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Beware of Validation by Eye:
Visual Validation of Linear Trends in Scatterplots

Daniel Braun @, Remco Chang (», Michael Gleicher (), and Tatiana von Landesberger

(a) Scatterplot to visually estimate linear trend. (b) Trend line to be visually validated. (c) Visual design of adding error lines of ordinary

least squares regression.

(d) Example stimuli construction: True regression
line (blue) and line to be validated (red, see Fig. 1b).

Fig. 1: Example scatterplot shown to participants in our user studies to investigate the visual validation of linear trends. In experiment 1
we tested the difference between visual validation (b) and visual estimation (a), while in experiment 2 (c) we compared different visual
designs for regression to support visual validation. In (d), the blue line shows the true OLS regression.

Abstract—Visual validation of regression models in scatterplots is a common practice for assessing model quality, yet its efficacy
remains unquantified. We conducted two empirical experiments to investigate individuals’ ability to visually validate linear regression
models (linear trends) and to examine the impact of common visualization designs on validation quality. The first experiment showed
that the level of accuracy for visual estimation of slope (i.e., fitting a line to data) is higher than for visual validation of slope (i.e.,
accepting a shown line). Notably, we found bias toward slopes that are “too steep” in both cases. This lead to novel insights that
participants naturally assessed regression with orthogonal distances between the points and the line (i.e., ODR regression) rather than
the common vertical distances (OLS regression). In the second experiment, we investigated whether incorporating common designs
for regression visualization (error lines, bounding boxes, and confidence intervals) would improve visual validation. Even though error
lines reduced validation bias, results failed to show the desired improvements in accuracy for any design. Overall, our findings suggest
caution in using visual model validation for linear trends in scatterplots.

Index Terms—Perception, visual model validation, visual model estimation, user study, information visualization.
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INTRODUCTION

Visual validation of statistical models serves as an important task in
modern statistics and machine learning applications. The complexity
of models often demands visual inspection for assessing their correct-
ness and reliability [7,8]. This is crucial, as the model outcomes have
great implications in critical domains [23], e.g., the estimation of pan-
demic outbreaks [14] and meteorological forecasting [24]. Without
visualization, traditional statistical metrics are often insufficient in de-
scribing the underlying data and model. For example, datasets with
significantly different characteristics can share the same numerical met-
rics [3,28,50]. As a result, visualization researchers have advocated
for visual validation of statistical models as a core part of data analysis.

To date, most research on the perception of statistical models has fo-
cused on visual estimation — individuals’ ability to visually fit a model
to data [11,12,20-22,25,31,35,36,43,44,47,48,52-54]. While these
studies contribute to our understanding of the visual estimation process,
there is a lack of research on visual model validation — individuals’ abil-
ity to assess the fit of a given model to the underlying data. In a recent
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study by Braun et al. [5], the authors found significant differences in in-
dividuals’ performance in visual validation and estimation of averages
in scatterplots. In this paper, we build upon this work and investigate
the accuracy and effectiveness of visual model validation for a more
complex model — linear trends in scatterplots. While the average value
offers a fundamental measure in one dimensions, the exploration of
linear trends provides valuable insights into the relationships between
two data dimensions, which can be particularly relevant in machine
learning applications where linearity assumptions are common. Scat-
terplots are the standard approach for showing relationships between
two quantitative variables [33].

Linear trends can be interpreted in two different ways [2]: Regression
and correlation. Regression estimates the underlying linear relationship
between two variables to find a function that predicts the value of one
variable based on the other. Correlation measures the strength of the
linear relationship between two variables. The closer points lie to a
straight line, the stronger their relationship. Due to the relevance of
regression models for decision making in wide-ranging fields [16, 17,
32,49], visual validation of regression models is important. In this
paper, we investigate the perception of linear regression models and
answer the following research questions:

* RQ1: How does performance in visual validation of linear trends
relate to the accuracy of visual estimation?

¢ RQ2: Can common visual designs enhance the performance of visual
validation of linear trends?

For RQ1, we examined individuals’ perception of the slope of a
linear trend in a between-subject user study. Participants were randomly
assigned to either validate the slope of a shown trend line in a scatterplot
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(Fig. 1b) or estimate the trend line on their own (Fig. 1a).

Our results confirm the previous findings of Braun et al. [5] that
participants are more accurate in model estimation than in model vali-
dation. Further, we found that participants systematically overestimated
the trends’ slope and were particularly inaccurate at recognizing trend
lines with a high slope value (i.e., lines that are “too steep”). This im-
plies that the perception of the trend lines is biased — not symmetrical,
i.e., lines with slopes that are too high and too low are perceived differ-
ently. A post-hoc analysis revealed that participants’ responses were
more consistent with the non-standard orthogonal regression (ODR:
minimizes orthogonal distances between data points and regression
line) than with the usual vertical regression (ordinary least squares -
OLS: minimizes vertical distances between data points and regression
line), since ODR regression has a higher slope per calculation (see
Fig. 6). This implies they assumed errors in both x and y variables
rather than just one. Our results show similar effects between positive
and negative trends.

With respect to visual design, several recent studies have found
significant effects of visualization on model estimation [21,31,47,48,
50,53]. We similarly investigate whether the addition of augmentations
to the visual designs improve individuals’ performance in the visual
validation of models (RQ2). To answer this research question, we
modified the visual designs and repeated our first study on the slope
validation. Using the same data, we added three visual designs to
the shown trend line - OLS error lines, 95% confidence intervals, and
bounding boxes (see Fig. 12). The results showed that the addition of
error lines reduced the bias in recognizing lines with slopes that are
either too high or too low. The addition of bounding boxes slightly
increased visual model validation accuracy. However, none of the
designs lead to the desired improvements (i.e, higher acceptance rate
for correct models and higher rejection rate for incorrect models). In
fact, participants reported an increased task difficulty with the addition
of visual designs with no benefits to task completion time.

Altogether, the results of our two studies find evidence to caution
when using the common practice of “validation by eye” [23] — visually
validating statistical models by overlaying a visualization of the model
over raw data. Further research is needed on how to support individuals
in the visual validation process.

The paper is structured as follows: After an overview of current
research studies on visual validation and visual estimation in Sec. 2,
we give details on the general data, study, and analysis design in Sec. 3.
The two experiments - validation versus estimation and visual designs-
as well as their analysis and results are presented in Sec. 4 and Sec. 5.
Sec. 6 discusses limitations of our work and possible future work.

2 RELATED WORK

Visual Model Validation The research topic of visual model val-
idation has received little attention in the past, but has become more
prominent recently as it is recognized as an essential part of exploratory
data analysis [23]. Braun et al. [5] were the first to investigate the
perceptual differences between visual validation and visual estimation
using the example of average values in scatterplots. They found that
participants were more accurate in estimation than in validation, that
the visual validation of averages is unbiased, and that the critical point
between accepting and rejecting a given value is close to the statisti-
cal 95% confidence interval. This study motivated this work on the
validation of linear trends.

Few other studies relate to our experiment. Majumder et al. [27]
examine the visual validation of statistical inference in linear models,
in which participants had to visually find the most deviating model
(e.g. highest slope) in a small multiple setting. Their study showed that
visual tests have higher power than conventional tests when the effect
size is large. The findings of Correll et al. [13] on visual validation of
data distributions in scatterplots, histograms, and density plots suggest
problems with overplotting, which informed the stimuli design in our
study.

Most of the time, the possibility for visual model validation is given
in an interactive way as part of a visual analytics or machine learning
system. Chatzimparmpas et al. [7] give an overview of the current

use of visualization for machine learning model interpretation. Bogl
et al. [4] provide a visual analytics process to assist domain experts
in selecting suitable models in time-series analysis. While the Visual
(dis)Confirmation tool by Choi et al. [10] allows users to perform data
analysis by automatically generating appropriate visualizations based
on hypotheses framed in natural language, Chegini et al. [9] support
users in identifying local patterns in large scatterplot spaces by automat-
ically comparing local regions using a model-based pattern descriptor.
Miihlbacher and Piringer [34] introduce a partition-based framework
for validating regression models both qualitatively via visualizations
and quantitatively via a relevance measure for ranking features. Our
work is synergistic with the prior work in that it contributes to a better
understanding of visual model validation that can improve the develop-
ment of visual analytics and machine learning systems in the future.

An additional component of model validation is the viewer’s trust in
these models and their visualizations, which has been widely studied in
the past [15,19,29,40,45]. The survey by Chatzimparmpas et al. [§]
summarizes the importance of this relationship between visual design
and trust in machine learning. In our study, we tried to minimize
the influence of trust by giving the participants as less information as
possible without impairing their understanding of the tasks.

Visual Model Estimation Most studies on the perception of sta-
tistical models aimed to understand visual estimation. In addition to
research on the estimation of average values [20,22,54], there are many
papers on the estimation of linear trends.

Correll and Heer [12] examined the basic perceptual process of
visual estimation and had participants perform “regression by eye” for
linear trends in scatterplots and other visualizations. They find that an
individual’s ability to estimate the slope of a linear trend with respect to
the least squares regression model depends on both visual features and
data features, without bias for positive and negative trends. Ciccione
and Dehaene [11] were also interested in the accuracy and bias of visual
regression estimation in scatterplots. Their results indicate that people
consistently overestimate trends. These works played a key role in our
study, hypotheses, and stimuli design.

A different aspect of linear trends is the correlation of the two data
dimensions. Rensink and Baldridge [44] investigated the influence of
statistical properties on the perception of correlation in scatterplots.
Besides statistical properties, correlation perception research dealt with
the influence of visual designs, features, and ensemble coding [50].
Yang et al. [53] showed that visual features, such as bounding boxes,
are used as proxies for estimating correlation in scatterplots. Xiong
et al. [52] found that people estimate correlations more accurately in
scatterplots with generic axis labels than with semantic labels. Com-
parisons of different correlation visualizations based on Weber’s law
ranked scatterplot as the best visualization design and showed that
performances of correlation estimations differ for positive and negative
correlations [21,25]. These studies confirm our choice of scatterplots
as the visual design for our studies, and their results have implications
for our stimuli design.

3 EXPERIMENTAL DESIGN

We conducted two experiments to gain insights into the perceptual
process of the visual validation of linear trends and to answer our
research questions:

RQ1: How does performance in visual validation of linear trends relate
to the accuracy of visual estimation? and

RQ2: Can common visual designs enhance the performance of visual
validation of linear trends?

The first experiment aimed to answer RQ1. Therefore, it contained
two tasks to compare the following perceptional processes:

e Visual validation: Participants were shown scatterplots with an al-
ready drawn trend line (see Fig. 1b). They were asked to indicate
whether the line was “too steep’,” “too flat”, or “about the same” (i.e.,
the shown line represents the actual trend) in relation to the true slope

of the linear trend of the data.
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(a) Positive slope deviation of 0.5.

(b) Negative slope deviation of 0.5.

(c) True regression line (blue) and the two deviating
lines from (a) and (b) (red).

Fig. 2: Example of the same amount of positive and negative slope deviation in the validation task.

* Visual estimation: Participants were asked to fit trend lines to the
data in the scatterplots (see Fig. 1a) by adjusting the slope of the line
by moving a slider.

The second experiment aimed to answer RQ2 by evaluating three re-
gression visualization designs for validation. In this study, participants

only had to perform the validation task described in experiment 1.

3.1 Study procedure

The two experiments addressed different research questions, but used
the same study structure and data.

The study procedure began with demographic questions about the
participants, followed by a short training period for the participants
to familiarize themselves with the study interface. To avoid bias in
the participants’ responses, we did not provide training feedback. To
minimize learning effects, the order of trials was randomized. In the
study interface, each page displayed one trial (i.e., on plot). For further
analysis, response times were recorded. At the end, we asked the
participants for their strategy in performing the task and to rate the
difficulty of the tasks on a 5-point Likert scale (1 — very difficult, 2 —
difficult, 3 — neutral, 4 — easy, 5 — very easy) [51].

Using a between-subject study design (i.e. the participants were
divided into two groups and had to either estimate or validate trends),
we prevented learning effects between the trials and reduced the number
of trials per participant [6]. To ensure consistency and comparability,
the same data were used in both studies for all of the between-subject
groups. The only difference between the two experiments was the
visual representation of the data in the scatterplots (see Fig. 1b and
Fig. 1c as an example).

3.2 Data Generation and Stimuli Design

Our data generation is inspired by the approaches used by Braun et
al. [5] and Correll and Heer [12]. Each trial displayed a scatterplot
with a size of 700 x 700 pixels. Therefore, we recommended a screen
size of 13” or larger. The scatterplots contained 100 data points in the
range of [0, 1]x[0, 1] uniformly distributed along the x-axis. We used the
standard regression model for the point generation in order to be able
to compare the validation and estimation results with the ordinary least
squares (OLS) regression: y = ax+ b. We used this function to generate
set of points along particular trends. The trend lines were centered in
the scatterplot (as by Correll and Heer [12]), i.e., f(0.5) = 0.5, and
both positive and negative slopes were used. The y-coordinates of the
resulting data points were then permuted using a normal distribution.
Investigating the perception of the slope of linear regressions, the slope
parameter a was the only variable in our studies. Centering the target
trends in the plot ensured that participants could always estimate the
true regression line by solely manipulating the slope value.

To keep the difficulty level as similar as possible between trials,
the standard deviation of the normal distribution was fixed to 0.1 and
the slopes of the trends were set to a range of [0.35,0.65]. Since the
permutation of the y-coordinates could lead to a deviation of the result-
ing regression from the original target trend, we performed rejection
sampling to ensure that the slope of the trend of the resulting points
was within 1073 of the target slope.

To be able to measure the accuracy of visual validation, we showed
the participants trend lines with slopes deviating from the true regres-
sion slope. Due to the centering of the underlying trends, a variation of
the slope means a rotation of the line around the point (0.5,0.5). We
define the deviation of the displayed line as the deviation from the true
slope as a proportion of the regression’s standard error:

shown slope = true slope + deviation - standard error (1)

Fig. 2 shows an example validation trial with the same amount
of positive and negative slope deviation (0.5 in this example). The
standard error of the regression is data dependent and represents the
average distance between the points and the regression line. This allows
us to compare and analyze trials with different data sets regardless
of their properties, since an absolute change in slope is perceived
differently in graphs with high and low point dispersion.

The deviation definition is based on the calculation of the regression
confidence interval (CI). In statistical analysis, the 95% CI is a common
measure for the uncertainty in models [1]. By construction — in our
setting with a fixed number of points and distribution — the slope’s
95% Cl is set at a deviation of 0.198. We use the confidence interval
to compare the user study results with statistical quality measures. In
a statistical sense, all lines with a smaller slope deviation should be
considered acceptable. However, people may have a smaller confidence
interval and reject lines with deviations less than 0.198.

Based on the result of the study for validation and estimation of the
average value [5], where deviations greater than 0.7 were consistently
rejected, we used the same deviation range of [—0.7,0.7] (i.e., we
showed lines with a maximum slope deviation of 0.7 based on Eq. (1)).
The deviations we used for the lines shown in the studies were evenly
distributed within this range in 0.05 increments (including deviation
0), resulting in a total of 58 trials (i.e., 58 different data sets) per
participant (29 trends with a positive slope, 29 with a negative slope).

In line with the literature [5,12,52], we kept the displayed scatterplots
as clean as possible to minimize visual distraction by omitting axes
marks and labels (see example stimuli in Fig. 1). The used colors and
marker sizes were the same as in the study by Braun et al. [5].

3.3 Analysis Procedure

In order to assess our results in relation to literature, our analysis is sim-
ilar to that of Braun et al. [5]. For comparability of the estimation and
validation results, we transformed a participant’s validation responses
to binary results: / for accepting (i.e., "about the same") the shown line,
0 for rejecting (i.e., "too steep" or "too flat") the shown line. Similar to
previous studies, logistic regression was then applied to the acceptance
rates [5,53] to assess validation accuracy.

The estimation errors (i.e., the deviation in slope of the self-adjusted
trend lines) were calculated using the same deviation definition as for
validation (Eq. (1)). This allows us to compare the logistic regression
of validation acceptance rates with the cumulative distribution (CDF)
of estimation errors.

For statistical testing, we used a multi-stage approach with the stan-
dard significant level & = 0.05 in all tests. First, we performed a
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Shapiro-Wilk test on the given responses and response times to test the
data for normality, with the result that none of the data fulfilled this
property. Based on this, we then used the non-parametric Kolmogorov-
Smirnov (KS) test for the difference in validation and estimation results
(i.e., comparing the logistic regressions of the validation acceptance
rates and the CDF of the estimation errors). A Wilcoxon test was uses
to test the response times and estimation errors on difference in means.
For comparing the Likert responses, we used chi-squared test. For
experiment 2 we first performed a Kruskal-Wallis test on the response
times and a chi-squared test on the categorical responses to test the
visual designs for significant differences. As post-hoc pairwise analysis
of the respective tests to compare the different design combinations.

4 EXPERIMENT 1: VISUAL VALIDATION VERSUS VISUAL
ESTIMATION

Experiment 1 analyzed the performance in visual validation of linear
trends in relation to visual estimation. Based on previous research on
model perception [5,11,12,41] and our own assessments when gener-
ating the data, we propose the following hypotheses for experiment 1:

e H1: The accuracy of visual validation is lower than the accuracy
of visual estimation when perceiving the slope of a linear trend in a
scatterplot.

The study by Braun et al. [5] for the average value showed that visual
estimation provides a higher level of accuracy compared to visual
validation. We expect this result to hold for linear trends.

H2: People’s critical point between accepting and rejecting a given
trend line when validating is close to the boundary of the 95% CI.
Also based on the results of Braun et al. [S] we expect people’s
“visual confidence” to match the statistical CI, as is true for the visual
validation of average values.

e H3: For visual validation, the results don’t differ between positive
and negative trends.
Correll and Heer [12] found no bias in visual estimation of linear
trends. We expect visual validation and estimation to be similar in
this regard.

e H4: For visual estimation, people overestimate the slope of linear
trends.
We expect this behavior found in previous research [11,12,41] to be
the same in our study.

HS: Perceived task difficulty and task completion time are lower for
visual validation than for visual estimation.

The validation task is simply a matter of acceptance, whereas the
estimation task requires participants to fit a line to the data. Therefore,
we expect participants to perceive the validation task as easier and
complete it faster.

4.1

We conducted an online study on Limesurvey [26] and recruited partic-
ipants from the crowdsourcing platform Prolific [42]. A total of 122
participants took part in the study. They had to speak English fluently.
No restrictions were made for country of residence. We removed the
data from 12 participants because of their incorrect answers to the
attention question. Out of the 110 remaining participants, 46 completed
the validation and 64 answered the estimation task. Most of them were
between 20 and 40 years old (86%) and the gender distribution was
close to even (F: 48%, M: 49%, other: 3%). Participants’ educational
levels ranged from high school diplomas to doctorate degrees, with the
majority having a bachelor’s degree (40%). The overall self-reported
expertise in statistical model estimation was relatively low, with 88%
of the participants indicating an expertise between 1 and 3 on a 5-point
Likert scale. The average time to complete the study was 20 minutes.
Participants were compensated with £4.45.

Experimental Setting and Participants

4.2 Results

Given our data generation approach based on the ordinary least squares
(OLS) regression (see Sec. 3.2), we analyze the responses of the study
participants based on this model.
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Fig. 3: Comparison of validation and estimation accuracy (absolute devi-
ation) with respect to OLS regression. Blue line: Cumulative distribution
(CDF) for the estimation errors. Orange line: Logistic regression for the
validation acceptance. Green line: Statistical 95% CI. Notice that more
statistically valid lines were estimated than accepted by validation and
more invalid lines were accepted than estimated.

4.2.1 Accuracy of Visual Validation vs. Visual Estimation

We evaluate the accuracy of visual validation and estimation in relation
to the “statistical accuracy” of OLS regression. In statistical terms, all
trend lines within the 95% confidence interval are considered to be
valid. This means that, in a perfect world, participants should accept all
trend lines with a slope deviation of less than 0.198 (i.e., the CI slope
deviation) and reject all trend lines with a higher slope deviation in the
validation task. In the estimation task, participants should ideally only
estimate lines with slope deviations less than 0.198.

To be able to compare validation and estimation results, we sum-
marize the acceptance rates and estimation errors. We combine the
results for positive and negative trends and positive and negative slope
deviations as absolute acceptance rates and errors. Fig. 3 shows the
resulting logistic regression for the validation acceptance rates and the
cumulative distribution for the estimation errors.

As shown, when the slope deviation is low (e.g., less than the 0.198
— the green line), participants were more accurate in estimating than
validating trend lines. For example, about 70% of the participants were
able to estimate (i.e., drew) trend lines with slope values below the
deviation of 0.198. In contrast, only 60% of the participants correctly
validated (i.e., accepted) shown trend lines with the same slope values.
When the slope deviation is high, again we see that participants were
more accurate in estimating than validating trend lines. For example,
only about 20% of the participants estimated (i.e., drew) trend lines
with slope values above the deviation of 0.6. In contrast, about 35% of
the participants falsely validated (i.e., accepted) shown trend lines with
the same slope values. Only in the deviation range adjacent to the con-
fidence interval (0.2 to 0.3) validation is more accurate than estimation.
In this statistically invalid range, a slightly higher percentage of lines
were estimated than accepted. Notably, the validation acceptance of
linear trends has an almost linear relationship with the slope deviation.
Ideally, it should have high values at low slope deviations with sharp
drop at the 95% CI border (i.e., 0.198).

The KS-test showed the two curves to be significantly different
(p < 0.01, D =0.296). Therefore, H1 is supported for OLS regression.

The critical points of validation and estimation are precisely these
slope deviations, with a 50/50 chance that a line will be accepted or
rejected, or estimated with a lower or higher slope. This critical point is
slightly lower for estimation (crit,,; ~ 0.36 > crit.s ~ 0.32). Moreover,
the critical point of validation is much greater than the deviation of
the 95% CI (0.198), which does not support our hypothesis H2 for the
OLS regression. The critical points describe an experimental human
threshold for the two tasks. People estimated lines that would be correct
with the statistical 99.8% CI. For visual validation, they even accepted
lines with a deviation greater than the statistical 99.9% CI.

When analyzing the individual performance of the participants in
visual validation, it is noticeable that 72% of the participants had an
individual critical point greater than the 95% CI and 13% accepted
incorrect models more often than correct ones.
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Fig. 4: Comparison of the validation acceptance rates of positive and
negative deviations for positive and negative trends with respect to OLS
regression. Green line: statistical 95% CI.

4.2.2 Bias in Positive and Negative Slope and Deviation

Fig. 4 differentiates the validation acceptance rates by positive and
negative trends as well as positive and negative slope deviation. For
positive trends, lines with positive slope deviations (i.e., trend lines
that were “too steep”) were accepted significantly more often than
lines with negative deviations (see Fig. 4a) (KS: p < 0.01, D = 0.814).
For negative trends, the results are mirrored, i.e., lines with a negative
slope deviation were accepted significantly more often (Fig. 4b) (KS:
p < 0.01, D=0.926). For both trend directions, lines that were “too
steep” were still accepted more than 50% of the time, even with the
largest slope deviation. Analysis of individual participant acceptance
rates showed that the difference between positive and negative slope
deviations was significant for each individual participant. Comparing
the logistic regressions of the acceptance rates between positive and
negative trends, there is no significant difference for “too flat” lines
(KS: p > 0.99, D =0.022), but a significant difference for “too steep”
lines (KS: p <« 0.01, D = 0.336), indicating a slightly more accurate
validation of positive trends. Thus, hypothesis H3 cannot be rejected.

A similar pattern can be observed for the estimation errors (see
Fig. 5), supporting the results of previous studies [11,12,41] and our
hypothesis H4: People overestimate the slope of trend lines. Without
over-estimation, both distributions should be centered at O slope devia-
tion. With an average slope deviation of 0.357 for positive trends and
—0.359 for negative trends, participants consistently drew the trend
lines too steeply (Wilcoxon: Ppositive < 0.01, Vpositive = 1660685;
Pnegative < 0.01, Vnegative =78910). No significant differences in
estimation errors between positive and negative trends could be found
(Wilcoxon: p > 0.52, W = 1743165).

In summary, both perceptional processes — visual validation as well
as visual estimation — are biased toward “too steep” slopes for positive
as well as negative trends.

4.2.3 Post-Hoc Analysis: OLS vs. ODR

The results opened a new question: What is the reason why people
perform poorly at perceiving trend lines that are “too steep”?

A clue to this question was found in a study by Ciccione and De-
haene [11]. Inspired by their results, we hypothesize that individuals
perceive orthogonal distance (ODR) instead of orthogonal least squares
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Fig. 5: Histogram of the deviations of the estimated lines for positive and
negative trends with respect to OLS regression.

Ordinary
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Fig. 6: lllustration of the difference between ordinary least squares (OLS,
blue line) and orthogonal distance (ODR, yellow line) regression, adapted
from [11].

(OLS) regression, since ODR regression has a higher slope per cal-
culation. Fig. 6 illustrates the difference between the two regression
models. OLS regression minimizes the sum of the squares of the ver-
tical distances of the points to the line and assumes noise only in the
dependent variable (y-axis). ODR regression minimizes the sum of the
squares of the orthogonal distances of the points to the line and assumes
noise in both variables. The slopes of the ODR regression lines differ
from those of the OLS regression. Thus, taking the ODR regression
model into account changes the true slope value, which influences the
measured accuracy of visual validation and estimation. We analyzed
and compared the results of both tasks with respect to both regression
models — OLS and ODR - as a post-hoc analysis to see if it explained
the bias in slope perception.

Visual Model Validation: The acceptance rates for the shown trend
lines in the validation task compared for ODR and OLS are visualized
in Fig. 7. They differ significantly for both models (KS: p < 0.01,
D = 0.342). For ODR regression, more lines with small slope deviation
were accepted and more lines with large deviation were rejected. The
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Fig. 7: Comparison of validation accuracy (absolute deviation) with
respect to OLS and ODR regression.
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Fig. 8: Histogram of the deviations of the estimated lines for positive and
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Fig. 9: Comparison of validation and estimation accuracy (absolute devi-
ation) with respect to ODR regression. Blue line: Cumulative distribution
(CDF) for the estimation errors. Orange line: Logistic regression for the
validation acceptance. Green line: Statistical 95% CI.

logistic regressions intersect closely at the 50% acceptance rate, i.e.
the critical point between acceptance and rejection of a line remained
almost identical for both regression models.

Visual Model Estimation: There is also evidence of an improvement
in visual estimation (see Fig. 8). The estimation errors have improved
for both positive and negative trends and the slope is less strongly
overestimated compared to OLS (o5 = 0.210, piyee = —0.216).

Comparing the two tasks, the differences between estimation and
validation were greater for ODR than for OLS (see Fig. 9). The critical
point of estimation moved closer to the border of the 95% CI for ODR
(critesr = 0.208). As a result, the estimation errors were significantly
lower than the acceptance threshold for validation (KS: p <« 0.01,
D =0.234).

Fig. 10 illustrates the accuracy results of experiment 1. It visualizes
an example stimuli with the true OLS and ODR regression lines together
with the average responses for validation and estimation. For estimation,
this means a line (shown in blue) with the average deviation of the
estimated lines. For validation, this is represented as the range of lines
(shown in orange) that would be accepted at least 50% of the time.

In sum, we found that participants’ trend perception was more con-
sistent with the ODR regression model than with the OLS model for
both estimation and validation tasks.

4.2.4 Response Time and Difficulty

Fig. 11 shows the response times and the distribution of the Likert
scale responses for the task’s difficulty. As shown, the response
times for visual validation were significantly faster than for visual
estimation (Wilcoxon: p < 0.01, cohensD = 0.12, u,,,; = 10.85sec,
Uest = 13.73sec). In contrast, participants’ self-reported task difficulty
was significantly lower for the estimation than for the validation task
(Chi-squared: p < 0.05, x2 = 10.08; f,y = 3.28, less = 3.84). There-
fore, Hypothesis H5 cannot be rejected.

(a) Mean estimation and validation responses with re- (b) Mean estimation and validation responses with re-
spect to OLS regression. spect to ODR regression.

Fig. 10: “Visual summary” of the results for experiment 1 in an example
stimulus. The figures show the true regression line (green) for OLS (a)
and ODR (b) together with participants’ average response for estimation
(blue) and the range of lines with an acceptance rate of 50% or higher for
validation (orange). Notice that in figure (b), the blue and the green lines
are closer to each other than in figure (a) and the orange range better
encapsulate the green line. These suggest that the ODR model better
fits participants’ perception of trend lines.
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(a) Response times. (b) Self-reported task difficulty.

Fig. 11: Response times and self-reported difficulty for experiment 1.

4.2.5 Self-Reported Strategies

Participants’ self-reported strategies were provided in free-text form and
subsequently summarized by us. For validation, the most often strategy
was the comparison of the shown line shown with a self-estimated line
(responded by 8 participants). Alternative strategies include a counting
strategy (n = 7) where the participants counted the dots on both sides
of the line, and a strategy that references the overall visual image of
the visualization (n = 6) where the participants checked whether the
trend line passed through the center of the area of dots. The latter
strategy is similar to the strategy of a “bounding box” around the scatter
dots, which was investigated by Yang et al. [53] for the perception of
correlation (see Sec. 5.1).

For estimation, one strategy was used very often. 14 participants
reported using the counting strategy and balancing the number of points
on each side of the line. Only two other strategies were mentioned
more than once: drawing a line through the middle of the dots (n = 3)
and mentally connecting the dots to a line chart (n = 2).

For both tasks, the comparison of the results per strategy did not
show any significant differences.

4.3 Discussion

Comparing the perceptual tasks of visual validation and estimation, in-
dividuals are more accurate at estimating regression models themselves
than validating existing ones. One possible reason for this is that, as
noted in the self-reported strategies, when validating a trend line, many
people compare the line shown to a self-estimated line. Due to their
uncertainty in their own estimation, they then may give themselves a
margin of tolerance, which is reflected in the larger accepted deviations
for the validated lines. This may indicate that people go through a two-
step process during visual validation, with estimation as the first step.
However, the response times and the self-reported task difficulty pro-
vide contradictory supporting evidence. Although participants reported
estimation to be easier than validation, they also needed more time to
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(a) OLS error lines.

(b) Bounding box. (c) 95% confidence interval.

Fig. 12: Visual designs evaluated for visual validation in experiment 2.

complete the task. One possible reason for the longer response time for
estimation is the interactivity associated with the task. The interaction
time might be reduced by providing the participants a draggable line
instead of a slider. In future work, it would also be interesting to capture
the number of readjustments of the estimated lines to compare it with
the response time and the accuracy results.

In both estimation and validation, the critical points are well above
the 95% confidence interval, meaning that people are not able to per-
ceive regression models with an acceptable level of accuracy by sta-
tistical standards. Therefore, individuals cannot rely on their visual
validation ability. Given the relatively low self-reported expertise of
the participants, the results might be different for people familiar with
regression concepts, and an additional experiment solely with domain
experts would be interesting for future work.

Our study design allows us to compare our results for the perception
of linear trends with those of Braun et al. for the perception of the
average value [5]. In general, both visual validation and estimation
are less accurate for linear trends than for average values. This is
probably due to the increased difficulty of the task, as the average value
only examines the characteristic of one variable, while the linear trend
examines the relationship between two variables. Nevertheless, the
relation between validation and estimation remains similar, but only
with respect to ODR regression. The reason for this is most likely that
the vertical regression is both statistically and visually decisive when
calculating and perceiving the average value.

The results of the experiment showed that the participants in our
study were biased towards trend lines that were “too steep”. In the
estimation task, they consistently drew lines with slopes that are too
high, while in the validation task they accepted significantly more lines
that were too steep than lines that were too flat with respect to the true
trend line. Possible reasons, such as confirmation bias (i.e., given a
trend line, participants may identify points that support the trend line
as a valid one) [18] or the overestimation of large values and underesti-
mation of small values [30] could not be verified by our study data and
therefore require further investigation. However, the bias is reduced if
the results are considered in relation to the ODR instead of the OLS
regression. This indicates that, without any context or other assistance,
people intuitively estimate and validate an orthogonal regression (ODR)
instead of a vertical one (OLS) in scatterplots. That means, people
naturally perceive errors in both variables even though they are not
present in the data. As OLS is the more commonly used model for re-
gression, we conducted a second experiment that uses additional visual
augmentations to the scatterplots to improve the validation quality for
OLS regression (see next section).

5 EXPERIMENT 2: VISUAL VALIDATION WITH VISUAL DESIGNS

The results from experiment 1 showed that visual validation is less
accurate than visual estimation. Moreover, people more likely assess
orthogonal distances between data points and trend line (i.e. ODR)
instead of vertical distances (i.e., OLS). However, since OLS is the
more commonly-used regression model, in this section, we investigate
whether the addition of visualization designs may help improve the
participants’ accuracy when performing visual validation with OLS

regression.

Experiment 2 evaluated three common visual augmentations for
regression visualization (error lines, bounding boxes, and confidence
intervals), as shown in Fig. 12. As described later in Sec. 5.1, we
expect error lines to have the most influence on the results. Thus, our
hypotheses are:

e H1: Visual designs improve the validation of OLS. It means that
people accept more statistically valid and reject more invalid trend
lines with respect to OLS regression.

e H2: The visual design using error lines removes bias towards higher
slopes. This means, there is no perceptual difference between pos-
itive and negative slope deviations with respect to OLS regression
anymore.

* H3: Error lines reduce the time and difficulty of the task with respect
to the other designs including the unaugmented chart.

5.1 Visual Designs

Visual designs for regression validation mean additional graphical
elements that are shown to the user in addition to the trend line in
the visualization. We consider common visual designs for showing
regression results found in literature (e.g., [37,39,53]) and the strategies
used by participants in experiment 1 (see Sec. 4.2.5).

Error Lines The first visual design employs error lines [53]. Error
lines show the the vertical distance of each data point from the dis-
played line, emphasizing the error minimized by OLS regression (see
Fig. 12a). This potentially relieves the user of one step of the regression
calculation, which should reduce participants’ response times. More-
over, by visually guiding towards OLS regression, the explicit error
lines should make people perceive less the ODR regression. Therefore,
it should also reduce the bias toward lines that are too steep.

Bounding Box The concept of bounding box covering the data
was mentioned by several participants in the self-reported strategies and
is inspired by Yang et al. [53]. Our implementation constructs the box
by moving two lines parallel to the shown line outward until they reach
the outermost points. The surface is then colored with an alpha value
of 0.1 for a lower opacity (see Fig. 12b). The resulting box highlights
the slope of the line shown. This enlarged area, which includes all data
points, is intended to help participants compare the slope of the line
shown with the true trend of the data as a whole.

Confidence Interval Visualizing the confidence interval of a re-
gression model is common in several different areas and applications,
such as pandemic infection projections or weather forecasts [38,46,55].
It shows the uncertainty in the underlying model [37,39]. All models
within the confidence interval should be considered valid in a statistical
sense. For our stimuli, we rotate the 95% confidence interval of the true
OLS regression model in the same way as the shown line (see Fig. 12c¢).
The goal is to enhance the perception of slope deviation of a line by
showing all statistically valid models that accordingly have an even
greater deviation.
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Fig. 13: Comparison of validation accuracy (absolute deviation) with
respect to OLS regression for the visual designs. Green line: Statistical
95% Cl.

5.2 Experimental Setting and Participants

We conducted a second user study on Limesurvey [26] (with partici-
pants from Prolific [42]) using the identical data and study procedure as
in experiment 1. The between-subject groups were now defined by the
three designs instead of the two tasks in the first study. All participants
performed the visual validation task.

After filtering for attention checks, a total of 108 participants were
included in the analysis (32 for error lines, 38 for bounding box, and
38 for confidence interval). The demographic characteristics of the
participants were similar to experiment 1: 87% were between 20 and
40 years old with 47% females and 52% males. The education levels
were also similar: 43% of the participants had a bachelor’s degree and
82% responded with an expertise between 1 and 3 on the Likert scale.

Participants were compensated with £3.54. The average study com-
pletion time was 17 minutes.

5.3 Results

We can directly compare the results for the visual designs with the base
line (i.e., lines without additional augmentations) from experiment 1.

Accuracy With respect to OLS regression (see Fig. 13), the pair-
wise KS-test indicated significant differences in the acceptance rates
between all designs (Tab. 1).

For the bounding box and the confidence interval, a similar number
of valid lines (i.e., trend lines within the CI) were accepted compared
to the base line condition, while a slightly higher amount of invalid
lines were rejected. For the error lines, fewer lines were accepted that
were within the statistical 95% confidence interval. The true trend lines
were accepted only 60% of the time.

The overall decrease in the acceptance rates with visual designs
have lowered the critical point between acceptance and rejection of
a shown line for all three designs (criterror = 0.190, critp,, = 0.251,
Criteony = 0.298).

In sum, people rejected slightly more invalid models with visual de-
signs, but did not accept more valid models. Therefore, our hypothesis
H1 cannot be rejected.

Bias Fig. 14 shows the differentiated acceptance rates for the de-
signs. For the error lines, the deviation difference between the accep-
tance’ critical points of positive and negative slope deviation decreased
(AP2S, = 0.020 for positive trends and Apys,, = 0.117 for negative
trends). While the acceptance rates for negative trends still differ (KS:
p < 0.01, D = 0.182), they are not significantly different for positive

p-value base error box conf
base -

error < 0.01 -

box < 0.01 | «0.01 -

conf <0.01 | €0.01 | <0.01 -

Table 1: p-values of the pairwise KS-test for the analysis of the accep-
tance rates of OLS regression.
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Fig. 14: Comparison of the validation acceptance rates for the different
visual designs for positive and negative deviations and for positive and
negative trends with respect to OLS regression. Green line: statistical
95% CI.

trends anymore (KS: p > 0.71, D = 0.044). This result suggests that
the perception of OLS regression was improved for the participants
with error lines. It partially supports hypothesis H2.

Similar to the base line, the confidence interval biased the perception
of positive and negative slope deviation (A7, - = 0.348, A7% . = 0.353).

conf —
The bounding box showed a slight improvement in the perception of
lines that were too steep (AL?° = 0.186, A7 = 0.159).

box box

Response Time and Difficulty The response times (measured
in seconds) and participants’ self-reported task difficulty on a 5-point
Likert scale are shown in Fig. 15.

The Kruskal-Wallis test indicated a significant difference in the
response times (p < 0.01, y% = 112.42). A pairwise Wilcoxon test of
the visual designs (Tab. 2a) showed that the response times with the
error lines were significantly higher than for all other designs (Uerror =
12.64sec). Among the other designs, the confidence interval had the
fastest response times (Ueon s = 9.21sec), followed by the bounding box
(Upox = 9.96sec) and the base line (Upq5, = 10.85sec).

A significant difference in the designs was also found in the per-
ceived difficulty (Chi-squared: p < 0.05, x2 = 21.19). The task was
perceived to be the easiest with the base line (Upq5. = 3.28). The only
significance could be found when comparing the base line to the error
lines (Tab. 2b) where the error lines was perceived as the most difficult
(Uerror = 2.69). In between the base line and the error lines were the
bounding box (Up,x = 3.21) and the confidence interval (Ucons = 2.92).

Summarizing the results, hypothesis H3 is not supported.

5.4 Discussion

The results of experiment 2 show that people consistently reject trend
lines more often when they are presented with visual designs regardless
of whether the trend lines are valid or invalid. There could be several
different reasons for this: 1) The visual designs help to identify incorrect
regression models. 2) People are generally more skeptical when shown
model results with visual designs because they are not used to or do
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Fig. 15: Response times and self-reported task difficulty for the different
visual designs in experiment 2.

p-value base error box | conf
base -
error < 0.01 -
box 1.00 < 0.01 -
conf 0.92 < 0.01 | 0.58 -
(a) Response times.
p-value base error | box | conf
base -
error < 0.01 -
box 0.38 0.06 -
conf 0.11 0.36 | 0.18 -

(b) Self-reported difficulties.

Table 2: p-values of the pairwise Wilcoxon-test for the response time
analysis and pairwise chi-squared test for analysis of the self-reported
difficulties.

not understand this type of presentation. 3) People perceive the type of
model to not fit to the underlying data. In our study, we intentionally
did not provide an explanation for the designs to allow for a purely
perceptual study. It is therefore possible that a prior explanation of the
visual designs would improve participants’ understanding and thus the
results. Similarly, the results may be influenced by the low statistical
expertise of our participants.

With respect to OLS regression, the acceptance thresholds improved
with all designs compared with the base line. This is due to slightly
higher rejection rates of invalid trend lines. The validation accuracy of
valid lines did not improve with any design.

As with the base line, there is no bias in trend direction with the
visual designs. Although confidence intervals are commonly used to
represent statistical uncertainty, the bias in slope deviation is greatest
with the addition of the confidence interval in the visualization. The
error lines, on the other hand, provided an unbiased validation in terms
of “too steep” and “too flat” trend lines.

The addition of error lines in the visualization should in theory
reduce the cognitive effort of visual validation, because the cognitive
calculation of errors is not needed. However, participants took longer
to complete the validation task and found it more difficult than with
the base line, according to the results of our study. This suggests that
people either did not fully understand the concept of error lines without

explanation, that the processing of additional information is cognitively
demanding, or that it forces people to intensify their thinking about the
shown line and to correct their bias.

The results of experiment 2 showed that the addition of commonly
used visual designs for visualizing regression in a scatterplot does
not significantly improve people’s ability to validate models visually.
Therefore, we are unable to provide design guidelines. As visual
estimation remains more accurate, this suggests that guiding people to
cognitive estimation as a first step of visual validation might improve
accuracy.

6 LIMITATIONS AND FUTURE WORK

We investigated the visual estimation and validation of linear trend lines
in scatterplots. The findings and limitations in our experiments may
suggest new research questions and future directions.

Model complexity: We found that individuals’ ability to visually
validate a linear model is lower than their ability to validate a constant
model (i.e., averages [5]). This raises the question whether the ability
to visually validate is dependent on the complexity of a model. In order
to answer this question, however, it would be necessary to define model
complexity in relation to visual perception.

Data characteristics - Outliers: Our study analyzed data with normal
distribution as assumed by OLS regression models. However, real world
datasets may have special characteristics that impact the regression. For
example, Correll and Heer [12] studied the influence of noise and outlier
in the data. The addition of outliers would shift the validation question
of a correct or incorrect model to a question of including or excluding
the outliers in the regression. This question about the correctness of the
model itself could be extended to a study on the validation of model
types. In this, people would have to be decided whether the type of
model fits the data or not. In this paper, we examined the fit of the
parameters of a fixed model.

Visual designs for model validation: We tested four designs (unmodi-
fied base line and three visual design augmentations) that are commonly
used in visualizing regression models. The addition of the three visual
designs in experiment 2 failed to improve both the accuracy and bias
of visual validation. It would be interesting to see whether the results
improve in a separate study where explanation and context to the data
and the visual designs are made available to the participant. Additional
think-aloud sessions could further provide insights into people’s visual
validation process and the use of visual designs. Altogether, the devel-
opment of novel visual designs for model validation that improves both
accuracy and mitigates bias is a future challenge.

7 CONCLUSION

In summary, our research examines the effectiveness of visual valida-
tion in assessing linear regression models shown in scatterplots. We
conducted two empirical experiments to gain insight into individuals’
abilities to visually validate linear trends and the impact of common
visualization designs on validation quality.

The first experiment showed that participants were more accurate
at visually estimating linear trends in scatterplots than at visually vali-
dating them. In addition, our results revealed a bias in slope deviation
(i.e., toward slopes that are "too steep"), but no bias in trend direc-
tion. Additional analysis provides evidence that people naturally assess
orthogonal regression (ODR) rather than the most commonly used ver-
tical regression (OLS). This indicates that people assume errors in both
variables rather than in just the y-coordinate.

The second experiment aimed to evaluate whether incorporating
common visualization designs such as error lines, bounding boxes,
and confidence intervals could improve visual validation. Despite the
reduction in validation bias observed with error lines, none of the tested
designs yielded the desired improvements in accuracy.

Our results emphasize the limitations of relying solely on visual
model validation for linear regression models in scatterplots. Further
research is needed to investigate the underlying cognitive processes
involved in visual validation tasks in order to find appropriate visual
solutions for supporting visual model validation.


https://doi.org/10.1109/TVCG.2024.3456305

SUPPLEMENTAL MATERIALS

Supplemental material includes: 1) Python code (Jupyter-notebook) for
the data and visual designs generation; 2) User study documentations
including the stimuli as PDF files; and 3) Anonymized study results as
CSV files.
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