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A dissimilarity measure for semidirected networks
Michael Maxfield1 , Jingcheng Xu1 , Cécile Ané1,2

Abstract—Semidirected networks have received interest in evo-
lutionary biology as the appropriate generalization of unrooted
trees to networks, in which some but not all edges are directed.
Yet these networks lack proper theoretical study. We define here
a general class of semidirected phylogenetic networks, with a
stable set of leaves, tree nodes and hybrid nodes. We prove that
for these networks, if we locally choose the direction of one edge,
then globally the set of directed paths starting at this edge is
stable across all choices to root the network. We define an edge-
based representation of semidirected phylogenetic networks and
use it to define a dissimilarity between networks, which can be
efficiently computed in near-quadratic time. Our dissimilarity
extends the widely-used Robinson-Foulds distance on both rooted
trees and unrooted trees. After generalizing the notion of tree-
child networks to semidirected networks, we prove that our edge-
based dissimilarity is in fact a distance on the space of tree-child
semidirected phylogenetic networks.

Index Terms—phylogenetic, admixture graph, Robinson-
Foulds, tree-child, µ-representation, ancestral profile

I. INTRODUCTION

H ISTORICAL relationships between species, virus strains
or languages are represented by phylogenies, which are

rooted graphs in which the edge direction indicates the flow
of time going forward. Semidirected phylogenetic networks
are to rooted networks what undirected trees are to rooted
trees. They appeared recently, following studies showing that
the root and the direction of some edges in the network may
not be identifiable from various data types [29, 3]. Conse-
quently, several methods to infer phylogenies from data aim
to estimate semidirected networks, rather than fully directed
networks, such as SNaQ [29], NANUQ [1], admixtools2
[24], poolfstat [11], NetRAX [23], and PhyNEST [19].

The theoretical identifiability of semidirected networks is
receiving increased attention [12, 25, 33, 2] but graph theory
is still at an early stage for this type of network [but see
22]. In particular, adapted distance and dissimilarity measures
are lacking, as are tools to test whether two phylogenetic
semidirected networks are isomorphic. These tools are ur-
gently needed for applications. For example, when an infer-
ence method is evaluated using simulations, its performance
is quantified by how often the inferred network matches
the true network used to simulate data, or how similar the
inferred network is to the true network. Tools for semidirected
networks would also help summarize a posterior sample of
networks output by Bayesian inference methods. Even for a
basic summary such as the posterior probability of a given
topology, we need to decide which semidirected networks are
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isomorphic in a potentially very large posterior sample of
networks.

Unless additional structure is assumed, current methods
appeal to a naive strategy that considers all possible ways
to root semidirected networks, and then use methods designed
for directed networks, e.g. to check if the candidate rooted net-
works are isomorphic or to minimize a dissimilarity between
the two rooted networks across all possible root positions.

In this work, we first generalize the notion of semidirected
phylogenetic networks in which edges are either of tree type
or hybrid type, such that any edge can be directed or undi-
rected. We relax the constraint of a single root (of unknown
position). Multi-rooted phylogenetic networks were recently
introduced, although for directed networks, to represent the
history of closely related and admixed populations [30] or
distant groups of species that exchanged genes nonetheless
[14, 15]. Our general definition requires care to define a set of
leaves consistent across all compatible directed phylogenetic
networks.

For these semidirected networks, we define an edge-
based “µ-representation” µE , extending the node-based µ-
representation, denoted here as µV , by Cardona, Rosselló,
and Valiente [6]. The “ancestral profile” of a rooted network
contain the same information as the node-based representation
µV , that is: the number of directed paths from each node to
each leaf [5]. So our edge-based representation µE also ex-
tends the notion of ancestral profile to semidirected networks,
in which ancestral relationships are unknown between some
nodes because the root is unknown. Briefly, µE’s information
for an edge depends on whether the edge direction is known
or implicitly constrained by the direction of other edges in the
network. For example, if N is a semidirected tree and an edge
is explicitly or implicitly directed, then µE associates the edge
to the cluster of taxa below it. If instead the edge direction
depends on the unknown placement of the root(s), then µE

associates the edge to the bipartition of the taxa obtained
by deleting the edge from the semidirected tree. If N has
reticulations, µV uses µ-vectors to generalize the notion of
clusters, storing the number of directed paths from a given
node to each taxon. Our extension µE associates a directed
edge to the µ-vector of its child node, and an undirected edge
to two µ-vectors: one for each direction that the edge can
take. To handle and distinguish semidirected networks with
multiple roots, µE also associates each root to a µ-vector, well-
defined even when the exact root position(s) are unknown. We
then define a dissimilarity measure dµE

between semidirected
networks.

Our network representation µE can be calculated in poly-
nomial time, namely O(n|E|) where n is the number of
leaves and |E| is the number of edges. The associated network
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dissimilarity dµE
can then be calculated inO

(
|E|(n+log |E|)

)
time. It provides the first dissimilarity measure adapted to
semidirected networks (without iterative network re-rooting)
that can be calculated in polynomial time. Linz and Wicke
[22] also recently considered semidirected networks (with a
single root of unknown position). They showed that “cut
edge transfer” rearrangements, which transform one network
into another, define a finite distance on the space of level-1
networks with a fixed number of hybrid nodes. This distance is
NP-hard to compute, however, because it extends the subtree
prune and regraft (SPR) distance on unrooted trees [13].

Finally, we generalize the notion of tree-child networks to
semidirected networks, and prove that dµE

is a true distance
on the subspace of tree-child semidirected networks, extending
the result of [6] to semidirected networks using an edge-based
representation. On trees, this dissimilarity equals the widely
used Robinson-Foulds distance between unrooted trees [28].
We provide concrete algorithms to construct µE from a given
semidirected network, and to reconstruct the network from µE .

As a proper distance, dµE
can decide in polynomial time

if two tree-child semidirected networks are isomorphic. For
rooted phylogenetic networks, the isomorphism problem is
solvable in linear time when restricted to tree-child networks
[18], but otherwise is polynomially equivalent to the general
graph isomorphism problem even if restricted to tree-sibling
time-consistent rooted networks [9]. As semidirected networks
include single-rooted networks, the graph isomorphism prob-
lem for semidirected networks is necessarily more complex.
The general graph isomorphism problem was shown to be of
subexponential complexity [4] but is not known to be solvable
in polynomial time. Therefore, there is little hope of finding
a dissimilarity that can be computed in polynomial time,
and that is a distance for general semidirected phylogenetic
networks. Hence, dissimilarities like dµE

offer a balance
between computation time and the extent of network space
in which it can discriminate between distinct networks.

II. BASIC DEFINITIONS FOR SEMIDIRECTED GRAPHS

For a graph G we denote its vertex set as V (G) and its
edge set as E(G). The subgraph induced by a subset of
vertices V ′ ⊆ V (G) is denoted as G[V ′], and the edge-induced
subgraph is denoted as G[E′] for a subset E′ ⊆ E(G).

We use the following terminology for a directed graph G =
(V,E). For a node v, its in-degree is denoted as degi(v,G)
and out-degree as dego(v,G). Its total degree deg(v,G) is
degi(v,G)+ dego(v,G). We may omit G when no confusion
is likely. For u, v ∈ V , we write u > v if there exists a
directed path u ⇝ v. A node v is a leaf if dego(v) = 0;
v is an internal node otherwise. We denote the set of leaves
as VL(G). A node v is a root if degi(v) = 0; a tree node if
degi(v) ≤ 1; and a hybrid node otherwise. We denote the set
of tree nodes as VT and the set of hybrid nodes as VH . An
edge (u, v) ∈ E is a tree edge if v is a tree node; a hybrid
edge otherwise. We denote the set of tree edges as ET and the
set of hybrid edges as EH . A descendant of v is any node u
such that v > u. A tree path is a directed path consisting only
of tree edges. A tree descendant leaf of v is any leaf u such

that there exists a tree path v ⇝ u. An elementary path in G
is a directed path such that the first node has out-degree 1 in
G and all intermediate nodes have in-degree and out-degree 1
in G. In the remainder, we use “path” to mean “directed path”
for brevity, unless otherwise specified.

We now extend these notions to semidirected graphs.

Definition 1 (semidirected graph). A semidirected graph N
is a tuple N = (V,E), where V is the set of vertices, and E =
EU ⊔ ED is the set of edges, EU being the set of undirected
edges and ED the set of directed edges.

Undirected edges in EU are denoted as uv for some
u, v ∈ V , instead of the standard notation of {u, v} for brevity.
Directed edges in ED are denoted as (u, v) for some u, v ∈ V ,
implying the direction from u to v, with u referred to as the
parent of the edge, and v as its child. A directed graph is a
semidirected graph with no undirected edges: EU = ∅.

For v ∈ V (N), degi(v,N) denotes the number of directed
edges with v as their child, dego(v,N) the number of directed
edges with v as their parent, degu(v,N) the number of undi-
rected edges in N incident to v, and deg = degi+dego+degu.
We may omit N when no confusion is likely. Furthermore,
child(v,N) = {w ∈ V : (v, w) ∈ ED}. N is binary if
deg(v) = 1 or 3 for all nodes. N is bicombining if degiv = 2
for all hybrid nodes.

A semidirected graph N ′ = (V,E′) is compatible with
another semidirected graph N = (V,E) if N ′ can be obtained
from N by directing some undirected edges in N .

The contraction of N , denoted as Cont(N), is the directed
graph obtained by contracting every undirected edge in N . It
is well defined, as it can be viewed as the quotient graph of
N under the partition that groups nodes connected by a series
of undirected edges. For v ∈ V (N), Cont(v,N) is defined as
the node in Cont(N) which v gets contracted into.

In a semidirected graph N , a node v ∈ V (N) is a root if it
only has outgoing edges. It is a tree node if degi(v,N) ≤ 1.
Otherwise, v is called a hybrid node. The set of tree nodes is
denoted as VT or VT (N) and the set of hybrid nodes as VH

or VH(N). A tree edge is an undirected edge, or a directed
edge whose child is a tree node. A hybrid edge is a directed
edge whose child is a hybrid node. We denote the set of tree
edges as ET or ET (N) and the set of hybrid edges as EH or
EH(N).

A semidirected cycle is a semidirected graph if its undi-
rected edges can be directed so that it becomes a directed
cycle. A semidirected graph is acyclic if it does not contain
a semidirected cycle. We refer to directed acyclic graphs as
DAGs and to semidirected acyclic graphs as SDAGs.

Next, we define a more stringent notion of compatibility to
maintain the classification of nodes and edges as being of tree
versus hybrid type, illustrated in Figs. 1 and 2.

Definition 2 (phylogenetically compatible, rooted partner,
network). An SDAG N ′ is phylogenetically compatible with
another SDAG N if N ′ is compatible with N and EH(N ′) =
EH(N). A rooted partner of N is a DAG that is phylogenet-
ically compatible with N . A multi-root semidirected network,
or network for short, is an SDAG that admits a rooted partner.
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Fig. 1. Examples of SDAGs and rooted partners. Top left: SDAG that is not
a network, because it has no rooted partner: directing uv would cause u or
v to become a hybrid node and result in a non-phylogenetically compatible
DAG. Top right: N is a network. Bottom: 2 of N ’s 4 rooted partners. Each
rooted partner has 2 roots (brown dots), one from each brown edge in N .
Of the nodes incident to e2 for example, either u (bottom left) or v (bottom
right) can serve as root.

Note that if SDAG N ′ is phylogenetically compatible with
SDAG N , then VT (N) = VT (N

′) and VH(N) = VH(N ′).
Note also the rooted partner of a binary network may not be
binary by the typical definition for rooted networks, since the
root can have degree 3 or 1 instead of 2.

Not all SDAGs are networks (see Fig. 1 for an example). We
are interested in networks rather than general SDAGs, because
a network can represent evolutionary history up to “rerooting”,
as captured by its rooted partners. Fig. 1 gives an example
network (N , top) and 2 of its 4 rooted partners (bottom).

Traditionally, phylogenetic trees and networks are connected
and with a single root [31]. We consider here a broader class
of graphs, allowing for multiple connected components and
multiple roots per connected component. We also allow for
non-simple graphs, that is, for multiple parallel edges between
the same two nodes u and v, directed and in the same direction
for the graph to be acyclic. With a slight abuse of notation,
we keep referring to each parallel edge as (u, v). Self-loops
are not allowed as they would cause the graph to be cyclic.
The term “rooted partner” was introduced by Linz and Wicke
[22] in the context of traditional semidirected phylogenetic
networks in which the set of directed edges is precisely the
set of hybrid edges, and for which a rooted partner has a single
root.

We will use the following results frequently. The first one
is trivial.

Proposition 1. Let N be an SDAG phylogenetically compat-
ible with SDAG N ′. Then ED(N) \ ED(N ′) ⊆ ET (N).

Proposition 2. Let N be a network, and N ′ the semidirected
graph obtained from N by undirecting some of the tree edges
of N . Then N ′ is a network, and N is phylogenetically
compatible with N ′.

Proof. Let A be the set of tree edges in N that are undirected
to obtain N ′. We first consider the case when A consists of a
single edge (u, v). We shall establish the following claims:

1) N ′ is a network;
2) the edges of N ′ in E(N)\A retain their type (undirected,

tree, or hybrid);
3) N is phylogenetically compatible with N ′.

Fig. 2. Examples to illustrate definitions and notations. Directed edges (ED)
are shown with arrows; hybrid edges (EH ) in blue. Root components, whose
nodes (VR) can serve as roots, are shown in brown. N2 is compatible but
not phylogenetically compatible with N1 (e.g. w is hybrid in N2 and not in
N1). N3 is phylogenetically compatible with N1. Rooted leaves are b and c
in N1 and N2; a is an ambiguous leaf in N1. N3 has no ambiguous leaves
so it is an L-network on L = VUL(N3) = VRL(N3) = {a, b, c}. N1 has
1 root component. Its rooted partner rooted at u is tree-child, but none of the
others are (rooted at a, w or v), so it is weakly tree-child. N2 has 2 root
components R1 = {a} and R2 = {u, v}, and 2 rooted partners: one from
the root choice ρ(R1) = a, ρ(R2) = u; and the other from the root choice
ρ(R1) = a, ρ(R2) = v. N2 is not tree-child in either sense, as none of its
rooted partners are tree-child. N2 = C(N2) is complete. N3 is not complete:
in C(N3), edges incident to b and c are directed.

For claim 1, suppose for contradiction that N ′ is not an
SDAG. Then there exists in N ′ a semidirected cycle C which
contains uv. Let G be a rooted partner of N , and C+ the
subgraph made of the corresponding edges in C. Since C+

cannot be a directed cycle, there exist two hybrid edges (a, h)
and (b, h) in C+. Both are also directed in N by phylogenetic
compatibility. Because they are hybrid edges, they are distinct
from (u, v), so they are directed in N ′ and C. This contradicts
C being a semidirected cycle, showing that N ′ is an SDAG.
Since it also admits G as a rooted partner, N ′ is a network.

Claim 2 follows from the observation that the types of nodes
(tree vs hybrid) in N ′ stays the same. Claim 3 follows from
claim 2.

If A contains multiple edges, then we iteratively undirect
one edge at a time. By the previous argument, the resulting
graph at each step is a network with which N is phyloge-
netically compatible, because phylogenetic compatibility is
transitive. Hence N ′ is a network and N is phylogenetically
compatible with it.

The next definition is motivated by the fact that phylogenies
are inferred from data collected at leaves, which are known en-
tities with labels (individuals, populations, or species), whereas
non-leaf nodes are inferred and unlabeled.

Definition 3 (unrooted, rooted and ambiguous leaves). A
node v in a network N is a rooted leaf in N if v is a leaf in
every rooted partner of N ; and an unrooted leaf if it is a leaf
in some rooted partner N . We denote the set of rooted leaves
and unrooted leaves as VRL(N) and VUL(N) respectively. An
ambiguous leaf is a node in VUL(N) \ VRL(N).

Clearly, VRL(N) ⊆ VUL(N). If N is directed, then
VRL(N) = VUL(N) = VL(N). As we will see later in
Lemma 12, an ambiguous leaf is of degree 1 in the undirected
graph obtained by undirecting all edges in N , hence a leaf in
the traditional sense. In Fig. 2 for example, a is an ambiguous
leaf in N1 but a rooted leaf in N3.

In Section III we make no assumption regarding VUL(N)
and VRL(N). But to extend µ-vectors to semidirected graphs
in Section IV, we will need a stable set of leaves across rooted
partners. For a vector of distinct labels L, an L-DAG is a
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DAG whose leaves are bijectively labeled by L. To extend
this definition we impose VUL(N) = VRL(N) below, but we
will see (after Lemma 12) that this requirement is less stringent
than it appears.

Definition 4 (leaf-labeled network). A network N is labeled
in L and called an L-network, if VUL(N) = VRL(N) and
VUL(N) is bijectively labeled by elements of L. The leaf set
of an L-network N is defined as VL(N) = VUL(N).

For example, in Fig. 2 N3 is an L-network with L = {a, b, c},
while N1 is not because VUL(N1) ̸= VRL(N1). N2 is a {b, c}-
network.

A rooted partner G of an L-network N must be an L-DAG:
since VRL(N) ⊆ VL(G) ⊆ VUL(N) generally, we have that
VL(G) = VL(N) and VL(G) can inherit the labels in N .

Our main result concerns the class of tree-child graphs. If G
is a DAG, it is tree-child if every internal node v of G has at
least one child that is a tree node [16]. Equivalently, G is tree-
child if every non-leaf node in G has a tree descendant leaf
[6]. We extend this notion to semidirected networks, illustrated
in Fig. 2.

Definition 5 (semidirected tree-child). A network is weakly
tree-child if one of its rooted partners is tree-child. It is
strongly tree-child, or simply tree-child, if all its rooted
partners are tree-child.

Since a DAG G is a network with a single rooted partner, G
is strongly and weakly tree-child if and only if it is tree-child
as a DAG. In Fig. 2, N3 is weakly but not strongly tree-
child: of its 3 rooted partners, only one is tree-child. Later in
Proposition 11, we provide a characterization that is easy to
check without enumerating rooted partners.

III. PROPERTIES OF SEMIDIRECTED ACYCLIC GRAPHS

Proposition 3. A semidirected graph N = (V,E) is acyclic
if and only if the undirected graph induced by its undirected
edges EU consists of trees only (i.e. is a forest), and Cont(N)
is acyclic.

Proof. Let N be a semidirected graph. Suppose that N [EU ]
is not a forest. Then there exists a compatible directed graph
of N [EU ] which contains a cycle that exists in a compatible
directed graph of N , therefore N is not acyclic. Next suppose
that Cont(N) contains a cycle C ′. Then there exists a com-
patible directed graph G of N which contains a cycle C such
that C ′ is obtained from C after contracting edges in G that
correspond to undirected edges in N , and so N is not acyclic.

Now suppose the graph induced by EU is a forest and that
Cont(N) is acyclic. If N is not acyclic, then by definition
there exists a compatible directed graph G that contains a cycle
C. Since Cont(N) is acyclic, C must contract into a single
node in Cont(N). This implies that C contains undirected
edges only, hence is contained in N [EU ], a contradiction.
Therefore N is acyclic.

In a network N , a semidirected path from u0 to un is a
sequence of nodes u0u1 . . . un, such that for i = 1, . . . n, either
ui−1ui or (ui−1, ui) is an edge in N . On V (N) we define
v ≲ u if there is a semidirected path from u to v, and the

associated equivalence relation: u ∼ v if u ≲ v and v ≲ u.
On equivalence classes, ≲ becomes a partial order. In Fig. 2
for example, a ≲ v in N1 and N3. Also v ≲ a so a ∼ v in N1,
but not in N3. In N3, {u, v, w} and {a} are two equivalence
classes. There is a semidirected path from u to a (for example)
so {a} ≲ {u, v, w} and {a} is not maximal under ≲. Using
these partially ordered classes, we can define the following.

Definition 6 (undirected components, root components,
directed part). In a network N , an undirected component
is the subgraph induced by an equivalence class under ∼.
A root component of N is an undirected component that is
maximal under ≲. A root component is trivial if it consists
of a single node. The set of edges and nodes that are not in
a root component is called the directed part of N . We denote
the set of nodes in the directed part as VDP (N) and the set
of edges EDP (N). We also denote the set of nodes in root
components VR(N) and the set of edges ER(N).

The directed part of N is generally not a subgraph: it may
contain an edge but not one of its incident nodes. In Fig. 2,
edges in the directed part EDP are those in black (tree edges)
and blue (hybrid edges). Edges in root components ER are
in brown. In N3, v is adjacent to the directed part, but is
not in VDP (N3). N2 has a trivial root component: {a}. The
following result justifies the name given to the equivalence
classes.

Proposition 4. For u, v nodes in a network N , u ∼ v if and
only if there is an undirected path between u and v.

Proof. Consider u and v connected by an undirected path.
Since this path does not contain any directed edge, clearly,
u ≲ v and v ≲ u, hence u ∼ v.

Now suppose u ∼ v. By definition, there exists a semidi-
rected path puv = u0u1 . . . un from u = u0 to v = un and
a semidirected path pvu from v to u. If pvu = unun−1 . . . u0

then all edges in these paths must be shared and undirected.
This is because N is acyclic, in case puv and pvu have distinct
edges incident to ui and ui+1. Then, there is an undirected
path between u and v as claimed. Otherwise, there exists
i1 ≥ 0 and i2 > i1 + 1 such that pvu is the concatenation
of semidirected paths unun−1 . . . ui2 ; pui2

ui1
from ui2 to ui1

not containing any uj for i1 < j < i2; and ui1ui1−1 . . . u0.
Then, the concatenation of pui2ui1

with ui1ui1+1 . . . ui2 forms
a semidirected cycle. Since N is acyclic, this case cannot
occur.

We now characterize undirected components as the undi-
rected trees in the forest induced by N ’s undirected edges.

Proposition 5. Let N be a network and F the graph induced
by the undirected edges of N . Then F is a forest where:

1) each tree corresponds to an undirected component of N ,
and has at most one node v with degi(v,N) ≥ 1;

2) the root components of N are exactly the trees without
such nodes, and they contain tree nodes only.

Proof. By Proposition 3, F is a forest. By Proposition 4, each
tree in F is an undirected component. If a tree T in F had more
than one node v with degi(v,N) ≥ 1, it would be impossible
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to direct the edges in T without making one of them hybrid,
contradicting the existence of a rooted partner of N .

For the second claim, let T be a tree in F . Note that
(u, v) ∈ ED implies that u ̸∼ v and v’s equivalence class
is not maximal under ≲. So if T is maximal under ≲, then
all nodes v in T have degi(v,N) = 0, which implies that v
is a tree node. Conversely, if T is not maximal, then there
exist nodes v in T , u ≳ v in a different tree of F , and a
semidirected path from u to v containing a directed edge.
Taking the last directed edge on this path gives a node v′

in T with degi(v
′, N) ≥ 1.

Lemma 6. Let N be a network and G a rooted partner of N .
Let v ∈ VR(N). If v < u in G, then u ∈ VR(N).

Proof. Let v < u in G. Then v ≲ u in N . By Definition 6,
u ≲ v in N as well. Therefore, u belongs to the same root
component as v, hence u ∈ VR(N).

Proposition 7. Let N be a network. Let G1 and G2 be rooted
partners of N . Then edges in EDP (N) have the same direction
in G1 and G2.

Proof. Let T be an undirected component of N that is not a
root component. We need to show that T ’s edges have the same
direction in G1 and G2. By Proposition 5, T is an undirected
tree in N , and has exactly one node v0 with an incoming edge
in N . Then v0 must be the root of T in both G1 and G2, for
G1 and G2 to be phylogenetically compatible with N , which
completes the proof.

Definition 7 (root choice function). Let N be a network,
and R be the set of root components of N . A root choice
function of N is a function ρ : R → V (N) such that for
a root component T ∈ R, ρ(T ) ∈ V (T ). In other words, ρ
chooses a node for each root component.

Conceptually, a semidirected network represents uncertainty
about the root(s) position. Next, we show that to resolve
uncertainty, exactly 1 node from each root component must
be chosen as root, and this choice can be made independently
across root components. In other words, root choice functions
are in one-to-one correspondence with rooted partners. As a
result, all rooted partners have the same number of roots:
the number of root components. In Fig. 1, N has 2 root
components each with 2 nodes, hence 2 × 2 = 4 rooted
partners.

Proposition 8. Given a root choice function ρ of a network
N , there exists a unique rooted partner N+

ρ of N such that
the set of roots in N+

ρ is the image of ρ. Conversely, given
any rooted partner G of N , there exists a unique root choice
function ρ such that G = N+

ρ .

Proof. Let G0 be a rooted partner of N . For a root choice
function ρ, let N+

ρ be the graph compatible with N obtained
by directing edges in EDP (N) as they are in G0, and away
from ρ(T ) in any root component T (which is possible by
Proposition 5). N+

ρ is a DAG because N is acyclic. To prove
that N+

ρ is phylogenetically compatible with N (and hence a
rooted partner), we need to show that EH(N+

ρ ) = EH(G0).
Since all edges in N incident to both VR = VR(N) and VDP =

VDP (N) are directed from VR to VDP , they have the same
direction in N+

ρ and G0. Therefore nodes in VDP and edges
in EDP (N) are of the same type in N+

ρ and G0 (and N ).
Furthermore, by construction and Proposition 5, all edges in
ER(N) remain of tree type in both N+

ρ and G0. Hence N+
ρ

is a rooted partner of N . Finally, the root set of N+
ρ is the

image of ρ because a root component’s root is a root of the full
network (from degi(v,N) = 0 for any v ∈ VR) and because
VDP cannot contain any root of N+

ρ (by Proposition 5 again).
To prove that N+

ρ is unique, let G be a rooted partner of
N whose set of roots is the image of ρ. By Proposition 7,
edges in EDP (N) have the same direction in G and N+. For
a root component T , G[V (T )] = N+

ρ [V (T )] because T is an
undirected tree in N , rooted by the same ρ(T ) in both G and
N+

ρ . Therefore G = N+
ρ .

Let G be a rooted partner of N . By Proposition 5 and
phylogenetic compatibility, G must have exactly one root in
each root component T . Define ρ such that ρ(T ) is this root
of G in T . By the arguments above, G cannot have any root
in VDP , and then G = N+

ρ .

We can define the following thanks to Proposition 7:
Definition 8 (network completion). The completion C(N) of
a network N is the semidirected graph obtained from N by
directing every undirected edge in its directed part, as it is in
any rooted partner of N . More precisely, let G be a rooted
partner of N . We direct uv ∈ EDP (N) as (u, v) in C(N) if
(u, v) ∈ E(G). A network N is complete if C(N) = N .

Proposition 9. For a network N , C(N) is a network and
phylogenetically compatible with N .

Proof. From Proposition 8, any rooted partner of N is of the
form N+

ρ . As seen in the proof of Proposition 8, C(N) and
N+

ρ differ in root components only: if e ∈ ER(N) then e is
undirected in N and in C(N), directed in N+

ρ , and is a tree
edge in all. Therefore C(N) is phylogenetically compatible
with N and is a network (admitting N+

ρ as rooted partner).

Remark 1. Propositions 5 and 8 yield practical algorithms.
Finding the root components requires only traversing the
network N , tracking the forest F of undirected components,
and which nodes have nonzero in-degree. Computing C(N)
then consists in directing the edges away from such a node in
each tree of F , if one exists. In particular, in a single traversal
of N we can construct a rooted partner G, record the roots
of G, record the edges of G that were in root components
of N , and for each such edge record the corresponding root.
To do this, for each tree T in F that is a root component,
we arbitrarily choose and record a node u as root, direct the
edges in T away from u, record these edges as belonging to a
root component of N , and for all these edges record u as the
corresponding root. We then direct the rest of the undirected
edges the same way as when computing the completion. We
shall use this in Algorithm 1 later.

With as many directed edges as can be possibly implied
by the directed edges in N , C(N) is the network that we are
generally interested in. We define phylogenetic isomorphism
between networks based on their completion.
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Definition 9 (network isomorphism). L-networks N and N ′

are phylogenetically isomorphic, denoted by N ∼= N ′, if C(N)
and C(N ′) are isomorphic as semidirected graphs, with an
isomorphism that preserves the leaf labels.

In Fig. 2 for example, N2 is complete, but N3 is not. N1

and N3 are not phylogenetically isomorphic, because the edge
incident to a remains undirected in the completion C(N1). N2

is not phylogenetically compatible with N1 or N3, and not
phylogenetically isomorphic to either.

Lemma 10. Let N be a complete network. There exists a
directed edge (u, v) in N if and only if v ∈ VDP (N).

Proof. If v ∈ VDP (N), its undirected component U has no
undirected edges by Definition 8. Then by Proposition 5, U =
{v} and degi(v) ≥ 1, so v is the child of some directed edge.
Conversely, if there exists (u, v) ∈ E(N) then v’s equivalence
class is not maximal and v ∈ VDP (N).

Using C(N), we can now decide if a network is weakly or
strongly tree-child in a single traversal, thanks to the following.

Proposition 11. Let N be a complete network, R its set of
root components, and W0 the set of nodes that form trivial
root components. For T ∈ R, let W1(T ) be the set of nodes u
in T adjacent to VDP (N) with degu(u) = 1 in N and without
a tree child in N . N is weakly (resp. strongly) tree-child if and
only if every non-leaf node in VDP (N)∪W0 has a tree child
in N ; and for every T ∈ R, |W1(T )| ≤ 1 (resp. W1(T ) = ∅).

If N is a DAG, then VDP (N) ∪ W0 is the full node set
and we simply recover the tree-child definition. Recall that
children are defined using directed edges only. For example,
take N in Fig. 1. In C(N) the edges incident to b and c1 are
directed; ei remains undirected and forms a root component
Ti (i = 1, 2). W1(T1) = ∅ but W1(T2) = {u}, because u is
incident to exactly 1 undirected edge and 2 outgoing hybrid
edges. By Proposition 11, N is weakly tree-child. Indeed, its
partners rooted at u are tree-child (e.g. Fig. 1 bottom left) but
its partners rooted at v are not (e.g. bottom right). The proof
below shows that, more generally, a weakly tree-child network
has at most one ‘problematic’ node in each root component,
and this node must serve as root for a rooted partner to be
tree-child.

Proof of Proposition 11. We first characterize which rooted
partners are tree-child. Suppose that N is complete, and that
every non-leaf node in VDP (N) ∪W0 has a tree child in N .
For a root choice function ρ, we claim that the rooted partner
N+

ρ is tree-child if and only if W1(T ) ⊆ {ρ(T )} for every
T ∈ R. To prove this claim, consider a node u in N . If u
is in VDP (N) ∪ W0 then u has the same children in N as
in any rooted partner, so its tree child in N is also its tree
child in N+

ρ . Otherwise, u is in some T ∈ R, T is non-trivial
and degu(u) ≥ 1. If degu(u) ≥ 2, then at least one of its
neighbors in T is its tree child in N+

ρ . If degu(u) = 1 and
is not adjacent to VDP (N), then dego(u) = 0 and u is a leaf
in N+

ρ or its unique neighbor is its tree child in N+
ρ . If u

has a tree child w in N , then w is also its tree child in N+
ρ .

Otherwise, u ∈W1(T ). Let v be its unique neighbor in T . If

ρ(T ) ̸= u then v is the parent of u in N+
ρ , u has the same

children in N+
ρ as in N , so u has no tree child in N+

ρ (by
definition of W1(T )). If ρ(T ) = u then v is a child of u in
N+

ρ , and since v is a tree node (because v ∈ T ) u has a tree
child in N+

ρ . Overall, we get that N+
ρ is tree-child if and only

if any node in any W1(T ) is a root, which proves the claim.
For the first direction of Proposition 11, suppose that N

is complete and weakly tree-child. If u is a non-leaf node in
VDP (N) ∪W0, then u has the same children in N as in any
rooted partner, so u has a tree child in N . Also, we can apply
our claim. Since N+

ρ is tree-child for some ρ, by our claim
we get W1(T ) ⊆ {ρ(T )} which implies that |W1(T )| ≤ 1 for
each T ∈ R. Suppose further that N is strongly tree-child.
If W1(T ) ̸= ∅ for some T ∈ R then T is nontrivial, we can
choose ρ(T ) = v /∈W1(T ) for which N+

ρ is not tree-child, a
contradiction. This proves the first direction.

For the second direction, assume that every non-leaf node
in VDP (N)∪W0 has a tree child in N and |W1(T )| ≤ 1 (resp.
W1(T ) = ∅) for every T ∈ R. Then N admits at least one
tree-child rooted partner (setting ρ such that {ρ(T )} = W1(T )
for any T with W1(T ) ̸= ∅) and N is weakly tree-child.
Further, if W1(T ) = ∅ for all T , then N+

ρ is tree-child for
any root choice function ρ, and N is strongly tree-child.

Finally, we give a characterization of unambiguous leaves
that leads to a fast algorithm.

Lemma 12. In a network N , v is an ambiguous leaf if and
only if v ∈ VR(N), degu(v) = 1, and dego(v) = degi(v) = 0.

Proof. Let v be an ambiguous leaf. Then dego(v) = 0.
By Proposition 7, v is in VR(N) so degi(v) = 0. Finally,
if degu(v) = 0, then v is isolated, and a rooted leaf. If
degu(v) ≥ 2, then in any rooted partner one of the incident
edges is directed away from v, and v is never a leaf. Therefore
degu(v) = 1.

Conversely, let v ∈ VR(N) be incident to exactly one edge,
uv. By Proposition 8, we can find a rooted partner where v is
a non-leaf root as well as a rooted partner where u is a root
and v is a leaf. Hence v is an ambiguous leaf.

Remark 2. We argue that requiring VUL(N) = VRL(N) for N
to be an L-network is reasonable in practice. By Lemma 12, an
ambiguous leaf x is in a root component and incident to only
one undirected edge. The ambiguity is whether x becomes
a leaf or a root in a rooted partner. In practice, one knows
which nodes are supposed to be leaves, with a label and data
[10, 26]. Then one can, for each root component, either direct
all incident edges to ambiguous leaves towards them, making
them rooted leaves (as in Fig. 2, compare N1 and N3), or
pick one ambiguous leaf to serve as root for that component
(as in N2, Fig. 2) and direct edges accordingly, turning the
remaining ambiguous leaves into rooted leaves. This yields a
network with VUL = VRL. By Proposition 5, this can be done
in O(|E|) where |E| is the number of edges.

IV. VECTORS AND REPRESENTATIONS

Formally a multiset is a tuple (A,m), where A is a set
and m: A→ Z+ gives the multiplicity. To simplify notation,
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we use *+ to denote a multiset by enumerating each element
as many times as its multiplicity. For example, A = *a, a, b+
contains a with multiplicity 2 and b with multiplicity 1. For
brevity, we identify a multiset (A,m) with the set A if m ≡
1, e.g. *a, b, c+ = {a, b, c}. We adopt the standard notion of
sum and difference for multisets. The symmetric difference
between multisets is defined as A△B = (A−B) + (B −A).

In what follows, we consider a vector of distinct labels L,
whose order is arbitrary but fixed, as it will determine the
order of coordinates in all µ vectors and representations. For
an L-DAG G and for node v ∈ V (G), the µ-vector of v is
defined as the tuple µ(v,G) = (µ1(v), . . . , µn(v)) where n is
the number of labels in L and µi(v) is the number of paths
in G from v to the leaf with the ith label in L. As in [6], the
partial order ≥ between µ-vectors is the coordinatewise order.
Namely, for m = (m1, . . . ,mn) and m′ = (m′

1, . . . ,m
′
n),

m ≥ m′ if mi ≥ m′
i for all i = 1, . . . , n. If m ̸≤ m′

and m ̸≥ m′ then m and m′ are incomparable. The node-
based µ-representation of G from [6], denoted as µV (G), is
defined as the multiset *µ(v,G) : v ∈ V (G)+. Algorithm 1 in
[6] computes µV (G) recursively in post-order thanks to the
following property, which is a slight extension of Lemma 4 in
[6] allowing for parallel edges by summing over child edges
instead of child nodes.

Lemma 13. Let G be a DAG and u a node in G. Then

µ(u,G) =
∑

v∈child(u,G)

∑
(u,v)∈E(G)

µ(v,G) .

We will make frequent use of the following result, whose
original proof easily extends to DAGs with parallel edges
thanks to Lemma 13. It is an extension of Lemma 5 of [6]
stating the assumption used in the proof by [6], which is
weaker than requiring a tree-child DAG.

Lemma 14. Let G be an L-DAG and u, v two nodes in G.
1) If there exists a path u⇝ v, then µ(u,G) ≥ µ(v,G).
2) If µ(u,G) > µ(v,G) and if v has a tree descendant leaf,

then there exists a path u⇝ v.
3) If µ(u,G) = µ(v,G), v has a tree descendant leaf and

u ̸= v, then u, v are connected by an elementary path.

Other results in [6] similarly hold when parallel edges are
allowed, such as their Theorem 1 on tree-child networks
(which must be non-binary if they have parallel edges).

The rest of the section is organized as follows. In part IV-A
we define the edge-based µ-representation for L-networks,
with Algorithm 1 to compute it. Part IV-B presents properties
of this µ-representation for tree-child networks, and part IV-C
describes how to reconstruct a complete tree-child L-network
from its edge-based µ-representation. The networks in Fig. 3
are used as examples throughout.

A. Edge-based µ-representation

We first extend the notion of µ-vectors to nodes in the
directed part of an L-network.
Definition 10 (µ-vector of a node in the directed part).
Let N be an L-network and G any rooted partner of N . For
v ∈ VDP (N), we define µ(v,N) = µ(v,G).

Fig. 3. Tree-child L-networks on L = (a1, a2, b, c, d, h1, h2, h3) with one
root component. Directed edges are shown with arrows. Black: tree edges in
the directed part, leading to A1 in Algorithm 1. Blue: hybrid edges, leading
to A2 in Algorithm 1. Brown: edges in the root component (ER), leading to
A4 in Algorithm 1. For i ≤ 5, edge ei in N (left) and e′i in N ′ (right) share
the same µ-vector set. The multisets µE(N) and µE(N ′) have 17 elements
in common: 8 corresponding to edges incident to leaves, 5 from edges ei and
e′i for i ≤ 5, 3 from hybrid edges, and 1 root µ-vector set. µE(N) has 2
unique elements (from e6 and e7) and µE(N ′) has 3, so dµE (N,N ′) = 5.
See the Appendix for details.

This is well-defined thanks to the next proposition.

Proposition 15. Let N be an L-network, and v ∈ VDP (N).
Then the set of directed paths starting at v, and consequently
µ(v,G), are the same for any rooted partner G of N .

Proof. Let G be a rooted partner of N . Let u1 . . . un (n ≥ 1),
where u1 = v, be a directed path starting at v in G. We
claim ui, i = 1, . . . , n are all in VDP (N): Otherwise, we can
find i such that ui ∈ VDP (N) and ui+1 ∈ VR(N). Since
(ui, ui+1) ∈ E(G), either uiui+1 or (ui, ui+1) is in E(N).
By Proposition 4, this implies either ui ∈ VR(N) or ui+1 ∈
VDP (N), a contradiction. Therefore any directed paths from v
in G lies entirely in G[VDP (N)]. The conclusion then follows
from Proposition 7.

In Fig. 3 for example, e5 is in the directed part of N .
Applying Lemma 13 recursively on h1, h2 and their parent v
in C(N), we get µ(v,N) = (0,0,0,0,0, 1,1,0) with leaf order
given by L = (a1, a2, b, c, d, h1, h2, h3). Then the hybrid node
of N (parent of e5) has µ-vector (0,0,0,0,0, 1,1,1).

Now we turn to root components. Here the µ-vector for a
node is not well-defined as it varies depending on the rooted
partner. It turns out that if locally we choose the direction of an
edge uv, say (u, v), then globally the set of directed paths from
v across all rooted partners are the same, and consequently the
µ-vector of v is fixed. To prove this, we first establish a lemma.

Lemma 16. Let N be a network with uv an edge in some
root component. Let N ′ be the semidirected graph obtained
from N by directing uv as (u, v). Then N ′ is a network
phylogenetically compatible with N .

Proof. Let G be a rooted partner of N where u is a root. Let
A = E(G) \ E(N) be the set of edges that are directed in
G but not in N . By phylogenetic compatibility, A consists of
tree edges only. A also contains (u, v).

Since from G we get back N ′ if we undirect all the
edges in A \ {(u, v)}, by Proposition 2, G is phylogenetically
compatible with N ′. Then EH(N ′) = EH(G) = EH(N) and
N ′ is phylogenetically compatible with N .
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Proposition 17. Let N be an L-network with uv ∈ ER(N).
Then the set of directed paths starting at v, and consequently
µ(v,G), are the same for any rooted partner G of N where
uv is directed as (u, v), and there always exists such a rooted
partner.

Proof. The existence of a rooted partner where uv is directed
as (u, v) follows from Proposition 8.

Let G1 and G2 be rooted partners of N such that uv is
directed as (u, v) in both. Let N ′ be the semidirected graph
obtained from N by directing uv as (u, v). By Lemma 16,
N ′ is a network phylogenetically compatible with N . Thus,
G1 and G2 are rooted partners of N ′. Since degi(v,N

′) ≥ 1,
v ∈ VDP (N

′) by Proposition 5. The conclusion then follows
from Proposition 15.

Using Proposition 17, we can define the following.
Definition 11 (directional µ-vector). Let N be an L-network,
uv ∈ ER(N), and G any rooted partner of N where uv is
directed as (u, v). We call µ(v,G) the directional µ-vector of
(u, v), and write it as µd(u, v,N), or µd(u, v) if N is clear
in the context.

In Fig. 3 for example, e1 = uv is in the root component of
N , with directional µ-vectors: µd(v, u,N) = (1,1,0,0,0, 0,0,0)
and µd(u, v,N) = (0,0,1,1,1, 3,3,3). In N ′, e′1 has these same
directional µ-vectors.

Next, we associate each root component (rather than a node
or edge) to a µ-vector.
Definition 12 (root µ-vector). Let N be an L-network and T
a root component of N . The root µ-vector of T is defined as
µ(ρ(T ), N+

ρ ) where ρ is any root choice function of N . We
write it as µr(T,N) or µr(T ) if N is clear from context.
This is well-defined thanks to the following result.

Lemma 18. Let N be an L-network, and T a root component
of N . Then the µ-vector µ(ρ(T ), N+

ρ ) is independent of the
root choice function ρ. Furthermore, if uv is an edge in T ,
this µ-vector is equal to µd(u, v) + µd(v, u).

Proof. The claims obviously hold when T is trivial. Now
consider T non-trivial and distinct nodes u ̸= v in T . Let Gu

(resp. Gv) be a rooted partner of N where u (resp. v) is a root.
To prove the first claim, we show that µ(u,Gu) = µ(v,Gv)
by constructing a bijection fu between Pu and Pv , where
Pz (z = u, v) is the set of directed paths from z to x
in Gz , for an arbitrary but fixed leaf x of N . Suppose
pu = u . . . w . . . x ∈ Pu, where w is the last node such that
u . . . w lies in T . We can modify pu to a new path pv by
changing the u . . . w subpath to v . . . w, the unique tree path
between v and w in T . By Lemma 6, the subpath w . . . x only
contain edges in EDP (N). Then by Proposition 7, pv ∈ Pv .
Obviously, fu is a bijection whose inverse is the map from
Pv to Pu constructed by symmetry, proving the first claim.

For the second claim, let uv be an edge in T and x, Gu,
Gv , Pu and Pv as before. Let Pv

u be the set of directed paths
from v to x in Gu, such that |Pv

u | is the coordinate value for
x in µd(u, v). Define Pu

v similarly. We can partition Pu =
A ⊔ B where paths in A contain v, and paths in B do not.
It is easily verified that B = Pu

v , and that prepending u to a

Fig. 4. Networks illustrating the need to include the µ-vector of trivial root
components in Definition 13, to distinguish networks with multiple roots. N
and N ′ are tree-child and non-isomorphic. They have the same multiset of
edge µ-vector sets, but different root µ-vectors so µE(N) ̸= µE(N ′).

path gives a bijection Pv
u → A. Since x is arbitrary, we get

µr(T ) = µd(u, v) + µd(v, u).

In Fig. 3 for example, N has one root component T
(in brown), with µr(T,N) = (1,1,1,1,1, 3,3,3). The root
component of N ′ has the same root µ-vector.

We are now ready to define the edge-based µ-representation
of an L-network, and an algorithm to compute it.

Definition 13 (edge-based µ-representation). Let N be a
complete L-network. To edge e of N we associate a set µ(e),
called the edge µ-vector set of the edge e, as follows:

• For e = (u, v), by Lemma 10 we have v ∈ VDP , and we
define µ(e) = {(µ(v,N), t)} using Definition 10, where
t is a tag taking value :t if e is a tree edge, and :h
otherwise.

• For e = uv ∈ ER, using Definition 11 we define µ(e) =
{(µd(u, v), :t), (µd(v, u), :t)}.

Let R be the set of root components of N , then the edge-
based µ-representation of N , denoted by µE(N), is defined
as the multiset

*µ(e) : e ∈ E(N) + + * {(µr(T ), :r)} : T ∈ R+

with µr from Definition 12 and :r a tag value indicating a
root µ-vector. For an L-network N ′, µE(N

′) is defined as
µE(C(N ′)).

In Fig. 3, µE(N) contains 19 µ-vector sets: 9 in A1, 3 in
A2, 6 in A3 and 1 in A4, using notations as in Algorithm 1
below. A1 contains the unidirectional µ-vector sets from the 8
edges incident to the leaves, such as {((0,0,0,0,0, 1,0,0), :t)}
for the edge to h1, and {((0,0,0,0,0, 1,1,0), :t)} from e5. A2

is from the hybrid edges: {((0,0,0,0,0, 1,1,1), :h)} with mul-
tiplicity 3. A3 has only 1 element: {((1,1,1,1,1, 3,3,3), :r)}.
Finally, A4 contains the bidirectional µ-vector sets from the 6
edges in the root component(s). For example, e1 contributes
{((1,1,0,0,0, 0,0,0), :t), ((0,0,1,1,1, 3,3,3), :t)} See the Ap-
pendix for the other 5.

Lemma 18 together with Proposition 5 yields the following
Algorithm 1 to compute the edge-based µ-representation of
an L-network N = (V,E) with n leaves. As discussed in
Remark 1, line 1 in Algorithm 1 takes a single traversal of N
and O(|E|) time. Computing the node-based µ-representation
by Algorithm 1 in [6] takesO(n|E|) time. The remaining steps
iterate over edges and take O(n|E|) time, giving an overall
complexity of O(n|E|).

Compared to the node-based representation µV , µE has
two features. Unsurprisingly, each undirected edge (whose
direction is not resolved by completion) is represented as
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Algorithm 1 Given L-network N , compute its edge-based µ-
representation A = µE(N)

1: compute a rooted partner G of N , and store:
• R the set of roots in G
• ρ: VR(N) → R the function that maps a node in a

root component T of N to the root of T in G
• E+

R the set of edges in G that corresponds to ER(N)
• E+

DP = E(G) \ E+
R

2: compute the node-based µ-representation of G,
let µ = µV (·, G)

3: A1 ← *{(µ(v), :t)} : (u, v) ∈ E+
DP ∩ ET (G)+

4: A2 ← *{(µ(v), :h)} : (u, v) ∈ E+
DP ∩ EH(G)+

5: A3 ← *{(µ(r), :r)} : r ∈ R+
6: A4 ← *{(µ(v), :t),

(
µ(ρ(v))− µ(v), :t

)
} : (u, v) ∈ E+

R+
7: return A = A1 +A2 +A3 +A4

bidirectional using two µ-vectors. This is similar to the rep-
resentation of edges in unrooted trees, as bipartitions of L.
The second feature is the inclusion of a µ-vector for each root
component, which may seem surprising. For a non-trivial root
component T , µr(T ) is redundant with information from µ(e)
for any e in T , by Lemma 18. The purpose of including the
root µ-vectors in µE(N) is to keep information from trivial
root components, for networks with multiple roots. Without
this information, µE cannot discriminate simple networks with
multiple roots when one or more root component is trivial, as
illustrated in Fig. 4.

Networks with a unique and non-trivial root component
correspond to standard phylogenetic rooted networks, with
uncertainty about the root location. For these networks, we
could use edge µ-vectors only: µE(N) = *µ(e) : e ∈ E(N)+,
that is, omit A3 in Algorithm 1. Indeed, the root µ-vector of
the unique root component T is redundant with µ(e) of any
edge e in T . For this class of standard networks, then, our
results below also hold using the simplified definition of µE .

B. Properties for tree-child networks

We will use the following results to reconstruct a tree-
child network from its edge-based µ-representation. First we
characterize when and how µ-vectors are comparable.

Proposition 19. Let T1 and T2 be distinct nontrivial root
components of a strongly tree-child L-network N . Then di-
rectional µ-vectors from T1 and from T2 are incomparable to
one another.

Proof. Let uu′ ∈ E(T1) and vv′ ∈ E(T2). Suppose for con-
tradiction that µd(u, u

′) ≥ µd(v, v
′). Let G be a rooted partner

of N in which u and v are roots. Then µd(u, u
′) = µ(u′, G)

and µd(v, v
′) = µ(v′, G). Since G is tree-child, there exists a

path u′ ⇝ v′ in G by Lemma 14 (possibly up to relabeling
if µd(u, u

′) = µd(v, v
′)) Since (v, v′) is a tree edge in G, by

Lemma 1 in [6], u′ ⇝ v′ contains or is contained in (v, v′).
Both cases imply that u′ ∈ {v, v′} (using that v is a root for
the first case), a contradiction.

Proposition 20. In a weakly tree-child L-network, different
root components have incomparable root µ-vectors.

Proof. Let T1 ̸= T2 be root components of a tree-child L-
network N . In a tree-child rooted partner of N , there is no
directed path between the roots of T1 and T2. Therefore, by
Lemmas 14 and 18, µr(T1) and µr(T2) are incomparable.

Lemma 21. Let N be a strongly tree-child L-network. Sup-
pose uv, st are two (not necessarily distinct) edges in root
component T of N such that the undirected tree path from u
to t in T contains v and s. Then:

1) µd(u, v) ≥ µd(s, t),
2) µd(v, u) is incomparable to µd(s, t),
3) µd(u, v) is incomparable to µd(t, s).

Proof. Let Gu (resp. Gv) be a rooted partner of N with
u (resp. v) as a root. For part 1, by Lemma 14, we have
µd(u, v) = µ(v,Gu) ≥ µ(t, Gu) = µd(s, t).

For part 2, by symmetry, it suffices to show that µd(v, u) ̸≤
µd(s, t). Let w1, . . . , wk be the neighbors of u besides v. Then
µ(wi, Gu) = µ(wi, Gv) by Proposition 15 if wi ∈ VDP (N),
or Proposition 17 if wi ∈ V (T ). Then by Lemma 13 we have
µd(v, u) = µ(u,Gv) =

∑k
i=1

∑
(u,wi)∈E(Gv)

µ(wi, Gv) =∑k
i=1

∑
(u,wi)∈E(Gv)

µ(wi, Gu).
First, suppose for contradiction that µd(v, u) < µd(s, t) =

µ(t, Gu). Then for each i, µ(t, Gu) > µ(wi, Gu), and since
Gu is tree-child there exists a path t ⇝ wi in Gu by
Lemma 14. As u is a root in Gu and not contained in these
paths, w1, . . . , wk are hybrid nodes. Then u does not have a
tree child in Gv , a contradiction.

Now suppose instead µd(v, u) = µd(s, t) = µ(t, Gu), then
µ(t, Gu) ≥ µ(wi, Gu) for all i. If µ(t, Gu) = µ(wi, Gu) for
some i, then wi = w1 is the only neighbor of u other than
v. By Lemma 14, t and w1 are connected by an elementary
path in Gu, which is impossible as both have u as a parent.
Therefore µ(t, Gu) > µ(wi, Gu) for all i, which leads to a
contradiction by the argument above.

Part 3 follows from part 2 using that µd(a, b) + µd(b, a) =
µr(T ) for any ab ∈ E(T ) by Lemma 18.

Next, we relate edges with identical directional µ-vectors.

Lemma 22. Let N be a strongly tree-child L-network, and
x a fixed µ-vector. If we direct all edges uv ∈ ER(N) with
µd(u, v) = x as (u, v), then these edges form a directed path.
If the path is nonempty, we denote the first node as h(x,N).

Proof. Let Ex = {uv ∈ ER(N) : µd(u, v) = x}. Take
uv and st in Ex. By Proposition 19, they are in the same
root component T , so there is an undirected path p in T
connecting uv and st. By applying Lemma 21 multiple times
and permuting labels if necessary, we may assume p is of
the form uv . . . st with µd(u, v) = µd(s, t) = x. For a
rooted partner G of N with u a root, we have µ(v,G) =
µ(t, G) = x, which implies by Lemma 14 there is an
elementary path in G from v to t. By Lemma 6, this path lies in
ER(N). But since ER(N) induces a forest, this elementary
path must be the v . . . st part of the path p. Therefore all
the intermediate nodes w in p have degu(w,N) = 2 and
degi(w,N) = dego(w,N) = 0. Furthermore, if w1 and
w2 are consecutive nodes in p, then w1w2 ∈ Ex because
x = µ(v,G) ≥ µ(w2, G) = µd(w1, w2) ≥ µ(t, G) = x.
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Therefore all edges in p are in Ex, and form a directed path
when directed as in the statement.

Now take an undirected path p0 of edges in Ex, of max-
imum length, and let e one of its edges. To show that p0
contains all the edges in Ex, take e′ ∈ Ex. By the previous
argument, e and e′ are connected by a tree path p1. Also by the
previous argument, all intermediate nodes in p0 and in p1 have
degu = 2. Since p1 cannot extend p0 by definition of p0, p1
must be contained in p0, therefore e′ is in p0 as claimed.

Finally, the next result was proved for orchard DAGs, which
include tree-child DAGs [8, Proposition 10]. We restrict its
statement to hybrid nodes here, because we allow networks to
have in and out degree-1 nodes.

Lemma 23. Let G be a tree-child L-DAG. Let u, v be distinct
hybrid nodes in G. Then µ(u,G) ̸= µ(v,G).

C. Reconstructing a complete tree-child network

To reconstruct a complete tree-child network N from its
edge-based µ-representation, Algorithm 2 will first construct
µV (G) for a rooted partner G from µE(N). Then Algorithm 3
will use µE(N) to undirect some edges in G and recover N .

Algorithm 2 Given A = µE(N) from a tree-child L-network
N , compute B = µV (G) for some rooted partner G of N
Input: multiset A
Output: multiset B

1: B1 ← *x : {(x, :t)} ∈ A+
2: B2 ← {x : {(x, :h)} ∈ A}
3: B3 ← {x : {(x, :r)} ∈ A}
4: B4 ← *+
5: for z in B3 do
6: M(z)← *x : {(x, :t), (z − x, :t)} ∈ A+
7: if M(z) is empty then skip to next iteration
8: r(z)← some arbitrary element of M(z)
9: for {(x1, :t), (x2, :t)} ∈ A with x1 + x2 = z do

10: B4 ← B4 + *y+ where y = xi if xi ≤ r(z) else
y = z − xi if xi > r(z) (i = 1 or 2)

11: B ← B1 +B2 +B3 +B4

12: return B

Continuing with N in Fig. 3 (left), A = µE(N) is
given in the Appendix. Algorithm 2 starts with B1 =
{(1,0,0,0,0, 0,0,0), . . . , (0,0,0,0,0, 0,0,1), (0,0,0,0,0, 1,1,0)}
for edges incident to leaves and e5 (in black in Fig. 3).
B2 = {(0,0,0,0,0, 1,1,1)}, for the unique µ-vector shared
by all 3 hybrid edges in N . B3 has a single element
z = (1,1,1,1,1, 3,3,3) because N has a single root
component, so the loop on line 5 has a single iteration
and all elements {(x1, :t), (x2, :t)} in A satisfy x1 + x2 = z
(from edges in brown in Fig. 3). On line 6, M(z) has
12 elements (see the Appendix). We can arbitrarily pick
r(z) = (0,0,0,1,1, 2,2,2) ∈ M(z), which corresponds to e7
directed rightward. Then B = µV (G) for the partner G of N
rooted at the node incident to e6 and e7 (see Fig. A7).

Proof of correctness for Algorithm 2. As N and C(N) have
the same rooted partners and µE(N) = µE(C(N)), we may
assume N to be complete.

Let ρ be a root choice function such that ρ(T ) =
h(r(µr(T )), N), where r is the function on line 8 and h
is defined in Lemma 22. By Lemma 18 and Proposition 20,
ρ(T ) ∈ V (T ) is well-defined. Let G = N+

ρ . We shall show
that Algorithm 2, with A = µE(N) as input, produces the
output B = µV (G).
Consider partitioning V (N) = V (G) into the following sets:

V1 = {v is a tree node in the directed part of N},
V2 = {v is a hybrid node},
V3 = {v is a root in G},
V4 = {v in a root component of N , but not a root in G}.

We will establish Bi = *µ(v,G) : v ∈ Vi+ for the multisets
Bi in the algorithm (i = 1, . . . , 4), to conclude the proof.

By Lemma 10, (u, v) 7→ v is a bijection between the
directed tree edges and V1. Then by Definition 13, B1 =
*µ(v,N) : (u, v) ∈ ET (N)+ = *µ(v,G) : v ∈ V1+, which
concludes case i = 1.

For i = 2, Lemma 23 implies that µ(u,G) ̸= µ(v,G)
for distinct u ̸= v in V2. Therefore *µ(v,G) : v ∈ V2+ =
{µ(v,G) : v ∈ V2}. By the definition of hybrid edges,
B2 = {x : {(x, :h)} ∈ A} = {µ(v,G) : (u, v) ∈ EH(N)} is
equal to {µ(v,G) : v ∈ V2}, which implies B2 = *µ(v,G) :
v ∈ V2+.

For i = 3, by Lemma 18 and Proposition 20, the µ-vectors
of the roots in G are the same as the root µ-vectors, and are
all distinct. Hence B3 = *µ(v,G) : v ∈ V3+.

For i = 4, let E+
R be the set of edges in G that corresponds

to ER(N). Consider the map V4 → E+
R that associates v

to its parent edge (u, v) in G. It is well-defined because
V4 excludes the roots of G, root components only contain
tree nodes (Proposition 5) and uv ∈ ER(N) by Lemma 10.
Furthermore, the map is a bijection. Therefore we have
*µ(v,G) : v ∈ V4+ = *µd(u, v) : (u, v) ∈ E+

R+.
B4 is constructed in Algorithm 2 by taking a µ-vector from

the pair µd(s, t) and µd(t, s), for each undirected edge st
in each root component. Let T be the root component that
contains st and let z = µr(T ) ∈ B3. Then µd(s, t) + µd(t, s)
equals z but no other root µ-vector by Proposition 20, so µ(st)
is considered at exactly one iteration of the loop on line 9.
Next we need to show that on line 10, exactly one µ-vector
gets chosen, and is y = µd(s, t) where (s, t) ∈ E+

R .
From Lemma 22, let u = h(r(z), N) be the root of T

in G and v such that r(z) = µd(u, v). Since u is a root
in G and (s, t) ∈ E(G), the tree path p in T from u to
t contains s. If p also contains v, then µd(s, t) ≤ µd(u, v)
and µd(t, s) ̸≤ µd(u, v) by Lemma 21, so line 10 defines
y = µd(s, t) as claimed. If p does not contain v, then the
tree path from v to t contains u and s, so by Lemma 21
µd(s, t) is incomparable to µd(u, v) and µd(t, s) ≥ µd(u, v).
Further, µd(t, s) > µd(u, v) by the choice u = h(r(z), N)
and Lemma 22. Therefore line 10 defines y = z − µd(t, s) =
µd(s, t), which concludes the proof.
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Fig. 5. Weakly tree-child (a, b, c)-networks for which Theorem 1 does
not hold. For each network, the rooted partner rooted at the degree-2 node
is tree-child. The other 2 rooted partners are not. N1 and N2 are not
phylogenetically isomorphic yet µE(N1) = µE(N2) = A1 + · · · + A4

with A1 = *{((1, 0, 0), :t)}, {((0, 1, 0), :t)}, {((0, 0, 1), :t)}+,
A2 = *{((0, 0, 1), :h)}, {((0, 0, 1), :h)}+, A3 = *{((1, 1, 2), :r)}+ and
A4 = *{((1, 0, 1), :t), ((0, 1, 1), :t)}, {((1, 1, 1), :t), ((0, 0, 1), :t)}+.

Algorithm 3 Given A = µE(N) from a tree-child L-network
N , and a rooted partner G of N , modify G to obtain C(N)

1: B ← µE(G)
2: F ← *x : {(x, :t)} ∈ B −A+
3: for x ∈ Unique(F ) do
4: m(x)← multiplicity of x in F
5: p(x) ← the directed path in G formed by {(u, v) ∈

E(G) : µV (v,G) = x}
6: undirect the first m(x) edges in p(x)
7: return G

Given µE(N) from N in Fig. 3 and G from Algorithm 2
(Fig. A7), F contains 6 µ-vectors (see the Appendix) so 6
edges in G are undirected to obtain N . One of them x =
(0,0,1,0,0, 0,0,0) has multiplicity 1 in F but corresponds to
an elementary path of 2 edges in G adjacent to b. On this path,
only e2 is undirected by Algorithm 3.

Proof of correctness of Algorithm 3. Note that line 5 uses
Lemma 14 to claim that p(x) is a directed path, and so line 6
can be applied.

Let E+
R denote the set of edges in G that corresponds to

edges in ER(N). It suffices to show that line 6 undirects all
edges in E+

R and no other. Obviously, line 2 defines F =
*µ(v,G) : (u, v) ∈ E+

R+. Suppose F consists of elements
x1, . . . , xk with multiplicities m1, . . . ,mk. We know that E+

R

exactly consists of mi edges whose children have µ-vector xi,
for i = 1, . . . , k. Thus we only need to show that for each xi,
the first mi edges in p(xi) are in E+

R . By Lemma 6, if an
edge e is not in E+

R , then all edges below it are also not in
E+

R . Therefore along the path p(xi), edges in E+
R must come

first before any edge not in E+
R , which finishes the proof.

The following theorem derives directly from Theorem 1
in [6] to reconstruct G from µV (G), and the application of
Algorithms 2 and 3.

Theorem 1. Let N1 and N2 be strongly tree-child L-networks.
Then µE(N1) = µE(N2) if and only if N1 and N2 are
phylogenetically isomorphic.

Theorem 1 does not generally hold for weakly tree-child
networks, as seen in a counter-example in Fig. 5.

V. THE EDGE-BASED µ-DISTANCE

Definition 14 (edge-based µ-distance). Let N1 and N2 be
L-networks. The edge-based µ-dissimilarity between N1 and

Fig. 6. Example rooted networks for which the node-based and edge-based µ
distances differ, on leaves (a, b, c, d): Left: N is tree-child, non-bicombining.
Right: N ′ is not tree-child, but bicombining. Both have 3 nodes (including
leaf c) with µ-vector (0,0,1,0), and dµV (N,N ′) = 0. N and N ′ both have
5 edges with µ-vector (0,0,1,0), of which 3 (resp. 4) are of hybrid type in
N (resp. N ′), and dµE (N,N ′) = 2.

N2 is defined as

dµE
(N1, N2) = |µE(N1)△µE(N2)| .

For example, dµE
(N,N ′) = 2 in Fig. 6. For the networks in

Fig. 3, dµE
(N,N ′) = 5 due to non-matching µ-vector sets for

edges e6 and e7 in N and the 3 unlabelled tree edges in N ′.
(see Fig. 3 and the Appendix for details).

We are now ready to state our main theorem, which justifies
why we may refer to dµE

as a distance.

Theorem 2. For a vector of leaf labels L, dµE
is a distance

on the class of (complete) strongly tree-child L-networks.

Proof. From the properties of the symmetric difference, dµE
is

a dissimilarity in the sense that is it symmetric, non-negative,
and satisfies the triangle inequality. It remains to show that dµE

satisfies the separation property. Let N1 and N2 be tree-child
L-networks. If dµE

(N1, N2) = 0 then µE(N1) = µE(N2) and
by Theorem 1, N1

∼= N2.

For unrooted trees, the µ-vector of each undirected edge
encodes the bipartition on L associated with the edge, hence
dµE

agrees with the Robinson-Foulds distance on unrooted
trees.

On rooted trees, dµE
agrees with dµV

. Indeed, if T is a
directed tree or forest on L, then each non-root node v has a
unique parent edge e with element {(µV (v), :t)} in µE(T );
and each root u forms to a trivial root component with element
µE(u) = {(µV (u), :r)} in µE(T ).

However, dµE
does not generally extend dµV

. For example,
consider the rooted networks in Fig. 6. They have the same
µV representation, hence dµV

(N,N ′) = 0. However, their µE

representations differ, due to edges with the same µ vector
(1 path to c only) but different tags (tree edge in N versus
hybrid edge in N ′). Hence dµE

can distinguish these networks:
dµE

(N,N ′) > 0.

We can compute dµE
using a variant of Algorithm 3 in [6].

Specifically, we first group the elements of µE(Ni) (i = 1, 2)
by their type: of the form {(x, :r)}, {(x, :t)}, {(x, :h)}, or
{(x, :t), (y, :t)}. Then it suffices to equip a total order and
apply Algorithm 3 in [6] to each group, then add the distances
obtained from the 4 groups. For the first 3 types we can simply
use the lexical order on the µ-vector x. For the last type, we
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may compare two elements by comparing the lexically smaller
µ-vector first and then the larger one, to obtain a total order
within the group.

As in [6], with µE(Ni) computed and sorted, the above
takes O(n|E|) time where |E| = max(E1, E2). Taking into
account computing and sorting µE(Ni), computing dµE

takes
O
(
|E|(n+ log |E|)

)
time.

This complexity can also be expressed in terms of the
number of leaves and root components, thanks to the following
straightforward generalization of Proposition 1 in [6], allowing
for multiple root components.

Proposition 24. Let N be a tree-child L-network with n leaves
and t root components. Then |VH | ≤ n− t.
A node v is called elementary if it is a tree node and either
dego(v) = deg(v) = 1, or dego(v) < deg(v) = 2. If N has
no elementary nodes then

|V | ≤ 2n− t+
∑
v∈VH

degi(v) ≤ (m+ 2)(n− t) + t

where m = max
v∈VH

{degi(v)}, and |E| ≤ (2m+ 1)(n− t).

Proof. Since N is an L-network, it has no ambiguous leaves,
and the elementary nodes in N are the tree nodes of out-degree
1 in any rooted partner. By considering a rooted partner, we
may assume that N is a DAG with t roots, and follow the proof
of Proposition 1 in [6]. Their arguments remain valid for the
bounds on |VH | and |V | when N has t ≥ 1 roots, and when the
removal of all but 1 parent hybrid edges at each hybrid node
gives a forest instead of a tree. To bound |E| we enumerate
the parent edges of each node: |E| ≤ (|VT | − t) +m|VH | =
|V | − t+ (m− 1)|VH | then use the previous bounds.

Therefore, as long as m and t are bounded and there are no
elementary nodes, for example in binary tree-child networks
with a single root component, then |E| = O(n). Consequently,
computing µE on one such network or computing dµE

on two
such networks takes O(n2) time.

VI. CONCLUSION AND EXTENSIONS

For rooted networks, the node-based representation µV ,
or equivalently the ancestral profile, is known to provide
a distance between networks beyond the class of tree-child
networks, such as the class of semibinary tree-sibling time-
consistent networks [7] and stack-free orchard binary networks
[5], a class that includes binary tree-child networks. Orchard
networks can be characterized as rooted trees with additional
“horizontal arcs” [17]. They were first defined as cherry-
picking networks: networks that can be reduced to a single
edge by iteratively reducing a cherry or a reticulated cherry
[18]. A cherry is a pair of leaves (x, y) with a common parent.
A reticulated cherry is a pair of leaves (x, y) such that the
parent u of y is a tree node and the parent v of x is a hybrid
node with e = (u, v) as a parent hybrid edge. Reducing the
pair C = (x, y) means removing taxon x if C is a cherry
or removing hybrid edge e if C is a reticulated cherry, and
subsequently suppressing u and v if they are of degree 2.
Cherries and reticulated cherries are both well-defined on the
class of semidirected networks considered here, because leaves

are well-defined (stable across rooted partners), each leaf is
incident to a single tree edge, and hybrid nodes / edges are
well-defined. A stack is a pair of hybrid nodes connected by
a hybrid edge, and a rooted network is stack-free if it has no
stack. As hybrid edges are well-defined on our general class
of networks, the concepts of stacks and stack-free networks
also generalize directly. Therefore, we conjecture that for
semidirected networks, our edge-based representation µE and
the associated dissimilarity dµE

also separate distinct networks
well beyond the tree-child class, possibly to stack-free orchard
semidirected networks.

To discriminate distinct orchard networks with possible
stacks, Cardona et al. [8] introduced an “extended” node-based
µ-representation of rooted phylogenetic networks. In this rep-
resentation, the µ-vector for each node v is extended by one
more coordinate, µ0(v), counting the number of paths from
v to a hybrid node (any hybrid node). On rooted networks,
adding this extension allows µV to distinguish between any
two orchard networks, even if they contain stacks (but assumed
binary, without parallel edges and without outdegree-1 tree
nodes in [8]). For semidirected networks, we conjecture that
the edge-based representation µE can also be extended in
the same way, and that this extension may provide a proper
distance on the space of semidirected orchard networks.

Phylogenetic networks are most often used as metric net-
works with edge lengths and inheritance probabilities. Dis-
similarities are needed to compare metric networks using both
their topologies and edge parameters. For trees, extensions of
the RF distance, which dµE

extends, are widely used. They
can be expressed using edge-based µ-vectors as

d(T1, T2) =
∑

m∈µE(T1)∪µE(T2)

|ℓ(m,T1)− ℓ(m,T2)|p (1)

where ℓ(m,Ti) is the length in tree Ti of the edge correspond-
ing to the µ-vector m, considered to be 0 if m is absent from
µE(Ti). The weighted RF distance uses p = 1 [27] and the
branch score distance uses p = 2 [21]. If all weights ℓ(m,T )
are 1 for m ∈ µE(T ), then (1) boils down to the RF distance
when restricted to trees (either rooted or unrooted), and to our
dµE

dissimilarity on semidirected phylogenetic networks more
generally. For networks with edge lengths, (1) could be used
to extend dµE

, where ℓ(µE(e), N) is defined as the length
of edge e in N as it is for trees. A root µ-vector could be
assigned weight ℓ(µr(T ), N) = 0, because in standard cases,
such as for networks with a single root component, the root
µ-vector(s) carry redundant information.

Alternatively, using inheritance probabilities could be useful
to capture the similarity between a network having a hybrid
edge with inheritance very close to 0 and a network lacking
this edge. To this end, we could modify µ-vectors. Recall
that [6] defined µ(v,N) = (µ1, . . . , µn) with µi equal to the
number mi of paths from v to taxon i in a directed network
N . We could generalize µi to be a function of these mi paths,
possibly reflecting inheritance probabilities. For example, we
could use the weight of a path p, defined as γ(p) =

∏
e∈p γ(e).

These weights sum to 1 over up-down paths between v and
i [33], although not over the mi directed paths from v to
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i. The weights of the mi paths could then be normalized
before calculating their entropy Hi = −

∑
p:v⇝i γ(p) log γ(p)

and then define µi = eHi . The original definition µi = mi

corresponds to giving all paths v ⇝ i equal weight 1/mi. This
extension carries over from directed to semidirected networks
because we proved here that the set of directed paths from
an edge e = (u, v) to i is independent of the root choice,
given a fixed admissible direction assigned to e, as shown in
Propositions 15 and 17. With this extension, µ-vectors are in
the continuous space Rn

≥0 instead of Zn
≥0. To use them in a

dissimilarity between networks N and N ′, we could use non-
trivial distance between µ-vectors (such as the L1 or L2 norm)
then get the score of an optimal matching between µ-vectors in
µE(N) and µE(N

′). Searching for an optimal matching would
increase the computational complexity of the dissimilarity, but
would remain polynomial using the Hungarian algorithm [20].

To reduce the dependence of dµE
on the number of taxa n

in the two networks, dµE
should be normalized by a factor

depending on n only. This is particularly useful to compare
networks with different leaf labels, by taking the dissimilarity
between the subnetworks on their shared leaves. Ideally, the
normalization factor is the diameter of the network space,
that is, the maximum distance dµE

(N,N ′) over all networks
N and N ′ in a subspace of interest. For the subspace of
unrooted trees on n leaves, this is 2(n− 3) [31]. Future work
could study the diameter of other semidirected network spaces,
such as level-1 or tree-child semidirected networks (which
have n − t or fewer hybrid nodes where t is the number of
root components, by Proposition 24) or orchard semidirected
networks (whose number of hybrids is unbounded).

To compare semidirected networks N1 on leaf set L1 and
N2 on leaf set L2 with a non-zero dissimilarity if L1 ̸= L2,
one idea is to consider the subnetworks Ñ1 and Ñ2 on
their common leaf set L = L1 ∩ L2 then use a penalized
dissimilarity:

dµE
(Ñ1, Ñ2) + λdSymm(L1,L2)

for some constant λ ≥ 0. This dissimilarity may not satisfy
the triangle inequality, which might be acceptable in some
contexts. For example, consider as input a set of semidirected
networks N1, . . . , Nn with Ni on leaf set Li, and consider the
full leaf set L = ∪ni Li. We may then seek an L-network N
that minimizes some criterion, such as

n∑
i=1

d(N,Ni) . (2)

When N is constrained to be an unrooted tree, input
networks Ni are unrooted trees and when d is the RF distance
using N pruned to Li, this is the well-studied RF supertree
problem [32]. When the input trees Ni are further restricted
to be on 4 taxa, (2) is the criterion used by ASTRAL [34].
The very wide use of ASTRAL and its high accuracy points
to the impact of distances that are fast to calculate, such as
our proposed dµE

.
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