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Abstract: In this paper, we evaluate the uniqueness of a hypothetical iris recognition system that 
relies upon a nonlinear mapping of iris data into a space of Gaussian codewords with independent 
components. Given the new data representation, we develop and apply a sphere packing bound for 
Gaussian codewords and a bound similar to Daugman’s to characterize the maximum iris population 
as a function of the relative entropy between Gaussian codewords of distinct iris classes. As a 
potential theoretical approach leading toward the realization of the hypothetical mapping, we work 
with the auto-regressive model ftted into iris data, after some data manipulation and preprocessing. 
The distance between a pair of codewords is measured in terms of the relative entropy (log-likelihood 
ratio statistic is an alternative) between distributions of codewords, which is also interpreted as a 
measure of iris quality. The new approach to iris uniqueness is illustrated using two toy examples 
involving two small datasets of iris images. For both datasets, the maximum sustainable population 
is presented as a function of image quality expressed in terms of relative entropy. Although the 
auto-regressive model may not be the best model for iris data, it lays the theoretical framework for 
the development of a high-performance iris recognition system utilizing a nonlinear mapping from 
the space of iris data to the space of Gaussian codewords with independent components. 
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to analyze the uniqueness of binary codes. In [1], the individuality of the iris (a concept 
relevant to uniqueness) is analyzed by counting the probability of bit fips, concluding 
how the number of fipped bits affects two conditional probabilities of error, false accept 
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biometric system. Given an iris database of M enrolled classes, uniqueness is quantifed by 
evaluating the chance that iris images from any two randomly selected classes match. Both 
defnitions of uniqueness were applied to assess the uniqueness of IrisCode [6,10,11]. 

Daugman’s analysis applies to IrisCodes where iris templates are composed of bits. 
In this case, the distance between iris templates is conveniently measured by calculating 
the Hamming distance. It is shown by Daugman that a binomial probability mass function 
(pmf) with approximately 249 degrees of freedom can be ftted into the histogram of 
imposter Hamming distances, which leads to a new interpretation of the problem of fnding 
the maximum population size of IrisCode. One can think of the existence of a hypothetical 
mapping from the space of IrisCode to a new space of binary codewords. In the new space, 
each codeword comprises 249 independent bits, and the Hamming distance between any 
two codewords is equal to 249. Given that each class is represented by a unique binary 
codeword with the properties above, an elegant performance analysis invoking limits 
of error correction codes and an asymptotic case of pairwise binary detection problems 
easily follows. 

As a generalization of Daugman’s approach, in our previous work [12], we use rate-
distortion theory (limits of error-correction codes) to establish bounds on the maximum 
possible population of iris classes that Daugman’s IrisCode can support and display each 
bound as a function of the Hamming distance between codewords of distinct iris classes. 
This generalization became possible due to the abovementioned hypothetical mapping of 
IrisCode templates to a new space of binary codewords, with independent bits, having the 
property that the distance between any two codewords in the new space is equal to the 
Hamming distance between two IrisCode templates of two different iris classes. Daugman’s 
analysis, as well as our previous work, apply exclusively to IrisCodes, that is, iris templates 
composed of bits, leaving any other type of template out of consideration. Are there other 
interpretable models that can be analyzed following a well-established rate-distortion 
theoretical framework? Our goal here is to suggest a basic theoretical framework for the 
manipulation of non-Gaussian iris data into Gaussian to analyze the uniqueness of the 
iris biometric modality based on the suggested model and well-established information-
theoretical results for Gaussian codewords [13]. 

As a potential theoretical approach leading toward the realization of the hypothetical 
mapping, we work with the auto-regressive (AR) model ftted into iris data, after some 
data manipulation and preprocessing. The AR model is designed with suffcient fexibility 
to encapsulate a broad spectrum of iris patterns, offering several advantages that allow for 
a theoretical framework suitable for high-performance iris recognition systems. The AR 
model-based theoretical framework relies upon a hypothetical mapping of iris data into a 
space of Gaussian codewords with independent components. The distance between a pair 
of codewords is measured in terms of the relative entropy (log-likelihood ratio statistic is 
an alternative) between distributions of codewords, which is also interpreted as a measure 
of iris quality. We develop and apply a sphere packing bound for Gaussian codewords and 
a bound similar to Daugman’s to characterize the maximum iris population as a function of 
the relative entropy (log-likelihood ratio statistic) between Gaussian codewords of distinct 
iris classes. The new approach to iris uniqueness is illustrated using two basic examples 
involving two small datasets of iris images. For both datasets, the maximum sustainable 
population is presented as a function of image quality expressed in terms of relative entropy. 

To provide more details, our analysis of iris uniqueness assumes ftting the AR model 
into iris data. When driven by a white Gaussian noise process, the AR model generates a 
stationary Gaussian random process unique for each iris class. Given a random description 
of each iris class, the problem of iris recognition is restated as an M-ary detection problem, 
which is further simplifed by replacing it with a union of pairwise binary detection 
problems. The log-likelihood ratio test statistic in asymptotic form is implemented for 
each pair of classes, which, when averaged over a large number of images per class, can 
be substituted with an estimate of the relative entropy between a pair of jointly Gaussian 
probability density functions each with zero mean and estimated power spectral density. 
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It is further justifed that the histogram of the pairwise log-likelihood ratios can be ftted 
with a chi-square curve. Its degrees of freedom and the scaling factor are determined by 
minimizing the least square distance (it performs similarly to the chi-square test) over a 
broad range of the two parameters. Similar to how Daugman interprets 249 degrees of 
freedom of the ftted binomial curve as the length of hypothetical binary codewords with 
independent bits, we interpret the degrees of freedom of the ftted chi-square curve as 
the length of hypothetical Gaussian codewords and the scaling parameter of the ftted 
chi-square curve as the variance of each codeword entry. The entries of the codewords are 
independent and identically distributed. 

Given the ftted chi-square model, two different approaches to quantify the uniqueness 
of iris biometrics are presented: (1) A sphere packing argument for the Gaussian source 
is applied frst. The log-likelihood ratio statistic and the estimate of the relative entropy 
between two iris classes are N-Erlang distributed. This distribution can be alternatively 
thought of as being due to a sum of 2N squared independent identically distributed real-
valued Gaussian random variables. We can ft a chi-square distribution with 2N degrees of 
freedom, then apply a sphere packing argument to fnd the dependence of the maximum 
population and the distortion in the data. (2) It is followed by a Daugman-like bound 
where the false match rate (FMR) [7] is replaced by the estimated relative entropy or by the 
log-likelihood statistic averaged over multiple images of each of the two classes. 

By integrating the AR model with the union bound-based analysis, the large-scale 
performance of iris recognition systems may be inferred from limited data. The AR model 
captures the variability in iris features in a manner that is suffcient when paired with 
the union bound analysis, which estimates the upper limits of error rates. Together, the 
approach enables accurate performance predictions without the need for extremely large 
datasets. Hence, this methodology not only circumvents the practical challenges of exten-
sive data collection but also provides insights into system scalability and effciency. By 
leveraging these analytical tools in tandem, we present a novel, effcient framework for 
predicting the robustness and reliability of iris recognition systems as they scale, marking a 
signifcant contribution to biometric system evaluation. 

The rest of the paper is organized as follows: Section 2 presents the assumptions, 
model, and theory. Section 3 presents a toy example (a much simplifed argument) of how 
we can arrive at the theorized model in practice, and presents the illustrative results of 
performance analysis, including a sphere packing bound and a Daugman-like bound in 
application to two small iris datasets. Section 4 concludes the paper. 

2. Theory, Model, and Analysis 

Assume that each iris class can be described by a piece-wise stationary Gaussian 
random process and that the enrollment data of each iris class are a fnite sample realization 
of a class random process. The auto-regressive (AR) process is an example of a stationary 
random process that can be used to model iris data. With a Gaussian random process for 
each iris class, we can state the problem of iris recognition as an M-ary detection problem 
and then apply a variety of analytical tools to analyze the performance of a large iris 
biometric population. 

2.1. AR Model for Vectorized Iris Images 

Let M be the number of enrolled iris classes and N be the number of images per class. 
When analyzing performance, we assume that the same number of images is available per 
iris class to avoid any unwanted performance bias. We further assume that iris images are 
conveniently vectorized. Let X1 

n(m), . . . , XN
n (m) be N vectorized iris images of iris class 

m, m = 1, . . . , M, with superscript n indicating the length of each vector. Note that in our 
analysis, we treat all vectors as column vectors. 

To ensure a workable model that can be used to analyze the performance of iris 
biometrics, we turn to an auto-regressive (AR) model [14] for vectorized iris data. As 
a model, AR has two outstanding properties. (1) It is driven by white Gaussian noise 
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passed as an input to a linear shift-invariant flter. Furthermore, (2) the model captures 
dependencies among entries in Xi

n(m); that is, the entries in a vector Xn are related through 
the following equation: 

p 

Xt = ∑ αiXt−i + ηt, (1) 
i=1 

where αi is the parameter of the model, ηt is a sample of the white Gaussian noise process 
with mean zero and variance ση 

2, and p is the parameter that determines the order of 
the model. 

If the AR model does not provide a reasonable ft to the vectorized data, several 
variants of AR, such as applying it to log or exponentially transformed data or to high-
order difference data (AR(Integrated)MA) [14], may lead to a better ft. 

Noting that we are dealing with a linear difference equation and, thus, with a descrip-
tion of a linear system, the frequency response of the AR model in (1) is easy to derive 

1
H( f ) = , (2)

1 + ∑
p 

αk exp(−j2π f k)k=1 

where we use f to denote frequency. 
Since the AR model describes the stationary behavior of data (usually time or spatial 

series), by knowing the transfer function of the model and the power spectrum of the 
driving process (which in our case is a white Gaussian noise process with zero mean and 
variance ση 

2), we can write an equation of the power spectral density (PSD) of the data Xt 

SX( f ) = ση 
2|H( f )|2, (3) 

where SX( f ) is the notation for the PSD on the output of the linear flter. 
Given an AR model, each iris vector Xi

n(m) is a realization of the random process 
described by (1). Since the random process is driven by a Gaussian noise process and the 
model is linear, the process in (1) is also Gaussian. Thus, 

Xi
n(m) ∼ N (µ(m), K(m)), (4) 

where µ(m) is the mean (in our analysis, we adjust it to be 0) and K(m) is the covariance 
matrix of the entries of the i-th vectorized iris image of the m-th class. Each iris class is 
ftted with a unique AR model. 

2.2. Classical Approach to the Estimation of Maximum Population 

Given probability models for the data of each class and the class dependencies, an 
optimal approach to the analysis of iris uniqueness is to state the problem of matching a 
query iris image Yn to one of M iris classes as an M-ary detection problem [15]. A direct 
performance analysis for this problem requires forming an (M − 1) dimensional vector 
of likelihood ratios and evaluating their joint probability density under the assumption 
that the query data belong to one of M distinct iris classes. Mathematically, performance 
analysis for this problem becomes quickly intractable, since the expression for the joint 
probability density function of the vector of likelihood ratios is not straightforward to 
develop. Furthermore, it is hard to implement in practice. Seeking for an alternative 
solution, one may turn to an analysis of M(M − 1)/2 binary detection problems, an 
approach that is often used in practice. By applying the union bound [16], the probability 
of error in an M-ary problem can be upper bounded by a sum of binary error probabilities. 

Denote by P(error) the average probability of error in an M-ary detection problem 
and by P(error|Hm) the conditional probability of error. Given that data are generated by 
Class m, m = 1, . . . , M, we refer to it as hypothesis Hm. Assuming equal prior probability 
for each class m, the average probability of error is given as 
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M1
P(error) = 

M ∑ 
m=1 

P(error|Hm). (5) 

After expanding P(error|Hm) as P( 
SM Hk|Hm) and applying the union bound, k=1, k ̸=m 

the equation above yields 

M M1
P(error) ≤ ∑∑ 

m=1 k=1, k ̸=m 
P(Hk|Hm), (6)

M 

where P(Hk|Hm) is the error in a binary detection problem for the pair of classes k and m. 
The bound (6) establishes a link between the total probability of recognition error and 

the number of iris classes M, and, thus, presents a basis for the analysis of the maximum 
population of iris biometrics. Despite being much simplifed compared to the original 
M-ary detection problem, the bound does not yield a general explicit relationship between 
P(error) and M and becomes hard to evaluate in practice due to the complex nature of 
practical data. 

To take our analysis of the maximum iris population further, in the following subsec-
tions, we will frst develop an expression for the log-likelihood ratio statistic and analyze 
its probability distribution. Then, we will return to the bound on P(error) and suggest two 
alternative approaches that yield an explicit relationship not only between P(error) and M, 
but also involving the quality of iris data (see [11] for the defnitions and standards on iris 
quality for iris biometrics). 

2.3. Log-Likelihood Ratio 

Given an iris dataset composed of M iris classes, with the data of each class being 
vectorized and then ftted with an AR description, as outlined in Section 2.1, the origin 
of a query vector Yn can be tested using classical detection theory approaches. Since we 
have a probability model for data of each class, however, the parameters of the models 
are estimated from data; we appeal to the generalized likelihood ratio test (GLRT) [15] to 
fnd which of M classes is the origin of vector Yn . While our peers may fnd this approach 
outdated (too classical compared to modern deep learning-based approaches), unlike deep 
learning approaches, this model guarantees an insightful performance analysis, which is a 
powerful justifcation within the scope of this work. 

Given M(M − 1)/2 pairwise binary detection problems to solve, we form a log-
likelihood statistic for every pair. For testing the hypothesis “class m is the true class” 
versus “class k is the true class”, it is given as 

ln 
f (Yj

n|Hm) 

f (Yj
n|Hk) 

, (7) 
N1

Λ(m, k) = ∑N j=1 

where f (Yj
n|Hm) is the conditional pdf of the j-th copy of vectorized iris data Yn , condi-

tioned on class m. After involving the model in (4), the log-likelihood statistic becomes 

N � � � �1 1
Yj

nT K−1(m) − K−1(k) Yn 
j − ln det K(m)K−1(k) . (8)∑Λ(m, k) = −

2N 2j=1 

The test statistic Λ(m, k) is then compared to a threshold to conclude which class 
“generated” the vector Yn . We tentatively set the value of the threshold to zero, since no 
prior information about the frequency of use of any two classes is available to us, and thus 
the binary test to perform is given as 

Hk 
Λ(m, k) ≶ 0. (9) 

Hm 

Alternatively, we can vary the value of the threshold on the right-hand side of the 
inequality and analyze P(Hk|Hm) as a function of the threshold. 
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2.4. Asymptotic Case of Log-Likelihood Ratio 

When the number of entries in a vectorized iris image is large, that is, n is large, (8) can 
be replaced by an asymptotic expression involving the power spectral density of the AR 
model. It can be easily demonstrated that Λ(m, k) in the asymptotic case can be written as (� � N � �)n−1 n−11 1 |yj( fi)|2 Sm( fi)Λ(m, k) = − ∑ − ∑ + ln = − ∑ λ( fi), (10)

Sm( fi) Sk( fi) N Sk( fi)i=0 j=1 i=0 

where yn is the Fourier transform of Yn , Sm( fi) is the i-th sample of the power spectral 
density of the m-th class (for an insightful explanation of the result, see p. 36 of Kay [17]), 
and λ( fi) is the i-th component of the log-likelihood ratio statistic. 

2.5. Analysis of Error Probability, Continued 

Given a binary detection problem involving two classes, Class m and Class k, an 
error will occur in two cases: Case 1: Yn originated from Class m, but Λ(m, k) < 0; and 
Case 2: Yn originated from Class k, but Λ(m, k) > 0. The frst case describes P(Hk|Hm), 
while the second case describes P(Hm|Hk). Both conditional probabilities of error can be 
expressed in terms of the conditional probability density function of Λ(m, k), assuming one 
or the other class is the true class. 

Consider P(Hk|Hm) = P(Λ(m, k) < 0|Hm). In (10), random vector yn is complex 
Gaussian under either hypothesis, since yn is a linear transformation of a Gaussian vector. 
To fnd the conditional probability of error P(Hk|Hm), we need a closed form expression 
for the conditional probability density function (pdf) of Λ(m, k) under Hm. 

Assuming that yn is from Class m implies that y( fi) ∼ CN (0, Sm( fi)), where CN 
denotes “complex normal”, � �1/2 � � �� 

1 1 1 1 
y( fi) − ∼ CN 0, Sm( fi) −

Sm( fi) Sk( fi) Sm( fi) Sk( fi) 

and � � N � � 
1 1 |yj( fi)|2 Sm( fi)λ( fi) = − ∑ + ln

Sm( fi) Sk( fi) N Sk( fi)j=1 

is a N-Erlang random variable with the pdf ( )
NN (x − ai)

N−1 N(x − ai)fλ( fi)
(x) = exp − , x > ai (11)

(σi 
2)N (N − 1)! σ2 

i 

where ai = ln(Sm( fi)/Sk( fi)) and σ2 = 1 − Sm( fi)/Sk( fi).i 
The entries λ( fi) in the test statistic Λ(m, k) are independent, but not identically dis-

tributed. Therefore, a closed-form expression for the conditional pdf of Λ(m, k), assuming 
that the data are generated by Class m, is not straightforward to fnd. At this point, we 
can take our analysis further by involving the Chernoff bound [15] on P(Hk|Hm). Instead, 
equipped with the form of the pdf for λ( fi), the well-developed theory of error correction 
codes [13,18], and a deep insight into Daugman’s analysis of IrisCode [9,10], we reverse the 
direction of our analysis. In the following two subsections, we analyze the uniqueness of 
iris biometrics from the perspective of the sphere packing argument [13] and by developing 
a Daugman-like bound [9]. Both provide an explicit relationship of P(error) on the number 
of classes M and an average quality of iris data in a considered iris dataset. 

2.6. Analysis of Iris Uniqueness Using Sphere Packing Argument 

As justifed in Section 2.5, the log-likelihood ratio test statistic is a sum of weighted 
exponential random variables. While no method for direct evaluation of its pdf is known, 
a plot of the relative frequency of the log-likelihood statistic can be approximated by a 
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chi-square pdf formed by adding K iid squared complex Gaussian random variables, each 
with zero mean and variance P. The parameter K is the number of degrees of freedom 
of the ftted chi-square pdf. Since K and P are unknown, they must be estimated from 
empirical data. 

The ftted chi-square pdf allows us to interpret the problem of fnding the maximum 
iris population as a Gaussian sphere packing result. Suppose an encoding strategy is 
available to map ideal iris images (iris images with no noise or distortions) of M distinct 
iris classes into unique Gaussian codewords, each of length K. Each codeword is drawn 
iid from a Gaussian distribution with zero mean and variance P. Suppose further that an 
iris image of one of the M classes (for example, of Class m) submitted for authentication or 
recognition is modeled as a noisy version of the ideal codeword of Class m. The noise is zero 
mean Gaussian with variance N in each of K dimensions. Thus, for a given Class m, the iris 
image submitted for authentication is mapped into a point within a K-dimensional sphere √ 
with radius KN around the codeword of Class m. Since the Gaussian sphere containingp
codewords of M classes has radius K(P + N), the maximum number of classes, assuming 
that the distortion of iris images submitted for authentication is bounded, can be obtained 
by dividing the volume of a K-dimensional sphere containing all codewords by the volume 
of the small sphere representing noise in the data of a particular iris class. Thus, � 

P 
�K/2 

M ≤ 1 + . (12)
N 

See [13] for a more insightful description. 

2.7. A Daugman-like Approach to the Analysis of Iris Uniqueness 

Similar to the sphere packing argument presented in the previous section, Daugman-
like analysis of iris uniqueness is based on the assumption that the data of iris classes are 
mapped into a space in which each iris class is presented by an independent Gaussian 
codeword of length K with zero mean and variance P, where K and P are defned above. 
This mapping ensures that the asymptotic pairwise log-likelihood ratios (here interpreted 
as a distance between two codewords) are independent chi-square distributed random 
variables with K degrees of freedom. The asymptotic log-likelihood ratio can also be 
replaced with an estimate of the relative entropy between the pdfs of two iris classes. This 
leads to a new interpretation of the distance measure as a means to also measure the quality 
of iris data. Its introduction allows a rate-distortion interpretation of the problem of fnding 
the maximum iris population that an iris recognition system can sustain, similar to how 
error-correction bounds in coding theory relate the maximum population of binary code to 
the minimum Hamming distance between codewords [18]. To be specifc, the introduction 
of such a metric will lead to a new performance bound that relates the size of the iris 
population covered by the recognition algorithm and the quality of iris biometric data 
while ensuring a small probability of recognition error. 

At this point of our analysis, in addition to the asymptotic log-likelihood ratio statistic, 
we introduce the relative entropy between the probability density functions of two classes 
m and k. The relative entropy is defned as the expected value of the log-likelihood ratio 
in (10) � �n−1 Sm( fi) Sm( fi)d(m, k) = E[Λ(m, k)] = ∑ − ln − 1 , (13) 

i=0 Sk( fi) Sk( fi) 

where E is the notation for the expected value operator. Since the power spectral densities 
of different iris classes are not known to us, they are frst estimated from available class data 
and then plugged in the expression for the relative entropy in place of the true unknown 
power spectral densities. 

With estimated relative entropy as a distance metric, the bound on the maximum 
population of the enrolled iris population is straightforward to develop. We follow an 
argument similar to Daugman’s that the imposter distance between a pair of distinct iris 
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classes can be ftted with a chi-square pdf with K degrees of freedom. Then, the error to 
enroll can be mathematically described as !

M\ 
P(error to enroll) = 1 − P d(m, M + 1) > τ , (14) 

m=1 

where d(m, M + 1) is the distance between a previously successfully enrolled class m and a 
new (not yet enrolled) class M + 1 and τ is a minimum distance between two codewords 
for them to represent two distinct classes. Since pairwise distances between iris classes are 
independent identically distributed chi-square random variables, (14) can be rewritten as 

MP(error to enroll) = 1 − {1 − P(d(m, M + 1) ≤ τ)} ≤ δ. (15) 

Inverting the inequality for M results in 

log(1 − δ)
M ≤ ,

log{1 − FMR(τ)} (16) 

where P(d(m, M + 1) ≤ τ) is replaced with FMR(τ), an abbreviation for the false match 
rate as a function of the distance between two codewords τ. 

3. Illustration of the Methodology 

The following section provides a basic illustration of the abovementioned theory on 
two small subsets of the CASIA-IrisV3 Interval and BATH datasets. As the sphere packing 
bound (a purely theoretical result) and a methodology to approach it are the main focus 

Figure 1. An overall block diagram summarizing the proposed methodology for fnding the maxi-
mum population of an iris database. 

3.1. Data 

The following illustration is carried out on two small datasets: the Chinese Academy 
of Sciences’ Institute of Automation (CASIA) CASIA-IrisV3 Interval [19] and the University 
of Bath (BATH) Iris Image Database [20]. CASIA-IrisV3 Interval contains 2639 near-infrared 
(NIR) illuminated images, each having a resolution of 320 × 280 pixels, and a total of 
249 subjects. A trial subset of the BATH dataset contains 1000 images, each with resolution 
960 × 1280 pixels, and 25 subjects (with each subject having 20 images for both the left and 
right eye). These datasets are chosen due to their high-quality iris images that show the 
rich texture around the pupil. 
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Some data reduction is performed on each iris dataset to balance the dataset and 
extract the highest-quality iris images. The CASIA-IrisV3 Interval dataset is reduced by 
removing images with more than 50% iris occlusion and then excluding classes with fewer 
than 10 images per class, resulting in only 21 remaining classes with a total of 210 images. 
After a similar analysis of images in the BATH dataset, 40 iris classes were retained with a 
total of 800 images. These smaller sets of data are used for the remainder of the paper. 

3.2. Segmentation and Preprocessing 

Iris images are segmented [21], normalized, and Gabor-fltered. Since a majority 
of the texture of the iris is located close to the pupil, only half of the fltered image is 
considered and the remainder is discarded. Once preprocessed, the complex-valued image 
is unwrapped into a single vector (vectorized). We considered multiple methods for 
vectorization and concluded with Zigzag vectorization [22]. It unwraps the real-valued 
portion of the image into a one-dimensional vector by applying a diagonal scan from 
the top left corner of the image to its bottom right corner. The same unwrapping is 
applied to the imaginary-valued portion of the image, and then the real and imaginary-
valued one-dimensional vectors are concatenated into a long data vector (for our data 
size at 4800 pixels). The applied vectorization may not be the best existing method to 
vectorize iris images; however, it is suitable enough to illustrate the proposed theory and 
bounds. For our application, Zigzag helps in reducing the variance in AR coeffcients 
and eliminating induced periodicity in the estimated power spectral density incorporated 
due to spatial distortion of the iris patterns in horizontal (row-based) or vertical (column-
based) vectorization. 

3.3. Estimation of Power Spectra 

As stated in Section 2.1, to ensure a workable model that can be used to analyze the 
performance of iris biometrics, we turn to an auto-regressive (AR) model for the vectorized 
iris data. The analysis of maximum population is based on the successful implementation 
of (10) and (13), which, in turn, rely upon estimates of the power spectral densities obtained 
from data of iris classes. These estimates are obtained through (i) fnding the optimal order 
for the AR model given our iris data, Section 3.3.1, and (ii) using Burg’s maximum entropy 
method [23] to fnd high-quality spectral estimates for each iris class, Section 3.3.2. 

3.3.1. Finding Optimal Model Order 

Estimating the appropriate model order is essential in the performance of the AR 
model. Having a large order ensures a better ft into data; however, it also increases the 
complexity of the implementation and can lead to ftting the AR model to noise rather 
than to signal. To fnd the optimal model order of estimated power spectra, we involve 
the Akaike information criterion (AIC) in conjunction with the AR method in MATLAB 

(Version R2024a). 
To begin, a subset of iris classes was extracted from each dataset based on varying 

texture levels, from very fne to rough texture, to see if the structure of the iris affects 
the model order. Through extensive search, the model order is varied along with two 
parameters of Gabor flters, the center frequency, f0, and the flter bandwidth, σ. The 
goodness of ft of each estimated model is measured using the value of AIC for each tested 
model order. This is repeated for each class in the subset on each iris sample until the 
optimal order, center frequency, and bandwidth are found in which the AIC converges. 
Figure 2 shows the AIC curves for CASIA-IrisV3 Interval and BATH with the selected 
order at 100 and Gabor flter parameters of f0 = 1/9 and σ = 0.5. Although Figure 2 
only shows one iris class for each dataset, we numerically confrmed that each class can 
be parameterized by the same model order. Choosing a higher order leads to the same 
performance as an order of 100. 
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(a) CASIA IrisV3 Interval (b) BATH 

Figure 2. Plots of average AIC values for a single class in (a) CASIA-IrisV3 Interval and (b) BATH 
with optimal Gabor flter parameters of f0 = 1/9 and σ = 0.5. (AIC scores were found for each iris 
image separately; then, the average scores were plotted for analysis). 

3.3.2. AR Implementation 

Burg’s maximum entropy method, which is popular for stationary or piece-wise 
stationary data, is implemented to fnd high-quality spectral estimates for each iris class. 
For both databases, the power spectral densities (PSDs) were estimated for each image 
in each class through the use of MATLAB’s signal processing toolbox function pburg, with 
the found optimal order from Section 3.3.1 as the model order input. The vectorized iris 
images are found to be low-frequency signals, as shown in Figure 3. 

After completion of Burg’s method, a selection of PSDs is averaged to create a high-
quality enrollment spectrum for each class, and the remaining spectra are used for the 
authentication process. The number of samples used for the enrollment spectrum depends 
on the available amount of iris images per class, with BATH having 20 images available per 
iris class and CASIA-IrisV3 Interval having a maximum of 10 images. With this in mind, 
half (50%) of the class’s iris images are used to fnd the enrollment spectrum, while the 
remaining percentage is used for authentication. These estimates are used in (10) and (13) to 
empirically fnd the maximum population given the sphere packing bound and Daugman-
like bound, shown in Sections 3.5 and 3.6. 
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(a) CASIA IrisV3 Interval (b) BATH 

Figure 3. Estimated power spectral densities for both datasets through the use of MATLAB’S 

pburg method. Subfigure (a) uses CASIA IrisV3 Interval database and subfigure (b) uses BATH database. 
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3.4. Fitting Imposter Distribution 

To fnd the empirical values for K and P from Sections 2.6 and 2.7, the imposter 
distributions of both likelihood values and relative entropies have to be ftted with chi-
square distributions. With the use of the estimated PSDs from Section 3.3.2, the pairwise 
likelihood scores and relative entropies are found for all possible combinations, where 
Sm and Sk are from different classes. The best-ft chi-square distribution is found by 
performing an exhaustive search on the imposter histograms and fnding the variance and 
degrees of freedom that produce the minimum least square error. Figures 4 and 5 show the 
distributions for both CASIA-IrisV3 Interval and BATH datasets. Both datasets have the 
best ft with four degrees of freedom, K = 4, and different variances of PCASIA = 252 and 
PBATH = 383 for the relative entropy imposter distributions, shown in Figure 4. Figure 5 
shows the ftted likelihood distributions with CASIA-IrisV3 Interval having four degrees 
of freedom, K = 4, and a variance of PCASIA = 106, and BATH having three degrees of 
freedom, K = 3, and a variance of PBATH = 216. 
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(a) CASIA IrisV3 Interval (b) BATH 

Figure 4. Relative entropy imposter distributions for both datasets with best-of-ft chi-square dis-
tributions. Relative entropy is measured in nats. CASIA-IrisV3 Interval having K = 4 degrees of 
freedom and a ftted variance of P = 252, shown in (a), and BATH having K = 4 degrees of freedom 
and a ftted variance of P = 383, shown in (b). 
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Figure 5. Likelihood imposter distributions for both datasets with best-of-ft chi-square distributions. 
Likelihood is measured in nats. CASIA-IrisV3 Interval having K = 4 degrees of freedom and a ftted 
variance of P = 106, shown in (a), and BATH having K = 3 degrees of freedom and a ftted variance 
of P = 216, shown in (b). 
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3.5. Sphere Packing Bound 

Now that we have obtained the best-of-ft chi-square distributions for the relative 
entropy and likelihood imposter histograms, the maximum population can be empirically 
found through the use of the sphere packing bound presented in Section 2.6. Looking frst 
at likelihoods, the found degrees of freedom and variance are used in (12). For the measure 
of noise variance, N, this depends on the quality of the iris datasets themselves. Since 
there is no simple method to fnd the noise present in the iris classes themselves, the noise 
variance is varied to refect possible values (from little to extremely noisy images). Figure 6 
shows the resulting bound on the supported maximum population for the CASIA-IrisV3 
Interval (Figure 6a) and BATH (Figure 6b) datasets dependent on the given noise variances 
using relative entropy as a distance metric. The same procedure is implemented on the 
found log-likelihood ftted chi-square distributions for each dataset, and the resulting 
bounds are shown in Figure 7. Table 1 shows the maximum population of each dataset 
given a noise variance. Given that the noise variance is dependently related to the quality 
of the iris images contained in the dataset (e.g. motion blur, focus, distance, noise, etc.), 
the higher the quality of iris acquisition, the smaller the noise variance, and vice versa. 
This aligns with the results presented in Table 1. We can conclude that as the noise 
variance increases (image quality decreases), the maximum population we can support 
in both datasets diminishes. Since the BATH dataset contains higher-quality images than 
CASIA-IrisV3 Interval, the maximum supported population given the lowest noise variance 
(N = 1) is 1.48 × 105 classes for relative entropy and 3.2 × 103 classes for log-likelihoods, 
while CASIA’s is 6.40 × 104 classes for relative entropy and 1.15 × 104 classes for log-
likelihoods. The reason we are seeing a higher supported population for CASIA, given sum-
log-likelihoods, is due to the higher degree of freedom in the ftted histogram distribution. 
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Figure 6. Sphere packing bound for (a) CASIA-IrisV3 Interval and (b) BATH using the relative 
entropy metric. 
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Figure 7. Sphere packing bound for (a) CASIA-IrisV3 Interval and (b) BATH using the log-
likelihood metric. 
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Table 1. Subset of sphere packing bound values given certain noise variance (N) from Figures 6 and 7. 

Noise Variance Relative Entropy Likelihoods 

MCASIA MBATH MCASIA MBATH 

1 6.40 × 104 1.48 × 105 1.15 × 104 3.2 × 103 

10 686 1.54 × 103 134 107 

50 36 74 9 12 

100 12 23 4 5 

200 5 8 2 2 

300 3 5 2 2 

400 2 3 2 2 

500 2 3 2 2 

3.6. Daugman-like Bound 

Looking once again at the ftted chi-square imposter distributions for relative entropy, 
we can utilize our Daugman-like bound from (16) to fnd the maximum population the 
datasets can achieve at a given image quality of data and a fxed recognition error, δ. To 
begin, the cumulatives of our ftted distributions, from Section 3.4, χ2(τ) from 0 to τ, are 
found, where τ is a given relative entropy metric interpreted as a distance between two 
codewords. Now, using these cumulatives, we can fnd the FMR from Equation (16) given a 
particular relative entropy value, τ, and a fxed recognition error, δ (which is varied similar 
to Daugman [6], to refect recognition errors of 50%, 10%, 1%, and 0.1%). Figure 8 shows 
the resulting bounds for the CASIA-IrisV3 Interval and BATH datasets, and is illustrated 
for fxed values of the relative entropy in Table 2. Note that τ plays the role of the minimum 
possible distance allowed between two codewords that belong to two different classes. This 
implies that the distance between two codewords from the same class is approximately 
τ/2 or less, which is achievable only if enrolled and query data in the form of codewords 
are of high quality. 

Looking at Table 2, we can see that as the relative entropy (the distance between code-
words), τ, increases, the maximum population obtainable, given a certain recognition proba-
bility, decreases exponentially. Looking ideally at a recognition error of δ = 0.001 and τ = 1, 
the maximum population obtainable by the CASIA-IrisV3 Interval dataset is 2.43 × 107 and 
for the BATH dataset, it is 1.30 × 108. This result accords with intuition because the BATH 
dataset is of greater quality than the CASIA-IrisV3 Interval dataset; therefore, it can sustain 
20% more classes. To turn an idealized possibility into reality, a low value of relative entropy 
(minimum distance between two codewords of two different classes or maximum distance 
between codewords of the same class) can be achieved by ensuring that the quality of all 
data is as high as possible, which can be accommodated using modern cameras capable of 
collecting hundreds of frames over a short interval of time followed by the application of a 
bulk of signal/image processing techniques. 

(a) Bound for CASIA (b) Bound for BATH 

Figure 8. Daugman-like bound for (a) CASIA and (b) BATH datasets. 
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Table 2. Subset of Daugman-like bound values given a certain relative entropy from Figure 8. 

δ = 0.5 δ = 0.1 δ = 0.01 δ = 0.001 

RE MCASIA MBATH MCASIA MBATH MCASIA MBATH MCASIA MBATH 

1 1.68 × 1010 8.97 × 1010 2.56 × 109 1.36 × 1010 2.44 × 108 1.33 × 109 2.43 × 107 1.30 × 108 

10 5.73 × 106 3.02 × 107 8.71 × 105 4.50 × 106 8.31 × 104 4.38 × 105 8.27 × 103 4.36 × 104 

50 1.21 × 104 6.12 × 104 1.84 × 103 2.30 × 103 175 886 17 

100 902 4.32 × 103 137 657 13 62 2 6 

200 77 335 11 50 2 4 2 2 

400 8 31 2 4 2 2 2 

600 2 8 2 2 2 2 2 

800 2 3 2 2 2 2 2 

1000 2 2 2 2 2 2 2 

4. Conclusions 

This work assumes the existence of a mapping from iris data to a space of Gaussian 
codewords with independent components and presents a basic theoretical methodology to 
fnd the maximum population of an iris database in both a closed system perspective, the 
sphere packing bound, and an enrollment perspective, the Daugman-like bound. Within 
the presented framework, a measure of the maximum population depends on the quality 
of the iris images contained in the datasets. For the sphere packing bound, as the noise 
variance, N, in the iris dataset increases, the maximum population decreases exponentially. 
The Daugman-like bound presents a similar measure of iris quality on the constraint of 
the distance measure of relative entropy between two classes’ power spectral densities, 
which depend on the noise and distortions present in the images. The size of the enrolled 
population can be increased by choosing a smaller value of the relative entropy (the distance 
between any two classes), which is achievable when the quality of data is improved. This 
can be attained due to the more modern data acquisition techniques and data processing 
applied to the dataset. 

As future work, we would like to develop an encoding technique bypassing the 
vectorization step and directly mapping iris images of different iris classes to Gaussian 
codewords with iid entries, each with zero mean and variance P, then see how this mapping 
affects our maximum attainable population. Moreover, we would like to consider a larger 
dataset, which could allow for us to consider the impact of variations in iris color and 
patterns and allow for a better statistical validation of the Gaussian-based models. 

With the application of the methodology presented above, researchers can better 
understand the dependence of the capacity of their datasets on the data quality. An 
appealing approach to achieving this goal is offered by Nguyen et al. [24] whose work 
presents a constrained design of deep iris networks. This will be the approach that we 
intend to pursue in our empirical evaluation of iris biometrics capacity. Deep learning 
approaches proposed in other application felds, such as [25,26], will also be explored as a 
way of achieving an effective mapping of iris data to a space of Gaussian codewords. 
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