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ABSTRACT

Advances in deep learning and convolutional neural metworks (ConvNets) have driven remsrkable face
recognition (FR) progress recently. However, the black-box nature of modern ConvMet-based face recognition
models makes it challenging to interpret their decision-making process, to understand the reasoning behind
specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore,
critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into
their behavior. To addmess this challenge, we present in this paper a novel template-inversion approach capable
of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations)
pmduced by modern FR techniques. Qur approach is based on a novel Deep Face Decoder (DFDY) trained
in a regression setting to visualize the information encoded in the embedding space with the goal of fostering
explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained
face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and
Celebrity Faces Attributes Dataset High Quality (CelebA-H(Q). Our analysis focuses on the embedding spaces
of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model
(WGG-16) and the 50-layer Residual Network (ResMet-50). The mesults reveal how information is encoded in
the two considered models and how pemtirbations in image appearance due to rotations, translations, scaling,
occhsion, or advemsarial attacks, are propagated into the embedding space Our study offers researchers a
deeper comprehension of the indedying mechanisms of ConwNet-based FR models, ultimately promaoting
advancements in model design and eplainability.

1. Introduction

State-of-the-art ConvNet-based FR models typically accept a fa-
cial image as input and produce a fixedsize feature representation,

Face recognition (FR) models are widely used in various applica-
thons such as video surveillance, access control, social media apps, and
smart technologies, providing security and convendence benefits (Wang
et al,, 2023). This widespread deployment of FR. technology can largely
be attributed o advances in deep leaming and partculartdy convo-
lution neural networks (or ConvNets for short) that led o unprece-
dented success on varous benchmarks as well as real-world recognd tion
tasks (Wang and Deng, 2021). However, deep learning models are sdll
often described as “black boxes™, since they produce recogniton results
without revealing how they ardved at their decisions. hterpreting
and understanding the underying mechanisms behind the models’
decisions, therefore, remaing a challenge due to the abstract nature
of the generated feature spaces and complex hierarchy of mappings
applied to the input data (Li ef al,, 2022),
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commonly referred to as an embedding (or face template). Ideally,
these embeddings are condiioned only on identity information and
are invariant to changes in pose, illumination, expression, and other
muisance factors that are known to vary from image to image. With
these characteristics, the embeddings of different images can be easily
compared to determine if they belong to the same identity or not
However, since the embedding comparisons occur in an abstract high-
dimensional feature-space, it is difficult to associate semantic meaning
to the face templates or, in other words, to interpret the encoded
embeddings w.r.t the characterstics of the input face images.

A potential solution to these issues lies in template inversion methods,
These methods aim to recover the information encoded in the face
templates and generate reconstructions resembling input images. While
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Fig. 1. We introduce a template inverdon technique, named Dep Face Demdsr (DFD), with the goal of analyzing, understanding and explaining the embedding space of Convelet-
based face recognition (FR) models. Above, we show inversion reslis (e, recongtroctions, recoversd images) for the embeddings, produced by two different FR models (with
VGG and ResNet backbones) and two DFD variants By comparing the orginal inmages (top mw) and the genembed meomstreetions (mows 2-4), we am able to get indght into the

charac teristics of the embedding space of the FR. models.

this task is challenging and requires inverting the feature extraction

process of contemporary ConvNets to recover an approximation of

the orginal face image from its embedding, it also has important
implications for the understanding of the information encoded in the

face templates. This capability can enhance the ransparency of mod-
ern ConvNet-based facial recognition models, aid in interpreting the
under ying decision-making procedures, and help discern the rationale
behind model sucoess and failure. Such transparency not only fosters a
deeper grasp of contemporary deep learning-driven facial recognition
technology but also aligns with the mandates of privacy laws and regu-
lations, such as the General Data Protection Regulation (GDPR) (GDFE,
2023; Meden et al., 2021).

Although considerable progress has been made in template-
inversion techniques (Dong et al., 2023; Akasaka et al, 202% Dong
et al., 2021; Mai et al,, 2019), the majority of existing work focuses
on the security threat of stolen biometric templates. Specifically, they
aim to attack FR systems by inverting an acquired template and
injecting the reconstructed image into the matching pipeline, in a
so-called template-inversion attacks. As attack-motivated inversion tech-
nigj ues only care about the template distance between the reconstructed
and original images, they do not necessarily maximize the visual cor-
respondence with the original input image. As such, these techniques
offer limited potential for the interpretation of the embedding space
generated by modern ConvNet-based FR models. In this paper, we
address this gap and develop a novel decoder model, named Deep
Face Decoder (DFD), capable of adeptly inverting face templates
and producing accurate image reconstructions that offer insights into
the embedding space of contemporary FR models. We train the DFD
mode] within a regression framework, employing specialized learning
objectives. These objectives guide the model towards generating recon-
structions closely resembling the original input faces, while avoiding
maode] hallucinations often associated with inversion techniques based
on Generative Adversarial Networks [Goodfellow et al., 2020).

Using the DFD model, we delve into the atiributes of the embed ding
space of two contemporary FR models (VGG-16 and ResNet-based Si-
monyan and Zisserman, 2015; He et al, 2016), aiming to address key
research inquires. For instance, we investigate whether distinct Con-
vNet backbones in FR models encode facial details differently within
their embedding spaces. We also analyze the effects of geometric face
perturbations (Le., rot@ations, translations, and scaling) on the generated
face templates. Moreover, we examine the embedding space’s response
to adversarial noise. Finally, we analyze the influence of different em-
bedding aggregation strategies on the encoded information and explore
the repercussions of face template modifications. To explore these and

related research inquires, we conduct extensive experiments across
three varied face datasets: VGGFace2 (Cao et al, 2018), Labeled Face
in the Wild (LFW) (Huang et al, 2008), and CelebA-HQ (Lee ef al,
2020). Our findings, previously unreported in the lterature, shed light
on these matters comprehensively,

The main contributions of this paper can be summarized into the
following three points:

+ We introduce the Deep Face Decoder (DFD), a state-of the-art

(SOTA) template inversion technique, designed to recover high-

fidelity face images from the embeddings /templates of ConvNet-

based FR models with the goal of visualizing the information
encoded in the FR-model’s embedding space, as also llustrated

in Fig. 1.

We utlize the proposed DFD model to gain insights into the

characteristics of two (architecturally) distinet FR models and

study the impact of prometric transformations, adversarial nodse,
ooclusions, and different template computation strategies on the
information encoded in the embedding space of the considered

FR. models.

+ We make important observations about the propertes of
ConvNet-based FR models. For example: (i) We find that modem
ResNet-based FR. models abstract away multiple sources of image
variability (e.g., pose, scale, position) when mapping input im-
ages into embeddings and do this more effectively than the earlier
VGG-based FR. models; (if) We observe strong empirical evidence
on the equivariance of the embedding space of the considered
FR models w.r.t. geometric transformations, pointing towards the
possibility of designing misalignment-correction schemes directy
in the embedding space; (iii) We show that aggregating embed-
dings from multi ple face images during template construction acts
as a normalization process in the embedding space and produces
templates that correspond to well aligned, frontal, neutral and
well lluminated facial images.

-

2. Related work

In this section, we discuss relevant prior research with the goal of
providing context for our worle. We start the section with a brief review
of modern face recognition techniques, continue with the current liter-
ature on the inversion of biometric templates, and finally discuss the
latest research for understanding the embedding space of FR. models.
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Fig. 2. High-level overview of the Deep Face Decoder (DFD) and illustration of the individusl learning objectives Given a (fized and pretained) face recognition model £ and
an input face image X, the goal of DFD iz 1o genemte a reconstroction of the input image & from the genermted embedding 5(x) that can be wed to explore the chamoeristios of
the embedding space of £ DFD & trained wing a8 multi-term loss function at both local and global seales, as further defined in Section 3.2

3. Deep Face Decoder

In this section, we present the proposed Deep Face Decoder (DFD)
that allows us to visualize (and, consequently, interpret) the infor-
mation contained in the face templates, produced by contemporary,
ConvNet-based FR models.

3.1, Overview

In order to analyze the information encoded in the embedding space
of modemn face recognition models, we design DFD as a decoder model
capable of mapping the computed face templates back into the visual
domain, as also illustrated in Fig. 2. Formally, given a face recognition
model £ that produces a face template (or embedding), Le., € = £(x),
from the provided input face image x, the DFD decoder I aims to
generate a reconstructed image £ that is as close (and as similar) to
the input image x as possible. The parameters of D, @y, are optimized
using a reconstruction-orented loss function £, fe:

8}, = argrgin E, {L,(D(E(x):0p), 1)} (4}

The loss funcion aims to recover the information contained in the
template €, so it becomes interpretable for humans, The optimal de-
coder parameters ) are typically leamed over a dataset of N suitably

preprocessed face images x.

3.2, Loss definiion

The overall objective functon for training the DFD model consists
of multiple losses, designed to reconstruct as much of the initial visual
information from the given face template € as possible. Because face
recognition models £ are expected to produce image representations
that are invarant to various nuisance factors, including pose, age,
expression and others, a considerable amount of information is typi-
cally abstracted away during the template extraction step and a perfect
reconstruction is, in general, not possible. We, therefore, design the
learning objective as a combination of low-level per-pixe] losses (£,,.)
and higher-level gradient-domain (L,,,,) and perceptual losses (L)
of the following form with the goal of recovering an approxdmate face
image £:

L0%,%) = Ly, + AgyagLprag + ApareLpere

! ! !
+ A, 'I:Ipu +A L +1P“£‘m,

where 1,;, jm,.le,limf and ,1;“ are balancing weights. The indi-
vidual losses are applied separately over the narrow/local facial area
x; (marked with the superseript | above), but also the complete input
image x that contains a larger degree of contextual information. Such
an approach allows for the tuning of the overall objective towards
the most expressive regions of the face, while still taking the encoded
contextual information into account (Hu and Ramanan, 2017, Details
on the individual loss terms (defined over x) are given below:

@)

» The pixel loss (L) encourages the DFD model to reconstruct
images & that are as close as possible to the original images x in
terms of low-level pixel intensities. In other words, the loss aims
to recover the exact visual appearance of the input image from
the face template € and is defined by a squared L, error norm:

Ly = 1% — %7 = Ix — D)8, @

The L; loss considers each pixe]l individually and neglects corre-
lations between neighboring pixels. To address this issue, we in-
corporate gradient and perceptual losses into our overall learning
objective, as defined in the following sections.

+ The gradient less (L, ;) serves a complementary role to the
pixel loss defined above. When using only pixel-level losses, the
reconstructed images x tend o be overly smooth and without
sharp edges that are typically key for perceiving the structural
content of an image (Ma et al, 2020). To this end, we define the
gradient loss as a squared L, error norm in the gradient domain
of the image. Formally, this can be written as:

£, = IV — VE|? = |Vx — VD(Ex) 8,12 4

* The perceptual loss (L) is the final component of the opti-
mization objective and helps to penalize differences in higher-
level semantics between the original and reconstructed images,
This loss is paramount for the capabilities of the DFD model,
as it allows to recover images £ that contain similar seman-
tic content to the inputs, while not requiring perfect per-pixel
correspondences. This aspect is particularly important for DFD
since some of the information initially contained in the face
image x may have been discarded or abstracted away during
the template-computation process, Le., Sx). nspired by the work
in Johnson et al. (2016), we define the perceptual loss in the form
of a squared L; error norm in the feature space of a perceptual
network @, Le.,

L, = lo(x)— p@)I* = |lp(x)— @ DIEx) 0,7 (5)

Note that the above losses are defined only over the input images x,
but the same definitions also apply for the local facial regions x; and
the corresponding losses £, L, , and [, . The use of local and
global losses allows us to put additional emphasis on the central region,
while also reconstructing the context in a meaningful manner. As we
demonstrate empitcally in the experimental section, this leads to minor
reconstruction improvements,

It is also worth emphasizing that we intentionally avoid adversarial
losses (in a GAN framework) when leaming the DFD decoder. While
such losses help with the photo-realism of the reconstructions, they are
known to lead o visual distortions that impact the interpretation of the
recovered visual information, as emphasized in Korkmaz et al. (2022)
and Blau and Michaeli (2018).

3.3. Model architecture and raining

We use an inverted VGG architecture for the implementation of
the DFD decoder D (Yasrab, 2018) Such a decoder architecture has
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Fig. 3. Example DFD reconstructions of selected sample images from the LFW datase: original images (18 row), reconstructions of the VGG-VGG DFD model (2nd row),
reconstrictions of the VEG-ResNet DFD model (3nd now), reconstrections of the ResNet-VGGE DFD model (4th mw), reconstre tions of the ReNei-ResNet DFD model {Sth row),

the perceptual network during training utilizes the ResNet model
(referred to as ResNet-ResNet). It is important to highlight that
the perceptual features are derived not from the embedding space
of the FR model, but rather from specific internal convol utional
layers, so £ # . This distinction holds true despite the fact that
the same ConvNet model is utilized for the implementation of £
and .

Black-box experiments: In this confipuration, we operate un-
der the premise of having access solely to the calculated face
templates, without direct access to the actual FR model. Conse-
quenfly, a distinet network from the targeted FR model (to be
analyzed) serves as the origin of perceptual features. This con-
figuration corresponds to a more realistic setting, where the DFD
decoder has to be learned from a collection of face embeddings
and corresponding enrollment images. The black-box experiments
involve raining the DFD decoder for the VGG-16 model using
perceptual features provided by the ResNet model (referred to
as VGG-ResNet), as well as optimizing the ResNet DFD decoder
with perceptual features from the VGG-16 model (referred to as
ResMet-VGG).

-

4.2 DFD validation

In the first serdes of experiments, we investigate the reconstruc-
tion capabilities of the proposed DFD decoder and study some indtial
characteristics of the VGG and ResNet FR models through qualitative
experiments. To validate the suitability of the DFD models as a visual-
ization tool that can be used to investigate the characteristics of the
embedding space of ConvNet-based FR models, we also analyze the
model in comparison to competing solutions from the literature and
explore the impact of the individual loss terms on perfformance within
an ablation study.

4.2.1. Visualizing face templates with DFD

Exploring backbones. In Fig. 3, we present the reconstructions of a
diverse set of images from the LFW dataset in the white- and black-
box decoding scenarios. Several interesting observations can be made
from the presented examples: (i) The white and black-box scenarios
both lead to visually similar results when decoding the embeddings of
aspecific FR model. This suggests that the source of perceptual features

is less important when learming the DFD model than the characteristics
of the FR embedding space, where the visual information is encoded.
More importantly, this finding implies that even without access to the
targeted FR model, it is possible to reconstruct a similar amount of
information, as in the case when the tarpeted FR model is available and
completely transparent. This also sugpests that certain types of model
obfuscations are more effective than others at preventing template
inversion attacks. Namely, that concealment of model architecture is
insufficient at preventing template inversion attacks if the attacker has
a means of obtaining image-feature pairs to rain a template decoder,
(ii) The reconstructions from the VGG embeddings exhibit higher cor-
respondence with the original input samples than the reconstructons,
produced from the ResNet templates. With the VGG embeddings, many
variable image attributes, such as pose, accessories, and background
information, still appear to be present in the recovered images, whersas
the same attributes are largely removed through the ResNet embedding.
This observation points towards better FR robusmess of the ResNet
model and more suitable encoding in the embedding space. (i) Partial
face occlusions are treated differently by the two FR models. While
the VGG embeddings seem to encode the occlusions as semantically
meaningful image attributes (e.g., as part of the background — see
3rd and 4th column, as part of the body/hair — see 5th and 7th
column, face color changes — see 8th and Sth column of Fig. 3), the
ResNet embedding only retain information from the informative part
of the facial region and discard the rest. This point o fundamental
differences in the behavior of both models and provides insight into
the perfformance of both models observed in the lterature (Grm et al,

2018).

Exploring loss functions. Fig. 4 shows reconstructions obtained using
two distinet loss functions for training the embedding networl: SofthMax
and ArcFace, both implemented using the ResNet50 backbone. ArcFace,
built upon an angular-margin softmax loss, is specifically designed w
enhance inter-class separation in facial recognition and robustness
identify variation. Despite this, our results demonstrate that ArcFace
embeddings still encode common identity variations in pose, illumina-
thon, and expression. Furthermore, we observe that the embeddings also
encompass details of facial accessories, like eyeglasses. Since this infor-
mation does not inherently pertain to identity, its presence indicates
that there is still room for refinement in achieving more compact and
discriminative facial representations.
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Fig. 4. Reconstructions derived wting SofiMax and AncFace lois functions with the ResMNet50 backbone Although ArcFace & designed to enhance inter-clas separation in facial
meoognition, both embeddings capture variations in pose, ilumination, and expresdon. AnFace reconstructions differ from SofiMax in the nuanced encoding of facial acoessories,

mch as eyeglasses, and the delineation of Beial borders

V-ResNet
(40r36)

V(- ResNet
(512)

Fig. 5. Reconstructions of embeddings of two different dzes with WEG-16 ackbone The 4006-dimensional embeddings are computed from the laa fully connected layer, with
the clamsfication layer being discanded The 512-dimensional embeddings are derived by avemging the output of the b convolutional layer.

Exploring embedding dimensionality. Fig 5 depicts the reconstruc-
tions based on embeddings of two distinct dimensions, both utilizing
the VGG-16 architecture as their backbone. Embeddings of 4096 di-
mensions are derived from the final fully-connected layer, excluding
the classification layer. Conversely, the 512-dimensional embeddings
are obtained by averaging the outputs from the terminal convolu-
tional layer. Both these layers are frequently employed in the ltera-
ture for embedding extraction. Observations sugpgest that the number
of dimensions in the embeddings exerts minimal influence on the
quality of the reconstructions. However, the reconstructions from the
lower-dimensional embeddings exhibit fewer artifacts. This distinetion
might be attributed more to the inherent characterstics of the em-
bedding layers (convolutional versus fully-connected) rather than the
dimensionality itself.

4.2.2 Comparison with competing inversion techniques

To put the decoding results produced by our DFD model into
perspective, we conduct a visual comparison between the DFD re-
constructions and the reconstructions generated by two contempo-
rary state-of-the-art (SOTA) template inversion techniques, proposed
by Dong et al. (2021) and Mai et al. (2019). We note, however, that
the competing techniques were developed to study template inversion
attacks, where the goal is to produce a sample image from the given
template that successfully matches with a subject enrolled in a face
recognition system. Thus, the generated images are allowed to look
differently from the input image, as long as the FR model recognizes
the subject in the two images as being the same.

For a fair comparison, we extracted the visual results directly from
the relevant original papers (e, Dong ef al (2021) and Mai et al
(2015)) and applied the DFD model to the same test images. In Figs. 6
and 7 we present a visual comparison of the penerated results together
with Peak-Signal-to-Noise-Ratio (PSNE) scores that measure the quality

of the reconstructions in comparison to the original input images. As
can be observed, the DFD model consistently yields higher PSNR values
than the two competitors, while ensuring competiive visual quality
of the reconstructions both in the white-box as well as in the black-
box setting. Compared to the results of the competing techniques,
DFD generates reconstructions with higher correspondence to the input
samples, competitive identity-recovery/visualization capabilities, and
visual characteristics that to a large extent depend on the FR model
utilized to produce the initial face templates. Thus, the presented results
reaffirm the suitability of the DFD model as a tool for studying and
interpreting the embedding space of ConvNet-based FR. models.

4.2.3. Ablation study

To further validate the DFD model, we present in Table 1 an
ablation study that explores the impact of the individual loss terms
from Eq. (2). As the different DFD configurations are affected by the
loss terms similarly, we present results for the VGG-ResNet DFD variant
exclusively to maintain table brevity. Two important observations can
be made from these results: (i) All of the considered losses contribute
to the perceptual quality of the recovered images and improve the
(average) Peak Signal To Noise Ratio (PSNR), Structural Simflarity
(SSIM) (Horé and Ziou, 2010), and Learned Perceptual Image Patch
Similarity (LPIPS) (Fhang et al, 2018) scores of the reconstructions
that measure the correspondence with the ordginal input images. As
can be seen, incorporating local losses significantly enhances the recon-
struction of the most expressive facial regions such as the mouth, nose,
and eyes while leading to minor quantitative improvement. The use
of perceptual loss adds minor low-level image artifacts and when used
exclusively causes global color errors, causing a washed-out appearance
in the reconstructed image. Similarly, exclusively utilizing either the
pixel loss or gradient loss also yields subpar facial reconstructions when
compared to the output ensured by the complete loss function from (2).
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17.87 15.20 18.77

ReslNet-VGG VG-Realet

ResMet-ReaMet

15.38 14.65 15.71

11.95 16.46 16.81

Fig. 6. Vimml comparison with S0TA: original images from LFW (18 row), reconstree tons from Dong e al (2021) (2nd row), DFD reconstructions (from 3nd row onvwand). Below

the inmages are the PSNR valses obtained in comparion to the originak from the fimt row.

(i) While the different losses impact the visual appearance and peroep-
tual quality of the reconstructions, they do not affect how the encoded
facial information is visualized. For example, image attributes, such
as pose, hats, hair, and partial occlusions are interpreted similarly,
visual background information is still comparable in all images, and
overall, all aspects important for the interpretation of the embedding
space remain stable when using different loss combinations, which is
important for the applicability of the DFD model.

In the lower part of Table 1, we show visual results for all four
considered DFD variants when using the complete loss function from
Eq. (Z). Note that the reconstructions from the ResNet embeddings
generally lead to somewhat lower correspondence scores (PSNE, 55IM,
LFIFS) than their VGG-based counterpart. However, this can be as-
cribed to the properties of the ResNet embeddings, which appear to
abstract away a considerable amount of pose and background informa-
tion, (which is highly desired to ensure the robustness of FR models)
and consequently lead to lower correspondence with the initial input

samples.
4.3, Understanding appearance variations

In the next serdes of experiments, we apply the DFD model to explore
how various appearance perturbations impact the information encoded

in the face templates. We study three different types of perturbations,
Les (i) geometric perturbations, specifically, face rotation, translation
and scaling, (i) partial ccclusions of salient facial regions, and (i)
additions of adversarial noise.

4.3.1. Geometric perturbations

When investigating the impact of grometric perturbations on face
embeddings, we are particularly interested in the equivarianee prop-
erties of the considered FR models. In other words, we are interested
in whether the geometric transformations of the input images, such
as rotations or translations, can also be modeled in the embedding
space of ConvNet-based FR techniques. Such properties have important
implications for the design of FR systems in practice, because of their
potential for designing transformation-invarant face representations
and for enhancing the robustness of existing recognition models to-
wards off-center and off-angle faces through a template augmentation
Process.

To explore the equivariance of ConvNet-based FR models, we leamn
the geometric transformatons directly in the face embedding space
using a subset of raining images from the VGGFace2 dataset. Here,
we first apply specific geometric transformations to the raining images
and then calculate the least squares estimate (Golub and van Loan,
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Fig. 7. Vimml comparison with S30TA: original images from LFW (fist row), reconstroctions from Mai et al (2019) (second row), DFD meconstrectons (thind mow) Below the

images are the PSNR vales obtained in comparison to the orginak from the firs row.

2013) of the mapping parameters between the original image embed-
dings and the embeddings of the corresponding transformed images.

The relationship is defined by

N
8=argmin Y’ Jle, — Mgle)I’, (6)
[

where & represents the estimated mapping parameters, while €, and
€, denote the embeddings of the orginal and ransformed images,
respectively, and N denotes the number of images used to compute the
mapping. The (linear) mapping function M, is parameterized by 6 and
applied to the transformed image embeddings. In case the considered
FR models are in fact equivariant with respect to the geometrc trans-
formation, the learned mapping for each transformation type should
allow us to modify the embeddings of a given transformed face image
such that the reconstruction of the modified embedding appears in its
initial form, Le., with the transformation undone.

We visually examine the impact of the mapping for the following
geometric perturbations:

+ Rotations. To estimate the mapping that models rotations in
the embedding space, we analyze the relationship between a
set of embeddings for the original face images (in an upright
orfentation) and the embeddings of the input images rotated in
30° increments, as shown in Fig. 8(a). Through this process, we

learn the mapping for each 30° rotation step, which allows us to
transform the embedding of any given rotated face image, such
that the reconstructed image appears upright. A comparison of
the reconstruction results without (Fig. 8(b)) and with (Fig. 8(c))
the learned transformations demonstrates that the considered FR
models indeed exhibit a certain level equivariance with respect
to rotations. The recovered faces are virtually unrecognizable for
both FR. models with rotation angles greater than 30° (in either
direction) when decoded from the ordginal unaltered embeddings
(Fig. 8(b)). Conversely, the faces become properly discernible
when the mapping is applied in the embedding space. In this case,
the rotation is not only compensated for, the reconstructed faces
also correspond reasonably well in terms of appearance to the
reconstructions of the unrotated images, as seen from Fig. 8(c).

Translations. To model translatons within the embedding space,
we estimate the mapping M, on training images shifted in four
distinct directions. Through this process, we acquire embedding
transformations for each translation direction, enabling us to
modify the embedding of a given shifted face image such that its
reconstruction appears centered. When looking at the reconstruc-
tion results without (Fig. 9(a)) and with (Fig. 9(b)) the learned
transformations, we observe that: (i) the VGG embeddings are im-
pacted severely from translations of the facial images and poorly
encode identity information if the faces are not well aligned.
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Ablation study exploring the impact of different loss functions and model variants.
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While one could argue that this is a property of the DFD model
that is trained on aligned face images, the results for the ResNet
embeddings suggest the opposite, since reasonable reconstruc-
tions are seen for the recovered images in Fig. 9(a) despite the
translated inputs. This result again speaks of the robustness of
ResNet embeddings, which appear to exhibit better invarance
w.r.t to input translations than the VGG FR counterparts. (i)
After applying the embedding transforms, both VGG and ResNet
models lead to more consistent reconstructions, suggesting that
it is possible o devise misalignment-compensation techniques
directly in the embedding space of ConvNet-based FR models

10

through simple linear ransforms, which is particularly strong
finding, not reported earlier in the open literature, o the best of
our knowledge.

Scaling. To model scaling in the embedding space, we estimate
the mapping M, on a set of training images scaled by 0.5 and
1.5, as illustrated in Fig. 10. From this process, we first leamn
the embedding transformations for each scale change and then
transform the embedding of a given scaled face image, so that the
reconstruction appears with a neutral scaling. From the results in
Fig. 100a), we again see that the VGG FR model is sensitive to the
scale of the input face images. with the generated embeddings
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Fig. B. Potations in the embedding space (2) input images rotated by different degrees; (b) reconstructions from the non-transformed embeddings of the input images ()

reconsructions from the tmndformed embeddings of the input images.

leading to image reconstructions with poorly visible features
and limited identity correspondence. The ResNet embeddings,
on the other hand, still encode identity information o a certain
extent and naturally account for the input scale changes. When
the leamed mapping is applied in the embedding space, the
transformed templates (VGG and ResNet) befter compensate for
the scale changes and lead to consistent and scale-normalized
reconstruc ons.

We demonstrate the importance (and some of the implications) of
the observations made above through face-verification experiments on
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the LFW dataset. Specifically, we compare the verification performance
of the original LFW images according to the standard protocol and the
performance, when one of the images in each pair is geometrically
perturbed (Le., either rotated by 30°, horizontally translated by 20% of
the width of the detection window, scaled w 0.5 of the original size).
We consider both scenarios, with and without the mapping procedure
in the embedding space. As can be seen from the results in Table 2, for
each type of promefric perturbaton, the mapping procedure leads
improved verification performance. Notably, this improvement is more
pronounced in the case of the VGG embeddings, which appear to be less
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Fig. 9. Trandations in the embedding space: (2] meconstroctions from the non-transfrmed embeddings of the input images (b) reconstree tions from the ransfomed embeddings

of the input images.

robust to image transformation than the ResNet embeddings. Nonethe-
less, the observed consistent performance improvements suggest that
normalizing for misalignment in the embedding space is feasible and
leads to performance gains even if a simple scheme, such as the one
used in this paper, is utilized.

4.3.2 Fadal occlusions

Next, we analyze the impact of partial occlusions of prominent facial
areas on the information encoded in the face templates. To this end, we
consider homogeneous block ooclusions of two key face regions, fe,

12

Table 2
Verification performance (TARs (%) at 0.1% FAR) on the IFW wsing original and

mapped embedding.
Mapping VGG ResNet
Orig ve orig Orig v miated Orig. v translied Odg. ve scaled
Withowt  79.2,003 620,089 TE.4,/90.1 31.4/B80
With n/a 67.8/99.0 TE.E9. 2 48,3940

the eyes and the mouth. The results in Fig. 11 present reconstruct ons
derived from a couple of occluded face images for all DFD variants
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(b)

Fig. 10. Scaling in the embedding space () reconstructions from the non-transfomed embeddings of the input inages (b) recongtnee tions from the tmndformed embeddings of

the input images.

and explore how the two FR models interpret ooclusions, which are
generally considered to be problematic for contemporary FR models.

Interestingly, all models appear to consistently interpret the ar-
tificial eye occlusions as glasses. This implies a shared underlying
mechanism for dealing with eye region occlusions and suggests that
ConvNet-based FR. models map images into embeddings that lie on a
learned manifold that corresponds to semantically meaningful facial
images, in our case, faces with sunglasses. Conversely, the coclusions
of the mouth region are predominantly perceived as open and smil-
ing mouths. This interpretation is likely again a consequence of the
morphological similarity between the type of occlusion and the typ-
ical appearance of an open/smiling mouth, and the mapping onto
the learned semantically-meaningful embedding manifold. It is also
interesting to observe that the identity information is still largely
discernible in the reconstructed images, that attribute information is
retained (e g, gender), and that the local occlusions remain comparably
local in the recovered images,

4.3.3. Adversarial artacks

The last type of appearance perturbation we study in this section
is adversarial noise. Adversarial noise is typically generated through
an adversarial attack that aims to modify the input image in such a
way that a ConviNet FR model produces incorrect (or ambiguous) recog-
nition results. Due to the importance and implication of adversarial
attacks for the security of biometric systems, it is critically important to
understand their impact on the embedding space of modemn FR models.
For the experiments, we implement two distinet tarpeted adversarial-
artack techniques: the Fast Gradient Sign Method (FGSM) (Goodfel-
low et al, 2015) and the method proposed by Carlini and Wagner
(CW) (Carlini and Wagner, 2017), and consider the original targeted
(tFGSM and tCW) as well as the iterative targeted (itFGSM and itCW)
variant (Kuralkin et al., 2017). The latter allows for adversarial atracks
with lower noise levels. Both types of techniques rely on a softmax layer
to attack facial images.
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In Fig. 12, we present the results of our experiment with an input
image of “A. Carr™ and the target identity provided by the image
of “T. Maze”. The second row of the figure shows the attacked *A.
Carr” image distorted by different adversarial attacks, the remaining
rows show reconstructions from the embeddings of these distorted
images using different DFD variants. The identity probability abowve
each image is determined by the ResNet-50 model (He et al., 2016),
trained on 8631 identities from the VWGGFace2 database (Cao et al,
201E). Notably, when the input image “A. Carr™ is distorted by an
adversarial attack to resemble “T. Maze”, the identity classifier tends
to make a correct prediction more frequently if the embedding of the
attacked image is decoded through our DFD model before classification.
This is especially tue for the VGG model embeddings, which we
already observed earlier to lead to reconstructions with a high level of
correspondence with the original input image. Nevertheless, we also see
correct identity predictions (and altered to identities different than “T.
Maze™) for the ResNet models and all investigated adversarial attacks.
No significant differences are observed between white and black-box
experiments. The presented observations have interesting implications:
(i) The adversarial attacks appear to have a limited impact on the face
embeddings and are mostly causing incorrect predictions at the softmax
layer, suggesting that similarity-based matching schemes should be less
affected by adversarial attacks than classifier based models (Le., as far
as the considered attacks are concerned). (i) While primarily designed
as a visualization tool, the DFD model offers a certain level of defense
against adversarial attacks, as evidenced by the identity probabilities
reported above the images,

To further support this last observation, we perform a number of
verification experiments on the LFW dataset (Huang et al, 2008),
where one of the images in each matching verification pair is first
distorted by FGSM attack (red curve in Fig. 13) and later reconstructed
by the proposed decoder (dotted red curwe in Fig. 13). As a benchmarlk,
we plot the verification rates of the original (unattacked) image pairs
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Fig. 11. Analyss of reconstructions from oocluded images The images lhstmie how different models interpret eye and mouwth socludons All models consistently interpret anificial
eye poclusions & glasses whemess mouth oechsions are predominantly perceived 2 open mouthe Notably, the models utilizing ResMet input embeddings (4th and Sth oolumns)
demonstrate slight orientation changes in the reconstree tions compared to those from VGG embeddings.

in green. As expected, we observe a significant decline in performance
when comparing results produced by the original images (solid green
line) and the attacked ones (solid red line). However, when the same
experiment is conducted on images reconstructed through the DFD
model, we observe a minor perfformance decrease in the non-attack
scenario (solid green line versus dotted green line), but see a consider-
ably less pronounced performance decline due to the adversarial attack
(dotted green line versus dotted red line). This result demonstrates that
the DFD model can effectively provide a degree of defense against the
FGSM attack

4.4. Understanding template-construction procedures

The performance of FR models strongly depends on the procedure
utilized to construct face templates during the enrollment process.
While academic recognition problems often assume a single input
image for the construction of the reference face template (in a sort of
single-shot leamning setting), industry solutions often capture a larger
set of images and derive a more elaborate face template from the
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captured enrollment data. Therefore, in the next serdes of experiments,
we investgate how different template-construction strategies impact
the informaton encoded in the templates. In the experiments, we
consider two settings, where: (i) the face template is represented by
multiple face embeddings, e.g., cluster centroids of the enrolled image
embeddings, and (i) the reference face template is represented by some
ageregation (e.g., ardthmetc mean) of all enrolled image embeddings.
For the qualitative part of this series of experiments, we use 500 images
from LFW, all representing the same identity.

4.4.1. Face templates from cluster centroids

In an operational setting, multiple face images of the same subject
are commonly available to construct the face template o be stored in
the system's database for later matching operatons. One strategy on
how to utilize the available images is to store all corresponding embed-
dings in the system and probe for the best match when a probe image
arrives. Alternatively, to reduce redundancy, computational costs, and
storage requirements, these embeddings are also clustered and only the
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embeddings of the cluster centroids (f.e, means) are stored for later
comparison purposes.

To explore the effect of this latter approach on the information
encoded in the centroids, we use agglomerative clustering over the
selected 500 IFW images and then invert the centroids using the DFD
model. As can be seen from Fig. 14, each cluster captures distinet forms
of image variability, including factors such as facial expressions, poses,
and the presence of accessories like hats and sunglasses, when the VGG
maodel is used to produce the embeddings. With the ResNet model, the
cluster centroids still differ from each other, but are closer in appear-
ance, again suggesting that the ResNet-based FR model has a stronger
tendency towards making the information encoded in the embeddings
more robust to typical sources of image variability, such as pose or
facial expression. Owverall, the presented results suggest that ResNet-
based models produce compacter data distributions in the embedding
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space (with comparably lower intra-class varability) compared to the
VGG-based model, where much larger varability is observed among
the reconstructed images.

4.4.2. Face templates through embedding aggregation
Another possibility to construct a face template from multiple face

images is to aggregate the corresponding embeddings through, eg., av-
eraging. This procedure results in a single vector that s used for
matching purposes in operational seftings. Using the same set of 500
images from LFW as in the previous section, we present in Fig. 15
the effect of averaging different numbers of (randomly selected) face
embeddings for both FR models and all DFD variants. As can be seen,
increasing the number of embeddings to aggregate appears to help
“normalize’ the information encoded in the template, so it corresponds
to better aligned, frontal, neutral, and homogeneously illuminated
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Fig. 14 Visualization of custered embeddings Each image cormsponds to a reconstruction derived from the average of all templates within a specific chster. This approach
encapaulates the overall chamse terstics of the respective cluster, providing a representative msmapshot of it inherent varability.

faces, which should make it easier to match the templates to potential
probe samples and enhance the template’s generalization power. This
behavior is again more obvious for the VGG-based FR model since
the ResNet model already reduces the amount of non-identity-related
information in the templates and comparably benefits less from the
aggregation process. nterestingly, we observe some differences in the
reconstruction with the white- and black-box configurations, but in
general, the reported observations still apply.

To quantitatively assess the impact of the embedding aggregation
process, we conduct verification experiments on the LIFW dataset with
the VGG FR model, where the gallery templates are computed by
aggregating the embeddings of different numbers of gallery images of
each of the 50 most represented subjects from the LFW database. The
results in Fig. 16 show that the verification performance progressively
improves when the mumber of embeddings to aggregate increases.
The performance stabilizes when 10 or more embeddings are used to
compute the gallery template, which is also the point, where the only
minute difference in the reconstructed images is observed in Fig. 15 -
see LOP [WO TOWS.
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4.5. Understanding template modification techniques

In the last series of experiments, we investigate techniques that
moudify the face templates produced by ConvNet-based FR models with
some specific goal. Specifically, we are interested in a special type
of Biometric Privacy-Enhancement Technique (B-FET) (Meden et al,
2021) that aims to remove nformation on soft biometric attributes
(e.g., pender) from the face embeddings o ensure higher levels of
privacy. To this end, we experiment with the PFRNet model, proposed
by Bortolato et al. (2020), which excels in disentangling identity in-
formation from facial attributes. Consequently, this capability allows
for the suppression of varous soft biometrics in face templates. PFR-
Net is designed for the ResNet-50 FR model trained on VGGFace2,
s0 we conduct experiments with the white-box ResNet—ResMNet DFD
variant. Gender and identity metrics are computed on the reconstructed
images using the DeepFace gender classifier (Serengil and Ozpinar,
2021) and with embeddings produced by the VGG-16 face recognition
network (Simonyan and Zisserman, 2015), respectively.

The main idea behind PFRNet is to disentangle the face embeddings
into two distinet components, where the first encodes identity infor-
mation and the second encodes gender information only. In Fig. 17,
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Fig. 15. Visal representation of template convergence. Each image is reconstrscted from a face template that consists of aggregated embeddings The four mws cormspond o
different DFD configurations. The columns represent the varying numbers of embeddings aggregated to form a template, as indicated below each column,
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Fig. 16. Verification performance for the case where a gallery template & defined 2 an sverage embedding of a variable number of gallery images It can be seen that verification
perfprmance improves a8 the number of embeddings aggregated for a gallery template incresses and stabilizes when 10 or more embeddings: are wsed to caleulate the gallery

template.

we show the impact of this disentanglement process on the visual
appearance of a few reconstructed images from the CelebA dataset.
For baseline comparisons, we first reconstruct the embed dings without
modifying the gender or identity information and show results in
Fig. 17b. To evaluate the information encoded in the gender com-
ponent, we replace this component with the mean value for each
gender class in the dataset: female (Fig 17¢), male (Fig. 17d), and
combined (Fig. 17e). As can be seen, this manipulation has a strong
apparent effect on the gender informaton in the reconstructed images,
malking them appear fernale, male, and androgynous, respectivel y while
maintaining identity content to a certain degree. Additonally, eval-
uating the pender information contained in the identity component
using a similar manipulation for female (Fig. 17f), male (Fig. 17g),
and combined (Fig 17h) wector averages, shows little effect in the
corresponding  reconstructions in terms of apparent gender. On the
other hand, the identity informaton of the reconstructed image is
substantially altered but shows little dependence on which gender label
was used to compute the mean vector. This can be attributed to the
fact that the identity-related part of the disentangled embedding is
primarily charged with encoding identity information and contains
little to no gender information.

17

The results of these experiments again point to the useful ness of the

proposed DFD for interpreting template manipulation techniques and
validation of their characteristics.

5. Conchision

In this paper, we have presented a novel template inversion tech-
nique, the Deep Face Decoder (DFD), for examining the characteris-
tes of face image embeddings of contemporary ConvNet-based face
recognition (FR) models. Our experiments with two FR models (with
different backbones) and multiple face datasets showed that the pro-
posed DFD model is able to produce informative (high-fidelity) image
reconstructions from the embeddings, both in a white-box as well as
a black-box setting. Additionally, we demonstrated how DFD can be
used to analyze and interpret the characteristics of the embedding space
of ConvNet-based FR models and to explore the impact of appearance
perturbations, occlusions, adversarial attacks, and varous template
maodification procedures on the information encoded in the generated
face templates.

Our analysis led to several interesting findings. The results related
to geometric perturbations showed that such perturbations can directy
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Fig. 17. Reconstroctions frm PFRNet latent space. (a) Original images Reconstrsctions from disentangled latent space (b) non-modified disentangled embeddings, (c) embeddings
using the female average for the dependent section, (d) embeddings wsing the male average for the dependent section, (&) embeddings wsing the overall average for the dependent
section, () embeddings: wing the female average for the independent section, (g) embeddings wsing the male sverage for the independent section, (h) embeddings wsng the overal]
average for the independent section. The fimt value below each image cormesponds to the cosine d@milarity [-1,1] againg the orginal image, while the second valie corresponds

1o the gender classifier's probability of the face being male

be modeled in the embedding space of FR models and that it is possible
to learn simple linear mappings that normalize for misalignment at the
template level, Additionally, we showed that coclusions of the facial
area are often interpreted as semantically meaningful objects in the
embedding space, and that adversarial noise infused through softmax
classifiers has only a limited impact on the facial embeddings. When
looking at different strategies for template construction from multiple
face images, we managed to associate a semantic interpretation to
the template-construction process that justifies the commonly observed
performance improvement associated with aggregated templates. Fi-
nally, we showed that the DFD can also be employed as a highly
useful tool for validating the performance of template modification
procedures, e.g., soft-biometric privacy-enhancing techniques.

Taken together, our findings flluminate several significant char-
acteristics of face image embeddings and their implications, offering
valuable insights to the academic commmnity and the industry. This
understanding could pave the way for more sophisticated, reliable, and
privacy-preserving facial recognition systems in the future. Future work

13

could extend these findings by exploring more complex and diversified
soenarios, as well as by addressing the challenges raised in this study.
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