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Abstract

Face morphing attacks pose an increasing threat to face
recognition (FR) systems. A morphed photo contains bio-
metric information from two different subjects to take ad-
vantage of vulnerabilities in FRs. These systems are par-
ticularly susceptible to attacks when the morphs are sub-
jected to print-scanning to mask the artifacts generated dur-
ing the morphing process. We investigate the impact of
print-scanning on morphing attack detection through a se-
ries of evaluations on heterogeneous morphing attack sce-
narios. Our experiments show that we can increase the
Mated Morph Presentation Match Rate (MMPMR) by up
to 8.48%. Furthermore, when a Single-image Morphing At-
tack Detection (S-MAD) algorithm is not trained to detect
print-scanned morphs the Morphing Attack Classification
Error Rate (MACER) can increase by up to 96.12%, indi-
cating significant vulnerability.

1. Introduction
Face recognition (FR) systems have become one of the

most widely used biometric modalities, ranging from se-
curity to identification applications in government offices,
law enforcement, and visa management. These systems
are highly effective in preventing unauthorized access while
maintaining low false rejection and acceptance rates, plac-
ing them among the best methods to reduce security vulner-
abilities [1–3]. However, these systems still have suscep-
tibilities, notably in the presence of face-morphing attacks.
Face morphing attacks aim to exploit the intrinsic nature
of FR classifiers that map biometric templates to a singular
identity in a one-to-one map. To achieve this, an attacker
creates a single morphed face image incorporating the bio-
metric traits and facial landmarks of two different identities.
The morphed image can cause an FR system to incorrectly
register a false accept with both identities [3–7].

One notable concern is the use of morphed images
in e-passports and machine-readable travel documents
(MRTD) [8–10]. In cases where countries also utilize e-

Figure 1. Artifacts on Morphed Image after Print-Scanning. Cal-
culated and displayed by subtracting the digital image from the
print-scanned image

(a) Digitally Morph Im-
age

(b) Print-scanned Mor-
phed Image

(c) Print-scan Artifacts
Amplified

passports for not only renewal but also the issuance of doc-
uments, this vulnerability is only amplified [11]. A person
who is unauthorized or blacklisted may still be able to get
access to restricted systems, areas, or travel if a morphed
image is used in an e-passport or MRTD. A variety of mor-
phing attacks have been proposed from landmark-based at-
tacks [12], Generative Adversarial Network (GAN) based
attacks [13, 14], and diffusion-based attacks [11, 15, 16]
which pose a grave threat to FR systems.

The introduction of print-scan processes only further
increases this vulnerability by potentially masking arti-
facts from the morphing process. When a morphed im-
age is print-scanned, the physical manipulation can ob-
scure and mask digital artifacts, further complicating de-
tection [17, 18]. Physical manipulation of digitally mor-
phed images can remove traces from the morphing algo-
rithm and create a “new” image. This attack is particularly
effective on FR systems that haven’t been trained to incor-
porate the print-scan style attack since the system cannot
classify the unique artifacts generated during printing and
scanning. The reason for this is when an image is printed,
a unique type of artifact is introduced that masks and de-
stroys the artifacts generated during the digital morphing
process. Printing generates marks from where the ink was
applied to the paper from rollers and characteristics includ-
ing the absorption of the ink, the texture of the paper, and
how the paper was handled both before and after printing,
all causing the original image to be altered in small ways.
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Figure 2. Heterogeneous morph attack pipeline in a simulated real-world scenario

Scanning will also leave traceable artifacts. The light from
the scanner reflects off the page and can be seen in darker
areas, like in the pupils, if done incorrectly. The scanner
also has the potential to leave digital signatures if various
post-processing effects are applied and saved to the image
during scanning. The morphed image before print-scanning
is shown in Figure 1a and after being print-scanned in Fig-
ure 1b. The borders and the noise seen in in Figure 1c
are the difference between the digital and the print-scanned
morphs amplified for easier viewing. The artifacts were in-
troduced during print-scanning when the image was pro-
cessed and re-digitized. This calculation can be performed
by taking the difference of the two morphed images.

To combat the increasing risks associated with face mor-
phing attacks, research and development of Morphing At-
tack Detection (MAD) algorithms has been conducted to
classify if images are either bona fide or morphed. The im-
portance of efficient classification stems from the need to
identify and mitigate such vulnerabilities discussed above.
MAD algorithms can be classified into two broad types:
Single-image MAD (S-MAD) and Differential MAD (D-
MAD) [14]. S-MAD algorithms rely on extensive training
to properly identify inconsistencies or irregularities that are
characteristic of face morphing, whereas D-MADs benefit
from having access to a known bona fide to use for refer-
ence increasing the accuracy of detection [8].

Contributions. While print-scanned morphs have been dis-
cussed in previous works [1, 14, 18, 19], there has been
limited research on cross-testing digital and print-scanned
morphs with bona fides from both print-scanned and digi-

tal sources. This gap in research leaves uncertainties about
how print-scanned elements affect FR systems and MAD al-
gorithms in a controlled environment. To address this gap,
we propose a comprehensive set of experiments designed to
quantify and observe the implications of injecting a print-
scanned photo into the detection process. By creating a
series of heterogeneous attack scenarios, we can system-
atically evaluate potential vulnerabilities in FRs and MADs
when faced with a mix of print-scanned and digital images.
This work seeks to fill a gap in existing research and allow
for more effective morph detection.

2. Related works
While morphing algorithms and FR detection have re-

ceived strong attention in research, little work has been done
to investigate and detect the threat of print-scanned face
morphing attacks in a mixed morph attack scenario. Most
work has focused on simulated print-scanning procedures
or strictly print-scanning morphed photos for analysis.
Print-Scan Simulation

Matteo et al. [17] focuses on addressing the security
threat posed by print-scanned face morphing in electronic
identity documents. It highlights the challenges of detect-
ing morphed images in cross-database testing and dealing
with print-scanned images. The study introduces novel ap-
proaches to train Deep Neural Networks (DNNs) for mor-
phing detection, including generating simulated printed-
scanned images, data augmentation strategies, and pre-
training on large face recognition datasets.

A study pixel-to-pixel morphing algorithms was done by



Tapia et al. [20] to create simulated print-scanned images
to improve upon datasets consisting of mostly digital pho-
tos. The simulated data is compared against images that
underwent a manual print-scan process to evaluate the ef-
fectiveness of their pixel-to-pixel algorithm.
Print-Scanning

Ngan et al. [18] addresses the need for datasets to train
algorithms and FR systems for detection is of high impor-
tance. In that work under 7,000 images have undergone
print-scanning. The analysis, performed using a subset
of Visa-like images, underscores a critical concern: algo-
rithms vary widely in their ability to discern between legit-
imate and morphed images once they have undergone the
print-scan cycle. Algorithms showing low morph miss rates
but very high false detection rates indicate these algorithms
might classify most scanned photos as morphs even when
they are not. Conversely, some single-image morph detec-
tors exhibit low false detection rates but high morph miss
rates, suggesting the potential reduction or elimination of
morphing artifacts during the print-scan process.

In their work, Raja et al. [19] highlights the significance
of the print-scan process as it reflects a real-world scenario
in issuing identity documents. Printing and scanning a mor-
phed image replicates the procedure seen in getting a pass-
port photo or identity card photo taken. Due to the nature of
print-scanning, the process can degrade image quality by in-
troducing artifacts, changing image resolution, and altering
color and contrast which can cause changes in the way FR
systems perceive and quantify data. These changes could
potentially impact the effectiveness of MAD algorithms by
obscuring the artifacts that are in a morphed image.

An in-depth analysis performed by Zhang et al. [14]
leads to their proposal of a novel approach to generating
face morphs that are harder for FR systems to detect. MIP-
GAN (Morphing through Identity Prior driven GAN) is
meant to minimize the introduction of artifacts and leverage
a different loss function to increase quality. They also per-
formed a series of experiments under different conditions
including digital, print-scanned, and compressed images af-
ter print-scanning. These experiments were done to inves-
tigate the impact that various processing methods have on
detection via MADs. Furthermore, training S-MAD mech-
anisms with MIPGAN-I generated samples resulted in ex-
cellent detection performance on MIPGAN-II samples, es-
pecially for print-scan and print-scan compressed data. Hu-
man analysis was also conducted leading to the conclusion
that print-scanned images were generally harder for both
groups to detect compared to digital images.
S-MAD

There have been several works that focus on S-MAD
performance. Raghavendra et al. [1] investigates the im-
pact of digital morphs and morphs generated from varied
print-scanning methods and D-CNNs to train S-MADs for

detection in different scenarios. Past works have also shown
that when an S-MAD is trained on a specific morphing algo-
rithm or data type the S-MAD will show increased detection
on data with similar characteristics [11, 15]. A generalized
S-MAD algorithm utilizing Vision Transformer (ViT) archi-
tecture was proposed by Zhang et al. [21] to detect a wide
range of morphing traces for inter and intra-dataset studies.
Their work indicates effective performance with increased
detection rates among all probed morph presentations.

3. Heterogeneous Morph Evaluation Scenarios
In this work “heterogeneous” defines the varied nature

of datasets that consist of digital and print-scanned images,
both bona fides and morphed for evaluation purposes. These
images are tested against each other using different FR sys-
tems and an S-MAD across a series of attack scenarios, as
shown in Table 1. The difference in the attack scenarios
stems from whether the bona fide or morphed images under-
went a print-scan process. Table 1 provides a brief overview
of the scenarios which we enumerate in greater detail below.

Table 1. Attack scenarios to evaluate impact of heterogeneous data
Configuration Morph Bona Fide

D-D Digital Digital
D-PS Digital Print-Scanned
PS-D Print-Scanned Digital
PS-PS Print-Scanned Print-Scanned

Scenario 1: Digital vs Digital (D-D). The digital-style at-
tack represents an attacker submitting a morphed photo that
has not been print-scanned and is submitted for use. The
digitally morphed image is then compared to a bona fide im-
age that has not undergone any form of physical or digital
manipulation for verification. This is the baseline scenario
used in face morphing papers to determine morph efficacy.
Scenario 2: Digital vs Print-scan (D-PS). The digital vs
print-scan style attack involves an attacker submitting a
morphed photo that has not been print-scanned and is sub-
mitted for use. The digitally morphed image is then com-
pared to a bona fide image that has been printed and scanned
into a database. This attack scenario is most apt to occur
when filing for an ID through a web-based application or
service but is deterministic on the age or source of the bona
fide images accessible for verification. Older systems typi-
cally have more print-scanned photos stored.
Scenario 3: Print-scan vs Digital (PS-D). The print-scan
vs digital style attack involves an attacker submitting a mor-
phed photo that has been print-scanned and is submitted for
use. This image is then compared to a bona fide image that
has not been manipulated. When filing for a passport or
visa with a paper application, a print-scanned photo is used
as the media submission. Modern databases contain both
print-scanned photos as well as digital photos. When a dig-



ital photo is used to verify the print-scanned image, this sce-
nario occurs.
Scenario 4: Print-scan vs Print-scan (PS-PS). The print-
scan style attack represents an attacker submitting a mor-
phed photo that has been print-scanned and is submitted for
use. This image is then compared to a bona fide image that
has been print-scanned into a database and is one of the
identities in the morph. Like Scenario 3, if instead of a dig-
ital photo, one that has been print-scanned is chosen, this
scenario will take place.
Relevance. With these configurations, the varying artifacts
from each representation can be cross-tested to view the
impact on FR systems’ ability to detect a morphed image
in different circumstances. Scenarios D-PS, PS-D, and PS-
PS are especially significant in testing the effectiveness of
an FR system or MAD. These scenarios illustrate how an
attack might appear if executed outside of an experimen-
tal environment. When submitting a photo for government
identification, it will be compared to photos that are in a
government database. Their data contains images that come
from re-digitizing physical media or directly from a dig-
ital source. In such instances, it is crucial to assess how
a morphed image compares to images derived from differ-
ent mediums or sources. Likewise, It is important to con-
sider all possible attacks since Scenario D-D is the most
commonly referenced attack evaluated and analyzed in face
morphing research [7, 8, 15–17], which serves as an impor-
tant baseline for comparison purposes. Similarly, Scenario
PS-PS illustrates how physical manipulation of media im-
pacts performance against MADs and FRs.

4. Print-Scan Methodology
Before being print-scanned, the images to be print-

scanned are resized and saved as PNG files. Images are dig-
itally arranged on an 8.5 × 12 inch blank PNG. JavaScript
scripts are used to send the pages to Adobe Photoshop
for print management to maintain ICC profiles. All print-
scanned images are set at a 600 × 600 resolution with a
pixel-per-inch value of 300 to replicate a passport photo
of size two inches by 2 inches while also maintaining their
original aspect ratio.

After printing and scanning, the images go through a se-
ries of post-processing scripts that isolate, crop, rename,
and resize images to reflect the original digital image for
testing, evaluation, and quality control purposes. Photos are
saved as a Portable Network Graphics (PNG) file to retain
high-quality images. Doing so will prevent the introduc-
tion of compression artifacts during post-processing, which
could impact FR performance and detection. It should be
noted that JPEG compression may be used but is outside of
the scope of this work as introducing compression artifacts
into images before evaluating their effectiveness against an
FR system has been noted to impact performance [22].

Printed images can develop flaws when International
Color Consortium (ICC) profiles are improperly man-
aged [23]. ICC profiles manage the exposure, saturation,
and hue during printing so when the incorrect profile is
used, irregularities will occur, making the resulting print
inaccurate. Photo printing paper has a linked ICC profile
that must be selected before printing so the printing soft-
ware can adjust settings accordingly. The implications of
improper ICC profile management and compression arti-
facts can be observed in Figure 3. Photo printing paper was
also stored and handled with special care. Cotton gloves
were always worn, and photo-printing paper was stored in a
plastic sleeve before printing. These precautions were vital
in keeping the photo paper from developing a warped sur-
face or getting body oil on the print surface. The scan bed
was also wiped with a microfiber cloth to remove dust and
other particulates that settled on the surface between scans
to avoid adding flaws to the image.

4.1. Equipment and Settings

A Canon Pixma Pro 100 Printer and Epson 850v Pro
Scanner were used to print and scan all images evaluated
in this paper. Printing was handled using JavaScript and
Extend-Script debugging scripts to interface with Adobe
Photoshop for ICC Color Profile management to ensure
proper image quality retention. Default scanner software
settings include presets and tools to improve image quality
by increasing contrast or an image mask to the scanned im-
age before saving occurs. The image quality improvements
are fundamentally the same as altering an image in Pho-
toshop, so image enhancement settings must be turned off
before saving the image to avoid unintentionally reintroduc-
ing artifacts into the scanned images. Before scanning can
occur, a sheet of images must be placed on the clean scan-
ner bed and used to calibrate the scanner using the preview
feature. Doing so allows settings to be adjusted and verified
before scanning a printed dataset.

5. Studied Morphing Attacks
In this study, we explore three different kinds of morph-

ing attacks, representing a broad spectrum of current mor-
phing techniques.
OpenCV. The naı̈ve approach to constructing a face morph
is to simply take a pixel-wise average of the two bona
fide images; however, this can cause many artifacts espe-
cially if the two images are unaligned. To remedy this,
the bona fide images can be aligned using face landmarks
ahead of time before applying the pixel-wise average. These
kinds of morphing attacks are known as landmark-based at-
tacks [2, 4, 5, 12]. OpenCV landmark-based morphs were
created by Sarkar et al. [5] using an adaptation of the open-
source OpenCV library with the 68-point annotator from the
Dlib library [24]. The face landmarks from the two bona



Figure 3. Image array displaying the importance of setting management during print-scanning to generate high-quality images

(a) Base digital morphed im-
age

(b) Digital morphed image
with compression

(c) Artifacts on digital morph
after compression

(d) Print-scanned morph with
proper ICC profile

(e) Print-scanned morph with
improper ICC profile

fide images are used to form Delaunay triangles which are
then warped and blended to create the final morphed image.
StyleGAN2. Further research on face morphing has
made use of powerful generative models to perform
representation-based morphing attacks [13]. One type of
these generative models is Generative Adversarial Net-
work (GAN), a state-of-the-art single-step image generation
model that aims to learn the data distribution by training in
an adversarial manner. The generator network learns a map-
ping from the latent space to image space, allowing samples
to be drawn from this latent space to sample the data space.
For face morphing attacks an encoding strategy is deployed
so that for a given image the latent code that represents it is
found. The bona fide images used in the creation of the mor-
phing attack are encoded into their latent representations.
The latents are then morphed by averaging the latent vec-
tors, resulting in the morphed latent. This morphed latent is
then fed to the generator network constructing the morphed
face. Sarkar et al. [5] create face morphs using the very
representational powerful StyleGAN2 [25] architecture.
DiM. Blasingame et al. [11] propose Diffusion Morphs
(DiM) which use another kind of state-of-the-art genera-
tive model known as diffusion models. Diffusion models
outperform GAN models on image synthesis; however, this
comes at the cost of greater computational complexity dur-
ing inference [26]. A diffusion process is described by an
Itô Stochastic Differential Equation (SDE) which slowly
adds white noise to the original image, eventually degrad-
ing into pure white noise. Diffusion models learn how to
reverse this SDE, enabling the sampling of images by start-
ing with white noise and iteratively removing the noise over
many steps until the denoised image is left. DiM uses a
Diffusion Autoencoder [27] which is also conditioned on
additional latent representation of the original image and
provides an encoding strategy for mapping the original im-
age into noise. Both the latent conditional and noise for
the morphed images combined to create the morphed rep-
resentation. The morphed conditional is constructed by av-
eraging the conditionals of the two bona fide images. Con-
versely, the encoded noise of both images is blended using
spherical interpolation with a factor of 0.5 [11]. The Dif-

fusion Autoencoder then uses the morphed conditional and
noise to create the morphed image. In particular, we use the
DiM-C variant which includes an additional pre-processing
step before encoding the bona fide images.

6. Experimental Setup
To evaluate the effectiveness of print-scanning, morph-

ing attacks were performed using three datasets against
three different FR systems and an S-MAD. All computa-
tion and evaluation was performed on two systems: One has
dual Intel Xenon Silver 4114 CPUs and an NVIDIA Tesla
V100 32GB GPU with CUDA version 10.1 and CUDNN
version 8.4. The other system uses a Ryzen 9 5900x CPU
and an NVIDIA Geforce RTX 3090TI 24GB GPU with
CUDA version 11.3 and CUDNN version 8.4. The pro-
posed morphing attacks, MAD algorithms, and FR sys-
tems were implemented in PyTorch. The print manage-
ment and Photoshop scripts were implemented using ex-
tendscript. Other post-processing or landmark visualization
scripts were implemented using Python.

6.1. Face Recognition Systems

Three well-known FR systems are utilized to evaluate
the strength of print-scanned morphing attacks: Elastic-
Face [28], Adaface [29], and ArcFace [30].These FR sys-
tems determine a match by comparing feature vectors and
finding images with various features within a user-defined
tolerance. The ArcFace was trained on the Glint360K
dataset, which consists of 17,091,657 images from 360,232
individuals [31]. The ElasticFace and AdaFace models
are trained on the MS1M-ArcFace dataset. All three FR
systems use different pre-processing pipelines to present
the image as a passport photo. ArcFace, ElasticFace, and
Adaface models use resized images. The image is cropped
to a resolution of 112 × 112 and then normalized to have
values in [-1, 1] while maintaining the original aspect ratio.

6.2. Datasets

In this study, the FRGC v2.0 [32], FRLL [33], and
FERET [34] datasets were used to study the impact of



Table 2. Breakdown of datasets and morphing algorithms
Dataset MA Morphs Bona fides

FRLL
OpenCV 1,221

204StyleGAN2 1,221
DiM-C 1,221

FRGC
OpenCV 964

3,038StyleGAN2 964
DiM-C 964

FERET
OpenCV 529

1411StyleGAN2 529
DiM-C 529

Total 8,142 4,653

print-scanning on face morphing attacks. These datasets
were chosen because they are used in NIST face mor-
phing reports [18] and other face morphing analysis pa-
pers [19, 35]. Sarkar et al. [5] created the StyleGAN2
and OpenCV morphs for the FRGC, FRLL, and FERET
datasets. We implemented the DiM algorithm from [11] to
create the DiM-C morphs for the FRGC, FRLL, and FERET
datasets. The morphs, component identity pairs, and alter-
nate bona fide identity images were print-scanned for eval-
uation. This resulted in 8,142 morphs and 4,653 bona fide
images being print-scanned, as shown in Table 2. The bona
fide images for each dataset are shared between morphing
attacks. This work used the bona fide pairs developed in [5]
for our FRGC, FERET, and FRLL pairings and was used to
create the DiM, OpenCV, and StyleGAN2 morphs.

6.3. Metrics

Several representative metrics used in face-morphing re-
search were employed in this study. The Mated Morph Pre-
sentation Match Rate (MMPMR) proposed by Scherhag et
al. [36] is a widely used metric in evaluating the perfor-
mance of a morphing attack [18, 37]. The MMPMR is de-
fined as

M(δ) =
1

M

M∑
m=1

{[
min

n∈{1,...,Nm}
Sn
m

]
> δ

}
(1)

where δ is the verification threshold, Sn
m is the similarity

score of the n-th subject of morph m, M is the total number
of morphed images, and Nm is the total number of subjects
contributing to morph m (often Nm = 2). In the scenario
in which multiple samples of a single subject are compared
to a single morphed image, Scherhag et al. [36] recommend
using the ProdAvg-MMPMR given as

M(δ) =
1

M

M∑
m=1

Nm∏
n=1

(
1

Inm

In
m∑

i=1

{Sn,i
m > δ}

) (2)

where Inm is the number of samples of the subject n com-
pared to morph m. As our evaluation compares multiple

samples of the original subjects to a single morphed image,
we use the ProdAvg-MMPMR, hereafter referred to as the
MMPMR.

Another widely used biometric metric is the Morphing
Attack Classification Error Rate at a Bona Fide Presenta-
tion Classification Error Rate, or MACER @ BPCER for
short. This metric quantifies the accuracy of the accuracy
of morphing attack detection by measuring the rate at which
morphing attacks are incorrectly classified as genuine bio-
metric samples (MACER) while maintaining a specified
rate at which genuine biometric samples are incorrectly
classified as fraudulent (BPCER). Using these two rates, a
clear distinction in the performance of a MAD system can
be expressed. The BPCER values chosen are thresholds at
0.1%, 1%, and 5%, respectively. A lower BPCER indicates
a more strict classification system whereas a high APCER
is a sign of a secure system with few false acceptances. It
is important to view the trade-offs across a range of rates as
a system that cannot identify bona fide images properly is
not of too much use. Likewise, MACER @ BPCER can be
used for risk assessment and to evaluate the robustness of
an FR system or MAD. The Equal Error Rate (EER) repre-
sents the point at which the rate of false acceptances equals
the rate of false rejections. This is the threshold at which
an unauthorized user is just as likely to get into a system
as they are rejected and helps indicate the overall accuracy
and reliability of a biometric system. A lower EER signi-
fies a system adapted to rejecting unauthorized users while
accepting authorized individuals.

7. Results
To assess the impact of print-scanned morphs and bona

fide images, we conduct experiments considering attacks
that use images from different sources. The proposed ex-
periments use the D-D scenario as a baseline as seen in nu-
merous other works [11, 14–16, 38]. This approach allows
for the analysis of print-scanned images through compre-
hensive vulnerability and detectability studies.

7.1. Vulnerability Study

This work aims to introduce a novel addition to exist-
ing evaluation frameworks. We propose the importance of
accounting for heterogeneous media presentations to de-
termine the robustness of FRs. We propose assessing FR
vulnerability using the Mated Morphed Presentation Match
Rate MMPMR introduced by Scherhag et al. [36].

Table 3 presents the MMPMR results with a false match
rate (FMR) at 0.1% for each morphing attack, dataset,
and evaluation scenario. It should be noted that DiM-
C and OpenCV morphs perform better than their GAN-
based counterparts. Likewise, the landmark-based mor-
phing algorithm outperforms the diffusion-based morph-
ing algorithm. The high performance of OpenCV and the



Table 3. MMPMR for all scenarios with FMR = 0.1%. A higher MMPMR value represents a stronger attack.
FRLL FRGC FERET

Morph Scenario ArcFace ElasticFace AdaFace ArcFace ElasticFace AdaFace ArcFace ElasticFace AdaFace

OpenCV

D-D 99.02 98.69 99.26 67.31 50.99 53.22 89.04 75.61 81.78
D-PS 99.18 97.22 99.02 68.91 47.81 53.96 89.97 81.66 83.51
PS-D 98.61 96.81 97.87 55.67 43.15 45.36 86.45 78.48 81.95
PS-PS 98.85 94.19 99.02 69.89 41.61 55.51 88.82 78.58 77.13

StyleGAN2

D-D 5.89 3.27 6.55 1.38 1.21 1.25 0.82 0.32 0.72
D-PS 3.44 5.56 4.66 0.67 1.28 1.45 0.82 0.41 1.29
PS-D 5.32 1.31 7.53 1.00 1.00 0.56 0 0 0
PS-PS 6.63 3.11 6.38 0.41 0.44 1.36 0 0 0

DiM-C

D-D 92.88 82.00 88.22 48.70 43.24 41.75 69.76 59.65 65.27
D-PS 90.10 88.95 87.81 43.65 39.23 42.66 71.53 62.39 68.46
PS-D 92.39 77.09 91.33 49.11 37.98 35.82 74.03 62.21 65.08
PS-PS 93.62 83.22 90.83 37.47 28.30 44.04 66.91 64.20 69.99

poor performance of StyleGAN2 are consistent with prior
work and the state of the effectiveness of face morphing re-
search [4, 5, 11, 15].

Our proposed approach illustrates the impact of hetero-
geneous media types on every scenario for all available
data. Similar performance trends can be observed across all
morphing algorithms and FRS, specifically, attack scenarios
that contain at least one print-scanned element. Vulnerabil-
ity can be observed in all three datasets and all three FRs.
67% of the DiM-C PS-PS morphs perform better than the
D-D scenario at an average of 4.26%. When looking at any
DiM-C morph scenario containing a print-scanned element
the scenarios perform better 89% of the time at an aver-
age of 5.01%. The maximum difference is 8.48% Similar
performance can be observed across the OpenCV scenar-
ios that contain a print-scanned element. 67% of the morph
scenarios perform better than the D-D scenario as a baseline
averaging 3.17%. The maximum difference is MMPMR of
8% for the OpenCV morphing algorithm.

Overall, the varied results indicate that introducing a
print-scanned element into an attack scenario instigates un-
predictability in the FRS’s ability to verify the test subject,
thus creating vulnerability.

7.2. Detectability Study

Following the approach taken in [11, 15, 16], we design
the detectability study using a pre-trained SE-ResNeXt101-
32x4d network developed by NVIDIA to analyze the im-
pact of print-scanning. The backbone used for training
the S-MAD detector is a ResNeXt101-32x4d model [39]
with added Squeeze-and-Excitation layers [40] pre-trained
on the ImageNet [41] dataset. We opt to use k-fold stratified
cross-validation to ensure that the class balance between
morphed and bona fide images is preserved across each fold
and use k = 5 folds for our experiments. We replace the
last layer of the network with a fully connected layer with
two outputs which denote the log probabilities of the bona

fide and morphed classes. For each training dataset, the net-
work is trained for 3 epochs with an exponential learning
rate scheduler and differential learning rates to combat any
potential overfitting during training. The fully connected
layer has a learning rate of 0.001 which is reduced expo-
nentially to a learning rate of 10−7 for each layer further
away from the fully connected layer. To further combat
overfitting, the cross entropy loss uses label smoothing with
a value of 0.15. We track the Exponential Moving Aver-
age (EMA) of the model weights during training and use
these weights during inference. The EMA decay βema rate
is scaled, with the batch size M in accordance to

βema =

(
1

2

) M
1000

(3)

in a manner similar to that of the scaling rule used to update
the generator in the Alias-Free GAN [42] and recent work
has shown the benefit of scaling the EMA decay with batch
size [43]. In our experiments, we use a batch size M = 128,
and therefore βema ≈ 0.915. The result of this training
procedure is an S-MAD algorithm that achieves a minimum
of 98% class-balanced accuracy on each training fold.

To evaluate the performance of morphs from heteroge-
neous sources, we trained the S-MAD detector on a combi-
nation of bona fide images and OpenCV morphs from the
FRGC dataset. We opt to evaluate on the FRGC dataset
as the dataset has a large number of probe images per iden-
tity and has been used by prior works [14,17]. Likewise, we
train the S-MAD detector on OpenCV morphs due to the ex-
cellent performance of landmark-based morphs [11,14,15].
To assess S-MADs detection capabilities we designed three
training scenarios to evaluate all possible bona fide dataset
compositions: Digital, Print-Scan, and Digital + Print-scan.
This approach enables us to make increasingly concise con-
clusions on the impacts of different types of media.
Digital. When the S-MAD is trained on digital OpenCV
morphs, the detector can detect digital OpenCV and Style-



Table 4. S-MAD Study with training by varying OpenCV Morphs with bona fides on FRGC.
Digital Digital + Print-Scan Print-Scan

MACER @ BPCER MACER @ BPCER MACER @ BPCER

Morphing Attack Scenario EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0%

OpenCV

D-D 0 0 0 0 0 0 0 0 4.81 71.76 26.93 4.64
PS-D 0.82 77.25 0.63 0.13 0 0 0 0 0 0 0 0
D-PS 0 0 0 0 0 0 0 0 11.78 88.55 61.32 26.66
PS-PS 13.63 96.12 70.7 39.37 0 0 0 0 0 0 0 0

StyleGAN2

D-D 0.13 0.13 0.07 0 0.1 0.1 0 0 9.97 97.33 78.41 30.74
PS-D 6.65 96.51 47.56 10.14 0.23 0.49 0 0 0.43 7.04 0.03 0
D-PS 1.91 68.6 5.96 0.56 0.86 7.83 0.79 0.1 25.61 99.61 85.39 65.01
PS-PS 31.47 99.74 97.5 79.66 2.57 48.85 6.65 1.09 2.27 48.45 8.62 0.69

DiM-C

D-D 7.67 87.03 55.63 13.2 15.14 99.8 91.67 52.21 39.43 99.57 96.61 87.2
PS-D 7.9 92.43 44.67 14.35 1.55 46.18 2.24 0.43 2.7 67.18 5.76 0.72
D-PS 0.3 4.34 0 0 1.25 20.67 1.58 0.26 36.87 100 99.61 92.13
PS-PS 9.97 87.52 50.2 23.5 2.9 68.89 7.27 1.15 7.27 91.47 51.58 13.43

GAN2 morphs but consequently has a high error rate when
attempting to detect images that are made with the diffu-
sion algorithm and morphs that have been print-scanned.
The missed detection rates of print-scanned morphs in this
scenario get as high as 99.74%.
Print-Scan. The inverse relationship is also true. Non
DiM-C print-scanned images were detected when the S-
MAD was trained on print-scanned data but was unable to
detect digitally morphed images. This inverse relationship
highlights the flaws inherited during training detectors and
why morphs that have been print-scanned perform so well
against a detector trained on digital data. The print-scanned
trained S-MAD missed digital morphs at a rate of 97.33%
Digital + Print-Scan. The vulnerabilities seen in the dig-
itally trained S-MAD and the S-MAD trained on Print-
Scanned images can be resolved by training the detector on
digital and print-scanned sources as well as different morph
types. This is evident in the middle column of Table 4. The
rate of missed detections seen in the previous two trainings
was reduced to 48.85 on the high end and the error rate also
dropped to less than 2.57. Current works that investigate the
impact of printing and scanning do not account for the data
composition that can be seen in large government databases
leading to vulnerabilities when left omitted in training.

This experiment identifies key areas of vulnerability in
S-MAD systems which can be attributed to training data as
MADs rely on high-quality and diverse morphs for accurate
detection. Having more morph types for training allows the
S-MAD to differentiate and detect artifacts present in each
algorithm and presentation. The Digital and Print-Scan
trained S-MADs fail to accurately detect artifacts present
in morphs of the inverse style. Evidence from the Digital +
Print-Scan S-MAD supports this as the detector trained on
both presentations of morphs was able to detect digital and
print-scanned morphs at high rates of accuracy. It should be
noted that DiM-C detection is low as this is attributed to the

training being done on OpenCV. When a detector is trained
on OpenCV, DiM goes undetected visa versa [11, 15, 16].

8. Conclusion
By introducing print-scanned elements into the morph

generation and evaluation pipeline, the ability to discrimi-
nate between a morphed image and a bona fide image be-
comes more difficult, because print-scanning can mask digi-
tal artifacts generated during morphing. The heterogeneous
evaluation scenarios account for print-scan artifact intro-
duction by setting experiments up to cross-test digital and
print-scanned elements together for thorough analysis. The
method of print-scanning followed in this work produced
12,795 high-quality print-scanned bona fide and morphed
images. The vulnerability study details how asymmetric
data can introduce uncertainty into FRs, making classifica-
tions for verifying ID difficult. Furthermore, the detectabil-
ity study illustrates the importance of training MADs for
generalized detection, as omitting data from training intro-
duces vulnerabilities where attacks can go undetected.

The scope of this work covers three representative mor-
phing algorithms across three datasets. Repeating the steps
followed in this work with additional morphing methods
would help support the findings made in Section 7. In terms
of future work, performing experiments with more FR sys-
tems, more S-MAD studies, and using additional classify-
ing metrics like Morphing Attack Potential [17] would pro-
vide additional information for allowing for better compar-
isons between data [15]. Another future work would be to
expand the range of equipment and paper used to generate
print-scanned images. This evaluation reflects only a por-
tion of the possible impacts associated with ICC profiles,
ink, printing, and scanning. Likewise, investigating the in-
troduction and removal of biometric landmarks and artifacts
embedded in latent color space would allow for deeper ex-
aminations into the unseen impacts of print-scanning [44].
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A. Additional Results

To further investigate the performance of morphs from heterogeneous sources, we trained the S-MAD detector on a
combination of data from the FRGC dataset. We opt to evaluate using the FRGC dataset as the training dataset as there are
a large number of probe images per identity and has been used by prior works [14, 17]. We train the S-MAD detector on
DiM-C morphs and StyleGan2 morphs to investigate the detector performance with varied input data. To assess the S-MADs
detection capabilities we designed three training scenarios to evaluate all possible bona fide dataset compositions: Digital,
Print-Scan, and Digital + Print-scan. This approach enables us to make increasingly concise conclusions on the impacts of
varying training data for diverse media.

Table 5. S-MAD Study with training by varying DiM-C Morphs with bona fides on FRGC.
Digital Digital + Print-Scan Print-Scan

MACER @ BPCER MACER @ BPCER MACER @ BPCER

Morphing Attack Scenario EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0%

OpenCV

D-D 4.08 70.9 13.03 3.39 3.59 49.7 14.94 2.47 13.69 92.2 67.94 29.13
PS-D 25.18 97.63 87.56 65.54 0.3 1.55 0.2 0.07 0.03 0.03 0.03 0
D-PS 1.78 39.53 2.83 0.53 5.69 82.55 39.8 6.81 17.12 96.84 80.09 41.31
PS-PS 41.51 98.49 93.42 85.94 15.8 92.36 83.11 47.7 8.29 94.31 50.63 13.66

StyleGAN2

D-D 8.72 97.2 46.38 16.66 2.17 80.94 5.92 0.36 6.22 84.69 51.48 7.27
PS-D 17.38 98.49 84.13 57.93 0.36 0.56 0.26 0.07 0.3 0.63 0.03 0
D-PS 10.53 91.08 60.5 27.52 7.67 98.12 52.01 14.02 18.27 99.93 88.78 57.04
PS-PS 33.18 99.77 95.06 81.34 11.09 94.6 81.5 30.22 6.75 91.71 32.13 8.69

DiM-C

D-D 0 0 0 0 0.07 0.07 0 0 11.52 99.08 87.66 33.67
PS-D 2.07 69.95 10.43 0.33 0 0 0 0 0 0 0 0
D-PS 0 0 0 0 0 0 0 0 1.91 38.71 4.11 0.95
PS-PS 2.5 65.67 8.13 0.92 0.03 0.03 0 0 0.1 0.39 0 0

Table 6. S-MAD Study with training by varying StyleGAN2 Morphs with bona fides on FRGC.
Digital Digital + Print-Scan Print-Scan

MACER @ BPCER MACER @ BPCER MACER @ BPCER

Morphing Attack Scenario EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0% EER 0.1% 1.0% 5.0%

OpenCV

D-D 0.3 0.92 0.07 0 1.35 65.57 2.37 0.3 18.66 99.9 87.23 56.35
PS-D 2.47 59.97 8.99 1.15 0.1 0.1 0 0 0.03 0.03 0 0
D-PS 0.53 0.79 0.36 0.03 6.42 77.02 43.38 8.95 34.66 99.28 92.4 80.91
PS-PS 25.12 96.12 84.86 64.85 2.9 90.68 20.28 1.12 1.18 10.07 1.68 0.46

StyleGAN2

D-D 0 0 0 0 0 0 0 0 0.43 3.55 0.2 0
PS-D 0.3 0.72 0.03 0 0 0 0 0 0 0 0 0
D-PS 0 0 0 0 0 0 0 0 0.82 20.11 0.79 0.1
PS-PS 3.23 38.51 7.41 1.22 0.03 0.03 0 0 0.1 0.2 0 0

DiM-C

D-D 18.8 99.37 92.5 59.05 35.94 99.97 97.47 92.96 51.35 100 99.61 97.43
PS-D 5.13 90.13 35.71 5.17 1.78 76.46 5.99 0.3 2.7 67.54 11.72 0.36
D-PS 2.01 18.6 3.92 0.86 9.35 87.72 64.52 24.88 45.75 100 98.32 94.27
PS-PS 10.17 96.94 60.5 20.64 6.42 86.41 54.67 12.87 6.12 96.64 65.96 9.12

Digital. When the S-MAD is trained on digital DiM-C morphs, the detector struggles to detect non-digital DiM-C morphs as
well as all StyleGAN2 and OpenCV morphs. The error and MACER rates for print-scanned DiM-C morphs are lower than
the rates seen in the other morphing algorithms but are still undesirable. The missed detection rates of print-scanned morphs
in this scenario get as high as 99.77% seen in Table 5 in PS-PS of StyleGan2. The S-MAD trained on StyleGan2 shown in
Table 6 has the same issues as the detector trained on DiM-C. The MACER rates are above 96.12% for DiM-C and OpenCV
print-scan morphs, while detection for digital StyleGan2 morphs is high as expected.
Print-Scan. Print-scanned DiM-C images were detected when the S-MAD was trained on print-scanned DiM-C data but was
unable to detect most print-scanned and digitally morphed images in different morphing styles. The print-scanned trained
S-MAD, Table 5, missed digital morphs at a rate of 99.08%. Likewise, missed digital detection rates as high as 100% can be
seen in the S-MAD trained on StyleGan2, Table 6, with similar poor performance seen in the Digital evaluation above.



Digital + Print-Scan. The rate of missed detections seen in the DiM-C experiment was reduced to 0.07 on the high end and
the error rate also dropped to less than 0.07. The rates are much worse for StyleGan2 and OpenCV detections due to the
artifacts present being much different than those found in StyleGan2 and OpenCV morphs. The missed detection rates seen in
the StyleGan2 S-MAD are lower than those seen in both the digital and print-scan scenarios but are insignificant showing poor
performance overall in morphs that aren’t StyleGan2. These experiments highlight the need for more generalized algorithms
trained to detect multiple morphing algorithms as each S-MAD evaluated has shown clear flaws depending on the attack
being performed.


