Check for
Updates

Towards Effective Machine Learning Models for Ransomware
Detection via Low-Level Hardware Information

Chutitep Woralert Chen Liu Zander Blasingame
Clarkson University Clarkson University Clarkson University
USA USA USA

woralec@clarkson.edu

Abstract

In recent years, ransomware attacks have grown dramatically. New
variants continually emerging make tracking and mitigating these
threats increasingly difficult using traditional detection methods.
As the landscape of ransomware evolves, there is a growing need
for more advanced detection techniques. Neural networks have
gained popularity as a method to enhance detection accuracy, by
leveraging low-level hardware information such as hardware events
as features for identifying ransomware attacks. In this paper, we
investigated several state-of-the-art supervised learning models,
including XGBoost, LightGBM, MLP, and CNN, which are specifi-
cally designed to handle time series data or image-based data for
ransomware detection. We compared their detection accuracy, com-
putational efficiency, and resource requirements for classification.
Our findings indicate that particularly LightGBM, offer a strong
balance of high detection accuracy, fast processing speed, and low
memory usage, making them highly effective for ransomware de-
tection tasks.

CCS Concepts

« Security and privacy — Systems security; Software security
engineering; Intrusion detection systems.

Keywords
Performance Monitoring Counters, Supervised Learning, Ransomware

ACM Reference Format:

Chutitep Woralert, Chen Liu, and Zander Blasingame. 2024. Towards Ef-
fective Machine Learning Models for Ransomware Detection via Low-
Level Hardware Information. In International Workshop on Hardware and
Architectural Support for Security and Privacy 2024 (HASP °24), Novem-
ber 02, 2024, Austin, TX, USA. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3696843.3696847

1 Introduction

One of the most valuable assets of cyberspace is data. Recognizing
the importance of data, hackers have developed a type of attack
known as “ransomware”, which locks users out of their critical
data and demands a ransom for its release. The consequences of a
ransomware attack can be severe, imposing significant burdens on
the victim. This includes system downtime and substantial financial

This work is licensed under a Creative Commons Attribution International
4.0 License.

HASP °24, November 02, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1221-0/24/11
https://doi.org/10.1145/3696843.3696847

10

cliu@clarkson.edu

blasinzw@clarkson.edu

cost from either paying the ransom or human capital spent on sys-
tem recovery. In recent years, many a new variant of ransomware
has emerged with distinct functionality and method of spreading.
Some ransomware variants serve dual purposes, such as spying on
user activities or exfiltrating data, which can result in the leakage
of sensitive information.

While static signature-based tools such as antivirus software can
be effective against widely-spread known ransomware attacks, they
fall short when it comes to zero-day attacks or unknown variants,
due to a lack of matching signatures in the database. In contrast,
dynamic analysis and anomaly detection tools offer the potential of
detecting zero-day attacks or unknown variants through behavioral
analysis. Ransomware typically generates an unusual amount of
file system activities such as reading, modifying, and deleting the
data to carry out its encryption process. Looking at this behavior,
various tools have been developed to detect ransomware, including
ShieldFS by Continella et al. [12], Redemtion by Kharraz et al.[23],
and SSD-Insider++ by Baek et al. [8]. Additionally, network traces
can also be used as another means for ransomware detection, as
demonstrated by Almashhadani et al. [5].

Although performance monitoring counters (PMCs) were orig-
inally designed to diagnose program performance, they can also
capture detailed low-level hardware information that effectively
represents a program’s behavior. This capability makes PMCs a
powerful tool for detecting ransomware attacks, as demonstrated
by previous work [4, 7, 17, 28, 29]. By analyzing the data collected
from performance counters to identify anomalies, it is possible to
detect ransomware attacks occurring within a system.

One way to build such a detection model is through a semi-
supervised one-class learning method, which assumes no prior
knowledge of the ransomware during the training stage. However,
while this method doesn’t require pre-existing knowledge of the
attack, it can be prone to false predictions. In the ongoing battle
against ransomware, every opportunity to improve detection is
crucial. An alternative approach is to use a supervised two-class
model that leverages existing knowledge of ransomware during
training. This method helps to reduce false prediction cases while
still detecting previously unseen ransomware attacks, as shown in
[29]. Ganfure et al. [17] introduced a new approach that converts
the performance counter data into images, which are then ana-
lyzed using a convolutional neural network (CNN) for image-based
classification to detect ransomware.

In this work, we evaluated various supervised learning mod-
els for ransomware detection, utilizing either native time series
data or converted image data. In addition to detection accuracy,
we also assessed their associated data processing time, prediction
time, as well as memory usage. Our results show that neural net-
work models, such as Multilayer Perceptron (MLP) and CNN, can

HASP 24, November 02, 2024, Austin, TX, USA

achieve exceptionally high detection accuracy, over 99.31% on av-
erage. The gradient boosting models, such as Extreme Gradient
Boosting (XGBoost) and Light Gradient Boosting (LightGBM) can
acheive comparable detection accuracy as the neural network mod-
els, with the best detection accuracy being 99.97% compared to
99.98% of CNN image classification model. However, the gradient
boosting models on average have much faster prediction time, with
LightGBM only taking 7ms to perform classification, while the CNN
model can take as much as 59ms to classify the same input window.
On average the gradient boosting model also requires less memory
to operate, with only 413MB of memory required for the LightGBM
model while the CNN model can take up to 935MB of memory
usage, which demonstrates the efficiency and lightweight nature
of the gradient boosting models.

The contribution of this work lies in our investigation of state-
of-the-art supervised learning models to identify the best approach
in terms of performance and efficiency at detecting ransomware at-
tacks using low-level hardware information. By evaluating various
models, we aim to identify the optimal balance between perfor-
mance and resource efficiency, providing insights into the best
methodologies for enhancing ransomware detection capabilities on
real-world systems.

The rest of this paper is organized as follows. In Section 2, we
provide background information on the ransomware detection tech-
niques and the performance counter. The architecture of the pro-
posed framework is presented in Section 3. The evaluation of the
proposed framework is presented in Section 4. Lastly, the conclu-
sions are drawn in Section 5.

2 Background

In this section, we provide an overview of the ransomware detec-
tion and mitigation techniques, as well as the background and the
use cases of the performance monitoring counter for ransomware
detection.

2.1 Ransomware Detection Techniques

Traditionally, ransomware detection has relied on signature-based
methods, where the program’s signature, derived from its exe-
cutable or source code, is compared against a database of known
malware signatures. If a match is found, the program is flagged as
malicious. The antivirus programs such as Norton, McAfee, Win-
dows Defender, and ClamAV are common examples of tools that
utilize this technique. However, for these tools to be effective, they
must have prior knowledge of the attack signatures. To circum-
vent this, attackers continually create new ransomware variants
with altered signatures, rendering signature-based detection less
effective.

To address the limitations of signature-based detection, the de-
fenders have been developing behavioral analysis-based tools. Ran-
somware attacks typically involve extensive file system operations,
such as reading, writing, and deleting files, as the ransomware often
deletes the original files to prevent recovery. Advanced ransomware
that uses asymmetric encryption usually needs to communicate
with a Command-and-Control (C2) server to store the encryption
key, which can be detected through network packet tracing tools
like Wireshark. These network traces become even more apparent

11

Chutitep Woralert, Chen Liu, and Zander Blasingame

if the ransomware attempts to exfiltrate the user data, generating
significant network traffic while the data is being transferred to the
attacker. These abnormal behaviors during a ransomware attack
can signal anomalies in the system, making behavioral analysis a
valuable detection method. However, some ransomware variants
can evade detection by employing techniques like adding padding to
the attack or mimicking benign programs. This highlights the need
for more robust behavioral analysis models to effectively detect
and counter these evolving ransomware threats.

2.2 Performance Monitoring Counters

The performance monitoring unit (PMU) can be found in most mod-
ern processors that support architectural and micro-architectural
hardware event profiling. Performance monitoring counters (PMCs)
are specialized registers inside PMU that capture low-level hard-
ware information by monitoring specific hardware events that pro-
vide insights into program behavior. The PMU contains config-
uration registers to set up the parameters, including enabling or
disabling the counter, selecting events to monitor, monitoring mode,
and privilege level, for the performance counter monitoring.

Accessing and utilizing the performance counter can be com-
plex, but fortunately, several tools have been developed to simplify
this process. The tools such as Intel VTune, Xcode Instruments,
Perf Linux[14], and K-Leb[27] make PMCs more accessible, broad-
ening their applications and making it easier for users to use the
performance counter for tasks such as optimization and anomaly
detection.

2.3 Ransomware Detection with Performance
Counter

Previous studies have investigated the use of performance counters
in detecting ransomware attacks. Alarm et al. [4] demonstrated
the effectiveness of using a one-class threshold-based LSTM au-
toencoder with the performance counter data collected from in-
dividual programs to identify ransomware attacks. Woralert et al.
[28] conducted an extensive feature selection study specifically
for ransomware detection. They also explored system-wide perfor-
mance monitoring, offering improved scalability and the potential
for cross-platform monitoring, rather than limiting the monitor-
ing to individual process. Ganfure et al. [17] introduced a novel
approach using convolutional neural networks (CNNs) for binary
classification by converting performance counter data into the
image domain to represent system behavior, thereby aiding the
ransomware detection.

In this paper, we further explore the use of various two-class
models with system-wide performance monitoring to detect ran-
somware attacks. Additionally, we evaluate multiple representative
machine learning models for categorical classification, assessing
their performance and efficiency in handling both time series and
image data.

3 Detection Model Framework

In this section, we present our detection framework which is com-
posed of two primary components: the data collection module and
the classification module, as illustrated in Figure 1.

Towards Effective Machine Learning Models for Ransomware Detection via Low-Level Hardware Information

3.1 Data Collection Module

In this work, we employ K-LEB, a performance counter data col-
lection tool developed by Woralert et al. [27] as the foundation for
our data collection module.

K-LEB is selected due to its lightweight nature, which is es-
sential for minimizing performance overhead during deployment.
Maintaining low overhead is critical because the system must be
continuously monitored in real-time with fine-grain granularity
to perform real-time analysis of the time series data. Tools that
require significant resources, such as Instruments, could introduce
substantial overhead, making them less suitable for this monitoring
purpose.

To ensure efficient monitoring, K-LEB is configured to collect the
system performance counter data at an interval of 10ms. To safe-
guard the integrity of the performance counter data from potential
ransomware corruption or encryption, the data log is secured with
root privileges. Additionally, to prevent attackers from accessing
the data log, the logs are segmented and periodically transferred to
a separate machine, where they are reassembled and stored for fur-
ther processing and logging. The original data log is then removed
from the user’s machine.

3.1.1 Time Series Data. The native data collection by K-LEB stores
the data in a time series format in a comma-separated values (CSV)
file. Each column represents a specific hardware event to be moni-
tored, while each row represents the hardware event counts from
the selected performance counters during each time step of the
time series, as shown in Figure 2. The data is then split up into a
smaller window size, which is used to represent behavior in that
time period and used as input for the classification model.

3.1.2 Image Conversion. To perform classification using image
classification models, we convert time series data into image snap-
shot data for each sliding window. In this work, we convert the
time series data into grey-scale images that represent the hardware
event count during different periods. First, the performance counter
value is normalized and scaled to be between 0 and 1. Python Imag-
ing Library (PIL) is then used to convert the scaled value to the
greyscale image where the width is the size of a sliding window,
and the height is the number of features that will be used for the
classification, as shown in Figure 2.

3.2 Classification Module

In this section, we investigate different types of machine learning
models that can be used as the classifier for our malware detection
scheme. Specifically, we explore the MLP, LSTM, CNN, XGBoost,
and LightGBM algorithms. The MLP, LSTM, and CNN models are
implemented in TensorFlow [2]. We provide a brief overview of the
classification algorithms in this section.

3.2.1 MLP. The Multilayer Perceptron (MLP) is another name
for a modern feed-forward artificial neural network which can be
trained via back-propagation [6, 9]. The MLP is one of the simplest
kinds of neural networks, consists of multiple layers containing
multiple “neurons” and a non-linear activation. A particular layer
can be simply defined as an affine transformation composed with a
component-wise non-linearity, i.e., given an input vector x € R", a

12

HASP 24, November 02, 2024, Austin, TX, USA

weights matrix 6 € R™*", a bias vector b € R™, and component-
wise non-linear function f : R — R™ the layer can be defined
as

y=f(x0"+b) 1)
with output vector y € R™. The learnable parameters, {0, b}, are
then learned using back-propagation in combination with an update
algorithm like stochastic gradient descent (SGD) [10]. In practice,
we train the neural network with a momentum-based Adam algo-
rithm which has stronger convergence guarantees [24]. Despite its
simplicity, the MLP functions as a universal approximator assuming
arbitrary width or depth [21]. To train the MLP for classification,
we use the softmax function on the last layer to scale the outputs
into class probabilities. The softmax function ¢ : RK — [0,1]¥ is
defined as

e

K :
Zj:] e

where z = (z1,...,2K) € RK is the input vector. In the case of
binary classification, we have K = 2 and ¢(z); denoting the prob-
ability of benign behavior and o(z); denoting the probability of
malicious behavior. Using this output we minimize the cross en-
tropy between the parameterized distribution, Py and the data
distribution Py,;, with the cross entropy defined as

H(Pgata>Po) = —Ep gy, [108 Pyl ®)

By minimizing the cross entropy, the MLP learns to model the
probability of a given sample belonging to the benign or malicious
class. The MLP models are trained with hidden layers of size 100
and with the ReLU [15] activation function.

@

a(z); =

3.22 LSTM. The Long Short-Term Memory (LSTM) architecture [20]
is used as part of the classification pipeline. Recurrent Neural Net-
work (RNN) is a type of neural network designed to handle time
series data; however, they have the problem of vanishing gradients
as the time series become longer [20]. To remedy this, the LSTM
architecture introduces two states and three gates, see Equations (4)
to (8) where o denotes the sigmoid activation function, W.. denotes
weight tensors, b. denotes bias tensors, and © is the Hadamard
product.

ir = o(Wxixe + Wyihe—1 + ;))
fr = o(Wypxs + Wyrhe—1 +by) (5)
o0t = o(Wxoxt + Wyoht—1 + bo) (6)
¢t = fr © ct—1 + iy © tanh(Wyexy + Wyehe—1 + be) (7)
h: = oy © tanh(c;) 3)

The initial states are given as ¢y = 0 and hy = 0. The hidden state,
ht, is used to store encoded information about the previous time
step; conversely, the cell state, c;, acts as a form of global memory
of the LSTM network over all time steps. Every gate operates on the
current data, x;, and hidden state from the previous time step, h;—1.
The input gate, iz, is used to determine how much of the current data
is to be remembered in the global memory, c;. Likewise, the forget
gate, f;, is used to determine how much the global memory should
remember past events. Finally, the output gate, o, determines how
strongly the output signal, tanh(c;), should be passed to the next
hidden state and output, h;.

HASP 24, November 02, 2024, Austin, TX, USA

Chutitep Woralert, Chen Liu, and Zander Blasingame

Data Collection Module Classifier Module
Software Software
level level
Performance
________________________________ \ Counter Data &\ | /(Input Time Sliding ~ Time Series Output
; ! sequence Window Classification
i | Controller Counter | ! .
' Process Data &
Kernel Space , [0,1] Notify
! ' _— - Benign
— K-LEB Kernel : IMalicious
' Module H)
] e - o = e oo ammin c mmm 2 it m mm i a s \ DD T /
) Data Collection Module / Input Image Image Output \
sequence Conversion Classification
[1 Leave Low-level L e
< 7 traces hardware — _
SN information] II Moy
Hardware = Bepl_gn
level | 1 IMalicious
PMU HW Counter
— Image Model /
Figure 1: Proposed Detection Framework
Time Series Data
= e - Time Series Models Time Series
— LSTM Classification
(Window size, MLP . -
- n/Mali
- — - Feature) CNN Benign/Malicious
= XGBoost
N LightGBM
PIL Image
Conversion
Image Data
Image
Image Models .]
gMLP Classification
(Window size, i .
Feature Color CNN Benign/Malicious
Channels) XGBoost
LightGBM

Figure 2: Time Series to Image Data Conversion

The LSTM model is used in a two-class scenario where, instead
of training the LSTM to preform time series forecasting, the model
is trained to predict the class of the given time series data. The
LSTM backbone for the two-class approach consists of one LSTM
layer of 128 units followed by a dropout layer and two dense fully-
connected layers. After the output of the LSTM model, a two-layer
dense feed-forward neural network is attached on top with the first
layer using the ReLU activation function, and a softmax activation
function on the last layer to scale the output to class probabilities.

13

Like with the MLP model, the network is then trained to minimize
the cross entropy.

3.23 CNN. Convolutional Neural Networks (CNNs) are a popular
class of neural networks that has achieved a high degree of success
in computer vision and imagining applications [16, 25]. The key
strength of CNNs over a more simple MLP is that CNNs restrict the
information flow between the layers by consider on “local” informa-
tion, a restriction which is quite sensible for computer vision type
tasks, allowing for smaller parameter counts and more efficient
information routing in the network. A convolutional layer works

Towards Effective Machine Learning Models for Ransomware Detection via Low-Level Hardware Information

by convolving the input tensor with a learnable kernel to create
the output. Given an input tensor x € REXW with ¢ denoting the
number of channels and 4 and w denoting the height and width of
the spatial dimensions, a convolutional kernel w € RE*K*K with
kernel size k, and bias b € REXPXW _the output y € REXAXW ¢
defined as

c k k
Yi,j = bij +Z Z Z Xei-a,j—bWe,a,b)
h=1a=—k b=—k

To decrease the spatial dimension between convolution layers, a
convolutional stride or pooling layer can be applied. The output of
the last layer of the CNN is flattened and fed into a feed-forward
neural network with a softmax activation function. Like the MLP
and LSTM networks, the model is trained to minimize the cross
entropy. In this work the CNN time series models are trained with
a kernel size of 3 with a channel size of 100 using the ReLU acti-
vation function. The image classification models follow the same
hyperparameters as its time series counterpart.

3.24 Gradient Boosting. Gradient boosting is a popular kind of
boosting algorithm that combines several weak learners, often de-
cision trees, into strong learners where each new model aims to
minimize a loss function of the previous model using a gradient de-
scent algorithm [26]. This is accomplished by training a new weak
model to minimize the gradient of the loss function with respect to
the prediction of the current ensemble. The predictions of newly
trained weak model are then added to the ensemble and the process
is repeated until the stopping criterion is met. Gradient boosting
has the advantage of being much lighter on system resources than
neural network based models, as decision trees are less resource in-
tensive. Moreover, recent work from Grinsztajn et al. [19] showed
that tree-based models outperform deep learning based models
on problems with tabular data. Therefore, these kinds of models
should achieve state-of-the-art performance with minimal compu-
tational overhead compared to the deep learning based approaches
enumerated above. In this work, we use two widely used gradient
boosting libraries: eXtreme Gradient Boosting (XGBoost) [11] and
Light Gradient-Boosting Machine (LightGBM) [22]. All the gradient
boosting models in this work are trained with a max depth of 10
and a max leaves number of 256.

3.3 Feature Selection

Each hardware event reflects a specific behavior that occurs during
a program’s runtime. The AMD processor we used in this study,
over 60 hardware events are available for selection. However, only
six programmable performance counters can be utilized to monitor
these hardware events concurrently, significantly limiting the num-
ber of events that can be tracked. Therefore, it is crucial to select
the most relevant hardware events as features for the classification
model.

In this work, we followed the study made by Woralert et al. [28],
selecting a set of six events with the highest relevance ROC-AUC
scores: BR_RET, INST_RET, DCACHE_ACCESS, LOAD, STORE,
and MISS_LLC. These events were chosen based on their ability
to capture behaviors indicative of various ransomware attacks,
which manifest as deviations from the baseline behavior of benign
programs, thereby signaling potential anomalies.

14

HASP 24, November 02, 2024, Austin, TX, USA

4 Experiment Analysis

To evaluate the effectiveness of the supervised learning two-class
model, we deployed the data collection module on the user system
and conducted both benign and malicious tasks on the user sys-
tem. The performance counter data generated during these tasks
were logged and transferred to a separate machine where the clas-
sifier module was running to perform classification, distinguishing
between benign and malicious activities.

4.1 Experiment Setup

The experiments were performed on an AMD Ryzen 7 5800X @
3.8GHz 8-Core Processor running Ubuntu 20.04 as the user ma-
chines, and an Intel Xeon Silver 4114 processor @ 2.20GHz running
Ubuntu 20.04 as the classifier machine.

For the experiment, the K-LEB data collection module was config-
ured to monitor six specific hardware events, which were sampled
at a 10ms interval, as detailed in Section 3. The data collected from
these events formed long time series data, encompassing both be-
nign and malicious scenarios.

In the benign scenario, various workloads were executed on
the user system, such as coding, file read/write operations, copy-
ing/moving files, web browsing, video streaming, stress tests, be-
nign encryption programs, and other standard Linux commands.
This mixture of benign workloads was used to train and test the clas-
sifier models. For the ransomware scenario, ransomware samples
were downloaded from the malware database MalwareBazaar [1],
providing real malware executables for research purposes. The pri-
mary criterion for selecting ransomware was its ability to execute
and carry out its malicious encryption task. The ransomware fami-
lies used in this study included Alphv, Blackcat, Golang, Hellokitty,
Holycrypt, Monti, Ransomexx, Revil, Sodinokibi, and Tellyouthep-
ass. Additionally, open-source ransomware that are available on
GitHub, such as C Ransomware [3], and Cryptsky [13] was used as
well. The user machine was populated with 65GB of various user
files including videos, photos, source code, and documents. Each
ransomware sample was individually downloaded and executed on
the user system to collect performance counter data during the at-
tack. This data was then used for training and testing the two-class
classification models.

After each ransomware execution, the system was restored to a
previous state using Timeshift [18]. Timeshift is a backup utility that
can be used to take a snapshot of the system for backup. Timeshift
was employed to restore the file system and remove ransomware
infections, ensuring a clean environment before executing the next
ransomware sample.

4.2 Model Detection Performance

While the LSTM model has demonstrated high effectiveness in ana-
lyzing time series data with relatively high precision, it is known to
demand significant computational resources in order to perform the
classification. In this section, we explore alternative classification
models that can handle time series data for two-class classifications,
such as XGBoost, LightGBM, MLP, and CNN models. Furthermore,
we also investigate the application of image classification models
as well.

HASP 24, November 02, 2024, Austin, TX, USA

Chutitep Woralert, Chen Liu, and Zander Blasingame

Table 1: Detection Accuracy Comparison across Supervised Learning Models

Model/Dataset Time Series Data Image Data

Window size 50 Accuracy Precision Recall F1Score | Accuracy Precision Recall F1 Score
LSTM 97.05 98.77 95.27 96.99 N/A N/A N/A N/A
XGBoost 99.81 99.93 99.70 99.81 99.73 99.93 99.53 99.73
LightGBM 99.77 99.89 99.65 99.77 99.78 99.95 99.61 99.78
MLP 98.41 99.07 99.07 98.73 99.40 99.31 99.49 99.40
CNN 97.94 97.43 98.56 97.97 99.91 99.93 99.89 99.91
Window size 100 Accuracy Precision Recall F1Score | Accuracy Precision Recall F1 Score
LSTM 97.82 99.07 96.55 97.79 N/A N/A N/A N/A
XGBoost 99.82 99.94 99.70 99.82 99.80 99.95 99.66 99.80
LightGBM 99.85 99.97 99.73 99.85 99.81 99.94 99.68 99.81
MLP 99.02 98.97 99.08 99.02 99.70 99.70 99.71 99.70
CNN 98.30 98.57 98.04 98.27 99.88 99.89 99.86 99.88
Window size 500 Accuracy Precision Recall F1Score | Accuracy Precision Recall F1 Score
LSTM 98.03 99.30 96.75 98.00 N/A N/A N/A N/A
XGBoost 99.93 99.97 99.89 99.93 99.91 99.98 99.83 99.91
LightGBM 99.93 99.97 99.89 99.93 99.91 99.99 99.84 99.91
MLP 98.95 99.35 98.54 98.92 99.92 99.96 99.87 99.92
CNN 99.15 98.81 99.50 99.15 99.94 99.99 99.89 99.94
Window size 1000 | Accuracy Precision Recall F1Score | Accuracy Precision Recall F1 Score
LSTM 98.50 99.65 97.30 98.46 N/A N/A N/A N/A
XGBoost 99.96 99.99 99.93 99.96 99.95 99.99 99.91 99.95
LightGBM 99.97 100 99.95 99.97 99.95 99.99 99.91 99.95
MLP 99.24 99.29 99.20 99.23 99.92 99.95 99.90 99.92
CNN 99.24 99.02 99.47 99.25 99.98 99.99 99.96 99.98

Table 1 shows the result of each two-class model detection ac-
curacy, precision, recall, and f1 score with different window sizes
of 50, 100, 500, and 1000 for the prediction period. The data pre-
sented here are from an average of 10-fold cross-validation. The
table presents the detection accuracy for both models that use Time
Series (TS) data and the models that use Image (IMG) data.

The gradient boosting model XGBoost achieves a very high de-
tection accuracy, over 99.87% on average across all window sizes
with the highest detection accuracy being 99.96% at the window
size of 1000 for the time series data, followed closely by the detec-
tion accuracy of 99.95% with the image data of the same window
size. Similarly, Light GBM models also achieve exceptional detection
accuracy, while being a lightweight model that uses a similar gradi-
ent boosting method to perform its classification. On average, the
LightGBM models achieve an accuracy over 99.87% across all win-
dow sizes for both time series and image datasets. The LightGBM
model achieves the highest detection accuracy across all models,
being 99.97% on the time series data at the window size of 1000.

The neural network models are shown to have good detection
accuracy overall on the image data. Both MLP and CNN models
achieve very high detection accuracy across all window sizes with
over 99.83% detection rate on average for the image dataset, the
highest detection accuracy being 99.92% and 99.98%, respectively,
at the window size of 1000. The neural network models are shown
to have a slightly lower detection accuracy when dealing with the
time series data, with an average detection accuracy of 98.78% .

15

Overall, the model shows an increase in accuracy relative to
the window size input. The models with a bigger window size
are shown to have better accuracy than the same type of models
with a smaller window size. This is due to the fact that the larger
window size can paint a clearer behavior that may be displayed
over a longer time period. The recurrent neural network model
such as the LSTM model requires long time series data to achieve
comparable detection accuracy to other models and hence has a
drop in accuracy with the smaller window size.

4.3 Deployment Resource Requirements

Even though the bigger window size input can help increase the ac-
curacy of the model, it also requires more computational resources
and takes longer to perform the classification. Table 2 shows the
deployment resource required to perform classification in terms
of data processing time, time to predict the input window, and
memory usage during the deployment. The data presented in the
table are collected during the deployment and averaged over 100
iterations.

While the CNN models have been shown to have very high ac-
curacy, they also require more resources than other neural network
and gradient-boosting models on average in both predicting time
and memory usage. In fact, the CNN image classification model
requires the most memory for the deployment as shown in Figure 3.
The LSTM models have been shown to have relatively longer pre-
diction time when compared to its peer supervised models, ranging

Towards Effective Machine Learning Models for Ransomware Detection via Low-Level Hardware Information

Table 2: Resources Requirement for Deployment.

Model Process & Predict (s) Memory (MB)
Window size 50

LSTM(TS) 0.013 & 0.089 469
XGBoost(TS) 0.013 & 0.014 420
XGBoost (IMG) 0.052 & 0.019 445
LGBM(TS) 0.016 & 0.014 401
LGBM(IMG) 0.054 & 0.029 426
MLP(TS) 0.011 & 0.054 454
MLP (IMG) 0.056 & 0.055 459
CNN(TS) 0.012 & 0.056 461
CNN(IMG) 0.055 & 0.056 489
Window size 100

LSTM(TS) 0.013 & 0.119 496
XGBoost(TS) 0.015 & 0.013 420
XGBoost (IMG) 0.068 & 0.023 445
LGBM(TS) 0.017 & 0.010 400
LGBM(IMG) 0.067 & 0.030 428
MLP(TS) 0.013 & 0.055 460
MLP (IMG) 0.068 & 0.051 468
CNN(TS) 0.014 & 0.057 470
CNN(IMG) 0.072 & 0.054 544
Window size 500

LSTM(TS) 0.031 & 0.335 700
XGBoost(TS) 0.029 & 0.011 424
XGBoost (IMG) 0.176 & 0.026 464
LGBM(TS) 0.034 & 0.007 406
LGBM(IMG) 0.151 & 0.026 438
MLP(TS) 0.030 & 0.058 502
MLP (IMG) 0.182 & 0.047 523
CNN(TS) 0.030 & 0.062 556
CNN(IMG) 0.189 & 0.051 834
Window size 1000

LSTM(TS) 0.050 & 0.607 828
XGBoost (TS) 0.048 & 0.015 434
XGBoost (IMG) 0.305 & 0.053 452
LGBM(TS) 0.051 & 0.007 413
LGBM(IMG) 0.341 & 0.038 452
MLP(TS) 0.050 & 0.061 536
MLP (IMG) 0.317 & 0.052 572
CNN(TS) 0.050 & 0.062 629
CNN(IMG) 0.312 & 0.059 935

from 89ms to 607ms. In terms of memory usage, it is only second
to the CNN image classification models. The LightGBM models
have the fastest prediction time with the least memory usage on
average, which means they can be used to perform classification in
a low computation power machine. XGBoost is also computation-
ally lightweight with comparable memory usage to the LightGBM
models, due to its similarity in using a simple gradient boosting
tree method. However, the LightGBM still has a faster prediction

16

HASP 24, November 02, 2024, Austin, TX, USA

time and uses less memory to perform the classification on average.
The gradient boosting models are shown to be more efficient over
the neural network models in both prediction time and memory
usage during the deployment.

While the detection accuracy is important, the resource require-
ment for the model should also be considered. While the CNN
models have very high overall detection accuracy, it is a computa-
tionally expensive model to be deployed, especially on the machine
with less computational resources available. The MLP models are
shown to have similar detection performance when compared to
the CNN models, but they require less memory usage during the
deployment, which might be a better model choice if the data does
not require the high complexity of the CNN model to be effectively
classified.

The gradient boosting models are shown to achieve very high de-
tection accuracy, while still being more lightweight when compared
to the neural network models. In particular, LightGBM models have
achieved the highest detection accuracy overall, while being the
fastest to perform the classification and at the same time require the
smallest memory usage during runtime. This result shows the effec-
tiveness of the gradient boosting models for classification problems
when compared to more complex neural network models.

4.4 Time series vs Image Data Classification

From Table 1, we can see while the image classification models
show promising results with a small detection accuracy advantage
over the time series models, the image classification comes with the
additional overhead of the time required to process data conversion
from time series data to the image data. As shown in Table 2, the
image classification models require data pre-processing time more
than 3X the time series data pre-processing time on average. The
image models also require more memory usage during the deploy-
ment when compared to the time series models. At the same time,
the memory required to store and process the data for the image
classification is also bigger than the native time series data format.

The gradient boosting models perform better in terms of overall
detection accuracy with the native time series data, at the same
time require much less prediction time, less than three times of
the image classification model on average with less memory usage
during deployment.

Depending on the type of the application and deployment sce-
nario, it might not be necessary to convert the native time series
data into image for classification, as it adds extra overhead with
minor improvement for the neural network models. Compared with
the gradient boosting models, the image classification only incur
extra overheads with no additional benefit.

5 Conclusions

In this paper, we explored several state-of-the-art time series classi-
fication models, including XGBoost, LightGBM, MLP, and CNN. We
compared their detection performance and the deployment cost of
each model for real-time ransomware detection. We also examined
the benefits and trade-offs of converting time series data into image
domain for image classification models. While this conversion may

HASP 24, November 02, 2024, Austin, TX, USA

480

s
3
5

Memory(MB)
IS

420

800

Memory(MB)

400

99.910

Chutitep Woralert, Chen Liu, and Zander Blasingame

99.880
@ @
540
i 99.651
520 _
&STM(TS) N 99.422
CNN(TS) @ILP(IvG) 98.957 500 &STH(TS) 57153
MLP(TS) -
98.639 3 g 180 98.964 3
@peoostive) £ S @
08321 8 E ENNCTS) @-+ve) 3
== G 460 MLP(TS) 98736 &
=
.ghtGBM(IMG) 96,003 ‘Boost(lMG) 98.507
440
‘Boost(TS)
97.686 ‘htGBM(IMG) 98.278
120 ‘Boost(TS)
27368 98.049
@ohioEurs) - ‘htGBM(TS)
97.050 97.820
Lo e 008 010 0.04 0.06 0.08 010 ol2
Time(s) Time(s)
(a) Window Size of 50 (b) Window Size of 100
99.940 99.980
.IN(IMG) .IN(IMG)
99.728 900, 99.816
99516 &STM(TS) | fo9.651
800
"ST (TS) 99.303 99.487
o
99.091 & = 700 99322 3
S g
=] S 3
o £ 99.158 &
98.879 § S CNN(TS) 2
=
CNN(TS) 600
98.667 .LP(\MG) 98.993
.,P(IMG)
MLP(TS) MLP(TS)
98.454 500 - 98.829
Boost(IMG)
htGBM(IMG BIGIMG)
Boost(TS) " MG} 98.242 Boost(TS) .pm nces
htGBM(TS) htGBM(TS)
400
98.500
98030 0.1 0.2 0.3 0.4 05 0.6

0.05 0.10 0.20

Time(s)

(c) Window Size of 500

025

Time(s)

(d) Window Size of 1000

Figure 3: Performance vs Efficiency Comparison across Different Models

offer a slight increase in detection accuracy for the neural network- [2
based models, it also requires significantly more processing time 3
and computational resources for both prediction and deployment.
Overall, our findings indicate that gradient boosting models us- [4
ing native time series data is a promising approach. The LightGBM
model, in particular, exhibited outstanding performance, achieving [5
the highest detection accuracy at 99.97% with the fastest predic-
tion time of just 7ms on average, outperforming other models in
terms of both speed and resource efficiency. This demonstrates its [6
effectiveness in detecting ransomware attacks while maintaining a
lightweight footprint. [7
For future work, we aim to explore the use of lightweight models
to expand the scope of our detection framework, extending its capa- 8
bilities to cover a broader range of malware and other cyberattacks
to further enhancing its versatility and applicability in real-world o
scenarios.
References (10
[1] 2022. MalwareBazaar. https://bazaar.abuse.ch ~ [Online]. Available:
https://bazaar.abuse.ch.

17

]

2022. [Online]. Tensorflow.
https://www.tensorflow.org.
Daniele Affinita. 2020. Ransomware written in C. https://github.com/DaniAffCH/
Ransomware [Online]. Available: https://github.com/DaniAffCH/Ransomware.
Manaar Alam, Sayan Sinha, Sarani Bhattacharya, Swastika Dutta, Debdeep
Mukhopadhyay, and Anupam Chattopadhyay. 2020. RAPPER: Ransomware
Prevention via Performance Counters. arXiv:2004.01712 [cs.CR]

Ahmad O. Almashhadani, Mustafa Kaiiali, Sakir Sezer, and Philip O’Kane. 2019. A
Multi-Classifier Network-Based Crypto Ransomware Detection System: A Case
Study of Locky Ransomware. IEEE Access 7 (2019), 47053. https://doi.org/10.
1109/ACCESS.2019.2907485

Shunichi Amari. 1967. A Theory of Adaptive Pattern Classifiers. IEEE Transactions
on Electronic Computers EC-16, 3 (1967), 299-307. https://doi.org/10.1109/PGEC.
1967.264666

P. Mohan Anand, P. V. Sai Charan, and Sandeep K. Shukla. 2023. HiPeR - Early De-
tection of a Ransomware Attack using Hardware Performance Counters. Digital
Threats 4, 3, Article 43 (oct 2023), 24 pages. https://doi.org/10.1145/3608484
Sungha Baek, Youngdon Jung, David Mohaisen, Sungjin Lee, and DaeHun Nyang.
2021. SSD-Assisted Ransomware Detection and Data Recovery Techniques. IEEE
Trans. Comput. 70, 10 (2021), 1762-1776. https://doi.org/10.1109/TC.2020.3011214
Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003.
A neural probabilistic language model. J Mach. Learn. Res. 3, null (mar 2003),
1137-1155.

J. Bilmes, K. Asanovic, Chee-Whye Chin, and J. Demmel. [n. d.]. Using PHiPAC
to speed error back-propagation learning. In 1997 IEEE International Conference
on Acoustics, Speech, and Signal Processing, Vol. 5. 4153-4156 vol.5. https://doi.

https://www.tensorflow.org Available:

Towards Effective Machine Learning Models for Ransomware Detection via Low-Level Hardware Information

org/10.1109/ICASSP.1997.604861

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD
’16). Association for Computing Machinery, New York, NY, USA, 785-794. https:
//doi.org/10.1145/2939672.2939785

Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro, Giulio De Pasquale,
Alessandro Barenghi, Stefano Zanero, and Federico Maggi. 2016. ShieldFS: A
Self-Healing, Ransomware-Aware Filesystem. In Proceedings of the 32nd Annual
Conference on Computer Security Applications (Los Angeles, California, USA)
(ACSAC ’16). 336-347. https://doi.org/10.1145/2991079.2991110

Skyler Curtis. 2017. CryptSky. https://github.com/deadPix3l/CryptSky [Online].
Available: https://github.com/deadPix3l/CryptSky.

Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1-42.

Kunihiko Fukushima. 1969. Visual Feature Extraction by a Multilayered Net-
work of Analog Threshold Elements. IEEE Transactions on Systems Science and
Cybernetics 5, 4 (1969), 322-333. https://doi.org/10.1109/TSSC.1969.300225
Kunihiko Fukushima. 1980. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in position. Bio-
logical Cybernetics 36 (1980), 193-202. https://api.semanticscholar.org/CorpusID:
206775608

Gaddisa Olani Ganfure, Chun-Feng Wu, Yuan-Hao Chang, and Wei-Kuan Shih.
2023. DeepWare: Imaging Performance Counters With Deep Learning to Detect
Ransomware. IEEE Trans. Comput. 72, 3 (2023). https://doi.org/10.1109/TC.2022.
3173149

Tony George. 2007. Timeshift. https://github.com/teejee2008/timeshift [Online].
Available: https://github.com/teejee2008/timeshift.

Léo Grinsztajn, Edouard Oyallon, and Gaél Varoquaux. 2024. Why do tree-based
models still outperform deep learning on typical tabular data?. In Proceedings
of the 36th International Conference on Neural Information Processing Systems (,
New Orleans, LA, USA,) (NIPS ’22). Curran Associates Inc., Red Hook, NY, USA,
Article 37, 14 pages.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9 (1997), 1735-1780.

HASP 24, November 02, 2024, Austin, TX, USA

[21] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedfor-

ward networks are universal approximators. Neural Networks 2, 5 (1989), 359-366.
https://doi.org/10.1016/0893-6080(89)90020-8

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 3149-3157.

Amin Kharraz and Engin Kirda. 2017. Redemption: Real-Time Protection Against
Ransomware at End-Hosts. In Research in Attacks, Intrusions, and Defenses.
Springer International Publishing, Cham, 98-119.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. 1999. Boosting
algorithms as gradient descent. In Proceedings of the 12th International Conference
on Neural Information Processing Systems (Denver, CO) (NIPS’99). MIT Press,
Cambridge, MA, USA, 512-518.

Chutitep Woralert, James Bruska, Chen Liu, and Lok Yan. 2020. High Fre-
quency Performance Monitoring via Architectural Event Measurement. In
IEEE International Symposium on Workload Characterization (ISWC). 114-122.
https://doi.org/10.1109/IISWC50251.2020.00020

Chutitep Woralert, Chen Liu, and Zander Blasingame. 2023. HARD-Lite: A
Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ran-
somware. IEEE Transactions on Circuits and Systems (2023), 1-12. https:
//doi.org/10.1109/TCS1.2023.3299532

Chutitep Woralert, Chen Liu, Zander Blasingame, and Zhiliu Yang. 2023. A
Comparison of One-class and Two-class Models for Ransomware Detection via
Low-level Hardware Information. In 2023 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST). 1-6. https://doi.org/10.1109/AsianHOST59942.
2023.10409333

