framework 55 

Overview. If MOFs are denoted by x and a MOF database by 𝒳, 56 

where 𝑥 ∈ 𝒳, and if f is a “black-box” function that returns the 57 

scalar value of the property or performance metric of interest 58 

(i.e., 𝑓: 𝒳 → ℝ ), then we aim to find the MOF x* that 59 

maximizes the value of the performance metric. More formally, 60 

we find x* such that:  61 

𝑥∗ =𝑎𝑟𝑔 𝑚𝑎𝑥
𝑥∈𝒳

𝑓(𝑥)  (10) 62 

The above makes f an objective function that models the 63 

mapping between a given MOF and its performance metric. 64 

Here f is approximated by a GP that iteratively improves its 65 

“understanding” of f based on evaluations of f for specific 66 

MOFs x. Here, evaluating 𝑓(𝑥)  means running molecular 67 

simulations to calculate the relevant performance metric for a 68 

given MOF x. However, our VBO framework is also amenable 69 

to experimental work, where performance metrics are measured 70 

via experiments instead of molecular simulations. In each case, 71 

our VBO framework enables finding the optimal MOF x* in as 72 

https://sciwheel.com/work/citation?ids=16197263&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16197442&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4806666&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15152664&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15152664&pre=&suf=&sa=0&dbf=0
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few evaluations as possible, to overcome time and/or cost 1 

constraints associated with simulations or experiments. 2 

Surrogate model. The first component of our VBO framework 3 

is a surrogate model that expresses a belief about f based on 4 

previous evaluations of f —i.e., a belief about the relationship 5 

between MOF chemistry/structure and performance. Here, the 6 

surrogate model is a GP (see comparison with other models in 7 

Section S2), which, as any GP, does not yield a single prediction 8 

of f for a given x, but rather a set of predictions that follow a 9 

normal (Gaussian) distribution 𝒩 such that: 10 

𝑓(𝑥) ~𝒩(𝜇, 𝜎²)         (11) 11 

where 𝜇 and 𝜎 are the mean and the standard deviation of the 12 

predictions, respectively. When conditioned on a training set, 𝜇 13 

and 𝜎  are updated to be the posterior predictive mean and 14 

standard deviation, reflecting information learned from the 15 

training data. Intuitively, 𝜇 and 𝜎 represent the value that f(x) is 16 

most likely to take and the uncertainty about the predicted 𝜇, 17 

respectively. We refer to Rasmussen and Williams83 for a more 18 

thorough treatment of GP learning. To fully specify a GP, one 19 

needs a mean value that describes the behavior of f in the 20 

absence of data, and a kernel K that calculates similarities 21 

between different x; our choice of K was described in Section 22 

3.2. At each iteration of our VBO framework, the values of the 23 

performance metric obtained from molecular simulation are 24 

normalized so that they range from -1 to 1. (We use the constant 25 

zero mean function)., The parameters of the GP model, 26 

including the weights wi in Eq. 6 as well as the mean value and 27 

a noise factor, are tuned to maximize the fit to the training data, 28 

quantified by the marginal log likelihood of the data, as is 29 

standard in Gaussian process modeling.83 30 

Acquisition function. The second component of our VBO 31 

framework is an acquisition function 𝛼(𝑥)  that guides us 32 

towards promising candidate MOFs that are likely to yield high 33 

performance and that have not been evaluated). A good 34 

acquisition function should balance exploration (learning about 35 

how 𝑓(𝑥) behaves across the space) and exploitation (zeroing 36 

in on high-performance regions). Here, we opt for the Upper 37 

Confidence Bound (UCB) function.95 UCB adds µ and  𝜎, the 38 

mean and standard deviation of the GP prediction, with the 39 

latter multiplied by a trade-off factor 𝛽, which we set to 2 here: 40 

𝛼(𝑥) = 𝜇 + 2𝜎.   (12) 41 

This simple expression elegantly captures the balance between 42 

exploration of MOFs we are uncertain about (with high 𝜎), and 43 

exploitation of MOFs predicted to yield high performance (with 44 

high 𝜇). In addition to its interpretability, Taw and Neaton96 45 

demonstrated good optimization performance of the above 46 

acquisition function to optimize methane uptake capacity of 47 

MOFs. At each iteration of Bayesian optimization, we find the 48 

MOF that maximizes the UCB score to evaluate 𝑓(𝑥) with. We 49 

repeat this process until our evaluation budget is depleted, each 50 

time updating the GP and the UCB score with the newly 51 

observed MOFs. 52 

Solution diversification. Unlike regular Bayesian optimization, 53 

VBO iteratively prunes the search space (i.e., the database) by 54 

removing remaining candidates that are too similar to those that 55 

have been previously selected for evaluation. This removal 56 

results in even more exploration than enabled by the acquisition 57 

function. Formally, consider a candidate MOF 𝑥 of unknown 58 

performance that we may query. We compute the increase in 59 

VS (∆VS) that we would obtain if we were to evaluate 𝑓(𝑥) and 60 

add  𝑥 to the set 𝑆 containing the MOFs we already selected. 61 

That is: 62 

∆𝑉𝑆 =  𝑉𝑆(𝑆 ∪ {𝑥}) − 𝑉𝑆(𝑆)   (13) 63 

If 𝑥 is different from the data points in 𝑆, querying 𝑥 will add 64 

more diversity to our data set, as reflected by a large ∆VS. If, 65 

on the other hand, 𝑥 is similar to the points in 𝑆, ∆VS will be 66 

small. At each iteration, we compute ∆VS for each of the 67 

remaining candidate MOFs, and remove the MOFs that yield 68 

the lowest ∆VS until the remaining pool of candidates is 69 

reduced by ten percent. We thus reduce the effective search 70 

space at each iteration, removing candidates that are too similar 71 

to those already acquired. 72 

This modification of traditional Bayesian optimization aims at 73 

building a diverse set of high-performance MOFs. While this 74 

increase level of exploration does not guarantee improved 75 

optimization performance, we do not necessarily sacrifice the 76 

top MOF either. As the diversity-aware pruning step is reset at 77 

each iteration, if we have found a region in our search space that 78 

contains very good candidates, our acquisition function allows 79 

us to come back to this region (i.e., zeroing in on the top MOF) 80 

once other promising regions have been explored. We can also 81 

think of this strategy as searching over multiple promising 82 

regions at the same time. 83 

4. RESULTS AND DISCUSSION 84 

4.1. Expressiveness of the MOF-specific kernel. 85 

Although the representation of a MOF is inherently 86 

multidimensional, the plots in Fig. 4 maps MOFs onto a 87 

reduced two-dimensional space, by applying multidimensional 88 

scaling (MDS)97 to the covariance matrix of the MOFs, which 89 

was calculated using the kernel defined earlier by Eq.6. MDS 90 

conveys the similarity-dependent original distances between 91 

MOFs in multidimensional space, so that in Fig. 4 similar 92 

MOFs appear close to each other. From Fig. 4a, the 93 

complementary of CoRE MOFs (blue points) and our 94 

ToBaCCo MOFs (orange points) is apparent as the groups 95 

separate into individual regions. The usual differences between 96 

extant CoRE MOFs and hypothesized MOFs such as our 97 

ToBaCCo MOF have been pointed out previously in work by 98 

others such as Kulik and coworkers.54 For instance, CoRE 99 

MOFs tend to feature smaller pores and a more diverse 100 

selection of metals. ToBaCCo MOFs exhibit a systematic 101 

variation in textural properties, focusing on metals Cr, Zr, Mn, 102 

Co, Cu, and Zn. Therefore, the observed segregation in Fig. 4a 103 

indicates that our kernel captures meaningful 104 

similarities/differences between MOFs. 105 

Analogously, we present reduced dimensionality plots but only 106 

for a random subset of 1,000 MOFs uniformly extracted from 107 

the ~10,000 hybrid database, and for which the performance 108 

metrics pertinent to NH3 storage, removal during plasma-109 

assisted synthesis, and capture from air (∆NNH3, MATS and 110 

MATSTH, respectively) were calculated using molecular 111 

simulation. Upon coloring the points based on the value of each 112 

performance metric in the corresponding MOF, it is apparent 113 

https://sciwheel.com/work/citation?ids=16197269&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16197274&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9810564&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16194510&pre=&suf=&sa=0&dbf=0
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that segregation also tends to occur on the basis of performance 1 

(Fig. 4b-d). For instance, Fig. 4b shows MOFs with ∆NNH3 < 5 2 

mmol/g locating in an outer ring, MOFs with 5 mmol/g < ∆NNH3 3 

< 15 mmol/g locating in the inner region, and MOFs with ∆NNH3 4 

> 15 mmol/g locating in a lower-right cluster. Such segregation 5 

indicates how well our measure of similarity (i.e., our kernel) is 6 

conducive to learning. 7 

The extent at which our kernel facilitates learning is 8 

illustrated in Fig. 5, which shows parity plots comparing the 9 

prediction of the performance metrics NNH3, MATS and MATSTH  10 

 11 

Figure 4. MOF mapping onto two-dimensional plots by using 12 

multidimensional scaling (MDS) representations. a) all MOFs in the 13 

hybrid database colored by their origin (either the ToBaCCo database 14 

or the CoRE database). b-d) 1,000 random MOF subset, colored by 15 

range of ∆NNH₃ (b), MATS (c), and MATSTH (d) performance metrics. 16 

The extent of segregation observed is a harbinger of the efficacy of our 17 

MOF kernel similarity as input to train the GP.   18 

by corresponding GP models trained on molecular simulation 19 

data of the 1,000 random MOF subset. The GPs trained to 20 

predict ∆NNH3 and MATS (Fig. 5a,b) present relatively similar 21 

correlations between their predictions and the actual values (i.e., 22 

ground truth) of the corresponding performance metrics. 23 

Namely, R2 values of 0.59 and 0.37 for ∆NNH3 and MATS, 24 

respectively. On the other hand, the GP trained for the MATSTH 25 

case seems to face higher difficulty in learning to predict the 26 

performance metric, which is reflected by an R2 value of -0.06 27 

(Fig. 5c). Such difficulty is partly due to the exceptional 28 

roughness of MATSTH as a function of MOF 29 

chemistry/structure—which partly motivated the selection of 30 

this metric for our testing. The roughness of MATSTH stems from 31 

the rather binary character of the metric, which is either zero or 32 

positive based on whether the MOF is deemed hydrophobic or 33 

not based on the threshold value of KH2O, resulting in discrete 34 

changes to MATSTH that are difficult to capture by machine 35 

learning models. Yet, as we will demonstrate shortly, our VBO 36 

framework remains effective at optimizing these metrics, 37 

including, perhaps surprisingly, MATSTH.  38 

At this point, let us note that the optimized weights (wi) 39 

for the GP models (Table S3) confirm our hypotheses of what 40 

MOF aspects control performance for each application. For 41 

instance, the chemical similarity kernel Knode weighs 0.97 in the 42 

model that predicts MATSTH but only weighs 0.02 in the model 43 

that predicts ∆NNH3. By contrast, KPSD weighs 0.37 in the model 44 

that predicts ∆NNH3, but only weighs 0.01 in the model that 45 

predicts MATSTH. On the other hand, all kernels weigh rather 46 

similarly in the model that predicts MATS.    47 

 48 

 49 

Figure 5. Prediction performance of GP models (trained on a subset of 1,000 random MOFs extracted from the hybrid database) to predict a) ∆NNH₃, 50 

b) MATS, and c) MATSTH. GP predictions appear on the vertical axis, while the ground truth (from molecular simulation) appears on the horizontal axis. 51 

The parity line is presented in red. Each point represents the prediction for a MOF, with the corresponding error bar representing the uncertainty of the 52 

predictions based on the prediction standard deviation. The observed prediction performance was found on subsequent statistical testing to be sufficient 53 

to make VBO effective. 54 
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 1 

Figure 6. Efficacy of VBO (blue) applied on a 1,000 subset of random MOFs compared to Bayesian optimization (green) and random search (orange). 2 

Top row presents the evolution of the highest value of the performance metric as the number of MOF evaluations increases for a) ∆NNH₃ for ammonia 3 

storage, b) MATS for ammonia removal from plasma reactor, and c) MATSTH for ammonia capture from air. Bottom row presents the evolution of the 4 

Vendi Score for the set of evaluated MOFs as the number of MOF evaluations increases for d) ∆NNH₃ for ammonia storage, e) MATS for ammonia 5 

removal from plasma reactor, and f) MATSTH for ammonia capture from air. Results in a)-f) are averaged across 10 repeat runs, the average value is 6 

indicated by the solid line, whereas the standard deviation is indicated by the shaded area. Both VBO and Bayesian optimization outperformed random 7 

search, but VBO provided higher diversity of MOF “solutions.”8 

4.2. Statistical testing of VBO efficacy. 9 

The efficacy of VBO was statistically assessed by simulating 10 

our workflow (Fig. 2) ten times on the subset of randomly 11 

selected 1,000 MOFs, to iteratively optimize MOF design for 12 

the ∆NNH3, MATS and MATSTH metrics. During each run, two 13 

MOFs were randomly selected to be the initial training set, and 14 

100 MOFs were evaluated in 20 batches of five MOFs each 15 

iteration (i.e., when 10% of the MOF subset was evaluated, the 16 

run stopped). Each time our VBO workflow was run, an 17 

analogous run without the Vendi score-based pruning (i.e., a 18 

regular Bayes optimization run) was done in parallel for 19 

comparison, as well as random search consisting of the 20 

evaluation of 100 randomly selected MOFs within the subset. 21 

The lines in Fig. 6 present the average progress of the VBO 22 

(blue), Bayesian optimization (green) and random search 23 

(orange) runs, whereas the corresponding shaded areas 24 

represent the corresponding standard errors. 25 

As evidenced by Fig. 6, although the uncertainty 26 

region for VBO and Bayesian optimization tend to overlap, on 27 

average VBO did equal or better than Bayesian optimization, 28 

when assessed based on the highest value for the metric 29 

encountered by the end of 100 evaluations. Notably, VBO 30 

outperformed Bayesian optimization for the evaluation of the 31 

MATSTH metric for NH3 capture from air. On the other hand, 32 

both VBO and Bayesian optimization clearly do better on 33 

average than random search when compared by the 34 

abovementioned criterion. Furthermore, the uncertainty regions 35 

for the latter two methods and random search barely overlap, 36 

suggesting that in a worst-case scenario VBO and Bayesian 37 

optimization would do at least as well as a best-case scenario 38 

random search that explores ten percent of the available design 39 

space.  40 

But the most significant difference between VBO and 41 

Bayesian optimization is the more diverse exploration of the 42 

design space by VBO. This fact is evidenced by the consistently 43 

higher Vendi score among evaluated MOFs as VBO progresses 44 

compared to Bayesian optimization. As expected, random 45 

search tends to result in the highest diversity among evaluated 46 

MOFs as the search progresses. But it is surprising that for the 47 

optimization of MATSTH our VBO ended up on average with a 48 

higher diversity of evaluated MOFs than random search. 49 

Ultimately, the average behavior of the Vendi Score in VBO 50 

versus Bayesian optimization is indicative that VBO is bound 51 

to create a more diverse pool of promising MOFs for a given 52 

application. 53 

4.3. Full database search for MOFs for NH3 storage. 54 

Encouraged by the statistical efficacy of our VBO framework, 55 

we decided to perform a full VBO run on the complete hybrid 56 

database (i.e., ~10,000 MOFs) to optimize ∆NNH3. Specifically, 57 

to find MOFs with potential for NH3 storage, considering 58 

storage at 1 bar with storage/release through a 300 K to 400 K 59 

thermal swing. Fig. 7a presents the progress of the performed 60 

VBO run of 20 iterations (each iteration corresponds to a batch 61 

of 20 MOFs), comparing it against a random search (technically 62 

consisting of the previously randomly selected 1,000 MOFs on 63 

which VBO was previously tested in Section 4.2). Evidently, 64 

VBO greatly outperforms random search, with the former 65 

identifying MOFs with ∆NNH3 values approaching as high as 30 66 
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mmolNH3/gMOF, whereas the latter did not identify MOFs with 1 

∆NNH3 values higher than ~23 mmolNH3/gMOF. 2 

Notably, the outperformance of VBO relative to 3 

random search occurred despite VBO terminating early at ca. 4 

400 evaluations. This early termination was made because the 5 

highest ∆NNH3 value within the evaluated MOFs did not change 6 

significantly after around 80 evaluations. However, note that 7 

one should not be tempted to consider subsequent MOF 8 

evaluations after the 80th evaluation point as wasteful, as these 9 

evaluations enabled to strengthen the pool of promising MOF 10 

designs for NH3 storage. A fact that is evidenced by the steady 11 

improvement in the average ∆NNH3 for the “top-20” evaluated 12 

MOFs from the 80th to the 400th evaluation (Fig. 7b). 13 

Importantly, this improvement in average ∆NNH3 was 14 

accomplished while steadily improving the diversity of the 15 

evaluated MOF as indicated by the steady improvement in the 16 

Vendi score within the same range of evaluations (Fig. 7c). The 17 

latter creates confidence that the pool of promising MOFs to be 18 

suggested for future synthesis and experimental testing to be 19 

more diverse than provided by other methods. 20 

4.4. Data-driven MOF design rules  21 

As noted earlier, a benefit of computational MOF screening is 22 

the emergence of structure-performance relationships, which 23 

are useful to establish design rules that experimentalists could 24 

leverage to conceive adsorbent designs of their own (not even 25 

necessarily for MOFs). Importantly, the emergence of these 26 

relationships allows extracting value from computational 27 

screenings independently of the success in synthesizing and 28 

testing the specific MOF designs recommended by the 29 

screening. However, the nature of the emerging relationships is 30 

empirical, and thus depend on a sufficiently large number of 31 

observations being made to create clear trends. Conveniently, 32 

here, while the number of evaluated MOFs is lower than in 33 

other screening studies that relied on exhaustive search, the bias 34 

of our selection method towards “good” MOFs allow us to still 35 

define well the “interesting” region of the relationship relevant 36 

to optimize the performance metric of interest. 37 

For instance, although in Fig. 8a there is a dearth of data for 38 

MOFs with average pore diameter (APD) larger than 14 Å, it is 39 

apparent that the optimal average pore diameter and for NH3 40 

storage at the conditions herein proposed is 10 Å. Note that the 41 

scarcity of data for MOFs with APD larger than 14 Å is due to 42 

reluctance by the VBO algorithm to pick MOFs in that range of 43 

APD, probably due to rapidly learning that APDs larger than 14 44 

Å tend not to optimize ∆NNH3. An APD of 10 Å seems to 45 

compromise confinement effects (i.e., overlap of interaction 46 

potentials) to enhance NH3 attraction to the pore walls and 47 

having sufficient space to accommodate NH3 molecules. To be 48 

sure, an APD of 10 Å should be interpreted as necessary, and 49 

not as a sufficient condition to optimize ∆NNH3, as evidenced by 50 

the wide range of ∆NNH3 values that can be observed for that 51 

APD value. The color coding in Fig. 8a suggests that such 52 

variability in ∆NNH3 at APD equal to 10 Å is partly explained 53 

by variations in MOF void fraction—with MOFs with void 54 

fraction around 0.7 tending to appear at the top. In other words, 55 

given two MOFs with APD equal to 10 Å, the one with higher 56 

void fraction probably corresponds to a higher ∆NNH3, again 57 

partly due to the implication that higher void fraction allows 58 

more space to accommodate NH3 molecules. 59 

On the other hand, note that while attraction of NH3 to 60 

the pore walls (as reflected by the heat of adsorption Qst) is 61 

desired, too strong an attraction is detrimental to ∆NNH3 as it 62 

prevents the adsorbed NH3 molecules to be easily released. 63 

From our collected data, it seems that a Qst of 33 kJ/mol is 64 

optimal for ammonia storage at the conditions herein proposed 65 

(Fig. 8b). Analogous to our APD analysis, a Qst of 33 kJ/mol 66 

should be taken only as a necessary but not sufficient condition 67 

to optimize ∆NNH3. Indeed, there is a wide range of ∆NNH3 68 

values at Qst equal 33 kJ/mol. The color coding in Fig. 8b partly 69 

explains this variability on the basis of surface area variations—70 

with MOFs with surface area around 4000 m2/g tending to 71 

appear at the top, as they provide a larger number of sites with 72 

optimal interaction strength. Note that inspecting Fig. S6, it 73 

seems that a Qst value around 33 kJ/mol enables recovering up 74 

to 95 % of the NH3 molecules adsorbed at the storage conditions  75 

  76 

 77 

 78 

Figure 7. Evolution of VBO campaign (blue) in the ~10,000 MOF database, when searching for MOFs for NH3 storage, compared to the evolution 79 

of the random search (orange). a) Evolution of the highest ∆NNH3 found among evaluated MOF at a given point in the campaign. b) Evolution of the 80 

average ∆NNH3 among the top-20 evaluated MOFs at a given point in the campaign. c) Evolution of the Vendi Score of evaluated MOFs at a given 81 

point in the campaign. Note that the VBO campaign was ended early due to negligible changes in the highest ∆NNH3 since the 80th evaluation. Once 82 

again VBO greatly outperformed random search.83 

 84 
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 1 

Figure 8. Plots of structure-performance relationships for NH3 storage. 2 

Each square bin corresponds to a combination of the ∆NNH3 3 

performance metric and MOF property, where the transparency of 4 

each square bin is indicative of the number of MOFs in the bin, and 5 

the color of each bin reflects the average value of the property in the 6 

side color scale across all MOFs in the bin. a) ΔNNH₃ versus MOF 7 

average pore diameter (APD), with each bin colored by MOF void 8 

fraction. b) ΔNNH₃ versus heat of adsorption Qst, with each bin colored 9 

by gravimetric surface area. Optimal APD and Qst appears to be 10 Å 10 

and 33 kJ/mol, respectively. 11 

 12 

Figure 9. Statistical significance for comparison of elemental 13 

compositions between the top-14 MOFs and the entire database based 14 

on the p-values derived from the t-test. The dashed line represents our 15 

chosen critical value for the one-sided t-test. Bars that fall below this 16 

threshold indicate elements that are statistically significantly more 17 

abundant in the top-performing MOFs. Ca is a metal that appears 18 

significantly more frequently in the top-14 MOFs than in the full 19 

database. 20 

We acknowledge, however, that a design rule centered 21 

around Qst is somewhat abstract as this quantity does not depend 22 

only on MOF chemistry, but also on MOF structure. In an 23 

attempt to provide some chemistry-based MOF design rules for 24 

NH3 storage, we decided to explore trends in elemental 25 

composition among outstanding MOFs. Specifically, for each 26 

element in the periodic table, we calculated its average percent 27 

content in the top-14 MOFs evaluated with molecular 28 

simulation and compared this value with the corresponding 29 

average percent content in all ~10,000 MOFs in the database 30 

(Fig. S7). Then we used a t-test to assess the statistical 31 

significance of observed differences.  32 

Fig. 9 shows the p-values for the t-test for the elements 33 

present in the top-14 MOFs. Using a p-value threshold of 0.1, 34 

it seems that C, H, and Ca are elements that are, with statistical 35 

significance, more abundant within the top-14 MOFs for NH3 36 

storage than in MOFs at large. Using our understanding of 37 

MOF structure, we rationalize that the higher abundance of C, 38 

H is probably just a reflection of the optimal APD for ammonia 39 

storage being larger than the median APD in the database—i.e., 40 

larger pores imply longer linkers, hence more C and H content. 41 

On the other hand, we could not find an alternative explanation 42 

for the higher abundance of Ca within the outstanding MOFs, 43 

suggesting a primarily chemical effect—after all, CaCl2 is a 44 

popular ammonia adsorbent.98 To be sure, though, due to the  45 

 46 

 47 

https://sciwheel.com/work/citation?ids=16197455&pre=&suf=&sa=0&dbf=0
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 1 

Figure 10. Top-6 MOFs ranked by ΔNNH₃ value. Hypothesized and extant MOFs are in the top and bottom rows, respectively. VF, GSA, and APD 2 

represent, respectively, the void fraction, gravimetric surface areas, and average pore diameter from pore size distribution. The CSD refcode and 3 

corresponding publication can be found in Table S5. The three hypothesized MOFs are potentially synthesizable per the free energy criterion by 4 

Anderson and Gómez-Gualdrón (Table S6).54  Ca MOFs appear in the top-14 but not in top-6 presumably due to suboptimal textural properties.5 

 6 

 7 

Figure 11. a) Thermal stability in top-20 MOFs from VBO campaign. 8 

Blue diamonds indicate ∆NNH3 (left-axis) and red circles indicate 9 

predicted thermal decomposition temperature (right-axis). Top-20 10 

MOFs appear likely to withstand operation conditions. b) Estimated 11 

energy penalty to release stored NH3 as percentage of the hydrogen-12 

based energy content of NH3 (22.5 MJ/kgNH3) in the top-20 MOFs. 13 

Penalty hovers around 8 to 12 percent on NH3 energy content.  14 

role other MOF features play on ∆NNH3, the presence of Ca 15 

alone, as we will see below, does not guarantee the 16 

maximization of ∆NNH3. 17 

4.5. Promising MOF designs.  18 

Contingent on adsorption simulation accuracy, now we proceed 19 

to present some promising MOF designs identified by our VBO 20 

run. The top-20 MOFs are listed in Table S4, while the top-6 21 

MOFs are presented in Fig. 10. Three of these MOFs 22 

correspond to hypothesized designs (top row), and the 23 

remaining three correspond to extant designs that have been 24 

realized synthetically (bottom row). The free energy of the 25 

hypothesized designs in Fig. 10 was calculated using the 26 

Frenkel-Ladd method as discussed in earlier work,99 resulting 27 

in free energies below 4.4 kJ/mol per atom, which per 28 

discussion in ref.100 suggests high synthesizability likelihood. 29 

The MOFs in Fig. 10 present ∆NNH3 values in the 26.6-30 

29.3 mmolNH3/gMOF. Consistent with observed structure-31 

performance relationships (Section 4.4), these MOFs exhibit 32 

APDs around 10 Å, void fractions around 0.7 and surface areas 33 

around 3900 m²/g. As for metals, note that although Ca was 34 

more abundant in the top-14 MOFs than in the whole database, 35 

the six best MOF designs featured Cr, Cu, Mn, Zn, and Co 36 

instead. Probably, because the textural properties of Ca MOFs 37 

were not “ideal.” This situation underscores the importance of 38 

optimizing a MOF design both structurally and chemically. 39 

To put the predicted ∆NNH3 for MOFs in Fig. 10 in the 40 

context of other MOFs experimentally tested in the literature, 41 

first let us reiterate that while NH3 adsorption in MOFs have 42 

been consistently evaluated considering 300 K and 1 bar as the 43 

storage condition, such consistency has not existed for the 44 

release condition. Thus, a direct comparison is not possible. 45 

However, note that, with the exception of LiCL-MIL-53, the 46 

highest reported NH3 loading at 300 K and 1 bar is 23.9 47 

mmolNH3/gMOF, so that even assuming total recovery at the 48 

release conditions, the predicted ∆NNH3 for the MOFs in Fig. 10 49 

https://sciwheel.com/work/citation?ids=16194510&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16197480&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11625179&pre=&suf=&sa=0&dbf=0
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is still higher. As for LiCl-MIL-53, its measured 33.9 1 

mmolNH3/gMOF loading at 300 K and 1 bar is accompanied by a 2 

reported Qst around 78 kJ/mol.51 Based on the relationship 3 

between heat of adsorption and percent NH3 recovered (Fig. S6) 4 

emerged in the study herein, a best case scenario for this Qst (i.e., 5 

50 % recovery) would yield a ∆NNH3 around 16.9 mmolNH3/gMOF 6 

for this MOF, which again is below the predicted ∆NNH3 for the 7 

MOFs in Fig. 10.   8 

Although here we focused on optimizing the MOF 9 

design to maximize ∆NNH3, other factors also play a role when 10 

using a MOF for a given application. Considering that we 11 

propose a thermal swing to release NH3, it is important to assess 12 

the thermal stability of the MOFs to encourage experimental 13 

testing. Accordingly, in Fig. 11a, we show the thermal 14 

decomposition temperature Td of each of the top-20 MOFs 15 

(∆NNH3 ranging from 23 to 30 mmolNH3/gMOF), as predicted by 16 

an ANN model developed by Nandy et al.,101 as available in the 17 

MOFsimplify website.102 This model makes the prediction 18 

based on the revised autocorrelation (RAC) descriptors of the 19 

MOFs, and was trained using reported thermogravimetric 20 

analysis (TGA) data for 3,131 MOFs, with a mean absolute 21 

error (MAE) of 47 K. Considering this MAE and that the lowest 22 

predicted Td was 466K (which is 66K higher than the upper 23 

temperature for the thermal swing), it seems that the suggested 24 

MOF designs are likely to withstand the proposed operation 25 

conditions.   26 

Finally, to inform considerations about energy 27 

efficiency and economic viability, we estimated the energy 28 

required to release each kilogram of stored NH3 with the 29 

proposed thermal swing, ∆Qrelease, using:   30 

∆𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =  𝑄𝑠𝑡 + (𝐶𝑝𝑁𝐻3  +
𝐶𝑝𝑀𝑂𝐹

∆𝑁𝑁𝐻3
) × 𝛥𝑇 (14) 31 

Where, again, Qst is the heat of adsorption of NH3, CpNH3 is the 32 

heat capacity of NH3 in the gas phase (2.2 kJ/kgNH3-K)), CpMOF 33 

is the heat capacity of the MOF, and 𝛥𝑇 is the thermal swing 34 

magnitude (100 K). Eq 14 is analogous to that used by Smit and 35 

coworkers to estimate the energy to release captured CO2 from 36 

MOFs,26 and essentially accounts for the heating of the MOF 37 

along with adsorbed NH3 molecules from 300 K to 400 K, plus 38 

the energy needed to desorb NH3 from the MOF at 400 K. For 39 

all MOFs, we used the average CpMOF value (0.87 kJ/kgMOF-K) 40 

previously reported for eleven MOFs,103,104 considering that  41 

this property seems to have low variability among MOFs. 42 

Assuming that the energy stored in NH3 corresponds 43 

to that of the H2 that is released from NH3 via cracking, the 44 

energy content of NH3 is 22.5 MJ/kgNH3.105 The latter implies 45 

that with the proposed MOF designs a penalty between 8 %  and 46 

12 % of the NH3 energy content would be used to release the 47 

stored NH3. For context, an analogous calculation can be done 48 

to estimate energy penalty for liquid NH3 storage, which can be 49 

estimated based on the latent heat of condensation for NH3 (1.4 50 

MJ/kg-NH3)106 and the energy to cool down NH3 from 300 K 51 

down to 240 K. The above results in an estimated penalty of 7% 52 

of the NH3 energy content. Considering that adsorptive NH3 53 

storage at ambient conditions can bypass other technological 54 

requirements such as insulation, toxicity, corrosion, or issues 55 

such as boil-off,43,45 among others, the operation conditions 56 

proposed herein for adsorptive NH3 storage (and materials to 57 

achieve so) seem to merit reasonable consideration.   58 

5. CONCLUSIONS 59 

In this work, we developed a novel framework for efficiently 60 

finding a diverse set of optimal MOFs for applications 61 

involving ammonia adsorption. Our framework, called Vendi 62 

Bayesian Optimization (VBO), seamlessly combines traditional 63 

Bayesian optimization with the Vendi Score, a diversity 64 

measure rooted in ecology and quantum mechanics. VBO is 65 

also made possible by the introduction of a novel similarity 66 

function in the space of MOFs that accounts for both chemistry 67 

and structure. We used this similarity function both for the GP 68 

used by Bayesian optimization and to compute the Vendi Score. 69 

Our framework enabled the efficient discovery of several 70 

optimal MOFs that are distinct from one another, and that 71 

perform better than MOFs previously studied experimentally 72 

for NH3 storage. Our analysis of the results of VBO highlights 73 

new design rules that MOF experimentalists can leverage to 74 

design optimal MOFs for the above application. We believe 75 

VBO introduces new useful capabilities for the efficient 76 

exploration of the combinatorially large MOF design space for 77 

the discovery of MOFs with desired properties. Importantly, 78 

our VBO framework is amenable to applications beyond 79 

ammonia adsorption. We leave the exploration of these 80 

applications as future work.  81 

SUPPLEMENTARY INFORMATION 82 

Force field details, details on surrogate model selection, 83 

additional details on VBO campaigns, additional structure-84 

property relationships, additional details about promising MOF 85 

designs for NH3 storage. 86 

DATA AVAILABILITY 87 

Code to replicate our results can be freely accessed at 88 

https://github.com/vertaix/VBO. Data sources are available 89 

at 90 

https://wustl.box.com/s/3jkz8ksu9l3d1hqikir4olainke9wc5t  91 

and Jupyter notebooks to reproduce our figures are available at 92 

https://github.com/vertaix/VBO/tree/main/notebooks/Recr93 

eate%20figures.    94 
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