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Abstract—Collections of analog lab notebooks are an in-
valuable source of data about research conditions, steps, and
outcomes, and in aggregate have the potential to provide new
insights into the successes, failures and pedagogy of research
laboratories. Unfortunately, these artifacts are increasingly at risk
of being lost from the historical scientific record, given limited
archiving and an absence of computational and Al readiness.
This paper reports on research addressing this challenge by
testing mechanisms for transforming digital scans of analog
lab notebooks into Al-ready data resources. The research being
pursued is framed by the field of computational archival science
(CAS) and the aim to utilize analog, research lab notebook data
for scientific study. The paper presents background context on
archival lab notebooks and CAS, discusses MOF (metal organic
frameworks) and COF (covalent organic frameworks) synthesis —
the scientific domain of the lab notebooks under study, and details
our research methods. We demonstrate a promising approach
that automatically segments pages into discrete entry types,
extracts the contents of those entries, refines the output and
assesses the automated results. These efforts represent a first
step towards developing a framework for both improving the
usability of archival lab notebooks, and enabling their contents
to be used in subsequent scientific inquiry.

Index Terms—Computational archival science, Al-ready data,
lab notebooks, digital collections

I. INTRODUCTION

Over the past two decades, traditional paper-based labora-
tory (lab) notebooks have been increasingly replaced by elec-
tronic lab notebooks (ELNs). This transition is significant, as
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ELNs streamline workflows by allowing real-time data entry,
integration with lab instruments, and direct linking to files and
databases [1]. Moreover, they help standardize recording pro-
cesses, minimize the risk of data loss, and enable data sharing
and collaborative research [2]. Given these benefits, scientific
lab managers have increasingly prioritized ELN adoption and
implementation, relegating analog lab notebooks to archival
status with limited access. ELN prioritization makes sense
in our highly computational, data-driven world; however, this
transition places paper-based lab notebooks into the category
of “data at risk” [3], [4], as valuable data is lost from the
record of scientific knowledge [1].

Research is needed to address the challenge of converting
analog, archival lab notebooks into computationally ready
data resources. We are investigating approaches to address
these issues, as part of the NSF supported Institute for Data
Driven Dynamical Design (ID4). Our research group includes
chemists at the Reticular Synthesis and Materials Design
Lab (RSMDL), University of Central Florida, who focus on
MOFs/COFs; and computer/information/data scientists at the
Metadata Research Center, Drexel University. The research
team is collaboratively working with digital, scanned images
of archival lab notebooks from the RSMDL that record MOF
and COF research (e.g. Figure 1). Our efforts to convert the
data recorded in these notebooks into computationally ready
data is grounded in computational archival science (CAS) [5],
which targets the application of computational techniques to
extract, process, and examine data recorded in archival artifacts
for scholarly and scientific study.
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Fig. 1. Pages from organic synthesis of intermediates for MOFs in the notebooks. (Left) A plain, unprocessed page. (Center) A page with fairly accurate
automated segmentations overlaid. (Right) A page containing a crossed out table that causes segmentation issues.

This paper reports on initial steps and results of this
computationally ready lab notebook project. The research is
motivated by the desire to identify various scientific research
trends and outcomes that are present, but currently undis-
closed, in the raw data within the notebooks. For example,
we wish to answer certain questions about methods that lead
to successful, as well as unsuccessful, results. Additionally, we
would like to understand how the competency and abilities of
lab technicians evolve over time in order to improve training
methods for future technicians.

The remaining sections are organized in the following way.
A background section provides important context for the
association between archival lab notebooks and the field of
CAS, and for MOF and COF research. Next, project goals and
objectives are presented, followed by the results, and then a
discussion of the results’ implications and future work for the
project. The paper wraps up with a conclusion that summarizes
key findings and next steps.

II. BACKGROUND CONTEXT
A. Lab Notebooks & Archival Computational Science

Lab notebooks are a fundamental component of scientific
research, as they offer a record of scientific activities [6], [7].
Chemistry laboratories record data and metadata of synthesis
experiments and chemical reactions in these notebooks. Due
to the nature of chemical synthesis research, chemistry lab
notebooks are traditionally physical books made of chemical-
resistant paper, for record the synthesis experiment. Lab
notebooks are generally curated by the researchers involved
(e.g., a student and the principal investigator(s)), and stored
as archival records once a researcher has left the group. As
archival artifacts, lab notebooks reflect archival principles of
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original order, documenting the order in which the researchers
pursued their steps, and a collective provenance in terms of
the researchers involved [8], [9].

The analysis of (semi) unstructured documents is a multi-
faceted problem and an active area of research [10]. Handwrit-
ten lab notebooks, with the inclusion of unstructured tabular
data, diagrams, and reactions, bring challenges beyond those
covered in much of the literature. The digitization of analog
lab notebooks, with the goal of seeking further computational
use of these artifacts, presents a critical link to the field of
computational archival science. Integrating archival science
with computational methods supports the management, preser-
vation, and accessibility of historical analog records. These
combined approaches also provides an essential framework
for leveraging machine learning (ML) and other computational
approaches that allow researchers to parse and study archival
artifacts in new ways. Overall, the CAS rubric, bolstered by
computational thinking [5], [11], [12], informs our work on
the Al-readiness of lab notebooks to study the development
of MOFs and COFs.

B. MOFs and COFs Synthesis

Metal-organic frameworks (MOFs) and Covalent Organic
Frameworks (COFs) are a class of crystals made from the
self-assembly of molecular building units into predetermined
molecular architectures that exhibit unique properties, such as
high porosity and chemical tunability. MOFs have attracted at-
tention because of their potential use in advanced technologies,
such as gas storage and separation, carbon and water capture,
drug delivery, catalysis, and optoelectronic applications [13].

Researchers in the RSMDL (Reticular Synthesis and Materi-
als Design Lab) are trained in organic synthesis to prepare the
molecular components of MOFs and COFs, and also on their



solid-state crystallizations. Molecular synthesis refers to using
multistep organic synthesis methods to prepare molecular
compounds that are the starting materials for MOFs/COFs,
as well as intermediates. Solid state crystallizations refer to
the preparation of MOFs with targeted crystal morphologies
like bulk microcrystalline powders, single crystals, thin films
or grafted crystals.

Members of the RSMDL have traditionally recorded their
research in paper-based notebooks. As with many labs, the
RSMDL has increasingly adopted computational tools and
workflows, and while analog lab notebooks are still used,
research data documenting experiment processes are stored in
other mechanisms. A significant challenge remains, however,
in that there is a historical collection of lab notebooks that
students have left, and which could inform scientific research
more easily if they were computationally ready. The noted
challenges in the RSMDL are a microcosm for the needs
of other laboratories with historical collections. Even fairly
recent collections of analog lab notebooks could benefit from
the application of CAS approaches. It is this recognition that
motivates the partnership underlying this research and the
overall goal and objectives addressed in the next section.

III. GOALS AND OBIJECTIVES

The overall goal of our work is to advance approaches for
making the information contained in analog lab notebooks
Al-ready. These approaches will facilitate the answering of
scientific questions. Specific objectives include:

« converting scanned notebook pages into a digitized, struc-
tured form,

o designing vectorized/graph-based, machine learning-
compatible representations of notebook contents,

o extracting information elements from the scans in these
data representations, and

o performing document classification and clustering analy-
sis to answer scientific questions based on the extracted
elements.

IV. METHODOLOGY

This section presents our methods, covering input data,
object detection, data extraction, and our approach to data
analysis and assessment. A review of relevant data extraction
techniques is also provided.

A. Input Data

The RSMDL possesses an archive of lab notebooks that
was started in 2013. The collection consists of about 80 lab
notebooks, which document the work performed by graduate
and undergraduate students and postdocs. Our input data came
from two complete notebooks from two distinct authors at
the RSMDL. Lab notebook pages were photographed using a
camera held above the page, and are aligned and cropped in
variable ways. One of the notebooks contains 101 pages, and
the other contains 186.

Each notebook is assigned a three letter code that refers
to the initials of a student-researcher, followed by a roman
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numeral that indicates the volume number, increasing in
chronological order. Each synthesis data sheet is labeled with
the lab notebook name and volume, followed by the page
number, and an optional letter counter. Each synthesis data
sheet contains the date the experiment was run, a sketch of the
chemical reaction performed, a table of stoichiometries, and
a section with notes and observations. In the stoichiometry
table, the utilized chemicals are indicated by their name or
by an identifier that links to the chemical reaction (especially
when names of chemicals are too long or obscure), and by
the amount utilized (in mass, mol, or volumes). Data such as
theoretical yield and initial concentration of substrate is also
indicated.

B. Object Detection

Information found on notebook pages includes text, tables,
diagrams, equations, chemical reactions, and more depending
on the procedure being performed. After reviewing the note-
books in our study, we determined there to be three major entry
types worth focusing on: text, tables and chemical reactions.
Some calculations and diagrams found in the notebooks were
excluded, as these entry types were infrequently present and
would likely be difficult to leverage in machine learning
analysis.

In order to perform automated page segmentation, we
make use of the Detectron2 object detection platform [14],
specifically its implementation of the Faster R-CNN model.
We hand labeled a training set from the two notebooks under
study, which consisted of 101 instances of tables, 101 instances
of reactions, and 153 instances of text blocks. The model was
trained with a learning rate of 0.02 and a batch size of 128 for
1,000 epochs. 20% of images in the training set were reserved
for validation, on which the final loss value was 0.107. A
review of model performance can be found in Section V-A.

C. Data Extraction

With bounding boxes determined for entries on a given
page, the next step is to extract and digitize their contents.

1) Text and Tables: While digitizing handwritten text is a
very active area of research [15], [16], open-source, locally
executable tools lag behind commercial tools in accuracy
and features [17]. Two open-source programs to come out
of academia are OrigamiNet [18] and DAN [19], with cloud-
based offerings being provided by Amazon, Google, Microsoft
and OpenAl. Of particular relevance to this project is the
processing of tables, which requires borders to be interpreted
as separators (i.e. commas) in the output.

A commercial, cloud based software called Handwriting
OCR is available which is capable of handling tabular inputs,
as well as plain text, with an accuracy comparable to the
other major cloud providers [20]. We are currently using this
software to extract the contents of text and tables. An API
is provided to upload documents, with flags to process the
uploaded material as text or as a table. Each entry on each
page is cropped down to its bounding box and is uploaded as
a separate document to ensure that the various page elements
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Fig. 2. Examples of synthesis equations found in the notebooks.

do not impact each other. The element is returned either as
plain text or a spreadsheet file that can be easily converted to
a basic comma separated value (CSV) representation.

2) Reactions: Several recent papers have been published
on optically recognizing hand drawn organic molecules. The
oldest presents a tool called ChemPix specifically targeting
hand drawn inputs, but its trained model seems to have never
been released [21]. This project also only targeted fairly
simple hydrocarbon structures, and would likely not be able to
identify many of the molecules in our notebooks. The second
work on this topic is called Img2Mol. While it can handle
more complex molecules, it is not tailor-made for hand-drawn
inputs and its performance on them is likely not high enough
to be useful [22]. The final and most recent two approaches
are the “new” DECIMER model [23] and ChemReco [24].
ChemReco only targets molecules comprised exclusively of
carbon, hydrogen and oxygen, but DECIMER is potentially
capable of handling the molecules involved in MOF synthesis.

Attempting to extract the full equations remains as future
work, due to the need to further segment the quite variable
structure of the graphical reaction equations before feeding
anything to optical recognition tools. As shown in Figure 2,
the reagents and solvents noted on the reaction arrow can
themselves be quite complex, and they, as well as the reactants
and products, can contain chemical shorthands that may or
may not be recognized by optical tools.

D. Data Analysis and Assessment

Pursuant to creating a robust foundation on which to per-
form subsequent data processing and ML analysis, we have
designed two interfaces to aid in assessing and improving
automated segmentation accuracy. These interfaces also help
assess the existing archival challenges that limit or confound
the automated extraction of accurate information from the
notebooks. The interfaces, one for refining segmentations and
one for assessing them, are shown in Figure 3. Statistics and
discussion based on these data are presented in Section V.

The refinement interface allows a user to redraw bounding
boxes, remove spurious ones, and add missing ones. Entries
are listed with their object detection confidence scores, along
with their automatically extracted contents. Users can simply
pick which entry to refine, and redraw its bounding box
with the mouse. The extracted contents can also be manually
refined. Both content versions are saved in a database for
subsequent analysis and potential archiving.
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Fig. 3. The analysis and refinement interface (top) and bounding box accuracy
assessment interface (bottom).

The analysis interface, intended to be run after using the
segmentation refinement interface on all pages, shows both
the original and user-drawn versions of each entry (where
applicable). Its purpose is to allow a user to determine,
based on pertinent, cropped information or unrelated, added
information, if the automatically drawn bounding box was only
slightly too large/small and still likely sufficient for accurate
content extraction, or far too large/small and very likely to
cause processing errors. If an entry was added by the user,
deleted by the user, or the user did not redraw the bounding
box, then it is skipped in the interface and automatically
recorded as deleted, added or accurate in the database. There is
an additional flag for noise, i.e. unrelated overlapping objects,
falling inevitably within the bounding box of the entry. An
example of this is shown in Figure 4. Discussions on the
implications of this issue are in Section V-B, and potential
automated solutions to it are proposed in Section VI.

V. RESULTS
A. Object Detection Performance

The training data spanned 133 of the 287 total notebook
pages, leaving 154 pages for the testing set and manual review.
The true instance counts for each type of entry in these pages
is 123 tables, 131 text blocks and 124 chemical reactions,
for a total of 378 entries. The cutoff confidence score from
the object detection model for including an object was set to
50%. The performance of the model is detailed in Table I, with
specific quality labels for segmentations in the first section and
more general quality levels in the second.

The model produced 41 truly perfect bounding boxes that
could not be improved upon. A total of 248 segmentations
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Fig. 4. (Top) An example of a table entry which, if cropped to capture all its
content, inevitably contains noise from the preceding reaction entry. (Bottom)
The entry with its noise manually removed.

were only slightly too small or slightly too large, and captured
the entries contained within well enough that their use would
likely cause minimal or no issues further down the analysis
pipeline. 30 segmentations were either far too small or far
too large, and do not accurately capture the entries. 53 of the
bounding boxes it produced were for nonexistent entries, and
it missed 50 entries entirely. Notably, all of the 50 missed
entries were text blocks, no reactions or tables were missed.

Excluding the erroneous segmentations, 298 out of 378 en-
tries (78.8%) have automated bounding boxes that accurately
capture their contents. Of the 53 erroneous detections, 36
(67.9%) had a confidence score below 60%, indicating the
cutoff threshold may be too low.

B. Data Quality

During the results assessment process, some data quality
issues became apparent that may contribute to difficulties in
notebook archiving and analysis:

1) Noise: On some pages, the notebook’s author recorded
reactions, tables and/or text extremely close to one another.
In those cases, reactions even cut into tables, as in Figure 4.
While not a problem for a human reading these notebooks,
this is a serious issue for content extraction. When feeding
entries, particularly tables, into additional processing software,
this noise will be included in the output unless it is somehow
removed, one possible avenue for doing so is discussed in
Section VII. Of the 378 testing set entries, 59 (15.6%) have
nontrivial noise within their bounding boxes.

2) Page Alignment: The notebooks were captured by plac-
ing them under a camera held by a stand, and the placement,
alignment and flatness of the pages can vary significantly. This
generally did not cause problems for object detection, and does
not seem to directly impact the OCR software, but it does
exacerbate the previous noise problem, and could impact other
analysis tasks depending on one’s research objective(s). The
general variability of page captures can be seen in Figure 1,
and the flatness issue in particular is quite notable in Figure 4.
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TABLE I
OBIJECT DETECTION RESULTS

Bounding Box Quality Count
Perfect 41
Erroneous 53
Missed 50
Slightly Small 176
Slightly Large 81
Very Small 27
Very Large 3
Acceptable Quality 298
Unacceptable Quality 80
Erroneously Labeled 53

3) TLC Diagrams: There are some experiment-specific thin
layer chromatography (TLC) diagrams found in our notebooks.
They are used to monitor the course of chemical reactions, and
are not currently included in the object detection model. Some
are reminiscent of tables, as shown in Figure 5. Converting any
diagram in these notebooks to a machine-readable representa-
tion would likely require a bespoke ML model, which is why
they are not included in our current study. However, for the
purpose of better distinguishing them from tables, it may be
prudent to add them in as a fourth class.

4) Table Style Variations: A more minor complexity in the
data is the authors drawing tables using distinct styles. The
primary difference that impacts analysis is that one author
drew diagonal slashes in empty table records, and the other
drew hyphens. The diagonal slashes are interpreted as 1’s by
the OCR software in some cases, which needs to be accounted
for in subsequent processing.

5) Corrections and Amendments: The final major data
extraction complication observed in the notebooks is author
correction and amendments. These include entries as small as
one crossed out number with the replacement written next to it,
up to entire pages crossed out. An example of this is shown on
the right in Figure 1, where an entire table has been crossed
out and rewritten directly below. This is not a situation the
object detection model could handle, and it segmented both
tables together, as well as the second by itself.

VI. DISCUSSION

Lab notebooks offer unique challenges in terms of document
analysis and archiving. Their structure is more variable than
most types of paper records, in addition to being hand-written
with many types of diagrams, figures, and error corrections.
The work completed thus far represents the first phase of
building a robust analysis pipeline for this type of document,
with ongoing and future work consisting of structuring the
unstructured notebook data for analysis, and performing said
analysis with the objective of answering open questions about
experimental quality and student learning. The next step in
data processing is to develop an automated technique for de-
noising entries. One possible pathway to removing unwanted
entries captured in the bounding boxes of neighboring entries
is by passing them through an autoencoder trained to remove
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Fig. 5. An example of thin layer chromatography (TLC) diagrams used to
monitor reactions, an entry outside the scope of the current segmentation
model, being misinterpreted as a table.

the noise as a preprocessing step before running the optical
recognition tools [25].

Following the completion of all data extraction work, we
aim to develop a structured graph representation for the note-
book data, and use that representation to perform document
classification/clustering experiments with the goal of answer-
ing scientific questions about the experimental procedures.
The objectives of this portion of the project partially align
with aspects of the text document clustering literature [26],
as we are aiming to discern meaningful patterns within the
textual records of experimental procedures. To achieve this,
both table data and unstructured textual data, such as synthesis
procedure descriptions, will need to be integrated into an
ML analysis compatible representation. Currently, we are
working to develop a knowledge extraction pipeline to identify
important entities (i.e. key words and phrases) based on the
text found in peer-reviewed MOF and COF research articles.
We are working to construct key phrases from the literature
into triple pairs, where two entities are linked by their relation.
By running this pipeline, we aim to transform information
buried in un-queryable data into structured, machine-readable
data. These triplets can greatly enhance the content quality of
knowledge graphs [27], and enable better scientific knowledge
discovery.

Chief among the scientific questions that we are seeking to
answer is what patterns in experimental procedures might dis-
tinguish successful synthesis experiments from unsuccessful.
What constitutes “success” varies depending on the procedure
being performed, but the yield of final product is a common
metric. In addition, these notebooks may contain insights on
student learning. These pedagogic questions regarding student-
researcher training include:

o What is the progress of training in crystal engineering of
MOFs, COFs, and related materials?

o When is a student properly trained at chemical syntheses
of both organic and solid-state compounds?

o Are there any data-based hints that can be utilized to
predict the progress of future researchers?

Unsupervised clustering of experimental records may also lead
to the discovery of patterns not yet postulated explicitly.
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VII. CONCLUSION

The overall goal of our work is to advance approaches for
making the information contained in analog lab notebooks
Al-ready, which will facilitate the answering of scientific
questions. We have developed a process to extract the contents
of scanned lab notebook pages, analyzed the results and
presented potential challenges with data quality and archiving.
This initial research effort helps to frame next steps. Each
component of our work to date has been conducted not only
to make archived lab notebooks Al-ready, but also to begin
the process of building a pipeline for scientific inquiry based
on the extracted data.

A longer term goal of our project is to apply our extraction
and analysis approach to the full collection of digitized lab
notebooks at the RSMDL, University of Central Florida, as
well as other labs that have digitized copies of analog MOF
and COF notebooks. The methods and pipeline we are working
to develop may then be further adapted to prepare Al-ready
data from digitized lab notebooks capturing research across
other areas of experimental chemistry. Finally, the research
presented in this paper can help mitigate loss of historical sci-
entific artifacts and make sure that Al operations are informed
by a more complete record of research.
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