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ABSTRACT

Metal-organic frameworks (MOFs) promise to engender technology-enabling properties for numerous applications. However, one
significant challenge in MOF development is their overwhelmingly large design space, which is intractable to fully explore even
computationally. To find diverse optimal MOF designs without exploring the full design space, we develop Vendi Bayesian optimization
(VBO), a new algorithm that combines traditional Bayesian optimization with the Vendi Score, a recently introduced interpretable
diversity measure. Both Bayesian optimization and the Vendi Score require a kernel similarity function, we therefore also introduce a
novel similarity function in the space of MOFs that accounts for both chemical and structural features. This new similarity metric enables
VBO to find optimal MOFs with properties that may depend on both chemistry and structure. We statistically assessed VBO by its
ability to optimize three NHs-adsorption dependent performance metrics that depend, to different degrees, on MOF chemistry and
structure. With ten simulated campaigns done for each metric, VBO consistently outperformed Tandom search to find high-performing
designs within a 1,000-MOF subset for i) NHj storage, ii) NH; removal from membrane plasma reactors, and iii) NH3 capture from air.
Then, with one campaign dedicated to finding optimal MOFs for NHj3 storage in a “hybrid” ~10,000-MOF database, we identify twelve
extant and eight hypothesized MOF designs with potentially record-breaking working capacity ANnmu3 between 300 K and 400 K at 1
bar. Specifically, the best MOF designs are predicted to i) achieve ANnus values between 23.6 and 29.3 mmol/gm, potentially surpassing
those that MOFs previously experimentally tested for NH3z adsorption would have at the proposed operation conditions, ii) be thermally
stable at the operation conditions and iii) require only ca. 10% of the energy content in NH3 to release the stored molecule from the
MOF. Finally, the analysis of the generated simulation data during the search indicates that a pore size of around 10 A, a heat of
adsorption around 33 kJ/mol, and the presence of Ca could be part of MOF design rules that could help optimize NH3; working capacity
at the proposed operation conditions.

KEYWORDS: Bayesian Optimization, Active Learning, Vendi Score, Machine Learning, Materials Screening, Ammonia Storage

1. INTRODUCTION 51 hypothesized MOF structures outputted by crystal creation

. 52 codes (i.e. MOF prototypes).*!5!7 Notable databases of extant
Metal-organic frameworks (MOFs) are a class of porous 53 MOFs have been created by Chung et al.'* (~20k MOFs) and
materials that could be bestowed with properties that could 54 by Moghadam e al.'® (~70k MOFs). On the other hand, notable
enable technological breakthroughs in energy, environment, 55 databases of hypothesized MOFs include those created by
and other fields.' The idea is that judicious selection of MOF 56 Wilmer et al.' (~137k MOFs), Colon et al.'® (~13k MOFs),
constituent nodes and linkers could yield whichever 57 Boyd eral.®® (~280k MOFs), among others. Note, however, that
architecture and/or chemistry is required to engender the 53 the size of these databases is very small compared to the

necessary material property or behavior to enable the 59 vastness of the MOF design space, which some estimate to span
breakthrough.® However, one persisting challenge in MOF 60 at least one trillion MOFs. 2!

development has been that the combinatorics of constituent
building blocks creates an overwhelmingly large material
“design space,”®’® To expedite the navigation of the MOF
design space, for longer than a decade, MOF development has
been aided by high throughput computation instead of solely

61 Indeed, current computational capabilities only allows
62 evaluating a small number of MOFs relative to the MOF design
63 space size. For instance, the work by Simon et al'’only
64 managed to predict methane adsorption in ~650k materials,

. . 011 65 even though methane adsorption is one of the fastest properties
relying on experiments. . . - . .

66 to predict by simulation.*~ Calculation of other properties have

High throughput computation in MOFs has usually 67 proven even more limiting. For instance, prediction of charge

relied on exhaustively predicting key performance-relevant 68 distribution through density functional theory (DFT) by

properties in all MOFs in a database—usually using molecular 69 Nazarian et al.®* was limited to ~3k structures. Prediction of

simulation.'>!* Some notable databases have been created out 70 band gaps via DFT by Rosen ef al?* was limited to ~20k

of experimentally reported MOF structures (i.e. extant MOFs)'* 71 structures. Prediction of thermal conductivity by Islamov et al.’

curated from the Cambridge Structure Database, or 72 via molecular dynamics was limited to ~10k structures.
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Predictions of hexane isomer mixture adsorption by Chung et
al® was limited to ~500 structures. Moreover, in the case of
adsorption applications, computational limits may be even
more restrictive since screening for such properties for a given
application may require considering different conditions in
temperature, pressure, and composition (in the case of
mixtures).

One can argue that the discovery of technology-
enabling MOFs have been hampered by the inability to explore
the MOF design space at large. One way that researchers have
attempted to expand the number of MOFs considered in a given
study is through hierarchical screening. But the latter first
requires the calculation of an inexpensive descriptor which
(hopefully) points to (smaller) regions of the MOF design space
where the property of interest may have desirable values.?>’
Therefore, hierarchical screening presents caveats such as: i)
requiring extensive “domain knowledge” to identify an
effective, inexpensive “descriptor”?® ij) still being unlikely that
the descriptor can be calculated on the MOF design space at
large, iii) due to a probably imperfect correlation, still being
possible that the descriptor calculation may overlook regions of
design space where the property of interest could have desirable
values.

Hence, there is growing interest in methods that allow
exploring the MOF design space efficiently, while still relying
solely on direct property calculations. For instance, genetic
algorithms (GAs) have been explored to evolve an initial small
subset of MOFs into new subsets of MOFs with optimized
values of the property of interest (e.g., pre-combustion CO»
capture properties,? or CHy storage properties?!). However, it
is understood that GAs tend to require a larger number of
evaluations and are slower than other sophisticated
search/optimization methods. GAs thus may become rapidly
intractable as  property calculation becomes more
computationally expensive. In contrast, Bayesian optimization
is known to be a more sample-efficient method,*® and hence is
finding success in tasks such as screening molecules with high
power conversion efficiency for clean energy,?! optimizing
reactions for molecular synthesis*?, and finding low-energy
molecular conformers,>* among others.343¢

The potential benefits of Bayesian methods to
optimize porous materials have been suggested by work by
Simon and coworkers.3” Working with the data from previously
screened ~70k covalent-organic frameworks (COFs), these
authors showed that Bayesian optimization could find ca. 50%
of the top-100 adsorbents for methane storage only exploring
ca. 1% of the COFs. However, the approach used by these
authors may not generalize well to searches aiming to optimize
other material properties. For instance, their representation of
the adsorbent consisted of a 12-component vector of five
common (global) textural properties and simple counts of seven
specific chemical elements. Such simple representation likely
leverages that methane adsorption is primarily a (relatively)
smooth function of textural properties. However, it may not be
suitable when the property of interest also depends strongly on
material chemistry.

On the other hand, traditional Bayesian optimization
is designed to find one single optimal solution, which may turn
out to correspond to a MOF design that may not be
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experimentally synthesizable or stable, or for which the
performance prediction may have turned out to be unreliable.
The task of optimizing a MOF performance metric while
ensuring other properties (e.g., synthesizability and stability)
also have desirable values can be framed as a multi-objective
optimization problem. Such formulation, however, assumes
that all relevant metrics are known a priori and can be evaluated
in similar manners.?%3® Multi-objective optimization cannot be
realized, however, if some objectives can only be evaluated
after screening is completed, or if we cannot anticipate all
possible factors that should be accounted for during the search
(i.e., prediction reliability for each particular MOF). We thus
take a different approach: finding multiple MOFs, different
from one another, with desirable predicted values for the
primary property of interest.

Specifically, in this work, we build a general and
efficient framework for searching and finding several optimal
MOF designs that are distinct from each other. Our framework
is designed to be amenable to performance metrics that depend
strongly on either MOF chemistry or textural properties, or both.
More specifically, we combine the traditional tools of Bayesian
optimization with the Vendi Score—a statistical measure of
diversity developed by Friedman and Dieng**—to find a
diverse set of promising MOF designs, each yielding a
sufficiently high value for the metric of interest, instead of
committing to a single optimal MOF that may not be
synthesizable or stable. This comes in the form of promoting
more exploration in the behavior of our optimization algorithm,
selecting MOFs that are diverse from those already inspected.
We name this framework Vendi Bayesian optimization (VBO).

We first statistically test the efficacy of combining a
chemistry- and structure-aware MOF representation with VBO,
using a randomly drawn subset of ~1,000 MOFs as a testbed.
We conducted these tests on the optimization of three
performance metrics depending on the adsorption of NH3;. We
chose metrics involving this molecule because NHj is important
for our society as a precursor to fertilizers,*’ and could gain
further prominence in the near future as an energy vector.*!
From an application perspective, the three chosen metrics are
relevant to rank MOFs for their potential to help make the
synthesis of NH; sustainable and carbon-free,? and NH;
storage and transportation easy, energy-efficient and safe.
From a methods perspective, the three chosen metrics pose
different challenges to our developed search method. Namely,
the polarity of ammonia*® and the different adsorption
conditions associated with each application (Fig. 1) make the
different metrics to balance differently their dependence on
MOF chemistry and textural properties (vide infra). On the
other hand, each metric present different (mathematical)
complexity on their relation to adsorption loadings.

Upon statistical testing of VBO efficacy, we finish this
work with a real search campaign on a ~10,000-MOF hybrid
database (i.e., containing extant and hypothesized structures) to
find MOFs with outstanding predicted NH; storage
performance. We chose this application for the real search due
to the growing interest of experimentalist chemists in the use of
MOFs for NHj3 storage as reflected by the growing number of
NHj3 adsorption measurements at 1 bar and 300 K (i.e., ambient
conditions) reported in recent years. For instance, Moribe ef al.
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Figure 1. Applications for which NH3 adsorption-based MOF performance metrics were optimized to test the efficacy of our Vendi Bayesian
optimization (VBO) framework. a) Adsorptive NH3 storage at ambient conditions with release at 400 K. b) Membrane-based NH3 removal from plasma
reactors during NH3 synthesis at 400 K and 1 bar. ¢) Dilute NH3 capture from air in adsorbent traps at ambient conditions. Gas-phase composition
relevant to each application indicated at the top. The three chosen metrics present different levels of dependence on MOF chemistry and structure.

7 reported 10.5 mmolnus/gmor in Ga-PMOF,*” Guo ef al. 12.8

o0

mmolnus/gmor in MIL-160,48 Kim et al. 23.9 mmolnus/gmor in
Mg-MOF-74% and 23.5 mmolnus/gmor in Ni_acryl TMA,
and Shi et al. 33.9 mmolnus/gmor in LiClI-MIL-53,>' among
others.’>% But despite growing interest, not much has been
done to leverage search algorithms to identify promising MOFs
for NHj3 storage. Thus, here we show how our developed VBO,
a novel search algorithm for MOFs, can be used to fill such
knowledge gaps. Furthermore, our analysis of the MOFs
explored by our VBO provides new design rules to guide
experimentalists developing MOFs for NHj3 storage.

2. SIMULATION METHODS

2.1. MOF database About 12,000 structures from the 2019
CoRE MOF database'* and about 3,000 structures created
earlier using ToBaCCo-3.0° were used as a starting point to
ultimately create a hybrid database of ~10,000 structures. These
MOF sources are complementary. CoRE MOFs are extant
structures with high, but non-systematic, chemical and
structural diversity that tend to feature small pores.>* ToBaCCo
MOFs are hypothesized structures with systematic, but medium,
chemical and structural diversity that feature medium to large
pores.>* All MOFs underwent characterization of their void
fraction, surface area, and pore size distribution using zeo++. A
probe radius of 1.3 A was used by zeo++ to determine the
accessibility of pores through the percolation algorithm.3® Then
a probe of same size was used to determine the characteristic of
the accessible pores. Note that the radius of 1.3 A is adopted to
match the kinetic radius of NH3.% Failures during
characterization calculations and assignment of charges to
MOF atoms (see Section 2.2) ultimately reduced the total
number of structures available for this work to around 10,000.
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2.2. Monte Carlo simulations.

Monte Carlo simulations were done using RASPA-2.0.57-8

Grand canonical Monte Carlo (GCMC) was used to predict
adsorption loadings. Temperature and partial pressures of
adsorbates in the gas phase were kept constant at the values
relevant for the adsorption conditions of interest. Each
simulation consisted of 10,000 equilibration cycles, followed
by 10,000 production cycles. Each cycle consisted of as many
Monte Carlo moves as molecules there are in the simulation box,
but never less than 20. Moves corresponded to
insertion/deletion, translation, and rotation (and swap for
mixture cases). The Widom insertion method,*® with at least
10,000 insertion moves, was used to calculate Henry’s
constants at the temperature of interest. Molecular interactions
were modeled using the Lennard-Jones (LJ) and Coulomb
potential. A cutoff of 12.8 A was used for the LJ potential, and
12.0 A for the Coulomb potential, after which distance Ewald
summation was used.®*®! LJ parameters and charges for NHj
and N, molecules were assigned according to the TraPPE force
field®>% for H,O according to the TIP4P model, ¢ whereas
for Hy were obtained from the work by Levesque et al.®”%8 LJ
parameters for MOF atoms were assigned according to the
Dreiding force field, or universal force field”® if parameters
from Dreiding were unavailable. L] parameters for cross-
interactions were obtained using Lorentz-Berthelot mixing
rules. Note that the above LJ parameter selection have been
used by Snurr and coworkers, and several others, to model NH;
adsorption in MOFs.”'” Charges for MOF atoms were
assigned based on the best method available for each MOF
subset. Thus, charges in ToBaCCo MOFs were assigned in
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earlier work using the MBBB method,’® whereas for atoms in
CoRE MOFs, charges were assigned using PACMOF.”” MBBB
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Figure 2. Workflow for our VBO framework. An initial GP, trained with data for two randomly chosen MOFs, is used to predict the performance
metric in the starting database. £+ MOFs are selected for molecular simulation evaluation based on the upper confidence bound (UCB) acquisition
function. One MOF is chosen as the MOF scoring the highest UCB just as in standard Bayes optimization. The remaining £ MOFs are selected based
on UCB but only after 10% of the database is pruned. The MOFs pruned from the database are the MOFs that would increase the least the Vendi Score
of the cumulative set of MOFs evaluated by molecular simulation. The top k+1 MOFs selected are then evaluated using molecular simulations. To
perform a new iteration, the molecular simulation data for the newly evaluated k+1 MOFs are added to the data for training the GP, and the MOF

selection process is repeated.

is based on DFT calculations on MOF building blocks, which
are directly inherited by the MOF, when constructed by
ToBaCCo. PACMOF, on the other hand, is a machine learning
model that was trained by Snurr and coworkers, from DFT
calculations on complete MOF unit cells, to predict charges in
MOF atoms, with an accuracy of 0.02e in mean absolute error
(R? = 0.99). Moreover, the higher accuracy of PACMOF over
other fast charge assignments was recently shown by Liu and
Luan.”® Example comparison between simulated adsorption
isotherms using the methods herein against experimental ones
are shown in Fig. S2.

2.3. Assessed performance metrics.

NH; storage. The incumbent method to store NHj3 relies on
condensation at temperatures in the 238 to 253 K range, under
pressures in the 10 to 15 bar range.’®’® Exploration of
adsorptive NHj3 storage in the literature coincide on storing NH3
at ambient conditions (300 K and 1 bar), but do not present
consensus on the desired conditions for the release. Importantly,
however, the performance of an adsorbent for ammonia storage
depends on both the amount of NH3 trapped at the storage
conditions, Nnm3®®, and that retained in the

adsorbent at the release conditions, Nnu3®S. The difference
between these two quantities defines the working (effective)
storage capacity ANnu3 as:

AN = N - N (1)

Due to its technical simplicity, here we consider the release of
ammonia to be done simply by heating the adsorbent to 400K
at 1 bar (Fig. 1a). Note that as having enough space in the MOF
pore is paramount to this application, ANnns3 is expected to be
strongly influenced by MOF textural features such as pore size,
void fraction and so forth.
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NH; removal during plasma-assisted synthesis. The
incumbent method to make NHj typically uses a pressure of 150
bar and a temperature of 650 K. However, as it turns out,
sustainable, carbon-free NH3 production requires synthesis at
mild conditions.?*%? A promising method for NH3 synthesis at
1 bar and 400 K is plasma-assisted synthesis in dielectric barrier
discharge (DBD) reactors. In these reactors, low synthesis
temperature is enabled by the accelerated breakdown of
reactant molecules (N, and H;) due to collisions with
high-energy electrons in the plasma. But these electrons can
also break down some of the freshly formed ammonia. Thus, a
plasma reactor configuration that incorporates a porous
membrane that remove ammonia as it forms, could protecting
NHj3 from plasma decomposition (Fig. 1b), increasing energy
efficiency.®># One of the desirable characteristics for the
porous membrane are high adsorption of ammonia Nxns3 at the
reaction conditions, but with high adsorption selectivity for
ammonia ongs over Nz and H,, where:

oz = (Muslynus) (END/(2) - (2)

where ynns is the molar fraction of NH3 in the gas phase, and V;
and y; are the adsorbed loading and molar fractions in the gas
phase, respectively, of all other species i. Assuming a 3:1 H2:N»
feed ratio and a conversion of 10 %, here ynus, yn2 and ym are
assumed to be 0.06, 0.23, 0.71, respectively. Seeking to account
for both adsorption and selectivity, here we use Mars as a
performance metric where:

Mars = onm3 X Nnus (3)

Note that selectivity, anm, is a reflection of the attraction of the
MOF to NHs relative to N2 and H», and hence is expected to be
strongly influenced by chemistry. On the other hand, the
adsorption capacity Nnus at non-dilute conditions is expected to
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also be influenced by MOF pore space. Thus, the complete
metric Mars is expected to be influenced by both MOF
chemistry and textural features. Also note that diffusion
selectivity is an important aspect of choosing a material for a
membrane. This selectivity could be incorporated into the
performance metric (or could be considered in a subsequent
screening step). However, for the purpose of testing the VBO
framework, we decided to focus on the adsorption aspects of
the membrane.

NH; capture from air. NH; leakage during storage and
transportation is a persistent risk. The maximum NH;
concentration that individuals can safely breath for 1h is 1,500
ppm.® One way to mitigate the risk is to accompany storage
and transportation infrastructure with adsorbent traps that can
selectively adsorb substantial amounts of dilute NH3 over other
molecules in air, including water (Fig. lc). Preferential NHj3
adsorption over H>O is most challenging because H,O is polar
like NH3, but it would be present at a higher concentration in air.
Thus, we decided to consider a MOF to be potentially useful
only if it is hydrophobic, for which we calculate:

OHPHB = 1, if Kmo<5x 10°mol kg'lPa'l

Oupup = 0, if Koo > 5 x 10 mol kg''Pa!  (4)

where Ko is the adsorption Henry’s constant of H,O at 300 K
and Oupup equal to one (zero) indicates that the MOF is
hydrophobic (hydrophilic), in consistency with the Kmuo
threshold for MOF hydrophobicity determined by Moghadam
et al. % Then, we use as performance metric:

6))

where Mars is calculated from Eq. 3 and Eq. 2, with i
corresponding to N, O, and Ar. Adsorption loadings are
calculated for a N»/O»/Ar/NH3 mixture with yn2 = 0.78, yoo=
0.21, yar = 0.0075 Ar and ynuz = 0.0015 (i.e., 1500 ppm NH3)
at 300 K and 1 bar. The above metric circumvents the need to
calculate H>O adsorption in MOFs, which is known to require
extremely long simulations.®” Note that an analogous strategy
to the above was used by Smit and coworkers to discover MOFs
for CO; capture from wet flue gas.?® Note that as having enough
space in the MOF pore to store the dilute quantities of NH3
originally in air is not a concern, MOF performance, and thus
Matsth is expected to be primarily influenced by the ability of
the MOF to attract NH3, and hence by MOF chemistry.

3. DIVERSITY-DRIVEN MOF OPTIMIZATION

3.1. Workflow overview.

Martsti = Marts X OnpHB

An overview of our diversity-driven MOF optimization/search
framework is presented in Fig. 2. To start a MOF (design)
optimization campaign, we randomly draw two MOFs and
calculate their performance metrics using molecular
simulations. These two datapoints are then used to train a
Gaussian Process (GP) regression model®® whose kernel is
designed to account for both chemistry and physics (see Section
3.2). The GP is trained to predict the performance metric and
provide the uncertainty associated with the prediction. This
fitted GP is then used to predict the performance of all MOFs
in the hybrid database. From these predictions, our Vendi
Bayesian Optimization (VBO) algorithm selects the next most
promising MOF candidates for which to calculate the
performance metric using molecular simulations.
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The first candidate that VBO selects is the one
corresponding to the most “optimistic” performance prediction
made by the trained GP. The remaining candidates are selected
only after we prune 10% of the database. The pruning is done
by taking out of the database 10% of the MOFs that, if added to
the set of MOFs previously chosen by VBO and assessed via
molecular simulations, would yield the lowest diversity change
of that set. In our workflow, diversity of a MOF set is calculated
using the Vendi Score (see Section 3.3). The lower the Vendi
score, the lower the diversity of the set. Thus, the MOFs
removed from the database are those that would yield the lowest
Vendi Score if added to the set of MOFs that have been selected
by our VBO algorithm.

Given that for each MOF the GP predicts a distribution
of possible performance metric values, our VBO algorithm uses
the upper confidence bound (UCB) criterion to assess the
“potential” of a MOF. Specifically, the UCB is the mean value
() of the distribution of predictions for the MOF plus two times
the standard deviation (o). Ideally, upon evaluation with
molecular simulation, some of the MOF selected by our VBO
algorithm should have a higher value of the performance metric
than the MOFs previously evaluated in this same manner.
Regardless, upon completion of the evaluation with molecular
simulation for MOFs that had been selected by the VBO
algorithm, a new GP model is trained leveraging the newly
generated data, and selection of new candidates is done again
using the same procedure as described above. This procedure is
repeated either until a preset target number of iterations is
achieved or the highest value of the performance metric in the
MOFs evaluated with molecular simulation no longer improves.

3.2. MOF representation.

Each MOF is chemically characterized by the Morgan
fingerprints®® of its constituent building blocks (nodes and
linkers), which are extracted from each MOF using MOFid.”
MOFid provides the SMILES strings® of the building blocks,
which are used as input for RDKit to provide the fingerprints.
Here, each fingerprint is a vector whose components describe
the atom groups of the corresponding node or linker. Each MOF
is also structurally characterized by its detailed pore size
distribution and global textural properties usually used in the
MOF field. Namely, specific pore volume, void fraction,
specific surface area, largest and diffusion-limiting pore
diameters, and metal-to-nonmetal content ratio. We design a
specific similarity kernel for MOFs. This new kernel is the one
we use for the GP and the calculation of the Vendi Score in our
VBO framework. More specifically, if we denote two different
MOFs by x; and x, then the similarity between these MOFs is
given by a specialized kernel function K that is an average of
four different kernels, where each kernel K; specializes in one
particular aspect of MOFs and is weighted by a factor w;.
Namely, the kernel similarity between two MOFs x; and x> is
defined as:

K(x1,%2) = Wi Kyoqe (X1, %2) + WaKpinger (X1, X2)
+W3Kglobal(x1:x2) + WaKpsp (X1, X2) (6)
Kyode and Kjinker are each a kernel function computing the
Tanimoto similarity®' between the Morgan fingerprints of either

two nodes or two linkers, respectively (Fig. 3a). The Tanimoto
similarities between Morgan fingerprints have been found to
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Figure 3. Schematic representation of methods to calculate kernel similarity between MOFs. a) Chemical similarity (Knode and Kiinker kernels) obtained
by decomposing two MOFs into their building blocks, and calculating the Tanimoto index between the Morgan fingerprints of their building blocks.
b) Global textural properties similarity (Kglobal kernel) obtained by calculating the radial basis function Kernel of the Euclidean distance between the
property vectors of two MOFs. ¢) Detailed pore structure similarity (Kpsp kernel) obtained by calculating the difference between one and the Jensen-
Shannon divergence between the pore size distributions (PSDs) of two MOFs. The different kernels cover different aspects of MOFs, and by tuning
the weights of each Kernel, the representation is adaptable to prediction of properties with different level of dependence on MOF chemistry and

structure.

capture important differences in molecule chemistry, and has
been shown effective at guiding machine learning models for
search purposes in other areas.”> As a MOF could have more
than one type of node or linker, we do all possible pairwise
comparisons and use the average value of K,z 0t Kiinker. On the
other hand, Kgiosa Operates on the global textural properties, and
is defined to be the exponential of the Euclidean distance
between the two vectors containing the (normalized) values of
the above properties for the two MOFs being compared (Fig.
3b). This is analogous to what Simon and coworkers did for
COFs.” Finally, Kpsp is a new kernel proposed by us, which
computes the difference between the pore size distributions
(PSDs) of the two MOFs being compared. We do this by using
the Jensen—Shannon divergence (JSD).”* Given two PSDs P
and Q, this function returns:

JSD(P,Q) = %(KLD (P,M) + KLD(Q, M)) (7)

where M = %(P + Q) is a mixture distribution of the original
two P and Q and:

KLD(P,Q) = Yses P(s)log (% (8)

refers to the Kullback—Leibler divergence (KLD) between P and
Q. Here S is the set of possible pore sizes, and P(s) and Q(s)
give the probability of a particular pore size s in each of the two
MOFs. JSD computes the distance between the two
distributions, giving a symmetric and bounded metric for their
difference. Our kernel Kpsp subsequently calculates the
similarity between the two distributions as (1 — JSD).

3.3. Vendi Score.

The Vendi score (VS) is key to encourage our optimization
framework to find many diverse solutions, hence avoiding
commitment to a single MOF design “solution” that might be
infeasible to produce and test experimentally. The VS is a
function whose input is the n X n similarity matrix K
representing data points in a set of size n. The VS is calculated
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as the exponential of the Shannon entropy of the normalized
eigenvalues of K, denoted by A;, as follows:

VS(K) =exp (= Xiz1 i log A;) ©

Friedman and Dieng® showed that the VS is a mathematically
well-defined diversity metric and quantifies the effective
number of unique elements in a set.3® Here, the elements of the
similarity matrix are calculated using Eq. 6, meaning that the
GP model and the VS use the same underlying mathematical
object. To keep the output of the kernel function consistent
across calculations of the VS, we set the weights w; in Eq. 6 to
all be equal to 0.25. However, note that the weights in Eq. 6
take different values when training the GP model, where they
are optimized for prediction.

3.4. Vendi Bayesian optimization (VBO) Framework

Overview. If MOFs are denoted by x and a MOF database by X,
where x € X, and if f'is a “black-box” function that returns the
scalar value of the property or performance metric of interest
(ie, f:X - R), then we aim to find the MOF x* that
maximizes the value of the performance metric. More formally,
we find x* such that:

x. =arg maxf(x) (10)

The above makes f an objective function that models the
mapping between a given MOF and its performance metric.
Here f'is approximated by a GP that iteratively improves its
“understanding” of f based on evaluations of f for specific
MOFs x. Here, evaluating f(x) means running molecular
simulations to calculate the relevant performance metric for a
given MOF x. However, our VBO framework is also amenable
to experimental work, where performance metrics are measured
via experiments instead of molecular simulations. In each case,
our VBO framework enables finding the optimal MOF x* in as
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few evaluations as possible, to overcome time and/or cost
constraints associated with simulations or experiments.

Surrogate model. The first component of our VBO framework
is a surrogate model that expresses a belief about f based on
previous evaluations of f'—i.e., a belief about the relationship
between MOF chemistry/structure and performance. Here, the
surrogate model is a GP (see comparison with other models in
Section S2), which, as any GP, does not yield a single prediction
of f for a given x, but rather a set of predictions that follow a
normal (Gaussian) distribution V" such that:
fO) ~N(w, 0% an

where ¢ and o are the mean and the standard deviation of the
predictions, respectively. When conditioned on a training set, Y
and o are updated to be the posterior predictive mean and
standard deviation, reflecting information learned from the
training data. Intuitively, ¢ and o represent the value that f{x) is
most likely to take and the uncertainty about the predicted u,
respectively. We refer to Rasmussen and Williams®® for a more
thorough treatment of GP learning. To fully specify a GP, one
needs a mean value that describes the behavior of f in the
absence of data, and a kernel K that calculates similarities
between different x; our choice of K was described in Section
3.2. At each iteration of our VBO framework, the values of the
performance metric obtained from molecular simulation are
normalized so that they range from -1 to 1. (We use the constant
zero mean function)., The parameters of the GP model,
including the weights w;in Eq. 6 as well as the mean value and
a noise factor, are tuned to maximize the fit to the training data,
quantified by the marginal log likelihood of the data, as is
standard in Gaussian process modeling.®

Acquisition function. The second component of our VBO
framework is an acquisition function a(x) that guides us
towards promising candidate MOFs that are likely to yield high
performance and that have not been evaluated). A good
acquisition function should balance exploration (learning about
how f(x) behaves across the space) and exploitation (zeroing
in on high-performance regions). Here, we opt for the Upper
Confidence Bound (UCB) function.”> UCB adds p and o, the
mean and standard deviation of the GP prediction, with the
latter multiplied by a trade-off factor 5, which we set to 2 here:
a(x) =u+20. (12)
This simple expression elegantly captures the balance between
exploration of MOFs we are uncertain about (with high o), and
exploitation of MOF's predicted to yield high performance (with
high p). In addition to its interpretability, Taw and Neaton®
demonstrated good optimization performance of the above
acquisition function to optimize methane uptake capacity of
MOFs. At each iteration of Bayesian optimization, we find the
MOF that maximizes the UCB score to evaluate f(x) with. We
repeat this process until our evaluation budget is depleted, each
time updating the GP and the UCB score with the newly
observed MOFs.

Solution diversification. Unlike regular Bayesian optimization,
VBO iteratively prunes the search space (i.e., the database) by
removing remaining candidates that are too similar to those that
have been previously selected for evaluation. This removal
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results in even more exploration than enabled by the acquisition
function. Formally, consider a candidate MOF x of unknown
performance that we may query. We compute the increase in
VS (AVS) that we would obtain if we were to evaluate f(x) and
add x to the set S containing the MOFs we already selected.
That is:

AVS = VS(SU {x}) —VS(S) (13)

If x is different from the data points in S, querying x will add
more diversity to our data set, as reflected by a large AVS. If,
on the other hand, x is similar to the points in S, AVS will be
small. At each iteration, we compute AVS for each of the
remaining candidate MOFs, and remove the MOFs that yield
the lowest AVS until the remaining pool of candidates is
reduced by ten percent. We thus reduce the effective search
space at each iteration, removing candidates that are too similar
to those already acquired.

This modification of traditional Bayesian optimization aims at
building a diverse set of high-performance MOFs. While this
increase level of exploration does not guarantee improved
optimization performance, we do not necessarily sacrifice the
top MOF either. As the diversity-aware pruning step is reset at
each iteration, if we have found a region in our search space that
contains very good candidates, our acquisition function allows
us to come back to this region (i.e., zeroing in on the top MOF)
once other promising regions have been explored. We can also
think of this strategy as searching over multiple promising
regions at the same time.

4. RESULTS AND DISCUSSION
4.1. Expressiveness of the MOF-specific kernel.

Although the representation of a MOF is inherently
multidimensional, the plots in Fig. 4 maps MOFs onto a
reduced two-dimensional space, by applying multidimensional
scaling (MDS)?’ to the covariance matrix of the MOFs, which
was calculated using the kernel defined earlier by Eq.6. MDS
conveys the similarity-dependent original distances between
MOFs in multidimensional space, so that in Fig. 4 similar
MOFs appear close to each other. From Fig. 4a, the
complementary of CoRE MOFs (blue points) and our
ToBaCCo MOFs (orange points) is apparent as the groups
separate into individual regions. The usual differences between
extant CoRE MOFs and hypothesized MOFs such as our
ToBaCCo MOF have been pointed out previously in work by
others such as Kulik and coworkers.>* For instance, CoRE
MOFs tend to feature smaller pores and a more diverse
selection of metals. ToBaCCo MOFs exhibit a systematic
variation in textural properties, focusing on metals Cr, Zr, Mn,
Co, Cu, and Zn. Therefore, the observed segregation in Fig. 4a
indicates  that our  kernel captures  meaningful
similarities/differences between MOFs.

Analogously, we present reduced dimensionality plots but only
for a random subset of 1,000 MOFs uniformly extracted from
the ~10,000 hybrid database, and for which the performance
metrics pertinent to NH; storage, removal during plasma-
assisted synthesis, and capture from air (ANnu3, Mats and
Marsth, respectively) were calculated using molecular
simulation. Upon coloring the points based on the value of each
performance metric in the corresponding MOF, it is apparent
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that segregation also tends to occur on the basis of performance
(Fig. 4b-d). For instance, Fig. 4b shows MOFs with ANnu3 <5
mmol/g locating in an outer ring, MOFs with 5 mmol/g < ANnh3
<15 mmol/g locating in the inner region, and MOFs with ANng3
> 15 mmol/g locating in a lower-right cluster. Such segregation
indicates how well our measure of similarity (i.e., our kernel) is
conducive to learning.

The extent at which our kernel facilitates learning is
illustrated in Fig. 5, which shows parity plots comparing the
prediction of the performance metrics Nnu3, Mars and Matstu
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Figure 4. MOF mapping onto two-dimensional plots by using
multidimensional scaling (MDS) representations. a) all MOFs in the
hybrid database colored by their origin (either the ToBaCCo database
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or the CoRE database). b-d) 1,000 random MOF subset, colored by
range of ANnn, (b), Mats (¢), and Marstu (d) performance metrics.
The extent of segregation observed is a harbinger of the efficacy of our
MOF kernel similarity as input to train the GP.

by corresponding GP models trained on molecular simulation
data of the 1,000 random MOF subset. The GPs trained to
predict ANnmus and Mars (Fig. 5a,b) present relatively similar
correlations between their predictions and the actual values (i.e.,
ground truth) of the corresponding performance metrics.
Namely, R? values of 0.59 and 0.37 for ANwu; and Mars,
respectively. On the other hand, the GP trained for the Marstn
case seems to face higher difficulty in learning to predict the
performance metric, which is reflected by an R? value of -0.06
(Fig. 5c¢). Such difficulty is partly due to the exceptional
roughness of Marsty as a  function of MOF
chemistry/structure—which partly motivated the selection of
this metric for our testing. The roughness of Marstu stems from
the rather binary character of the metric, which is either zero or
positive based on whether the MOF is deemed hydrophobic or
not based on the threshold value of Ko, resulting in discrete
changes to Marsta that are difficult to capture by machine
learning models. Yet, as we will demonstrate shortly, our VBO
framework remains effective at optimizing these metrics,
including, perhaps surprisingly, Marsts.

At this point, let us note that the optimized weights (w;)
for the GP models (Table S3) confirm our hypotheses of what
MOF aspects control performance for each application. For
instance, the chemical similarity kernel K4 weighs 0.97 in the
model that predicts Marsta but only weighs 0.02 in the model
that predicts ANnus3. By contrast, Kpsp weighs 0.37 in the model
that predicts ANnmus, but only weighs 0.01 in the model that
predicts Marsta. On the other hand, all kernels weigh rather
similarly in the model that predicts Mars.
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Figure 5. Prediction performance of GP models (trained on a subset of 1,000 random MOFs extracted from the hybrid database) to predict a) ANNH,,
b) Marts, and ¢) Martstn. GP predictions appear on the vertical axis, while the ground truth (from molecular simulation) appears on the horizontal axis.
The parity line is presented in red. Each point represents the prediction for a MOF, with the corresponding error bar representing the uncertainty of the
predictions based on the prediction standard deviation. The observed prediction performance was found on subsequent statistical testing to be sufficient

to make VBO effective.
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Figure 6. Efficacy of VBO (blue) applied on a 1,000 subset of random MOFs compared to Bayesian optimization (green) and random search (orange).
Top row presents the evolution of the highest value of the performance metric as the number of MOF evaluations increases for a) ANnn, for ammonia
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indicated by the solid line, whereas the standard deviation is indicated by the shaded area. Both VBO and Bayesian optimization outperformed random

search, but VBO provided higher diversity of MOF “solutions.”
4.2. Statistical testing of VBO efficacy.

The efficacy of VBO was statistically assessed by simulating
our workflow (Fig. 2) ten times on the subset of randomly
selected 1,000 MOFs, to iteratively optimize MOF design for
the ANnm3, Mats and Marsty metrics. During each run, two
MOFs were randomly selected to be the initial training set, and
100 MOFs were evaluated in 20 batches of five MOFs each
iteration (i.e., when 10% of the MOF subset was evaluated, the
run stopped). Each time our VBO workflow was run, an
analogous run without the Vendi score-based pruning (i.e., a
regular Bayes optimization run) was done in parallel for
comparison, as well as random search consisting of the
evaluation of 100 randomly selected MOFs within the subset.
The lines in Fig. 6 present the average progress of the VBO
(blue), Bayesian optimization (green) and random search
(orange) runs, whereas the corresponding shaded areas
represent the corresponding standard errors.

As evidenced by Fig. 6, although the uncertainty
region for VBO and Bayesian optimization tend to overlap, on
average VBO did equal or better than Bayesian optimization,
when assessed based on the highest value for the metric
encountered by the end of 100 evaluations. Notably, VBO
outperformed Bayesian optimization for the evaluation of the
Marsta metric for NH3 capture from air. On the other hand,
both VBO and Bayesian optimization clearly do better on
average than random search when compared by the
abovementioned criterion. Furthermore, the uncertainty regions
for the latter two methods and random search barely overlap,
suggesting that in a worst-case scenario VBO and Bayesian

optimization would do at least as well as a best-case scenario
random search that explores ten percent of the available design
space.

But the most significant difference between VBO and
Bayesian optimization is the more diverse exploration of the
design space by VBO. This fact is evidenced by the consistently
higher Vendi score among evaluated MOFs as VBO progresses
compared to Bayesian optimization. As expected, random
search tends to result in the highest diversity among evaluated
MOFs as the search progresses. But it is surprising that for the
optimization of Marstn our VBO ended up on average with a
higher diversity of evaluated MOFs than random search.
Ultimately, the average behavior of the Vendi Score in VBO
versus Bayesian optimization is indicative that VBO is bound
to create a more diverse pool of promising MOFs for a given
application.

4.3. Full database search for MOFs for NH3 storage.

Encouraged by the statistical efficacy of our VBO framework,
we decided to perform a full VBO run on the complete hybrid
database (i.e., ~10,000 MOFs) to optimize ANnw3. Specifically,
to find MOFs with potential for NH3 storage, considering
storage at 1 bar with storage/release through a 300 K to 400 K
thermal swing. Fig. 7a presents the progress of the performed
VBO run of 20 iterations (each iteration corresponds to a batch
of 20 MOFs), comparing it against a random search (technically
consisting of the previously randomly selected 1,000 MOFs on
which VBO was previously tested in Section 4.2). Evidently,
VBO greatly outperforms random search, with the former
identifying MOFs with ANnw3 values approaching as high as 30
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mmolnus/gmor, Whereas the latter did not identify MOFs with 38 For instance, although in Fig. 8a there is a dearth of data for
ANnn3 values higher than ~23 mmolnus/gmor. 39 MOFs with average pore diameter (APD) larger than 14 A, it is
40 apparent that the optimal average pore diameter and for NH3
41 storage at the conditions herein proposed is 10 A. Note that the
42 scarcity of data for MOFs with APD larger than 14 A is due to
43 reluctance by the VBO algorithm to pick MOFs in that range of
44  APD, probably due to rapidly learning that APDs larger than 14
45 A tend not to optimize ANnm3. An APD of 10 A seems to
46 compromise confinement effects (i.e., overlap of interaction
47 potentials) to enhance NHj3 attraction to the pore walls and

designs for NH storage. A fact that is evidenced by the steady 48 having sufficient space to accommodate NH3 molecules. To be
improvement in the average ANy for the “top-20” evaluated 49 Sure, an APD of 10 A.should be interpreted as necessary, and
MOFs from the 80" to the 400" evaluation (Fig. 7b). 50 notasa sufficient condition to optimize ANnmus3, as evidenced by
51 the wide range of ANnus values that can be observed for that
52 APD value. The color coding in Fig. 8a suggests that such
53 variability in ANnu3 at APD equal to 10 A is partly explained
54 by variations in MOF void fraction—with MOFs with void
55 fraction around 0.7 tending to appear at the top. In other words,
56 given two MOFs with APD equal to 10 A, the one with higher
57 void fraction probably corresponds to a higher ANnu3, again
58 partly due to the implication that higher void fraction allows

Notably, the outperformance of VBO relative to
random search occurred despite VBO terminating early at ca.
400 evaluations. This early termination was made because the
highest ANxu3 value within the evaluated MOFs did not change
significantly after around 80 evaluations. However, note that
one should not be tempted to consider subsequent MOF
evaluations after the 80th evaluation point as wasteful, as these
evaluations enabled to strengthen the pool of promising MOF

Importantly, this improvement in average ANnu3 Wwas
accomplished while steadily improving the diversity of the
evaluated MOF as indicated by the steady improvement in the
Vendi score within the same range of evaluations (Fig. 7c). The
latter creates confidence that the pool of promising MOFs to be
suggested for future synthesis and experimental testing to be
more diverse than provided by other methods.

4.4. Data-driven MOF design rules 59 more space to accommodate NH; molecules.

As noted earlier, a benefit of computational MOF screening is 60 On the other hand, note that while attraction of NH3 to
the emergence of structure-performance relationships, which 61 the pore walls (as reflected by the heat of adsorption Q) is
are useful to establish design rules that experimentalists could 62 desired, too strong an attraction is detrimental to ANwu3 as it
leverage to conceive adsorbent designs of their own (not even 63 prevents the adsorbed NH3 molecules to be easily released.
necessarily for MOFs). Importantly, the emergence of these 64 From our collected data, it seems that a Qs of 33 kJ/mol is
relationships allows extracting value from computational 65 optimal for ammonia storage at the conditions herein proposed
screenings independently of the success in synthesizing and 66 (Fig. 8b). Analogous to our APD analysis, a Qg of 33 kJ/mol
testing the specific MOF designs recommended by the 67 should be taken only as a necessary but not sufficient condition
screening. However, the nature of the emerging relationships is 68 to optimize ANnn3. Indeed, there is a wide range of ANwmu3
empirical, and thus depend on a sufficiently large number of 69 values at Qs equal 33 kJ/mol. The color coding in Fig. 8b partly
observations being made to create clear trends. Conveniently, 70 explains this variability on the basis of surface area variations—
here, while the number of evaluated MOFs is lower than in 71 with MOFs with surface area around 4000 m%g tending to
other screening studies that relied on exhaustive search, the bias 72 appear at the top, as they provide a larger number of sites with
of our selection method towards “good” MOFs allow us to still 73 optimal interaction strength. Note that inspecting Fig. S6, it
define well the “interesting” region of the relationship relevant 74 seems that a Qg value around 33 kJ/mol enables recovering up
to optimize the performance metric of interest. 75 to 95 % of the NH3 molecules adsorbed at the storage conditions
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Figure 7. Evolution of VBO campaign (blue) in the ~10,000 MOF database, when searching for MOFs for NH3 storage, compared to the evolution
of the random search (orange). a) Evolution of the highest ANnn3 found among evaluated MOF at a given point in the campaign. b) Evolution of the
average ANnu3 among the top-20 evaluated MOFs at a given point in the campaign. ¢) Evolution of the Vendi Score of evaluated MOFs at a given
point in the campaign. Note that the VBO campaign was ended early due to negligible changes in the highest ANnm3 since the 80" evaluation. Once
again VBO greatly outperformed random search.
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Figure 8. Plots of structure-performance relationships for NHs storage.

Each square bin corresponds to a combination of the ANNH3
performance metric and MOF property, where the transparency of
each square bin is indicative of the number of MOFs in the bin, and
the color of each bin reflects the average value of the property in the
side color scale across all MOFs in the bin. a) ANnn, versus MOF
average pore diameter (APD), with each bin colored by MOF void
fraction. b) ANnn, versus heat of adsorption Qst, with each bin colored
by gravimetric surface area. Optimal APD and Qs appears to be 10 A
and 33 kJ/mol, respectively.
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Figure 9. Statistical significance for comparison of elemental
compositions between the top-14 MOFs and the entire database based
on the p-values derived from the t-test. The dashed line represents our
chosen critical value for the one-sided t-test. Bars that fall below this
threshold indicate elements that are statistically significantly more
abundant in the top-performing MOFs. Ca is a metal that appears
significantly more frequently in the top-14 MOFs than in the full
database.

We acknowledge, however, that a design rule centered
around Qg is somewhat abstract as this quantity does not depend
only on MOF chemistry, but also on MOF structure. In an
attempt to provide some chemistry-based MOF design rules for
NH; storage, we decided to explore trends in elemental
composition among outstanding MOFs. Specifically, for each
element in the periodic table, we calculated its average percent
content in the top-14 MOFs evaluated with molecular
simulation and compared this value with the corresponding
average percent content in all ~10,000 MOFs in the database
(Fig. S7). Then we used a t-test to assess the statistical
significance of observed differences.

Fig. 9 shows the p-values for the t-test for the elements
present in the top-14 MOFs. Using a p-value threshold of 0.1,
it seems that C, H, and Ca are elements that are, with statistical
significance, more abundant within the top-14 MOFs for NH3
storage than in MOFs at large. Using our understanding of
MOF structure, we rationalize that the higher abundance of C,
H is probably just a reflection of the optimal APD for ammonia
storage being larger than the median APD in the database—i.e.,
larger pores imply longer linkers, hence more C and H content.
On the other hand, we could not find an alternative explanation
for the higher abundance of Ca within the outstanding MOFs,
suggesting a primarily chemical effect—after all, CaCl, is a
popular ammonia adsorbent.”® To be sure, though, due to the
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role other MOF features play on ANwnmus, the presence of Ca
alone, as we will see below, does not guarantee the
maximization of ANnmus.
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4.5. Promising MOF designs.

Contingent on adsorption simulation accuracy, now we proceed
to present some promising MOF designs identified by our VBO
run. The top-20 MOFs are listed in Table S4, while the top-6
MOFs are presented in Fig. 10. Three of these MOFs
correspond to hypothesized designs (top row), and the
remaining three correspond to extant designs that have been
realized synthetically (bottom row). The free energy of the
hypothesized designs in Fig. 10 was calculated using the
Frenkel-Ladd method as discussed in earlier work,” resulting
in free energies below 4.4 kJ/mol per atom, which per
discussion in ref.!% suggests high synthesizability likelihood.
The MOFs in Fig. 10 present ANnu3 values in the 26.6-
29.3 mmolnns/gmor.  Consistent with observed structure-
performance relationships (Section 4.4), these MOFs exhibit
APDs around 10 A, void fractions around 0.7 and surface areas
around 3900 m?/g. As for metals, note that although Ca was
more abundant in the top-14 MOFs than in the whole database,
the six best MOF designs featured Cr, Cu, Mn, Zn, and Co
instead. Probably, because the textural properties of Ca MOFs
were not “ideal.” This situation underscores the importance of
optimizing a MOF design both structurally and chemically.

To put the predicted ANnm3 for MOFs in Fig. 10 in the
context of other MOFs experimentally tested in the literature,
first let us reiterate that while NH3; adsorption in MOFs have
been consistently evaluated considering 300 K and 1 bar as the
storage condition, such consistency has not existed for the
release condition. Thus, a direct comparison is not possible.
However, note that, with the exception of LiCL-MIL-53, the
highest reported NH3 loading at 300 K and 1 bar is 23.9
mmolnns/gmor, so that even assuming total recovery at the
release conditions, the predicted ANww3 for the MOFs in Fig. 10
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is still higher. As for LiCI-MIL-53, its measured 33.9
mmolnus/gmor loading at 300 K and 1 bar is accompanied by a
reported Qg around 78 kJ/mol.’! Based on the relationship
between heat of adsorption and percent NH; recovered (Fig. S6)
emerged in the study herein, a best case scenario for this Qy (i.e.,
50 % recovery) would yield a ANnn3 around 16.9 mmolnus/gmor
for this MOF, which again is below the predicted ANxn3 for the
MOFs in Fig. 10.

Although here we focused on optimizing the MOF
design to maximize ANnn3, other factors also play a role when
using a MOF for a given application. Considering that we
propose a thermal swing to release NH3, it is important to assess
the thermal stability of the MOFs to encourage experimental
testing. Accordingly, in Fig. 1la, we show the thermal
decomposition temperature Tq of each of the top-20 MOFs
(ANnm3 ranging from 23 to 30 mmolnnus/gmor), as predicted by
an ANN model developed by Nandy et al.,'’! as available in the
MOFsimplify website.'”? This model makes the prediction
based on the revised autocorrelation (RAC) descriptors of the
MOFs, and was trained using reported thermogravimetric
analysis (TGA) data for 3,131 MOFs, with a mean absolute
error (MAE) of 47 K. Considering this MAE and that the lowest
predicted Tq was 466K (which is 66K higher than the upper
temperature for the thermal swing), it seems that the suggested
MOF designs are likely to withstand the proposed operation
conditions.

Finally, to inform considerations about energy
efficiency and economic viability, we estimated the energy
required to release each kilogram of stored NH3 with the
proposed thermal swing, AQ;eiease, USING:

MQretease = QS+ (Cpuns +53"%) X AT (14)

Where, again, Oy is the heat of adsorption of NH3, Cpygs is the
heat capacity of NH3 in the gas phase (2.2 kJ/kgnus-K)), Cpmor
is the heat capacity of the MOF, and AT is the thermal swing
magnitude (100 K). Eq 14 is analogous to that used by Smit and
coworkers to estimate the energy to release captured CO; from
MOFs,?¢ and essentially accounts for the heating of the MOF
along with adsorbed NH3 molecules from 300 K to 400 K, plus
the energy needed to desorb NH3 from the MOF at 400 K. For
all MOFs, we used the average Cpaor value (0.87 kJ/kgmor-K)
previously reported for eleven MOFs,!'%!% considering that
this property seems to have low variability among MOFs.

Assuming that the energy stored in NH3 corresponds
to that of the H» that is released from NHj3 via cracking, the
energy content of NHs is 22.5 MJ/kgnus.!”® The latter implies
that with the proposed MOF designs a penalty between 8 % and
12 % of the NHj3 energy content would be used to release the
stored NHs. For context, an analogous calculation can be done
to estimate energy penalty for liquid NHj3 storage, which can be
estimated based on the latent heat of condensation for NH3 (1.4
MJ/kgnu3)'% and the energy to cool down NH; from 300 K
down to 240 K. The above results in an estimated penalty of 7%
of the NH; energy content. Considering that adsorptive NH3
storage at ambient conditions can bypass other technological
requirements such as insulation, toxicity, corrosion, or issues
such as boil-off,*** among others, the operation conditions
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proposed herein for adsorptive NH3 storage (and materials to
achieve so) seem to merit reasonable consideration.

5. CONCLUSIONS

In this work, we developed a novel framework for efficiently
finding a diverse set of optimal MOFs for applications
involving ammonia adsorption. Our framework, called Vendi
Bayesian Optimization (VBO), seamlessly combines traditional
Bayesian optimization with the Vendi Score, a diversity
measure rooted in ecology and quantum mechanics. VBO is
also made possible by the introduction of a novel similarity
function in the space of MOFs that accounts for both chemistry
and structure. We used this similarity function both for the GP
used by Bayesian optimization and to compute the Vendi Score.
Our framework enabled the efficient discovery of several
optimal MOFs that are distinct from one another, and that
perform better than MOFs previously studied experimentally
for NH3 storage. Our analysis of the results of VBO highlights
new design rules that MOF experimentalists can leverage to
design optimal MOFs for the above application. We believe
VBO introduces new useful capabilities for the efficient
exploration of the combinatorially large MOF design space for
the discovery of MOFs with desired properties. Importantly,
our VBO framework is amenable to applications beyond
ammonia adsorption. We leave the exploration of these
applications as future work.

SUPPLEMENTARY INFORMATION

Force field details, details on surrogate model selection,
additional details on VBO campaigns, additional structure-
property relationships, additional details about promising MOF
designs for NH3 storage.

DATA AVAILABILITY

Code to replicate our results can be freely accessed at
https://github.com/vertaix/VBQO. Data sources are available
at

https://wustl.box.com/s/3jkz8ksu913d1hqikir4olainke9weSt
and Jupyter notebooks to reproduce our figures are available at
https://github.com/vertaix/VBO/tree/main/notebooks/Recr

eate%20figures.
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