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ABSTRACT This article introduces the voice pre-processing and quality assessment dataset (VPQAD), a
scalable resource developed to validate various pre-processing techniques and improve voice signal quality
in noisy environments. The dataset comprises voice recordings from 50 participants aged 18—40, captured in
controlled real-life conditions using Audio Technica AT2020 and SHURE SM58 microphones. These high-
quality recordings, made under diverse noise levels and settings, could be used for testing and developing
voice enhancement algorithms. The dataset includes detailed metadata on the environment and participant
demographics for analyzing and improving speech clarity and intelligibility, particularly in challenging
conditions. To protect privacy, all data have been anonymized. VPQAD has been made public to promote
collaborative research and advance research in biometrics, telecommunications, assistive technologies, and
other applications requiring clear voice communication.
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BACKGROUND

Developing reliable voice processing technologies has be-
come increasingly crucial in our digitally connected world,
where clear and intelligible speech communication is essen-
tial [1]. Background noise and poor recording environments
may degrade the quality of voice signals, impacting various
applications from telecommunications to voice-controlled
systems [2]. For instance, speaker recognition systems may
struggle to differentiate between speakers when there is a
high level of ambient noise, which can reduce the accuracy
of the recognition process [3], [4].

Over the years, several datasets have been devel-
oped to support research in voice processing. However,
many resources are limited, often focusing on controlled
environments or lacking the diversity needed to simulate

real-world noise conditions [5]. These datasets have been
invaluable in advancing research. Still, their inability to
capture the full complexity of modern-day voice applications
has created a need for more robust and comprehensive
datasets [6].

In response to this need, we introduce the voice pre-
processing and quality assessment dataset (VPQAD), a
comprehensive resource developed to facilitate research
in improving voice signal quality in noisy environments.
VPQAD comprises voice recordings from 50 partici-
pants captured using high-quality microphones in con-
trolled, real-world noise conditions. Additionally, VPQAD
includes both text-dependent and text-independent speech
from each participant, allowing for various analyses and
applications.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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While VPQAD serves as a general-purpose dataset for
enhancing voice signal clarity, its most significant application
could be advancing automated speaker recognition (ASR)
systems. ASR technology, vital for security, authentication,
and numerous other applications, depends heavily on the
quality of input signals [7]. Noise and poor recording
conditions can significantly impair ASR accuracy, lead-
ing to incorrect speaker identification and reduced system
reliability [8].

In this article, we discuss the data collection process,
the variety of noise environments, and the metadata ac-
companying each recording. Additionally, we explore how
VPQAD can be used to push the boundaries of current ASR
technology, enabling more accurate speaker recognition in
real-world scenarios.

Related Work

One of the earliest and most widely used datasets is the
TIMIT Acoustic-Phonetic Continuous Speech Corpus, devel-
oped in the late 1980s. TIMIT is renowned for its phonetic
richness, making it ideal for phoneme recognition and speech
synthesis. However, its clean recording conditions limit its
effectiveness in developing noise-robust ASR systems [9].

LibriSpeech, a large-scale corpus derived from public
domain audiobooks, offers over 1000 hours of read English
speech. It is widely used as a standard ASR benchmark.
Despite its extensive coverage, LibriSpeech primarily fea-
tures read speech and lacks the environmental noise diversity
necessary for training robust ASR systems [10].

The Aurora project introduced a series of datasets such
as Aurora-2 and Aurora-4, specifically designed to test the
noise robustness of ASR systems. These datasets are valuable
for developing noise-robust algorithms because they focus
on degraded speech quality. However, they are limited by
the artificial nature of the introduced noise and a lack of
linguistic diversity [11].

The AMI Meeting Corpus provides a rich resource for
research involving multi-party meetings in various acoustic
environments. This dataset, which includes audio, video,
and transcripts, is particularly relevant for ASR and speaker
identification in noisy, multi-speaker settings. However, its
complexity requires sophisticated models to achieve high
accuracy [12].

Mozilla’s Common Voice dataset stands out for its linguis-
tic diversity, with recordings in over 70 languages, making
it one of the most inclusive datasets available. However,
the variability in recording quality due to the wide range
of devices and environments used by contributors presents
challenges for ASR development [13].

VoxCeleb is a large-scale speaker identification dataset
with speech samples extracted from YouTube videos. It cap-
tures various acoustic environments, ranging from studio-
quality interviews to noisy public events. While VoxCeleb
is particularly useful for speaker recognition and verification
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tasks, its focus on speaker identification limits its broader
applicability to general ASR research [14].

Finally, the CHIME challenge series provides datasets
designed to test ASR systems in noisy, everyday envi-
ronments such as public transport and cafes. The CHiME
datasets, while valuable for their intended applications, fo-
cus on multi-microphone, far-field conditions, making them
less suitable for tasks involving single-microphone record-
ings or specific noise environments such as low-bandwidth
audio [15].

Table I compares VPQAD with existing datasets, high-
lighting their contributions and limitations in ASR and
speech processing. While each dataset has advanced the field
by addressing challenges such as noisy environments and
diverse speaker populations, gaps remain, particularly in real-
world noise conditions and linguistic diversity.

Contributions of This Article

One of VPQAD’s most significant contributions is its dual
approach to capturing text-dependent speech (the same spe-
cific phrases or words are used by speakers [3]) and text-
independent speech (speakers can use any words or phrases
[16]) from each participant to allow diverse ASR research
and development needs. Text-dependent speech is crucial
for security applications relying on specific authentication
phrases, such as voice-based systems, where users must say
a predefined password such as “apple” for authentication.
In contrast, text-independent speech supports broader appli-
cations, such as speaker verification in customer service call
centers, where the system must recognize speakers regardless
of their words.

Another significant contribution is the incorporation of
real-world noise into the recordings. Unlike many datasets
that add synthetic noise to otherwise clean recordings,
VPQAD’s audio data are captured in naturally noisy envi-
ronments, such as cafeterias and laboratories during active
sessions. This aspect is critical for advancing noise-robust
ASR systems, as it better simulates the actual conditions in
which they are expected to operate.

VPQAD also emphasizes balanced speaker representation,
featuring recordings from 50 diverse participants. This bal-
ance is essential for training ASR models that generalize
well across different voices, preventing overfitting to spe-
cific demographic characteristics and thereby reducing bias.
In addition to diversity in speakers, VPQAD includes a mix
of speech styles—from conversational to naming objects.

Furthermore, this article introduces proprietary software
specifically developed to facilitate the data collection process
for VPQAD. This software automates the presentation of
prompts and images to participants, ensuring consistency in
data collection across sessions. By providing a controlled
and repeatable environment for eliciting text-dependent and
text-independent speech, the software plays a crucial role in
the quality and reliability of the VPQAD dataset.
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TABLE I. Summary of the VPQAD Dataset Versus Prior Work

Dataset Public Audio Type Background Number of | Language Speech Style | Recording Environment
Noise Speakers

VPQAD Yes Text- Real-World Sce- | 50 English Mixed Cafeterias and Laborato-
Dependent narios ries during lab classes
and
Independent

TIMIT No Text- None 630 English Read Speech | Studio
Dependent

LibriSpeech | Yes Text- None 2456 English Read Speech | Various
Dependent

Aurora-4 No Text- Artificially 83 English Read Speech | Synthetic and Real-World
Dependent Added

AMI No Text- Real-World Sce- | 100+ English Conversational| Office and Meeting Rooms

Meeting Independent narios

Corpus

Common Yes Text- Real-World Sce- | 70000+ Multilingual Read Speech | Various

Voice Dependent narios

VoxCeleb No Text- Real-World Sce- | 7000+ English Conversational| Various
Independent narios

CHiME-3 No Text- Real-World Sce- | Various English Conversational| Public ~ Transport  and
Independent narios Cafes

Note: This table focuses on research use, speaker diversity, language, speech style, recording environment, and the inclusion of background noise,

categorized as artificially added or from real-world scenarios.

The dataset’s design also supports future expansion, par-
ticularly in the multilingual domain. While VPQAD cur-
rently focuses on English, its framework and methodology
provide a solid foundation for including other languages.
This potential for expansion is crucial as the demand for
multilingual ASR systems grows globally, making VPQAD
a potentially invaluable resource for researchers working
on ASR technologies that need to accommodate multiple
languages.

Additionally, GitHub links to Matlab and Python scripts
created by the authors to measure audio quality and edit
audio clips are provided.

COLLECTION METHODS AND DESIGN

Institutional Review Board (IRB) Approval

VPQAD was developed following rigorous ethical guidelines
and procedures approved by the Institutional Review Board
(IRB Approval No. 24-42) at Clarkson University [17]. This
approval ensures that all aspects of the research involving
human subjects adhere to the highest ethical standards,
particularly regarding informed consent, data confidentiality,
and the overall treatment of participants.

Ethical Considerations and Informed Consent

The IRB’s primary role is to safeguard the rights and well
being of research participants. All participants were fully in-
formed about the study’s nature, potential risks and benefits,
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and their rights as participants. Each participant signed an
informed consent form detailing the study’s purpose, pro-
cedures, data-sharing permissions, and measures to ensure
their confidentiality. Flyers were distributed throughout the
university campus to recruit participants.

Data Confidentiality and Security

The IRB addressed the critical concern of protecting par-
ticipant data. All voice recordings and associated metadata
were anonymized before inclusion in the dataset, mean-
ing no identifying information was linked to the tapes.
After anonymization, all identifiable data were permanently
deleted, and the consent forms were physically and securely
stored at the university. The data were stored in secure,
password-protected environments, accessible only to autho-
rized researchers.

Participant Recruitment and Consent

Participants for the VPQAD dataset were recruited from the
Clarkson University community through flyers and electronic
communications. All potential participants were provided
with detailed information about the study, including its
objectives, procedures, and their rights as participants. In-
formed consent was obtained from all participants before
the data collection began.
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Recording Environments

Recordings were conducted in controlled, naturally noisy
environments. The primary locations for data collection
include the following.

University Cafeteria

Data were collected at lunchtime between 12 and 2 pm when
the cafeteria is most filled during the day. Background noises
include conversations, the clinking of utensils and plates,
footsteps, background music, kitchen sounds, cash registers,
payment beeps, moving chairs, ambient noise, and outside
noise.

Laboratories During Lab Sessions
Data were collected during lab sessions between 12 and
2 pm. The lab classes had about 25-30 students conducting
their lab sessions. Background noises include conversations
between students and instructors, the buzzing or beeping
of electronic devices, the hum of power supplies or trans-
formers, the clicking of switches or buttons, the whirring of
cooling vents, the clinking of components being handled, the
sound of keyboards and mice, etc.

Fig. 1 shows examples of these environments’ live data
collection process.

Recording Procedure Using Custom Software

The data collection software was built using Python, using
the Pyaudio library for real-time audio capture, at a sampling
rate of 44 100 samples per second. The software includes the
functionality to automatically detect available microphones
on the system and allows the user to select one or two
microphones depending on their recording needs. If no
selection is made, a default microphone is activated.

The software’s graphical user interface (GUI) was de-
signed to display images and instructional text during the
recording process. The GUI integrates features such as
microphone status indicators, customizable image sequences,
and a settings menu for configuring recording parameters.
The threading functionality in Python enables the simulta-
neous recording of audio from multiple microphones. Addi-
tionally, the software incorporates logic for window resizing,
allowing it to be used across various screen sizes and
resolutions without compromising the clarity of displayed
text or images.

The contributed software presented images to be named
out loud and text prompts on the screen. This process was
divided into two key phases as follows.

Text-Dependent Phase

Participants were shown a series of images (e.g., a flower, a
frog, and a bike) along with corresponding text labels and
were instructed to say the name of each object out loud.
Each audio clip consists of 30 s of data collected for every
participant in each session. Ten spoken words were within
that time frame: flower, frog, bike, car, fork, cinnamon,
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FIG. 1. Live data collection in electrical engineering lab (top) and Univer-
sity Cafeteria (bottom).

pizza, broccoli, chair, and bear. The following script can be
used to trim this clip into smaller segments containing indi-
vidual words spoken: https://github.com/ahmedajan/SNR_
Calculation_For_VPQAD/blob/main/audio_Segmentation.m.

Text-Independent Phase

Participants were also given prompts that required sponta-
neous speech, such as describing a course they liked recently
or their research. A total of 20 s of data were collected for
every participant in each session.

This 20-s window reflects real-world constraints, ensuring
that models can perform effectively with limited data. Ad-
ditionally, collecting 20 s of speech per participant is often
sufficient because it captures essential voice characteristics,
such as pitch, timbre, and speaking rate, which are crucial
for speaker recognition [18].

The example of images that showed up on the interface
of the custom software used during these sessions is shown
in Fig. 2.

Recording Equipment

All voice recordings were captured using the Audio Tech-
nica AT2020 [19] and SHURE SM58 [20] models shown
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FIG. 2. Screenshots of the images that showed up on the interface of the software during data collection.
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of 44.1 kHz. The Audio-Technica AT2020 operates within
a frequency range of 20 Hz-20 kHz, has a sensitivity of
—37 dB, and can handle a maximum sound pressure level
(SPL) of 144 dB. It requires 48 V phantom power to operate
and connects via an XLR output [19]. The Shure SM58
operates within a frequency response range of 50 Hz—15 kHz
and is optimized to emphasize clarity in the vocal midrange
while attenuating low-frequency background noise [20].

Dataset Structure
VPQAD is organized into directories based on recording
sessions, with each session contains the following.

1) Text-Dependent Recordings: Stored in td/.

2) Text-Independent Recordings: Stored in tid/.

Speech Content
VPQAD includes the following.

1) Text-Dependent: Recordings with specific objects be-
ing named out loud. Fig. 4 shows a waveform of
text-dependent data where an energy-based recognition
script detects spoken words.
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FIG. 4. Waveform of a text-dependent data. The purple-shaded frames are
the ones where speech is detected.

2) Text-Independent Recordings: Free-form speech of
people uniquely describing their recent course or
research.

VALIDATION AND QUALITY

Data Quality Control

Each recording was manually reviewed for clarity and con-
sistency to ensure the highest quality data. The final dataset
excluded records that contained any clipping, inconsistent
sampling rates (44.1 kHz), unclear or interrupted speech,
and technical malfunctions.

Speaker Diversity
As shown in Table II, the dataset includes recordings
from 50 participants of diverse backgrounds, ensuring broad
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TABLE Il. Participant Demographic Information

Number of
Category Subcategory .
Participants
Gender Man 39
‘Woman 9
Prefer not to respond 2
Race Caucasian 31
Black 8
Hispanic 3
Native American 1
Middle Eastern 1
Indian 3
Asian 2
Other 1
Age 18-25 years 39
26-30 years 6
31-40 years 5
TABLE lll. Summary of Audio Properties in the VPQAD
Dataset
Metric Value
Sampling Rate 44.1 kHz
Bit Depth 16-bit
Average Noise Level of All Audio Files | 19.60 dB
Total Duration of Recordings 68 min

representation across age, gender, and accents, which is
crucial for training ASR models that generalize well.

Audio Quality Metrics
The audio properties highlighted in Table III demonstrate
the key attributes. Each participant recorded a total of 50 s,
including both text-dependent and text-independent data in
each session. Noise levels were measured in A-weighted
decibels (dBAs) using calibrated microphones. The noise
levels ranged between 4.86 and 62 dBA, with an average
of 19.60 dBA. This range reflects noise from near-silent
environments (4.86 dB) to moderately noisy settings such
as normal conversation (62 dB) [21], [22], [23].

Table IV shows various SNR values calculated. The
signal-to-noise ratio (SNR) was calculated using the follow-
ing formula:

P noise
where Pgna is the power of the speech signal and Fise is
the power of the background noise. The power for both the
signal and noise was computed as the mean square of their
respective amplitudes

| XN
_ 2
P = 321 x[n]

where x[n] represents the amplitude of the signal (for Pignal)
or the noise (for P,ois) at sample n, and NN is the total
number of samples.

P.
SNR (in dB) = 10 x log,, ( Slgnal)
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TABLE IV. Summary of Different SNR for VPQAD

Highest Lowest Mean
Metric Value Value Value
(dB) (dB) (dB)
SNR 45.22 15.35 22.57
Segmented SNR
42.14 18.73 24.92
(SegSNR)
Frequency-
. 44.50 15.60 23.86
Weighted SNR

To estimate noise, the code assumes that the low-energy
portions of the signal correspond to noise. Specifically, any
segment of the audio where the amplitude falls below a
predefined threshold (based on the mean signal energy)
is considered noise, and the rest is considered the speech
signal. The signal-to-noise ratio was also calculated using
two additional methods: segmented SNR (SegSNR) and
frequency-weighted SNR (fwSNR). For SegSNR, the signal-
to-noise ratio is computed over short, fixed-length segments
of the signal. Each segment’s SNR is calculated using the
formula

SegSNR (in dB) = 10 x log;, <Pg“”)

P, noise
where Piegmen: is the power of the speech signal in each
segment, and P is the power of the noise. The final
SegSNR is the average of the SNR values over all segments.
The segment lengths are chosen based on typical speech
durations, often around 20-30 ms, which are sufficient to
capture phoneme-level details in speech. In our code, noise is
estimated by identifying low-energy segments of the signal,
assuming that these segments correspond to noise-dominated
regions, based on a threshold relative to the overall signal
energy.

For fwSNR, the A-weighting filter is used to emphasize
frequency bands that are more important for human hearing.
This filter applies greater weight to mid-frequencies (500
Hz-5 kHz) and attenuates lower and higher frequencies.
The formula is as follows:

Pa-wei ign
fwSNR (in dB) = 10 x log; (Aweg}“edsgal)

P, A-weighted noise

where Pa-weighted signal a0d Pa-weighted noise are the power values
of the signal and noise after applying the A-weighting filter.
In the code, noise is estimated similarly to SegSNR, by
identifying low-energy portions of the audio that fall below
a set threshold. The scripts used for SNR calculations can be
found here: https://github.com/ahmedajan/SNR_Calculation_
For_VPQAD/tree/main.

RECORDS AND STORAGE

Data Processing and Storage

After each recording session, the data were stored in a
secure, password-protected digital archive, with access only
to authorized researchers. This was done to maintain privacy
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FIG. 5. Data directory architecture. TD represents the folder with text-
dependent data, and TID represents the folder with text-independent data.

while all identifying information was separated from the
audio files and permanently deleted from the recordings.
The files were anonymized by assigning each recording a
unique identification code, ensuring no personal information
was linked to the voice data. This ensured that the dataset
could now be made public while maintaining participants’
privacy according to the IRB regulations.

File Naming Conventions and Folder Architecture

Files are named subjectID_ microphoneNumber_ Recording-
Type.wav (e.g., sub001_1_td.wav). Fig. 5 shows the Direc-
tory architecture. Microphone number 1 is the AT2020, and
microphone number 2 represents the SM58. For recording
type, td represents text-dependent data, and tid represents
text-independent data.

INSIGHTS AND NOTES

Accessing Data

The VPQAD is intended exclusively for academic research.
To obtain access, researchers are required to sign the End
User License Agreement (EULA), which can be requested
via email at mimtiaz@clarkson.edu or downloaded directly
from the IEEE Dataport. A signed EULA must then be
returned to this email address. Only emails originating from
academic accounts will be accepted.

Dataset Limitations

With VPQAD, several limitations should be considered.
The mean noise level of 19.60 dB suggests that most of
the data were collected in moderately noisy environments,
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similar to what might be experienced in university settings.
While this range is suitable for simulating low to moderate
noise conditions, it does not fully capture highly noisy
environments such as urban streets and industrial settings,
which typically feature noise above 70 dB. Therefore, while
adequate for many real-world scenarios, future data collec-
tion efforts may consider incorporating higher noise levels
to test system performance in more challenging acoustic
conditions.

The 44.1 kHz sampling rate and 16-bit bit depth are
commonly used in audio data collection, capturing the full
range of human speech and providing adequate dynamic
range. However, to improve the precision of data, increasing
the sampling rate to 48 kHz could allow for a better repre-
sentation of high-frequency noise, which may be present in
more complex acoustic environments [21], [24]. Addition-
ally, upgrading to 24-bit depth would enhance the dynamic
range, allowing for more accurate handling of lower level
signals in noisy environments and thus improving speech
recognition and enhancement models [22].

The dataset focuses exclusively on English, which may
limit its use for developing multilingual ASR systems. Ad-
ditionally, although it includes recordings in real-world noisy
environments, these conditions are still somewhat controlled
and may not fully capture the complexity of all real-world
scenarios. The participant pool, though diverse, is limited
to 50 individuals, which may not represent broader popula-
tion demographics. Moreover, using consistent, high-quality
recording equipment, while beneficial for audio clarity, could
introduce a bias toward specific acoustic characteristics,
potentially affecting the generalizability of ASR models.
Finally, while the dataset’s total duration of 50 h is sub-
stantial, it may still be insufficient for training large-scale
ASR models, necessitating additional data sources.

SOURCE CODE AND SCRIPTS

The scripts for calculating signal-to-noise ratios (SNRs),
segmenting audio files, and evaluating speech quality metrics
are publicly accessible. These also include segmentation
scripts that can trim recordings into smaller segments con-
taining individual spoken words. These are available via
GitHub and the repository link for scripts used in this
dataset is available at: https://github.com/ahmedajan/SNR_
Calculation_For_VPQAD/tree/main.
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