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Abstract—Deepfake technologies, despite advancements in fa-
cial and voice recognition, pose significant threats by replicating
voices or faces, compromising identity verification processes even
during live interactions. This creates risks of impersonation and
unauthorized access to sensitive data. Addressing these threats
is crucial, especially given the ease of creating deepfakes with
free open-source apps, which have advanced to the point where
distinguishing between real and fake is increasingly challenging.
Our developed system enhances biometric security by leveraging
existing hardware, specifically screen illumination, to scrutinize
light reflections from the user’s face. This method seamlessly
integrates into current applications, adding a necessary layer
of security to differentiate genuine individuals from deepfakes,
thereby fortifying the overall biometric security framework
without requiring additional algorithms or hardware.

I. INTRODUCTION

The growing accessibility of deepfake creation tools raises
significant concerns. Online applications now enable users
worldwide to effortlessly generate deepfakes, even without
advanced technical skills or in-depth knowledge of the tech-
nology. This simplicity poses a considerable threat, allowing
individuals to manipulate a small portion of personal data
or a snippet of a video available online to create deceptive
replicas. This accessibility puts anyone in society at risk of
falling victim to such deceptive practices.

Of particular concern is the emergence of applications
like DeepFake Labs. These applications not only produce

high-quality video outputs but also incorporate advanced fa-
cial morphing capabilities, enabling attackers to convincingly
impersonate others. As depicted in Figure 1, this deepfake
example was created using just two minutes of the target
identity, combined with video footage capturing the manner-
isms and expressions of the attacker or source. This ease of
manipulation poses a serious risk to unsuspecting users.

Moreover, individuals with slightly more technical exper-
tise, capable of hacking into mobile devices or laptops, can
directly inject these manipulated videos into the system, as
shown in Figure 2. To address these escalating threats, it
becomes imperative to augment security measures, including
the integration of advanced biometric security protocols where
possible, to fortify defenses against such manipulative prac-
tices.

This becomes problematic for devices relying on hardware-
dependent liveliness or deepfake detection algorithms. By
circumventing these security layers, hackers can successfully
deceive authentication systems and potentially perpetrate iden-
tity fraud. The vulnerability of these technologies underscores
the need for heightened security measures and continuous
innovation in detecting and preventing the misuse of deepfake
technology. There have been instances, including banking
scams, where imposters have utilized deepfake technology to
impersonate others and commit fraud, leading to significant
financial theft [1].

Now that we have grasped the gravity of this threat, the
immediate objective is to devise effective countermeasures
to secure video communications against deepfakes. A few979-8-3315-4090-6/24/$31.00 ©2024 IEEE
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Fig. 1: An image illustrating the deepfake manipulation, wherein the
attacker’s face is seamlessly integrated with the target identity, creating a
deceptive and convincing replica

of the previously conducted experiments include identifying
deep-fake videos by analyzing both visual appearance and
behavioral cues, where a technique was developed that could
analyze deepfakes using behavioral patterns [2], examining
differences between phonemes (speech sounds) and visemes
(lip movements). By detecting irregularities in the alignment
of lip movements with corresponding speech sounds to detect
deepfake [3].

Fig. 2: Injection attack using virtual camera [4]

Employing advanced algorithms to detect expressions and
contextual anomalies within images or videos, comparing them
with recognized facial features. The algorithm then signals
potential forgery or manipulated facial content, assisting in
identifying the presence of deepfake technology or facial al-
terations. [5], Another comparable method prioritizes liveness
detection through the front camera of smartphones, leveraging
advanced algorithms to analyze real-time facial dynamics and
cues. This enables the system to differentiate between genuine
live faces and static or altered images, ultimately elevating
security measures [6]. These features have been compared in
Table I.

However, many of these methods require additional hard-
ware or significant processing power, increasing the overall
cost. Moreover, understanding their real-time functionality can
be complicated. Our contribution lies in leveraging the
built-in screen illumination of smartphones to ascertain
the authenticity of the individual shown during a call. This
approach allows us to determine whether the communication
involves a genuine person or if a deepfake image has been
maliciously inserted. By projecting light from the smartphone
screen, we can illuminate a real person’s face, which will be
accurately captured by the screen. In contrast, if a deepfake is
impersonating the individual, the light will not illuminate the
face correctly, as deepfakes are typically computer-generated.

II. METHODOLOGY

Numerous studies have explored the creation of real-time
deepfakes, employing various algorithms [7]. Among these
methods, one of the most efficient approaches involves con-
ducting an injection attack on communication devices like
phones, laptops, or desktops, which are connected to the
video source. This process manipulates the device’s security
functions, allowing for the redirection of the camera function.
This can be achieved by utilizing a secondary camera or a
virtual camera, which serves as a device or software to feed
data to the camera application, replacing the live feed from the
primary camera. Several open-source applications, including
DroidCam [8], iVCam Webcam [9], or VCamera [10], have
been utilized for these purposes. It’s worth noting that some of
these applications may not be readily available on official app
stores but can be installed using APK files, which are acces-
sible online. However, the installation of APK files typically
requires developer permissions or access to the mobile device.
The secondary camera or virtual camera applications leverage
specific functionalities of mobile cameras. These applications
enable users to load videos from their gallery or connect
to external cameras that are not integrated into the mobile
device. To achieve this functionality, it becomes essential to
gain access to Android features, such as the camera, allowing
for manipulation and redirection to the desired location.

Given that many of these applications are not directly
available on the Play Store and have faced bans from platforms
like the App Store, there is a need to inject them directly
into the mobile device. This involves enabling developer
access for further development. As we strive to enhance the
functionality of these applications, particularly focusing on
facial illumination, we plan to build upon this foundation by
introducing an illumination feature at the application layer. To
root the Google Pixel 3 smartphone using Magisk, we followed
the method outlined below [11].

Magisk is a free, open-source software that grants users
root access to their Android devices. By using Magisk, users
can implement a variety of modifications and customizations,
which has made it a favorite among Android enthusiasts.
Magisk also includes a built-in app for managing root per-
missions and installing various modules.

Featuring a systemless approach and modular design,
Magisk offers a safe and straightforward way to root a device
and add new features and functionalities [12].

1) Download Factory Image: On your Windows/Mac com-
puter, download the factory image of the Pixel 3 that
matches the QPR2 beta version installed on your device.
You can obtain it from the Android Developer download
portal.

2) Unpack Factory Image: Unpack the factory im-
age using your preferred archive manager. Locate the
“image-pixel3-<build number>.zip” file, and extract the
‘boot.img’ file from it.

3) Patch Boot Image: Use Magisk to patch the boot image.
Ensure that you have the latest stable version of Magisk.
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TABLE I: Comparison Table: Related Studies vs. Our Approach
Work Title Approach Key Focus Distinguishing Attacks Computer Centric Smartphone Centric
Detecting DeepFake Videos from
Appearance and Behavior (Agar-
wal et al.)

Analyzing appearance and behav-
ior cues

Visual Attributes 2D, rebroadcast, deep-
fake

Yes No

Detecting DeepFake Videos from
Phoneme-Viseme Mismatches
(Agarwal et al.)

Analyzing phoneme-viseme mis-
matches

Lip Movement Deepfake Yes No

On the Generality of Facial Forgery
Detection (Brockschmidt et al.)

Analyzing facial forgery detection
generality

Facial forgery detection Not specified Yes No

FaceRevelio: a Face Liveness De-
tection System for Smartphones
with a Single Front Camera (Far-
rukh et al.)

Utilizing a single front camera and
advanced algorithms

Facial liveness detection Distinguishing real face,
2D, and deepfake attacks

No Yes

Our Proposed Face Illumination
Method on Smartphones

Detecting deepfake injection
through virtual cameras

Face Illumination Distinguishing virtual
camera-based deepfake
injection

No Yes

magisk –patch /path/to/boot.img
4) Copy and Rename: Copy the Magisk-patched boot

image from your phone to your computer and rename
it to "magisk_patched_boot.img."

5) Reboot into Bootloader Mode: If USB debugging is
enabled, reboot your Pixel 3 into bootloader mode us-
ing the following command: [language=bash] adb reboot
bootloader

6) Flash Patched Boot Image: Flash the patched boot
image and reboot the phone: [language=bash] fastboot
flash boot /path/to/magisk patched boot.img

7) Check Root Access: Open the Magisk app on your Pixel
3, and your device should be recognized as rooted.

Fig. 3: Screenshots showing how to load a media into the V Camera
application.

Following the aforementioned procedures, we successfully
rooted the Pixel 3 phone. The V camera application [10],
designated for use as a secondary camera, was obtained from
the system and subsequently transferred to the mobile device
using the Android Debug Bridge (ADB) by establishing a
connection between the device and the system. Once the
APK file was transferred, it was then installed on the mobile
device. Figure 3 illustrates the steps for loading a media file
into the camera application. The overall appearance of the
application resembles that of a typical camera app, presenting
options to switch between front and back cameras. However,
in the right-hand corner, there is a hidden selection option
that becomes visible only upon interaction. Once selected, this

option provides the user with the choice to load a media file,
which may include photos or videos stored in the gallery.

Before settling on the Deepfake Lab application for our
deepfake creation endeavors, we undertook evaluations of var-
ious other applications to determine the most suitable choice.
Among the applications scrutinized were Avatarify [13] [14],
Synthesia [15], Flawless AI [16], Stability AI [17], Dall-E-
2 [18], and Pinscreen [19]. However, these applications fell
short of meeting our desired output standards. They either
failed to provide the required precision or could not match
the quality achieved with Deepfake Lab. The table II below
outlines some of the limitations we discovered with these
alternative applications.

TABLE II: Deepfake App Comparison

Application General Observations Limitations Identified
Avatarify Avatarify excels in repli-

cating realistic facial ex-
pressions.

Potential limitations
in handling diverse
skin tones may impact
deepfake quality.

Synthesia Synthesia exhibits effi-
cient performance in gen-
erating lifelike facial ani-
mations.

Limited customization op-
tions and potential chal-
lenges in accurately repro-
ducing intricate facial de-
tails may be observed in
Synthesia.

Flawless AI Subpar results, not on par
with Deepfake Lab

Users may encounter limi-
tations in terms of flexibil-
ity and customization op-
tions when using Flawless
AI for deepfake creation.

Stability AI Stability AI demonstrates
robust capabilities in refin-
ing and enhancing facial
features.

Potential for overfitting,
limiting generalizability.

Dall-E-2 Output quality not as de-
sired.

Requires significant com-
putational resources.

Pinscreen Output quality shortcom-
ings.

Not compatible with
video.

Deepfake
Lab

Superior output quality,
preferred choice.

None identified.

In the next phase, we generated deepfake videos using the
LivDet 2021 dataset [20], which serves to assess and bench-
mark the effectiveness of face recognition systems in detecting
presentation attacks. The dataset offers a standardized protocol
for an independent evaluation of the latest advancements in
face liveness detection. Additionally, we utilized the Deepfake
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Lab application for this purpose. The process of creating
deepfake videos involved the following steps [21]:

1) Download DeepFaceLab:
• Download DeepFaceLab from the official website,

ensuring compatibility with your GPU. I used the
NVIDIA GeForce RTX 3060 GPU to create the deep-
fake videos.

2) Prepare the Workspace Folder:
• When DeepFaceLab is installed on the system, it

creates a workspace folder that is utilized by the batch
scripts, where both the source and destination videos
should be added.

3) Extract Faces from the Source Video:
• Name the source video as“data src” and place it in the

workspace folder.
• Utilize the software to extract images from the source

video, preferably in PNG format.
• Ensure that the extracted faces are saved to the

“data src\aligned” folder.
4) Train the Model:

• Use the software to train the deepfake model.
• Set parameters such as the number of iterations, reso-

lution, face type, and more.
5) Use the Interactive Converter:

• Use the interactive converter provided by DeepFace-
Lab.

• This tool allows you to experiment with different
settings before the final conversion.

6) Export the Final Video:
• After converting the frames, export the final deepfake

video.
• Adjust settings for overlay, mask mode, blur, sharpen-

ing, and more in the interactive converter.
• You can preview the result during conversion and

ensure it looks correct.

Fig. 4: Image of rooted phone

III. EVALUATION AND ANALYSIS

The phone was successfully rooted using the outlined steps,
granting superuser access to all Android features. The next
task involved downloading and installing a secondary camera
application. Since this camera application wasn’t available on
the official app store, it was downloaded to a PC as an APK
(Android Package Kit) file and transferred to the mobile device

using ADB (Android Debug Bridge). The startup screen of the
rooted phone is illustrated in Figure 4.

After installing the application, we tested all functionalities.
During testing, we noticed that not all images from the phone’s
gallery displayed correctly within the camera application. A
quality conversion issue caused blurry images, and further
analysis revealed that the application could only handle images
and videos up to 720 pixels.

The next objective was to create deepfakes using DeepFake
Labs. We considered two databases: the META dataset, which
includes the casual conversation dataset 2.0 [22], and an in-
house recording from the Clarkson dataset, comprising both
scripted and unscripted videos of students and others, recorded
in a controlled environment to ensure pristine audio quality.

Fig. 5: An illustration of persuasive deepfakes created using Deepfake Labs

Next, we identified a mannerism or expression for the
attacker, who would use a target identity to generate a deep-
fake. Individuals with similar facial features were chosen
for better results. Once the source mannerism video and the
target identity video were selected, we ran facial extraction
algorithms on these videos. The extracted faces were then
used to train a model for deepfake generation, converting
these frames into a video suitable for loading into the camera
application.

Numerous videos were generated, and the most optimal
one was selected, as shown in Figure 5. The leftmost image
features the source mannerism or attacker, whose expression
will be mimicked by the target identity in the middle image.
The resulting deepfake is illustrated in the rightmost image.
This process was repeated with various source mannerisms and
target identities to produce a diverse set of fake videos. Some
achieved highly satisfactory results, while others were less
successful, yielding easily detectable deepfakes. The quality
of the output also depended on features like skin tone and
facial structure. Figure 6 shows instances of poor results.

To assess the quality of the generated output, each video
or frame was compared with the target identity, examining
the matching score to determine their similarity. A face
recognition library was employed to calculate the matching
score using the Euclidean distance between facial features.
The results, as shown in Figure 10, indicate that a lower score
corresponds to higher quality.
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Fig. 6: An example demonstrating the poor quality of a deepfake generated
from DeepFake Labs using two identities with distinct skin tones

In the depicted example, the matching score between the
generated deepfake and the target identity is 0.269, a com-
mendable score as anything below 0.5 is considered a good
match. The figure also presents a probability histogram illus-
trating the distribution of these matching scores.

Fig. 7: The figure displays the match scores between the source mannerism,
target identity, and the generated deepfake, providing a visual representation
of the comparison results.

To implement the face illumination feature, we leveraged an
existing camera API that encompasses fundamental Android
functionalities. This functionality was seamlessly integrated
into an existing camera application, serving as a framework
for our feature [23]. Initially, we integrated a basic illumina-
tion feature accessible through a single button click, which
removed the entire screen’s displayed light. This light would
then be reflected from users if they were real.

The application’s user interface (UI) is divided into two
main sections: one dedicated to camera functionality and the
other featuring a button for screen illumination, conveniently
located on the home screen as shown in Figure 11. In practical
scenarios, this feature could be granted to authorized individu-

als, enabling them to remotely eliminate the screen from their
device. However, for demonstration purposes, we integrated
this option within the same camera application as part of the
UI.

Fig. 8: Figure illustrating the cosine distance between three frames, including
Source ID, Destination Action, and the Attack.

Utilizing the gallery option, users can load any previously
created deepfake videos. The video is played within the camera
interface, simulating a virtual camera and creating the illusion
of a real person in front of the camera. This setup has the
potential to deceive individuals, as the camera’s UI remains
unchanged while the display content is sourced from the
deepfake video, making it challenging to identify if the data
originates from the camera or from a loaded video in the
backend.

Fig. 11: The developed Android application showcases a home screen that
incorporates buttons for loading the gallery and activating the illumination
feature.
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Fig. 9: Figure illustrating the median and average cosine distances of 5 pairs between the source ID and destination, as well as the deepfake created.

Fig. 10: Cosine Distance Heatmap: This figure shows the cosine distance
between the Source, Target, and Deepfake. (Note: Lower cosine distances
indicate higher matching accuracy).

Fig. 12: An illustration of the user interface with and without light
illumination. The left side shows the home screen without illumination, and
the right side with illumination.

Figure 12 demonstrates the home screen appearance with
illumination on and off. Clicking the button in the top-left
corner activates the illumination. The impact of illumination
on facial recognition is evident in Figure 13. In a dark room
without illumination, no light reflects off the face. Conversely,
with illumination on, facial reflections occur, a feature not
achievable in an injected deepfake video. This distinction aids
in identifying a real person versus a deepfake video injected
into the device.

IV. DISCUSSION AND FUTURE WORK

A. Discussion

The results clearly indicate that a simple illumination fea-
ture, utilizing existing hardware and software, becomes a
crucial tool when incorporated into any application. This addi-
tional feature proves effective in identifying deep or injection
attacks on a device, providing an easy means of detection.
This feature utilizes specific pre-existing functionalities from
the Android library, ensuring it can be seamlessly integrated
into any existing applications.

However, it is essential to note that the effectiveness of this
feature may vary based on environmental conditions. In normal
light environments, it proves highly effective, but its perfor-
mance might be compromised in rooms with bright lights
or outdoor settings. Nonetheless, it remains a valuable tool
for enhancing security in indoor environments with normal
lighting conditions.

B. Future Work

To advance the technology, we can enhance the existing
illumination feature by incorporating multiple colors emitted
from the screen in a randomized pattern. This could involve
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(a) Image demonstrates how the face appears with the
illumination off

(b) Image demonstrates how the face appears with the
illumination on

Fig. 13: A figure illustrating the light reflection on the face
with the screen illumination off and on.

initiating light emission from one section, such as the bottom
part, and progressing to the top. By employing an algorithm
that understands the emission pattern, we can integrate deep
learning techniques. This allows us to establish and identify
the emitted pattern, compare it with the reflected pattern
off the face, and significantly elevate security measures. The
combination of a random pattern and deep learning integration
forms an exceptionally effective tool, offering heightened
security against injection attacks or injected deepfakes. This
approach proves to be a robust and efficient means of detecting
deepfakes using the device’s existing hardware.
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