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Abstract: Iris is one of the most widely used biometric modalities because of its uniqueness, high
matching performance, and inherently secure nature. Iris segmentation is an essential preliminary
step for iris-based biometric authentication. The authentication accuracy is directly connected with
the iris segmentation accuracy. In the last few years, deep-learning-based iris segmentation method-
ologies have increasingly been adopted because of their ability to handle challenging segmentation
tasks and their advantages over traditional segmentation techniques. However, the biggest challenge
to the biometric community is the scarcity of open-source resources for adoption for application
and reproducibility. This review provides a comprehensive examination of available open-source
iris segmentation resources, including datasets, algorithms, and tools. In the process, we designed
three U-Net and U-Net++ architecture-influenced segmentation algorithms as standard benchmarks,
trained them on a large composite dataset (>45K samples), and created 1K manually segmented
ground truth masks. Overall, eleven state-of-the-art algorithms were benchmarked against five
datasets encompassing multiple sensors, environmental conditions, demography, and illumination.
This assessment highlights the strengths, limitations, and practical implications of each method and
identifies gaps that future studies should address to improve segmentation accuracy and robustness.
To foster future research, all resources developed during this work would be made publicly available.
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1. Introduction

A traditional iris recognition system includes four basic steps: [1]—(1) iris image
acquisition, (2) segmentation, (3) normalization, and (4) feature extraction and matching.
Iris segmentation involves locating and isolating the iris from other regions of the eye,
including noise detection like occlusion from eyelashes, eyelids, or hair. Thus, it plays an
important role in the recognition system. When the iris segmentation fails, even the best
feature extraction method will be incapable of generating an iris code that corresponds to
the actual iris texture, increasing the chances of false rejection [2]. Iris image quality and
acquisition conditions generally affect the accuracy of this segmentation task. An iris image
captured in less-constrained environments may include noises, such as motion blur, eyelids
or eyelash occlusion, eyeglass occlusions, off-angle iris, specular reflections, etc., that make
iris segmentation more challenging.

Conventionally, iris images are captured under NIR illumination for biometric recogni-
tion. However, there is an interest in the community to develop iris recognition technologies
under visible illumination (VIS) [3,4]. Traditional NIR-based iris segmentation methods are
mostly based on Daugman’s integro-differential operator [5], Wildes’ canny operator, or
Hough transform [6]. These methods are suitable for cooperative or highly controlled iris
biometric setups such as close acquisition distance, stop-and-stare verification, image capture
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under near-infrared illumination, etc. Traditional methods are not suitable for noisy data and
data captured under a non-cooperative environment or less controlled environments such as
acquisition at a distance, on the move, and image capture under visible illumination [7].

With the rapid increase of biometric recognition applications, there is a demand to up-
date iris recognition technology, making it more noise-tolerant and user-friendly. Recently,
deep learning (DL)-based iris segmentation methods have been introduced in research stud-
ies to overcome the shortcomings of traditional approaches [1,2,7,8]. However, open-source
DL-based iris segmentation models are sparse and have limited reproducibility, limiting
usage by the community and continuity for further improvement. Furthermore, one cru-
cial requirement for developing efficient DL models is the availability of accurate ground
truth iris masks in large volumes, and the unavailability of that is a significant limitation.
Hofbauer et al. [9] made strides by publicly releasing two ground truth datasets, IRISSEG-
CC [10] and IRISSEG-EP [11]. Nonetheless, a notable drawback of these datasets is their
omission of eyelash annotations, which compromises the ability of models trained on them
to detect eyelash occlusions, adversely affecting the performance of iris recognition systems.

In the literature, several iris segmentation techniques have been proposed, with
reported success and limitations. However, some of the challenges, which are yet to be
addressed, are listed below:

e Datasets used for the development of algorithms are often proprietary and lack crucial
labels for features such as eyelashes, which are essential for accurate segmentation.

*  The scarcity of open-source codes hinders the reproducibility of these methods.

*  Algorithms are often evaluated on the same dataset they were trained on, limiting
cross-dataset performance analysis, which is crucial for generalization and robustness
in real-world applications.

This study attempts to identify the gaps in resources for iris segmentation and bench-
mark the open-source algorithms (both traditional and DL-based) against common datasets
for direct comparison. In the process, the performance of the algorithms is evaluated based
on several criteria:

*  Sensitivity: The algorithms are assessed for their sensitivity toward different sensors,
environments, and demographic variations. This involves a multi-dataset evaluation
to understand how well the algorithms can adapt to various conditions.

*  Generalization capability: The cross-dataset performance of the algorithms is exam-
ined to determine how well an algorithm can generalize its learning from one dataset
to another, which may have different characteristics.

*  Practicability: The practical aspects of the algorithms are also evaluated, including
the inference time, the number of parameters, and the size of the model. These factors
contribute to the feasibility of deploying the algorithm in real-world applications.

* Noise detection capability: The ability of the algorithms to detect and handle noise,
such as eyelash detection, is assessed. This capability is important for improving the
accuracy of the algorithms.

¢ INlumination: The performance of the algorithms under different lighting conditions,
such as Near-Infrared (NIR) and Visible Spectrum (VIS), is evaluated. This helps in
understanding the versatility and robustness of the algorithms in varying illumination
scenarios.

In addition to the thorough comparative analysis of the open-source iris segmentation
algorithms, we developed an end-to-end iris segmentation resource set with the motivation
to append to the fragmented existing public resources. The resource set consists of the fol-
lowing: 1. A composite iris dataset of 45k+ samples, gleaning publicly available datasets along
with corresponding iris masks generated using OSIRISv4.1 (Open Source Iris Recognition
Software) [12]; 2. A GUI-based iris segmentation toolkit to generate iris masks (ground truth);
3. A set of 1K challenging ground truths, including labels for eyelashes, hand-crafted using
the GUIL and 4. Three iris segmentation models influenced by U-Net architecture trained on the
composite dataset and fine-tuned on the handcrafted ground truth. The main contributions
of our study are as follows:
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*  Benchmarking of eleven iris segmentation methods against five datasets of different
compositions (illumination, sensor, noise level, demography), providing consistent
and fair comparisons that offer valuable insights into real-world performance.

* Development of a manual segmentation toolkit and preparation of 1k manually
segmented iris masks of challenging samples such as iris images with eyelashes,
eyeglasses, eyelid occlusion, and low usable iris area.

*  Development of three iris segmentation benchmarked models influenced by state-
of-art U-Net [13] and U-Net++ [14] architectures (average accuracy > 90%), have
generalized learning ability (cross-dataset accuracy > 90%), are efficient in detecting
eyelashes (average accuracy > 90%), and perform equally well on NIR and VIS datasets.

*  Open-source the resource set for the benefit of the research community, with the
exception of the composite dataset for licensing restrictions. However, the composite
dataset is reproducible—the datasets are publicly available, and OSIRIS is open-source.
The resource set is available at https:/ /github.com/RumanaSum/Iris-Segmentation
(accessed on 24 February 2024).

¢ A comprehensive evaluation that highlights the strengths and limitations of the mod-
els, establishing a standard foundation for future research in iris segmentation and
facilitating the development of highly accurate and robust benchmark models to serve
as reliable references for further advancements in the field.

The rest of the paper is organized as follows: Section 2 introduces the related work
on iris segmentation. Section 3 provides dataset preparations and implementation details
of the developed models. Section 4 presents the results and analyzes the performance
of the implemented methods. Section 5 discusses the limitations and road map for iris
segmentation. The glossary section provides the glossary of terms used in this paper.

2. State of the Art

Multiple DL-based iris segmentation models have been proposed in the recent past. Fol-
lowing an assessment of the relevant work, the limitations in the scope of iris segmentation,
such as availability of the models for reusability or reproducibility, availability of ground
truth data for re-training, and eyelash detection capability, are summarized in Table 1.

Table 1. The state-of-the-art iris segmentation algorithms.

Research Resource Availability

Code Training Mask Test Ground Truth  Eyelash Marking

Miron et al. [15]
Hou et al. [8]
Yang et al. [16]
Meng et al. [17]
Lozej et al. [18] v v

Zang et al. [19] v
Jalilian et al. [20] v
Lietal. [21] v v
Chen et al. [22] v
Wang et al. [7] v v v v
Wang et al. [16]
Wang et al. [23] v v v
Bezerra [1] v v v
Trokielewicz et al. [24] v v
Proposed work v v v v
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Bezerra et al. [1] proposed GAN and a FCN-based iris segmentation method and
evaluated them on NIR and VIS datasets. The source code or network weights of these
models are not open-source. The authors publicly shared manually annotated 1K images
from CASIA Thousand [25], 1K from CrEye-Iris [26], and 431 from MICHE-I [27] datasets.
Lozej et al. [18] trained a U-Net [13]-based model on 200 manually labeled ground truths
from the CASIA Interval dataset [25]. While the model weights are publicly available, the
ground truth remains proprietary. Wang et al. [7] proposed a multi-tasking U-Net seg-
mentation model that can generate iris masks, iris outer boundary, and pupil masks from
the raw iris image. For training this model, the authors employed publicly available iris
masks along with self-annotated pupil masks and iris outer boundary masks. The model
is evaluated on CASIA Distance [25], UBIRIS.v2NICE.I [28], and MICHE-I [27] datasets.
Their self-annotated ground truth masks and network weights are publicly available. Trok-
ielewicz et al. [24] fine-tuned a SegNet architecture with 1300 self-annotated postmortem
iris images obtained from the Warsaw-BioBase-Post-Mortem-Iris v1.0 [29] dataset. Their
annotated ground truths and source code were also released for further experimentation.
Chen et al. [22] independently trained a CNN-based model on the CASIA Interval [25]
and IIT Delhi Iris [30] datasets with self-annotated and publicly available ground truths
(obtained from the IRISSEG-EP dataset). The self-annotated ground truths and the models
are not public. Hofbauer et al. [9] publicly shared two ground truth datasets—IRISSEG-
CC [10] and IRISSEG-EP [11]. One limitation of these datasets is that the eyelashes are not
marked. Thus, the models trained on these datasets would lack the capability to detect
eyelash occlusions, resulting in a negative impact on the performance of the subsequent iris
recognition system. The authors [22] cautioned of misleading higher segmentation accuracy
using the IRISSEG-EP [9] dataset as it excludes eyelash labels. A few other proposed iris
segmentation studies provide no information regarding the availability of self-annotated
ground truths, models, or network weight [8,15-17,19,20]. Huo et al. [8] proposed an
Attention Mechanism U-Net++, employing a pruning scheme to obtain four iris segmen-
tation networks. Wang et al. [16] developed a lightweight, FCN-based network. They
adopted multi-level feature-dense fusion modules, multi-supervised training of multiscale
images, and generative adversarial networks to improve the segmentation performance.
Meng et al. [17] combined Swin-T with CNNs and introduced a bilateral segmentation
backbone network. Zhang et al. [19] combined the dilated convolution with the U-Net
to extract more global features. Jalilian et al. [20] proposed three types of FCN-based
networks. Miron et al. [15] proposed a modified lightweight U-Net-based architecture.
Lian et al. [31] added an attention module to the U-net to increase the weight of the iris.
Despite the importance of eyelash labels on the training mask, only a few models in the
literature [1,7,18,23] were trained with eyelash labels. The models proposed in [2,19,20]
were trained on a public ground truth dataset [9], which does not have annotated eyelashes.
The source of ground truth for training other models [8,15-17] was not mentioned; eye-
lash annotations were also not found by our visual inspection. The availability of more
annotated iris masks with eyelash labels will strengthen the iris segmentation research.
The review of related works also indicates that a thorough comparative analysis of all
available iris segmentation methods is required on reference datasets to pinpoint their
effectiveness and limitations. This analysis promotes transparency, reproducibility, and
innovation, enabling the identification of gaps in current methodologies and guiding future
advancements in the field.

Addressing these gaps, we developed three new open-source models based on U-Net
and U-Net++ as benchmarks and created a manual segmentation toolkit along with a
manually annotated ground truth dataset that includes eyelash annotations. Additionally,
our study performed a comprehensive analysis of eight existing iris segmentation meth-
ods—comprising two traditional approaches (OSIRIS [12], USIT (University of Salzburg
Iris Toolkit) [32]) and six DL-based approaches ([1,7,18,23,24] selected based on the avail-
ability of their source code and the inclusion of eyelash annotations in their ground truths
(Table 1). This analysis was conducted using our benchmark models across multiple
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datasets to evaluate their effectiveness and limitations. Our approach not only addresses
current shortcomings in the literature but also establishes a new standard for advancing
iris segmentation studies.

3. Experiments

Eleven state-of-the-art iris segmentation methods are studied on five datasets for
evaluating generalizability, practicability, noise detection capability, and sensitivity towards
illumination. In the process, we developed three benchmark iris segmentation models
based on U-Net and U-Net++ architecture, prepared a large composite NIR iris dataset by
combining multiple public datasets, created a manual iris segmentation toolkit, developed
a manually annotated iris-mask ground truth dataset with eyelash annotations for fine-
tuning, and adapted eight other algorithms (two traditional and six DL-based) from recent
literature, chosen for their accessible source code and ground truth that includes eyelash
labels (Table 1). For the purpose of performance evaluation, we focused on studies where
the source code or detailed ground truth for iris masks with eyelash annotations was
available. Studies lacking in these respects were excluded from our re-evaluation process.
The implementation details of all the methods are discussed in this section.

3.1. Iris Segmentation Toolkit Development

In systems reliant on machine learning, the quality of the input directly influences
the quality of the output. Specifically, in the context of iris recognition, the accuracy of
iris segmentation and the ability to detect noise are pivotal for the success of the entire
recognition process. Thus, for a DL-based iris segmentation model, highly precise ground
truth is vital for training. This presents two significant challenges: the scarcity of publicly
available, large-scale, high-quality ground truth data, and among the datasets that are
available, a limited number include annotations for eyelashes. While OSIRIS, a traditional
open-source segmentation tool that employs an integro-differential operator, serves as a
resource for generating ground truth, the accuracy of its generated masks is often compro-
mised by challenges such as segmentation errors in cases of low usable iris area, constricted
pupils, high illumination, and inaccuracies in eyelash and pupil boundary detection. Our
thorough review of existing literature revealed a lack of tools, either manual or automated,
dedicated to the generation of iris segmentation masks. Recognizing the critical need for
such a resource, we developed a segmentation and annotation toolkit specifically designed
for iris segmentation tasks. This toolkit utilizes a pair of ellipses to delineate the iris’s inner
and outer boundaries and allows for pixel-level manual annotation to accurately identify
eyelids, eyelashes, and other non-iris eye components. The user interface of the toolkit is
illustrated in Figure 1. Figure 2 shows an example of annotated ground truth. The toolkit,
its features, and the guidance for usage are available in our GitHub repository.

Identifying Boundaries Identifying Eyelids Identifying Eyelashes

Figure 1. User interface of the iris segmentation toolkit.
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Raw iris Ground truth

Figure 2. Example of annotated ground truth using the toolkit.

3.2. Dataset Preparation

We employ the following five datasets for our experiments. The statistics for each
dataset is presented in Table 2.

Table 2. Summary of all datasets used in this study.

Dataset Total Images Train Samples Test Samples Resolution Wavelength
Composite 45,683 41,283 4400 640 x 480 NIR
Composite 1006 616 330 640 x 480 NIR

Subset

C.ASIA 400 300 100 640 x 480 NIR

Distance

CASIA 1000 800 200 640x 480 NIR
Thousand

UBIRIS.v2NICE.I 915 479 428 400 x 300 VIS

MICHE-I 871 680 191 Various VIS

(A) Composite dataset: To address the lack of large annotated iris dataset for the
training, we prepared a composite NIR dataset by combining multiple publicly available
NIR datasets—CASIA Iris Lamp [25], CASIA Iris Twins [25], CASIA Iris Thousand [25],
and ITR Iris Clarkson [33] datasets. Because of the large volume of this dataset, man-
ual segmentation of all the samples would be a daunting task. Instead, Daugman-style
open-source OSIRIS [12] was used to generate masks. Segmentation errors by OSIRIS
were manually identified and removed. Additionally, VeriEye [34] matcher was used to
determine segmentation errors based on the match score (a subset of false accepts and
rejects); the errors were removed. The final composite dataset containing 45,683 samples
from 1852 subjects is summarized in Table 3. Additionally, we manually annotated 1K
samples (referred to as the composite subset dataset for the rest of the paper) using our
developed toolkit from the erroneous segmented samples. For visual analysis, we also
prepared a separate test set of 60 challenging samples, which OSIRIS failed to segment
accurately, leading to a false rejection.

Table 3. An overview of the composite dataset.

Dataset No of Subjects Unique ID No of Samples
CASIA Iris Thousand 1000 2000 19,338
CASIA Iris Twin 200 400 3082
CAGSIA Iris Lamp 410 820 16,081
ITR Clarkson 242 479 7182
Total 1852 3699 45,683

(B) UBIRIS.v2 NICE.I [28]: A subset of the UBIRIS.v2 dataset containing manually
labeled iris masks used in NICE.I competition [35] was made available by [7]. The subset
contains approximately 1K samples, captured on the move and at a distance with a Canon
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EOS 5D camera under visible illumination at a resolution of 400 x 300 pixels. We utilized
the same training and testing set as [7].

(C) MICHE-I [27]: MICHE-I was created from 92 subjects by three mobile devices—the
iPhone 5, Samsung Galaxy S4, and Samsung Galaxy Tab2—in uncontrolled conditions with
visible illumination. A subset of 871 samples from this dataset was compiled by [7] from
the original manual annotations by [1,36]. We utilized the training and testing set of [7].

(D) CASIA Iris Thousand [25]: We used this entire dataset with the OSIRIS-generated
masks to prepare the composite dataset. For our experiment, we also used a subset of 1K
samples with manual ground truths shared by [1]. We separately trained all models on
these 1K ground truths. Following [1], we utilized 80% for training and 20% for testing.

(E) CASIA Distance [25]: CASIA Distance contains 2567 images from 142 subjects
captured from a three-meter distance with a CASIA long-range iris camera under NIR
illumination. A subset of 400 manually annotated iris masks of resolution 640 x 480 pixels
from the first 40 subjects was publicly shared by Liu [37]. Like Wang et al. [7], we
used the subset from [37], consisting of 400 iris images with manually labeled iris masks.
Following [7], the first 300 images were used for our training, and the last 100 were used
for testing.

3.3. Iris Segmenter Design

U-Net Architecture: Our proposed benchmark model, illustrated in Figure 3, is based
on a U-Net [13] architecture. The encoder path of this architecture consists of a repeated
implementation of two 3 x 3 convolutional layers and a ReLU activation layer with a
2 x 2 max pooling operation with stride 2 for down-sampling. Thus, each down-sampling
step doubles the number of feature channels and decreases the image resolution by half.
Each step in the decoder path of the architecture consists of a 2 X 2 up-convolution, a
concatenation with cropped feature map from the encoder path, and two 3 x 3 convolutions,
followed by a ReLU activation layer. Thus, each up-sampling step (opposite to down-
sampling) doubles the image resolution and decreases the number of feature channels by
half. The concatenation ensures the propagation of all information from the encoder to the
decoder and no loss of information while down-sampling. The final layer of the network is
al x 1 convolutional layer that combines the preceding layer’s output and produces the
segmentation maps.
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Figure 3. Architecture of the proposed U-Net benchmark model.

U-Net++ Architecture: Figure 4 shows our second benchmark model based on the
U-Net++ architecture [14]. Similar to U-Net architecture, the encoder consists of two
repeated 3 x 3 convolution layers, each followed by a ReLU activation layer and a 2 x 2
max-pooling for down-sampling. Unlike the U-Net model, the encoder and decoder are
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connected through a series of nested dense convolutional blocks, which bridge the semantic
gap between the feature maps of the encoder and decoder prior to fusion. Each block in
the decoder combines the multiscale feature maps passed horizontally from its preceding
blocks (with the same image resolutions) as well as the multiscale feature maps passed
vertically (different image resolutions); details are in [14]. Each step in the decoder path
also consists of a 2 x 2 up-convolution, concatenation of the preceding multiscale feature
map, and two 3 x 3 convolutions, each followed by a ReLU activation layer. Finally, the
output of the last decoder passes through a 1 x 1 convolution with sigmoid activation and
produces the segmentation mask.

output

Input

2562+ 1 7 i
= - o
\“““/ ~/
S T

1282+ 12&\ /

‘ X o ‘ -------- ‘ X i ‘ . down sampling
322+ 512 /" up sampling
1671024 . skip connection
x I convolution

Figure 4. Architecture of the proposed U-Net++ benchmark model.

3.4. Implementation Details

U-Net and U-Net++ (ours): Our proposed benchmark models, illustrated in Figures 3
and 4, are based on U-Net [13] and U-Net++ architecture [14], respectively. We implemented
the models in Python using Keras API with TensorFlow as its backend. The training dataset
was augmented with rotation, zoom, width, and height shifts to improve the model’s
generalization capability. The models are trained with the image resolution of 256 x 256,
batch size of 8, Adam optimizer with a learning rate of 10—, binary crossentropy loss, and
early stopping.

The training procedure was divided into two distinct phases. Initially, the base models,
either U-Net or U-Net++, were trained on our composite dataset, which included 45.6k
samples (with 90% allocated for training and 10% for validation) using masks generated by
the OSIRIS software. This initial phase aimed to establish a robust foundational model. In
the subsequent phase, these pre-trained models were fine-tuned on various other datasets
to evaluate their adaptability and performance across different imaging conditions and
challenges. This included fine-tuning on datasets such as the composite subset (with 1K
manually annotated masks), CASIA.v4-Distance [25], CASIA Iris Thousand [25], UBIRIS.v2
NICE.I [28], and MICHE-I [27] datasets, each selected for their unique attributes related to
demography, NIR and VIS imaging, sensor types, collection methodologies, and environ-
mental contexts.

The rationale behind this two-step training approach was to first leverage the large
volume of data in the composite dataset for foundational training, despite the potential
limitations of OSIRIS-generated masks in accurately capturing challenging aspects like
eyelashes, eyelids, and eyeglasses, or areas of smaller usable size. The initial training
phase potentially limited the models’ performance on such challenging samples. Therefore,
fine-tuning the models on manually annotated masks was intended to specifically improve
their ability to accurately identify and handle these intricate scenarios, thereby enhancing
their overall performance and applicability across a broader range of real-world conditions.
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U-Net with weight map (ours): In addition to the implementation procedure followed
in the U-Net and U-Net++, the U-Net base model was finetuned with the weight-mapped
ground truth to increase the weight of the eyelash pixels and draw increased attention to
the network to learn eyelash detection, following [13] and weighted binary cross-entropy
loss, computed as weight map x binary crossentropy loss.

Lozej et al. [18]: The authors developed a U-Net-based segmentation method, exper-
imented with different hyperparameter settings, and trained the model on 200 samples
(160 samples for training and 40 for testing) from CASIA Iris Interval [25]. The best model
weight was made publicly available without the source code. We re-implemented the
method following [18]. We used their original pre-trained model as the base model and
fine-tuned all the layers independently on five datasets (mentioned above). The authors
trained their model for ten epochs. Similarly, Like [18], we trained the model for ten epochs.
Additionally, we conducted a separate training using early stopping for a fair comparison.

Trokielewicz et al. [24]: The authors developed a postmortem segmentation model
based on the SegNet architecture. SegNet consists of an encoder (a pre-trained VGG-16
network excluding the classification layer) and a corresponding decoder, followed by a clas-
sification layer. The author initialized the training with pre-trained ImageNet weight [38]
and retrained on 1300 manually annotated postmortem iris images obtained from the
Warsaw-BioBase-Post-Mortem-Iris v1.0 [29] dataset. The source code is publicly available.
We reproduced this method as the authors suggested and fine-tuned it independently on
five different datasets (mentioned earlier), initializing with ImageNet weight.

Bezerra et al. [1]: The authors proposed two iris segmentation methods based on
GAN and FCN. Due to the unavailability of source code, limiting reproducibility, we only
report the results presented in the paper. However, the authors made their manually
annotated ground truths publicly available. We used their manual ground truths for CASIA
Iris Thousand [25] and Miche-I [27] datasets to fine-tune other methods implemented in
this study.

Wang et al. [7]: The authors proposed a multitask U-Net iris segmentation model,
which required an iris mask, pupil mask, and iris outer boundary as the input. The source
code is publicly available, including manually annotated pupil masks and outer boundary
masks for CASIA Distance [25], UBIRIS.v2 NICE.I [28], and MICHE-I [27] datasets. We did
not implement their method in this study as the manual annotation of the pupil mask and
iris outer boundary mask for our other test datasets would require additional resources. We
reported their performance. We employed their datasets for other implemented methods.

Wang et al. [23]: Refs. [7,23] used the same network with a minimum modification.
They also used the same two datasets. Hence, we only reported their accuracy.

The OSIRISv4.1 [12]: This open-source Dougman-style software comprises four key
modules: segmentation, normalization, feature extraction, and matching. We compared the
segmentation module with other implementations.

USIT [32]: The toolkit includes several traditional iris preprocessing, feature extrac-
tion, and feature comparison techniques. We used the Wahet (Weighted Adaptive Hough
and Ellipsopolar Transform [39]) segmentation method to compare it with other imple-
mented methods.

4. Results
4.1. Evaluation Metrics

The following metrics are used to evaluate the segmentation methods.

mloU: Mean Intersection Over Union (mloU) is a standard evaluation metric for
semantic segmentation. IoU indicates the proportion of intersection and union of the
ground truth and predicted segmentation. The mloU is calculated as the mean value of the
IoU of all iris images. The mloU is defined as follows:

True Positive;
True Positive; + False Positive; + False Negative;

1 n
mlol = =) (1)
i
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F1 score: F1 score is the harmonic mean of the precision and recall. Precision is the
ratio of the number of correctly classified iris pixels to the number of all pixels that are
classified as iris pixels, including those not identified correctly. The recall is the ratio of the
number of correctly classified iris pixels to the number of all iris pixels that should have
been identified as the iris. F1 is calculated as follows:

1 score = 2 x True Positive 2
2 x True Positive + False Positive + False Negative

F1 and mloU scores are bounded between 0 and 1. A higher score represents better
segmentation accuracy. Both the F1 score and mloU are widely recognized and standard
metrics in the field of iris segmentation for evaluating model accuracy, providing a reliable
assessment of segmentation performance in biometric systems.

4.2. Performance Evaluation

We conducted a comprehensive quantitative and qualitative analysis of 11 state-
of-the-art segmentation models, including the three benchmark models we developed.
This thorough analysis involved intra-dataset performance assessments across five diverse
datasets, taking into account various factors such as demography, NIR and VIS illumination,
sensor types, collection setups, and environmental conditions. Furthermore, we assessed
the models’ ability to detect noise (eyelash detection), their cross-dataset performance, and
practical usability.

In addition to intra-dataset performance, we placed emphasis on cross-dataset eval-
uation to assess the generalization capability of the models. This is a crucial aspect for
biometric systems that need to operate effectively on unseen data in real-world applications.
Our benchmarking methodology also accounts for practicability by evaluating inference
time and computational efficiency, both of which are essential for real-time deployment in
biometric systems. These factors together ensure that the models not only excel in accuracy
but are also robust and practical for deployment.

(A) Intra-dataset performance evaluation: a detailed summary of intra-dataset perfor-
mance is provided in Table 4, with significant insights for each dataset detailed below:

Composite subset (NIR): Our benchmark model, U-Net, achieved the highest mIoU
score of 91.70% and the second-highest F1 score of 94.04%. Our U-Net++ model secured
the second-highest mloU of 91.41% and the highest F1 score of 94.20%. Lozej et al. (FT-10)
and Lozej et al. (FT-ES) posted mloU scores of 91.13% and 91.16%, with F1 scores of 93.62%
and 94.01%, respectively. Our U-Net with weight map model achieved 91.03% mloU and
93.80% F1 score. Trokielewicz et al. (FT), OSIRIS, and USIT performed with mloU scores
of 85.09%, 85.98%, and 87.30%, and F1 scores of 88.14%, 87.17%, and 87.10%, respectively.
This indicates that these models are less suited for this dataset compared with the other
DL-based models.

CASIA Thousand (NIR): Our U-Net++ models achieved the highest mloU score of
95.26% and the second-highest F1 score of 95.22%. Our U-Net model also demonstrated
comparable results. The models developed by Lozej et al. achieved mloU scores similar
to those of U-Net and U-Net++, albeit with a lower F1 score of 94.61%. The FCN and
GAN models by Bezerra showed robust performance, with F1 scores of 94.42% and 95.38%
(highest among all models), respectively, suggesting they are highly effective for this dataset.
The performance of Trokielewicz et al. (FT) and traditional methods such as OSIRIS v4.1
and USIT (Wahet) was comparatively degraded, with IoU scores of 82.98%, 88.51%, and
80.83%, and F1 scores of 89.52%, 87.78%, and 81.62%, respectively.

CASIA Distance (NIR): Our U-Net++ model achieved the highest IoU and F1 scores
of 94.72% and 94.51%, respectively. The U-Net model achieved a mloU of 94.48% and an F1
score of 93.58%. The models of Lozej et al. (FT-10) and Lozej et al. (FT-ES) secure mloU
scores of 92.80% and 93.56% and F1 scores of 92.20% and 93.04%, respectively. Models
developed by Wang [7] and Wang [23] both achieved F1 scores of 94.25% and 94.30%,
respectively. However, Wang’s [23] model achieved a lower mloU score (89.40%) compared
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with our models and Lozej’s models. The model from Trokielewicz et al. (FT) recorded an
IoU of 79.38% and an F1 score of 85.28%, highlighting its lesser effectiveness compared
with the other deep learning (DL) models. The traditional method, OSIRIS v4.1, achieved
an IoU of 83.38% and an F1 score of 82.87%, demonstrating that traditional approaches are
less effective for this dataset in comparison to DL-based models. USIT (Wahet) achieved a
mloU of 70.34% and an F1 score of 72.45%, indicating its unsuitability for this dataset and
further underscoring the superiority of DL-based methods for this dataset.

UBIRIS.v2 NICE.I (VIS): Our U-Net and U-Net++ models, along with Lozej’s models,
achieved F1 scores of 90.89%, 90.87%, and 90.66%, respectively. In terms of the IoU scores,
our U-Net++ and U-Net models recorded the highest (91.86%) and second highest (91.78%)
scores, respectively, while Lozej’s model achieved a mlIoU of 91.04%. Wang et al. reported
the highest F1 score of 91.78% for this dataset, indicating top performance among the
evaluated models. Additionally, Bezerra’s GAN demonstrated strong performance with
an F1 score of 91.42%. The performance of Bezerra’s FCN, with an F1 score of 88.20%,
and the Trokielewicz et al. (FT) models, with an F1 score of 85.28%, was less effective
in segmentation compared with other deep learning models for this dataset. Traditional
methods, such as OSIRIS v4.1 and USIT (Wahet), were found to be unsuitable for this
dataset, achieving mloU and F1 scores ranging from 20% to 43%, further underscoring the
inadequacy of traditional methods for this dataset.

MICHE-I (VIS): Our benchmark models U-Net and U-Net++ stood out with the
highest and second-highest mloU scores of 92.98% and 92.94%, respectively, complemented
by F1 scores of 92.27% and 92.82%. Lozej's model achieved a mIoU of 92.36% and a F1 score
of 91.83%. Trokielewicz’s model was less effective, achieving an IoU score of 84.21% and
an F1 score of 83.42%. Bezerra’s FCN and GAN models showed F1 scores of 83.03% and
87.20%, indicating they were less efficient than the U-Net variants. Traditional methods,
OSIRIS v4.1 and USIT (Wahet), showed comparatively degraded performance, with F1
scores of 32.48% and 26.03%, respectively, underscoring their unsuitability for this dataset.

In summary, the performance of all U-Net variant models, including those developed
by us, Lozej, and Wang, was comparable and consistent across both NIR and VIS datasets,
with minimal differences in accuracy observed. The FCN model demonstrated strong
performance on the CASIA Thousand dataset but was less effective on the UBIRIS.v2
NICE.I (VIS) and MICHE-I (VIS) datasets, indicating its reduced efficacy for VIS datasets.
Similarly, GAN-based models exhibited robust performance for the CASIA Thousand
and UBIRIS.v2 NICE.I (VIS) datasets but were less effective on the MICHE-I (VIS) dataset
compared with the U-Net variants. DL-based iris segmentation methods, with the exception
of the model developed by Trokielewicz et al. [24], consistently outperformed traditional
methods such as OSIRIS [12] and USIT [32] across all evaluated metrics for each dataset.
Trokielewicz et al. [24] surpassed traditional methods in all metrics on VIS datasets and
achieved higher F1 scores, albeit with a lower mloU score than OSIRIS, for NIR datasets.
Initially designed for postmortem data, the model by Trokielewicz et al. [24] notably
outperformed OSIRIS on postmortem datasets. However, our observations lead to the
conclusion that a model tailored for postmortem iris analysis can not be optimally fine-
tuned for live iris datasets, resulting in its under-performance compared with more recent
DL-based models and traditional iris segmentation methods on NIR datasets with live
subjects. These findings further underscore that traditional methods are not well-suited for
VIS datasets.

(B) Assessment of eyelash detection capability: To evaluate the models’ capability in
eyelash detection, we separated 160 samples with eyelash occlusions from the test set of the
composite subset dataset (refer to mloU EL in Table 4). mloU was used as an evaluation
metric. mloU refers to the score for the entire test set of 330 samples. Our three models
and Lozej’s model demonstrated strong (>90%) accuracy and comparable performance in
eyelash occlusion detection. Despite these high accuracy rates, a decline in performance
was noted for the models when dealing with samples containing eyelash occlusions, as
opposed to their performance on the complete general test set. Limited training iris masks
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with annotated eyelashes could be the reason for the lower scores. Adding more training
masks with annotated eyelashes may improve this performance.

Table 4. Performance evaluation of the state-of-the-art models on five benchmarking datasets.

Method Composite Subset (NIR) Casia Thousand (NIR)  Casia Distance (NIR)  UBIRISv2NICE.I (VIS) MICHE-I (VIS)
mloU F1 mloU  F1 (%) mloU F1 mloU F1 mloU F1 mloU F1
™ on @ B B ™ oen o ™M oen o ™ oen o ™ 0n
U-Net (our) 0.75 09170 94.03 0.9083 93.27 0.65 0.9508 95.07 0.3 0.9448 93.58 0.5 0.9178 90.89 0.5 0.9298 92.27
U_(I;TSSW 0.75 09103 93.80 0.9001  92.79 0.65 09465 9457 025 09344 9241 0.5 0.9057 8920 0.35 09170 90.67
UEONE:;-'— 0.75 0.9141 94.20 0.9064 93.85 0.60 0.9526  95.22 0.2 0.9472  94.51 0.45 0.9186 90.87 0.45 0.9294 92.82
L(OFZTe]l[S)S] 0.7 09113  93.62 0.9088 93.33 0.75 0.9488 94.61 0.40 0.9280 92.20 0.45 0.9048 89.77 0.4 09163  90.90
L(%ZTe-]E[;? 1 0.8 09116 94.01 0.9065  93.30 0.65 09506 9467 025 09356 93.04 045 09104 90.66 045 09236 91.83
Trc()é(T[)Z 4] n/a 08509 88.14 0.8520  88.38 n/a 08298 8952 n/a 07938 8528 n/a  0.8524 8528 n/a  0.8421 8342
Wang [7] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 94.25 n/a n/a 91.78 n/a n/a 93.05
Wang [23] n/a n/a n/a n/a n/a n/a n/a n/a n/a 89.40 94.30 n/a 84.79 91.33 n/a n/a n/a
Be(zlfgﬁ])“] n/a n/a n/a n/a n/a n/a n/a 9442 n/a n/a n/a n/a n/a 8820 n/a n/a 83.03
Be(éegr&)[l] n/a n/a n/a n/a n/a n/a n/a 95.38 n/a n/a n/a n/a n/a 91.42 n/a n/a 87.42
OSIRIS v 4.1 n/a 08598 87.17 0.8547 87.81 n/a 08851 8778 n/a 08338 8287 n/a 04327 2097 n/a 04911 3248
(‘/I\/Jaslgt) n/a 08730 87.10 0.8601 85.36 n/a 08083 8162 n/a 07034 7245 n/a 03448 2094 n/a 04058 26.03

Annotations: Th: Threshold, EL: sample with eyelash occlusion, U-Net-W: U-Net with weight map, Trok (FT):
Trokielewicz [24] (fine-tuned), FI-10: fine-tuned for 10 epoch, FT-ES: fine-tuned using early stopping. All methods
are trained or tuned independently on the five training datasets and then evaluated on the respective testing set
for fair comparisons. Bold values indicate the top two highest accuracy results for each metric across the different
segmentation models.

(O) Cross-dataset performance evaluation: Generalization capability is a cornerstone
of biometric recognition systems, ensuring that models can effectively adapt to and classify
new, unseen data. To assess the generalization capability of the implemented models, we
conducted cross-dataset testing. The models, fine-tuned on the composite subset dataset,
were tested on the CASIA Distance dataset without any further tuning. The CASIA Distance
dataset was not included in our composite or composite subset dataset. Its images were
captured from a three-meter distance under moving conditions with NIR illumination,
making it distinct from the other CASIA datasets and unseen by the models trained on the
composite or composite subset dataset. The cross-dataset performance is shown in Table 5.

Table 5. Cross-dataset performance (Test DB: CASIA Distance).

Method Train DB Th mloU F1 Score (%)
U-Net (ours) Composite 0.6 0.9231 91.43
U-Net++ (ours) Composite 0.75 0.9331 92.01
U-Net with weight Composite 0.75 0.9150 89.72
map (ours)
Lozej [18] (original) CASIA Interval 0.80 0.4347 6.67
Lozej [18] .
(fine-tuned) Composite 0.65 0.9080 89.72
Trokielewicz [24] Postmortem n/a 0.7398 79.28
(original)
Trokielewicz [24] Composite n/a 0.8137 87.91

(fine-tuned)

Note: Bold values highlight the best accuracy results across the models for each metric.
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Table 5 indicates that all of our proposed models exhibited strong generalization
capabilities and outperformed all the implemented methods. The U-Net model achieved
a mloU of 0.9231 and an F1 score of 91.43%, while the U-Net++ model showed a slight
improvement with a mIoU of 0.9331 and an F1 score of 92.01%. These results establish a
standard benchmark for generalization capability in iris segmentation models. Conversely,
the original model from Lozej et al. showed limited adaptability, with a mIoU of 0.4347
and an F1 score of 6.67% when applied to the CASIA Distance dataset. However, once fine-
tuned on our composite subset dataset, the same model’s performance was significantly
enhanced, reaching a mloU of 0.9080 and an F1 score of 89.72%. This demonstrates
that even models initially lacking in generalization can achieve benchmark standards
with the appropriate training dataset. Similarly, Trokielewicz et al.’s original model was
outperformed by our benchmark models when tested on the CASIA Distance dataset. It
performed with a mloU of 0.7398 and an F1 score of 79.28%. After fine-tuning, there was
a notable increase to a mloU of 0.8137 and an F1 score of 87.91%, though this was still
below the performance of our benchmark models. Overall, all the current open-source
DL segmentation models have limited generalization capability. These results underscore
the importance of comprehensive and diverse training in the development of models that
excel not only in familiar conditions but also maintain high accuracy when faced with new
and challenging datasets. Our benchmark models serve as a robust standard for the future
development of the field of iris segmentation, guiding researchers toward creating more
adaptive and reliable biometric recognition systems.

(D) Assessment of practicability: The practicability of the DL models is evaluated in
terms of the number of parameters, storage space, and inference time (the duration required
for a single prediction) of all models, as summarized in Table 6. These factors are critical for
the deployment of models in practical applications, where efficiency and minimal resource
consumption are often as important as accuracy. We measured the average inference time
on a desktop configured with an Intel Core i9-12900K CPU, evaluating .h5 models. Our
evaluation indicates the Wang et al. model requires the lowest storage space at 100 Mb,
while Lojez’s model requires 13 times more space at 13.8 GB. The Trokielewicz model
has the fastest inference time at 0.004 s with a storage space of 104 Mb. In contrast,
Lojez’s model requires the highest inference time of 0.294 s. Our U-Net and U-Net with
weighted map models have comparable storage space (360 MB) and inference time (0.02 s).
Our U-Net++ model requires a storage space of 414 Mb and an inference time of 0.269 s.
Overall, all models present significant computational and storage demands, making their
implementation on mobile devices challenging. Therefore, further optimization of these
models is required.

Table 6. An overview of deep learning models assessed in this study.

Research Architecture Iﬁg:;ﬂ:gﬁe Resource Availability DEg;:l;isgn Pallct)noefter Storage Space In f;::relz‘zg;ime
Code Ground Truth
U-Net (ours) U-Net 256 x 256 v v v 3146 M 360 MB 0.021s
U-Net++ (ours) U-Net++ 256 x 256 v v v 36.16 M 414 MB 0.269 s
U-Net-W (ours) U-Net 256 x 256 v v v 3146 M 360 MB 0.024 s
Lozej et al. [18] U-Net 320 x 320 v v 124.36 M 1.38 GB 0.294 s
Trokielewicz et al. [24] Seg-Net 160 x 120 v v 294M 104.65 MB 0.004s
Wang et al. [7] MUIS_IT\IaZfi“g n/a v v v 3128 M 119 MB n/a
Wang et al. [23] Mul[tj_"lll?zidng n/a v v n/a 100 MB n/a
Bezerra [1] FCN and GAN 512 x 512 v v n/a n/a n/a

(E) Visual evaluation: Figure 5 shows the segmentation results of the implemented
methods from different datasets. Generally, noise such as eyelashes, eyelid occlusion,
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specular reflections, uneven illumination, off-angle iris, and smaller-sized iris make the
segmentation task difficult. To evaluate all models’ performance on those edge cases,
we visually assessed all challenging iris images from all the datasets. The findings are
summarized here:

* DL methods showed improved noise masking capability compared with the traditional
methods (OSIRIS and USIT) for cases like eyelid and eyelash occlusions, high and
low illuminated samples, variable pupil dilation, smaller iris area, eyeglasses, and
off-angle iris.

* A few incorrect segmentations were observed for cases with eyeglasses, eyelash
occlusion, and off-angle iris samples. Limited training samples representing these
cases might be the cause of these errors. Hence, adding more annotated training
images with those cases may improve the segmentation performance.

¢ OSIRIS showed limited capability in eyeglass and eyelash detection.

¢ USIT could not detect eyelashes.

¢ Both OSIRIS and USIT performed poorly against off-angle iris.

Note: For visual comparison, we only compared OSIRIS and USIT’s performance
on the NIR dataset, as they were unsuitable for VIS datasets.

Raw Iris  Ground Truth  U-Net U-Net-W U-Net++ Lozej OSIRIS USIT

Figure 5. Examples of segmentation outputs from different models across various cases: (A) Iris

without occlusions, (B) Iris with eyeglass occlusion, (C) Iris with eyelash occlusion, (D) Off-angle
iris with eyeglass occlusion and specular reflection, (E) Eyelash occlusion with a dilated pupil,
(F) Eyeglass occlusion and specular reflection, (G) Smaller iris area.

5. Discussion and Conclusions

In this study, we conducted a comprehensive review and benchmarked eleven iris
segmentation models across five different datasets (including NIR and VIS) to evaluate their
effectiveness and limitations. In the process, we prepared an end-to-end iris segmentation
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resource set comprising a large training dataset (gleaned from multiple public sources),
developed an iris segmentation toolkit, and manually annotated 1k images to address the
unavailability of iris masks with eyelash labels. We developed three and adapted eight
algorithms for comparison (two traditional and six DL-based).

Though NIR is predominantly utilized for iris recognition, there is a persistent in-
terest [3,4] in the community to enhance VIS-based iris recognition for their widespread
adaptability and less stringent hardware requirements. To assess the viability of VIS-based
recognition, we incorporated two VIS-based datasets into our evaluation. Our evaluation
demonstrates that DL models can adapt to VIS-based datasets and achieve comparable
performance to NIR-based datasets upon fine-tuning, while traditional methods fail un-
der these conditions. These efforts in research are driven by the desire to broaden the
applications of VIS-based iris recognition, particularly for its potential to reduce hardware
complexities associated with NIR collection, thus facilitating integration into portable
devices like smartphones.

Our experimental findings demonstrate that Bezerra’s FCN models perform well
in the NIR dataset while showing less effectiveness in VIS datasets, especially in the
MICHE-I dataset. This discrepancy is likely due to the greater variability in visible light
images, which can include differences in lighting conditions, colors, and contrasts that
are not as prevalent in NIR images. This suggests the need for improved models or
training strategies that can better handle the diversity in VIS data. Similarly, the mixed
success of Bezerra’s GAN-based models across datasets underscores the requirement of
careful adjustment to their architecture or training protocols to enhance their performance
across a diverse range of real-world scenarios. Additionally, our analysis highlighted
the consistent performance of all U-Net architecture-based models (developed by us,
Lojez, and Wang) across both NIR and VIS datasets, demonstrating their flexibility under
varying imaging conditions. However, the observation of marginal accuracy improvements
among these DL models within specific datasets indicates a point of diminishing returns
in focusing solely on architectural advancements. This suggests that augmenting the
variety and representativeness of training datasets might offer more significant benefits,
encouraging models to better capture and respond to the complexities encountered in
practical applications.

The comparison with traditional approaches demonstrates that deep learning (DL)
models show improvement over traditional methods for challenging samples, such as
eyelid and eyelash occlusions, eyeglasses, high and low illuminated samples, variable
pupil dilation, smaller iris areas, and off-angle irises. However, there is still scope for im-
provement in eyelash detection, eyeglasses, and off-angle iris segmentation. The consistent
outperformance of DL models over traditional methods across all metrics and datasets
reaffirms the transformative impact of DL in biometric recognition. However, Trokielewicz
et al.’s [24] SegNet-based model, which is efficient in memory and inference time and de-
signed for postmortem iris segmentation, demonstrates the trade-off between specialization
and generalization. Its focus on postmortem data leads to reduced effectiveness on live
samples while finetuning on live iris datasets, with accuracy dropping by 6-15% in mloU
and 6-9% in F1 scores compared with other DL approaches (Table 4). This underscores the
importance of developing versatile models that maintain high performance across both live
and specialized scenarios, highlighting the need for a balance between model specialization
and general applicability in biometric recognition.

The proposed U-Net benchmark architecture is a balanced model showing comparable
or better performance with high cross-dataset performance (only outperformed by our
U-Net++) high eyelash detection capability (only surpassed by Lozej) with an inference
time of 0.02 s (bested only by Trokielewicz) and a storage space of 360 Mb. Lozej’s model
shows comparable performance to our proposed U-Net model in certain datasets, but it
falls short in generalization capability and is significantly less efficient, requiring 13 times
more storage and a 14 times higher inference time.
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Increasing the weight of the eyelashes to train the U-Net with the weight map model
did not improve the accuracy. The dense convolution blocks in the skip connection of U-
Net++ increased the computation and hardware cost of the network. It showed comparable
overall performance with the U-Net (refer Table 4). However, the impact is seen in our
generalizability assessment, where it outperforms all models by a considerable margin.

Wang et al. [7] performed an ablation study and showed multi-tasking U-Net (trained
on the iris mask, pupil mask, and iris outer boundary mask) performed better than their
U-Net (trained on only the iris mask). Adding an attention module with ASPP (Atrous
Spatial Pyramid Pooling) improved the model’s performance (0.23% on Miche-I and 0.89%
on UBIRIS) compared with our models. However, annotation of the pupil mask and iris
outer boundary mask needed more effort. Incorporating attention modules with ASPP
(Atrous Spatial Pyramid Pooling), as proposed by Wang et al. [7], into our framework
could potentially enhance our model’s accuracy by capturing multi-scale contextual infor-
mation and focusing on the most important features while suppressing irrelevant noise.
ASPP, integrated within the attention module, enables the model to process both local and
long-range spatial features. This may improve segmentation performance, particularly in
challenging cases involving occlusions from eyelashes, eyeglasses, or other distractions.
Additionally, the integration of ASPP within the attention mechanism could help address
the scale-sensitivity problem, potentially allowing the model to detect iris features across
varying scales, including images with different iris sizes and pupil dilation.

Our benchmark models, achieving high mIoU and F1 scores on the cross dataset
(Table 5), set a new standard in the field, offering a robust framework for evaluating the
generalization capabilities of future models. Current open-source models exhibit limited
generalization capabilities and lag behind our benchmarked standards even after finetuning
on our composite subset datasets (Table 5). This sets a challenge for the community to
advance model performance and develop more adaptable, reliable biometric systems.

DL models often require substantial computational and storage resources. It’s essential
to develop more efficient DL networks to ensure their practicality for widespread use.
Therefore, further optimization of existing benchmark models remains an important area
for future research. Additionally, future research should address gaps in eyelash detection
eyeglasses and off-angle iris segmentation, considering the trade-offs between model
complexity and data availability. This evaluation showcases the critical role of training
data diversity and model generalization, with models like Lozej et al. showing significant
improvement after fine-tuning with diverse data. This underscores the need for innovative
architectures and training datasets that are diverse and representative. A limitation of our
research is the relatively small size of the fine-tuning datasets, each containing around
1000 samples. This was primarily due to the scarcity of annotated iris images with eyelash
labels. Our open-source benchmark models, iris segmentation toolkit, and a manually
annotated dataset of 1K iris masks will support and encourage further research in this field.
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Glossary
Term
Iris segmentation

Deep Learning (DL)

U-Net/U-Net++

Cross-dataset performance analysis

Generalization capability

mloU (Mean Intersection Over Union)

F1 Score

NIR (Near-Infrared)

VIS (Visible Spectrum)

Benchmarking

Eyeglash occlusion

Practicability

Inference time

Ground truth

OSIRIS

USIT

Definition

The process of isolating the iris from the rest of the eye in
an image, including separating it from other structures
like the eyelid, eyelashes, and surrounding areas.

A subset of machine learning involving neural networks
with multiple layers, used for tasks such as image
segmentation and classification.

Specific deep learning architectures designed for image
segmentation tasks. U-Net++ enhances U-Net by adding
nested convolutional blocks to improve feature
representation.

Evaluating a model’s ability to perform well on datasets
that were not used during its training phase, important
for testing model generalization.

The ability of a model to apply what it has learned from
one dataset to new, unseen data from different datasets.
A metric used to evaluate the accuracy of segmentation
models by comparing the overlap between predicted and
ground truth areas.

A measure of a model’s accuracy that considers both
precision and recall, especially in binary classification
tasks like pixel-wise segmentation.

A part of the light spectrum used in iris imaging, typically
in the wavelength range of 700 to 900 nanometers (nm),
for capturing iris patterns under controlled lighting
conditions.

The portion of the electromagnetic spectrum visible to the
human eye, ranging from 380 to 720 nanometers (nm).
While the use of VIS for iris recognition is still an area of
ongoing research, it holds potential to reduce hardware
complexities associated with NIR collection, making it
easier to integrate iris recognition into portable devices
such as smartphones.

The process of comparing different models or algorithms
using specific metrics across common datasets to evaluate
their performance.

A condition where parts of the iris image are blocked by
eyeglashes, making segmentation more difficult.

A measure of how feasible it is to implement a model in
real-world applications, considering factors like inference
time and computational requirements.

The time a model takes to make a prediction, critical for
real-time applications.

Manually labeled data used as a standard or reference for
evaluating the performance of algorithms, such as
manually segmented iris masks.

An open-source iris recognition software that provides a
complete iris recognition pipeline, including segmentation,
feature extraction, and matching.

An iris recognition software that provides a complete
open-source framework for iris segmentation, feature
extraction, and matching, often used in biometric research
alongside OSIRIS.
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Composite dataset A dataset created by combining samples from multiple
publicly available datasets to form a larger, more diverse
set of images for training or evaluation.

Noise detection capability The ability of a segmentation algorithm to identify and
handle artifacts like reflections or occlusions that can
interfere with the accuracy of the iris segmentation process.

Specular reflection The bright spot or glare in an image caused by light
reflecting off curved surfaces, such as the eye or eyeglasses.
This reflection can obscure iris details and negatively
impact segmentation accuracy.

Dilation The process by which the pupil expands in response to
low light or other stimuli. Pupil dilation can alter the
visible area of the iris, potentially impacting
segmentation accuracy.
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