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Abstract

The need for reliable identification of children in various
emerging applications has sparked interest in leveraging
child face recognition technology. This study introduces a
longitudinal approach to enrollment and verification accu-
racy for child face recognition, focusing on the YFA (Young
Face Aging) database collected by Clarkson University’s
CITeR research group over an 8-year period, at 6-month
intervals. The dataset includes children ranging from 3 to
18 years of age, comprising 330 subjects with an average
of 6 data collections per subject. QOur research aims to
comprehensively evaluate the performance of state-of-the-
art face-matching techniques on the YFA database, assess-
ing the feasibility of recognizing children’s faces upon ini-
tial enrollment and verifying their identity longitudinally at
6-month intervals. We conduct a comprehensive analysis
of the system’s accuracy considering multiple age groups.
We also investigate the temporal degradation of face recog-
nition accuracy over time. Notably, when comparing the
initial enrollment image with longitudinal images over an
8-year period, we observe a decrease in accuracy. The av-
erage TAR across all age groups is 98.52% with a FAR of
0.1% with a 2-year age verification gap and drops to 95.68
with a 4-year age gap. However, this rate decreases to
87.24% after a time difference of 6 years and further drops
to 71.32% with a time difference of 8 years. The highest
drop in accuracy was noticed in the age group of (3-5) years
old children and the lowest in (5.5-7) years old. By address-
ing the challenges and opportunities in child face recogni-
tion, this research contributes significantly to the advance-
ment of technology for identifying missing or abducted chil-
dren and other critical applications requiring dependable
biometric recognition in children.
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1. Introduction

In recent years, there has been a growing demand for re-
liable identification of children across various applications,
including missing children, border security, humanitarian,
and health care. This highlights the need to explore the po-
tential of face recognition technology for children. How-
ever, traditional face recognition systems have primarily fo-
cused on adults, which poses limitations when applied to
children due to the unique characteristics of juvenile facial
features and how they change over time [16].

Aging in biometric features results in performance
degradation for biometric recognition systems [9]. Unlike
factors such as lighting or pose that contribute to variabil-
ity within an identity, aging presents an unavoidable aspect
that cannot be controlled during the image capture process
[8]. While contemporary Face Recognition (FR) systems,
utilizing deep Convolutional Neural Network (CNN)-based
approaches, demonstrate robust performance across various
poses, illumination, and facial expressions, they still face
challenges associated with aging. These systems experience
a significant decrease in accuracy exceeding 10% when con-
fronted with substantial age disparities during evaluation
[20].

To address this gap, this study is focused on child face
recognition, with a specific emphasis on verification ac-
curacy over time using a novel longitudinal dataset. The
Young Face Aging (YFA) database contains face images
of children captured at 6-month intervals from 2016 to
November 2023 for children from 3 to 18 years of age.
By leveraging this longitudinal dataset, our research aims to
provide a comprehensive evaluation of state-of-the-art face
recognition focused on the unique challenges in children.

This longitudinal approach enables us to study the per-
formance impact of the changes in facial appearance that
occur as children age. Furthermore, we split the YFA
database into different age groups to analyze the pattern of
accuracy among different ages. Our objective is to discern
whether there exists a consistent trend in accuracy across



Figure 1. Age progression of a subject in the YFA database from 10 years to 17 years at 6-month intervals.

all age groups, or if certain age groups exhibit a substantial
decline in accuracy compared to others. Our contributions
are listed as follows.

e We study the performance for increasing the time be-
tween as an enrollment and consecutive verification
sample over a 6-month time intervals, up to 8 years.
Children’s ages range from 3 to 18 years, with 330 sub-
jects and an average of 6 collections for each subject.
By using this method, our main goal is to gain insights
into the performance and reliability of the enrollment
and verification system over time, particularly in the
context of age progression. Figure 1 shows an exam-
ple of the image quality of subjects over time.

Additionally, we have conducted a thorough analysis
of the results based on age groups spanning two years
e.g (3-5, 5.5-7 years). This detailed examination has
enabled us to identify subtle patterns and trends in the
system’s ability to match identities across different age
brackets. By breaking down the data in this manner,
we have gained a more comprehensive understanding
of the system’s effectiveness in accurately verifying
identities across different stages of child development.

We evaluated the True Acceptance Rate (TAR) of the
system for each age group using bootstrapping. This
process allows us to generate upper and lower bounds
on the observed performance and better understand the
significance of the difference when changes are ob-
served.

2. Related Work

Table 1 provides details of numerous studies in the field
of face aging for children that have highlighted the detri-
mental impact of large age intervals on the accuracy of FR
systems. These intervals, are typically measured over many
years and are often “in the wild” datasets and/or have a large

time gap between collections. There are several constrained
datasets where the time gap is more controlled. Most have
shorter time period than our dataset ([3], [6], [15]). The
most similar dataset is ECLF [5] database which has an
average time span of 3.5 years with a 1-year gap between
collections with a maximum span of 6 years. The YFA
database used in this research has a collection time inter-
val of 6 months over a maximum span of § years.

Best-Rowden et al. [3], built a Newborn, Infants, and
Toddlers Longitudinal (NITL) database of facial images to
explore FR in children as they age. According to the study,
the accuracy of FR remained high within the same session
but decreased significantly across different sessions. This
emphasizes the need for further research to improve cross-
session recognition accuracy for children. The study pro-
vides a comprehensive evaluation of face matching using
the NITL database, exploring the possibility of FR for chil-
dren as they age. The results suggest that current FR tech-
nology may not be reliable enough for very young children,
but it could be feasible for those enrolled at 3 years of age
or older. With a COTS face matcher, the research achieved
a TAR of 60.94% at FAR of 0.1% for an age gap between
3-5 years.

Chandaliya et al. [5], research compiled a longitudinal
database of Indian children (ages 2 to 18, encompassing
both boys and girls) using with and without face masks. The
findings indicate a significant decline in the performance of
facial recognition systems due to aging when masks are uti-
lized. The research utilized the Children Longitudinal Face
(ECLF) dataset, comprising 26,258 facial images belonging
to 7,473 subjects aged between 2 and 18 years. On average,
each subject contributed 3 images, acquired over an average
time lapse of 3.35 years. The no-mask dataset achieved an
average identification accuracy with a 1-year time interval
and a 1-6 year time gap across FaceNet, PFE, ArcFace, and
COTS models of 83.79% at 0.01% FAR.

Srinivas et al. [16], observed a discernible bias when



Table 1. Comparison of face recognition datasets utilized by researchers in child face recognition.

Datasets Subjects | Samples | Environment Ages Time Gap Collection Period
ITWCC-DI1 [16] 745 7,990 Wild Oyrs-32yrs - -
NITL [3] 314 3,144 Wild 0-4 years 6 Months 1 Years
AgeDB [11] 568 16,488 Wild 1-101 Varied -
Morph II [13] 13,000 55,133 Constrained 16 -77 Years 0-5 Years 36 Years
ECLF [5] 7,473 26,258 Constrained 2-18 Years 1 Year -
CLF [6] 919 3,682 Constrained 2-18 years 2-4 Years 7 Years
CMBD [15] 141 2,590 Constrained | 18months - 4 Years | Months apart -
| YFA(Ours) [ 330 [ 3,831 [ Constrained |  3-18years [ 6Months | 8 Years |

comparing performance metrics between child and adult
face datasets. Their study emphasizes the necessity for a
thorough investigation into the implications of FR systems
for children. Despite the scarcity of scholarly articles ad-
dressing this issue, their contribution to expanding and di-
versifying the ITWCC dataset suggests a growing interest
and potential for further research in this field. The study
relied on the ITWCC-D1 database, encompassing 745 sub-
jects with 7,990 images and an age range spanning from 0 to
32 years. They achieved 75.9% TAR at 0.1% FAR and with
score level fusion 78.2% TAR at 0.1% FAR. The research
was conducted using 8 face-recognition systems. However,
the verification accuracy does not account for the age of the
subjects at enrollment and verification.

Deb et al. [6], present a longitudinal study of FR perfor-
mance on the Children Longitudinal Face (CLF) database
containing 3,682 face images of 919 subjects, in the age
group 2-18 years. Each subject has at least four face im-
ages acquired over a time span of up to 6-years. In this
study, the researchers found out that the accuracy of face
recognition decreases over time. Initially, they achieved an
accuracy of 83.77% True Acceptance Rate (TAR) and 0.1%
False Acceptance Rate (FAR) with a 1-year time-lapse, but
this decreased to 59.80% TAR after 3 years. In this re-
search, FaceNet [14] serves as the face matcher, an older
face-matching algorithm compared to MagFace [10], which
we employ in our study.

Research conducted by Siddiqui et al. [15], a novel rep-
resentation learning algorithm is proposed to extract distinct
and invariant features from facial images of newborns and
toddlers. This approach is intended to inform the design of
an efficient face recognition algorithm tailored specifically
for this age group. The CNN architecture proposed in the
study achieves a rank-1 identification accuracy of 62.7% for
single gallery newborn face recognition and 85.1% for sin-
gle gallery toddler FR.

A study conducted by Yau et al. [18], significant vari-
ations in authentication robustness between age groups
are demonstrated. The study was conducted using the
AgeDB and Morphll databases, encompassing various age
groups. Researchers categorized participants into different
age groups with a 10-year age gap and then conducted over-

all accuracy comparisons within each age group.

Bahmani et al. [2] conducted a study on children
FR, utilizing the YFA database. The study entailed a
comparative analysis between YFA and various publicly
available cross-age adult datasets to assess the impact
of age disparities on both adults and children. The re-
search findings reveal a significant and consistent decline
in match scores, with increasing age gaps between gallery
and probe images in children, even over short intervals
such as 6 months. They use multiple face-matching al-
gorithms Facenet-V1[14], Facenet-V2[14], VGGFace [12],
VGGFace?2 [4], ArcFace [7], ArcFace-Focal [17] and Mag-
Face [10]. With MagFace they achieved 98.3% and 94.9%
TAR at 0.1% FAR over 6 and 36 months age gaps. Con-
sidering these results, we used MagFace as the FR model,
employing an extended YFA database for this study. Previ-
ous research utilized the YFA database with collection peri-
ods of up to 3 years, whereas we expanded our database to
include collection periods of up to 8 years.

In our research, the YFA dataset enables consideration
of the accuracy for more controlled time intervals, as well
as high-quality images. YFA covers ages 3-18, as well as
increases in time between enrollment and verification for 6-
month increments up to 8§ years. Through this work, we aim
to provide a more comprehensive understanding of how the
performance of the system evolves with the aging process,
offering valuable insights into the effectiveness and reliabil-
ity of FR technology across various age demographics.

3. Methodology

The primary objective of this research is to develop and
evaluate a longitudinal age enrollment and verification sys-
tem using the YFA dataset. The methodology employed
involves two main stages: enrollment and verification. En-
rollment Stage: Any image in the dataset may be consid-
ered an enrollment stage, where subjects are categorized
into specific age brackets. Verification Stage: Following
the enrollment stage, all subsequent collections of the YFA
dataset are utilized for verification purposes. These collec-
tions are considered as verification samples, with the time
interval between collections increasing as the subject’s age
progresses. This approach allows for the evaluation of the
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Figure 2. Number of subjects at each age in the YFA Database. The same subject might have been captured at different ages.
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Figure 3. Number of images at each age in the YFA Database. Typically each subject provided 2 images at each session, but there may be

more or less in a few cases due to quality issues or extra samples taken.

system’s performance over time, considering the aging ef-
fects on facial appearance.

3.1. Database Overview

The YFA database serves as the foundation for this re-
search. The research team collaborates with the local el-
ementary, middle, and high schools to identify and enroll
subjects for voluntary participation, following an approved
IRB protocol. Collections occur at 6-month intervals. Each
year, new subjects are added at ages 3-5 (i.e., pre-K and
Kindergarten students. Each collection contains facial im-
ages of subjects, along with their corresponding age. Fig-
ures 1 illustrate the age progression of individual subjects
within the YFA database, showcasing the development from
10-17 years of age, with intervals of 6 months. The database
contains 3831 samples from 330 subjects collected in a con-
trolled environment with a time-lapse of 6 months over 8

years. Figure 2 depicts the statistics of the YFA. Samples
are captured from 3-18 year old children. Images are cap-
tured using a DSLR camera with a resolution of 3648 by
5472 pixels. The image acquisition is conducted under con-
sistent indoor lighting conditions, encouraging neutral ex-
pressions, and minimizing variations in the subject’s pose.
Manual annotation by human annotators was performed and
extremely blurry images and challenging poses were ex-
cluded from the database. Each subject is captured at least
twice during each session. Figure 3 illustrates the number
of samples available at each age. This dataset exhibits the
highest number of collections for subjects aged 8 years and
the lowest number of samples for subjects aged 3.5 years.
Ages are approximate based on the school grade of enroll-
ment as some subjects declined to provide birthdate.



Table 2. Overall performance (TAR% at 0.1% and 0.01% FAR) on
YFA database with cross-age matching.

Model TAR Threshold | TAR Threshold
@0.1% @0.01%
FAR FAR

MagFace | 95.48 0.45 82.25 0.56

4. Face Detection and Recognition Models

MTCNN (Multi-Task Cascaded Convolutional Neural
Network) face detection model, as referenced in [19] was
employed to accurately detect and align faces. Addition-
ally, we resize each cropped face to meet the requirements
of the facial recognition matcher’s input specifications at
224 x 224 pixels. This establishes a consistent founda-
tion for the comprehensive analysis and evaluation of our
research.

The performance of the longitudinal age enrollment and
verification system is assessed based on face-matching ac-
curacy across different time intervals. Bahmani er al. [2],
introduce the YFA dataset for analyzing the performance
of FR systems over short age gaps in children. They
use multiple face-matching algorithms; Facenet-V1[14],
Facenet-V2[14], VGGFace [12], VGGFace2 [4], ArcFace
[7], ArcFace-Focal [17] and MagFace [10]. The best per-
formance was with MagFace which achieved 98.3% and
94.9% TAR at 0.1% FAR over 6 and 36 months age gaps.
Based on these results, we used MagFace as a FR model in
this study.

5. Experimental Setup

To facilitate analysis of the longitudinal aging factor, we
categorize the longitudinal age of subjects as enrollment
and verification. Figure 2 details the available subjects of
the YFA dataset for experiments. Upon initial enrollment
of a subject into the system, we determine their age based
on the enrollment date, given that the YFA database records
data at 6-month intervals, we increment the subject’s age
by 6 months with each subsequent data collection. Notably,
the youngest age recorded in the database is 3 years. Con-
sequently, we designate all subjects at the age of 3 years as
enrollment samples. Following a period of 6 months, when
the subject’s age is 3.5 years, we classify them as verifica-
tion samples for further analysis. This repeats for all images
from that subject. In this systematic approach, each image
can be either an enrollment or verification image (with the
exception of the first image captured for a child can only
be an enrollment image). Figure 3 provides the number of
samples available in each enrollment period. The largest
number of subjects in the database are 8 years old and the
lowest number of subjects is 3.5 years old.
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Figure 4. Heatmap of TAR at 0.1% FAR for increasing time pe-
riods between enrollment and Verification for each age. The
heatmap illustrates a notable decline in TAR as the time between
enrollment and verification increases.

6. Results & Discussion
6.1. Enrollment and Verification Scenarios

We explore overall cross-age performance in the range
of up to 8 years within the YFA database. Table 2 provides
a detailed depiction of the TAR computed for the MagFace
[10] face matcher model across two FAR thresholds, specif-
ically at 0.1% and 0.01%. Specifically, we set a fixed thresh-
old value of 0.45 at a FAR of 0.1% and 82.25 %TAR at
0.01% FAR with 0.56 threshold. In our further analysis, we
keep the 0.45 threshold at 0.1% FAR to calculate the TAR
performance of each subset of age-wise enrollment and ver-
ification. Figure 3 provides the statistics of available sam-
ples in each subset of ages. To evaluate the longitudinal
performance we compare the age of the subject during the
first enrollment to the age of the subject for each subsequent
verification. The YFA database collection period is 8 years
so the maximum difference between enrollment and verifi-
cation is 8 years (i.e This longitudinal approach allows for a
nuanced understanding of how the recognition system per-
forms over time, particularly in relation to the aging process
of individuals.

By tracking the subject’s ages over the 8-year collection
period, we were able to observe trends in the system’s per-
formance, specifically focusing on the TAR across differ-
ent age groups and over increasing time between enrollment
and verification. Figure 4 visually represents our findings.
Our analysis reveals a decline in TAR, particularly beyond
the fourth year after enrollment across all age groups. For
certain age comparisons, e.g. age 13 compared to age 16,



Table 3. TAR% at 0.1% FAR for each enrolment age (rows) for increasing time gaps between enrollment and verification (columns). Each
verification column consists of TAR% upper and lower bound calculated based on bootstraping and column N represents available subjects

for that time gap.

TAR% at 0.1% FAR for different time gaps between enrollment and verification
Enrollment Age 0.5-2 Years N 2.5-4 Years N | 4.5-6 Years N 6.5-8 Years N
3-5 Years 97.8 [96.8, 98.7] 88 | 96.3[95.1,97.5] | 65 | 86.7[84.4,88.8] | 55 | 63.1[60.2,66.1] | 20
5.5-7 Years 97.9[97.0, 98.7] 133 | 95.2[93.8,96.5] | 82 | 85.9[83.6,87.9] | 63 | 80.2[77.8,82.5] | 43
7.5-9 Years 98.3[97.6, 99.0] 161 | 95.7[94.4,969] | 99 | 85.7[83.6,88.1] | 88 | 65.6[62.5,68.4] | 51
9.5-11 Years 98.9[98.3, 99.5] 141 | 95.4[94.1,96.6] | 112 | 88.7[86.4,90.5] | 89 | 75.5[72.9,77.9] | 39
11.5-13 Years 99.7 [99.4, 100.0] 114 | 95.8[94.6,97.0] | 65 | 89.2[87.2,91.0] | 41 | 72.2[69.4,75.1] | 4
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Figure 5. Distribution of subjects for age groups where each age
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Figure 6. TAR% for each enrolment age (lines) for increasing time
between enrollment and verification (x-axis).

there are no images that meet that criteria and thus it is rep-
resented as a white box. There is a noticeable decrease in
TAR as age increases, particularly when it has been more
than 4 years since enrollment.

This decline in TAR could stem from various factors, in-
cluding changes in facial features due to natural aging pro-
cesses. However, poor performance could also be due to
other factors, such as pose, illumination, expression, or en-
vironmental influences. We controlled for these factors as
best as possible, but there are likely still influences. Un-
derstanding these trends is crucial for developing strategies
to improve the longevity and effectiveness of biometric FR
systems.

6.2. Analysis for age groups

Additional investigation was performed in the observed
trend of declining TAR to see if the underlying age of en-
rollment has an impact. In other words, we performed fur-
ther analysis to determine if there is a difference between
a subject that enrolls at age 5 and verifies at age 10 versus

a subject that enrolls at age 10 and verifies at age 15, for
example. We created subsets of the database, with subjects
categorized into groups based on a 2-year age interval. This
subset approach allowed for a examination of potential age-
related trends in the performance.

The distribution of subjects for each of the age groups
is depicted in Figure 5. For the analysis, each group is
matched over multiple 2-year time intervals. For instance,
subjects enrolled between the ages of 3-5 years were com-
pared against every image collected from those subjects be-
tween 6-month to 2 years after enrollment and similarly
from (2.5-4) year time difference up to 8 years of time gap.
This methodology enabled tracking of performance trends
across various age groups at increasing time of verification
after enrollment

Table 3 further highlights the decline in the TAR as time
after enrollment increases. For less than 2 years from en-
rollment, Age groups (3-5, 5.5-7, 7.5-9, 9.5-11) had a TAR
0f 97.8 - 98.9% and a TAR of 99.75 for age group (11.5-13).
After 2.5 to 4 years, age groups (3-5, 5.5-7, 7.5-9, 9.5-11)
observed nearly 1-3% drop in TAR and (11.5-13) close to
5% drop in TAR. After 4.5 to 6 years, all age groups ob-
served 10% drop in TAR. After 6 years from enrollment,
there was a subsequent sharp decline. Figure 6 visually rep-
resents the trend on the drop of TAR across different age
groups. This observed pattern persists consistently across
nearly all age groups. Through systematic TAR evalua-
tion within each age group, we can analyze whether the
observed TAR decline is uniform across all age groups or
if certain age groups experience more pronounced perfor-
mance deterioration over time. We noticed that the enroll-
ment age groups (3-5) and (7.5-9) years have a larger drop
in TAR compared to other age groups. For the enrollment
age group (3-5) with a verification age gap of (0.5-2) years,
the TAR decreased from 97.8% to 63.1% for a verification
age gap of (6.5-8) years. Similarly, for the enrollment age
group (7.5-9) with a verification age gap of (0.5-2) years,
the TAR decreased from 98.3% to 65.6% for a verification
age gap of (6.5-8) years. With age group (5.5-7) years, the
TAR decreased from 97.9% to 80.2% for a verification age
gap of (6.5-8) years. Noticed that age groups (3-5) and (7.5-
9) years had a 20-23% drop in TAR after 6 years of a verifi-
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Figure 7. Bootstrap visualization of a two-sided 95% confidence interval for TAR, bounded by the 2.5th and 97.5th percentiles. Fewer
subjects results in wider confidence intervals, particularly for longer time intervals (6.5 to 8 years from enrollment).

cation age gap whereas age group (5.5-7) had a 5% drop in
TAR.

6.3. Confidence intervals based on bootstrapping
for performance evaluation

Based on the findings in the previous section, we noticed
that subjects are not evenly distributed across the various
age groups and time gaps. Confidence intervals were con-
structed using bootstrap resampling process to quantify the
uncertainty surrounding key statistical estimates [1]. Boot-
strapping is a statistical resampling technique used to esti-
mate the sampling distribution of a statistic by repeatedly
sampling with replacement from the observed data. It al-
lows for the assessment of variability and uncertainty in
a sample estimate without assuming a specific parametric
distribution. Figure 7 is a visual representation of the re-
sampling distribution of data across different age groups.
For instance, a two-sided 95% confidence interval was com-
puted using the bootstrap percentile method and represents
the TAR range in which the true parameter value is expected
to lie with 95% probability. The lower bound of the confi-
dence interval is the TAR value at the 2.5th percentile. Con-
versely, the upper bound is the TAR value at the 97.5th per-
centile.

Table 3 provides lower and upper bounds for each TAR.
This confidence interval estimation accounts for the vari-
ability inherent in the data and allows comparison of the
trends to support statistical inference and decision-making.
For instance, the enrollment age (3-5) with a verification
age of (6.5-8) years consists of only 20 subjects. The 95%
confidence interval for a TAR range is from 60.2 to 66.1.
This analysis provided a better understanding of the plausi-
ble range of TAR values. With bootstrap resampling with
various age groups, particularly focusing on the verification
age gap of (6.5-8) years, we observed that the enrollment
group aged (5.5-7) years did not experience as significant
of a decline in TAR compared to other groups after 6 years
of verification gap, TAR decreased from 85.9% to 80.2%
until 8 years verification age gap. However, we found that
the enrollment age groups of (3-5) years and (7.5-9) years
showed lower TAR, particularly compared to the verifica-

tion group of (4.5-6) years to (6.5-8) with 63.1% and 65.6%
TAR respectively.

Comparison of performance is provided in Table 4. Most
prior work has poor performance either because the dataset
are in the wild and have poor-quality images or the algo-
rithms are older. In a recent study with a 6-year time dif-
ference [5], ArcFace and a COTS model achieved a TAR
of 98.32% and 98.99% respectively, with a 0.1% FAR. This
performance is better achieved in the YFA database even
though MagFace has been shown to outperform ArcFace in
our dataset. The main difference between the datasets are
race and ethnicity. The database used [5] primarily consists
of Indian children, in contrast to the YFA database, which
contains a high proportion of children which are white.
There is not further analysis of the age or age group of the
subject during enrollment and further verification matching.
Thus the difference could also be related to the distribution
of ages.

7. Conclusion and Future Work

In conclusion, the study’s findings underscore the impor-
tance of longitudinal assessments in evaluating the perfor-
mance of face recognition systems, particularly in under-
standing how age-related factors impact their accuracy and
reliability over time. Further research and refinement of al-
gorithms may be necessary to address the observed decline
in TAR and enhance the robustness of FR technology across
diverse age demographics.

We performed an evaluation of the MagFace facial
recognition algorithm for the YFA database, encompass-
ing subjects aged 3 to 18 years, and up to 8 years be-
tween enrollment and verification samples. Our compre-
hensive analysis includes a breakdown of results based on
age groups spanning two years. The average TAR in the
validation group aged (0.5-2) years was 98.52%, whereas
it decreased to 95.68% in the validation group aged (2.5-4)
years. We find a drop in accuracy after a 4-year age dif-
ference among subjects and a sharp decline after a 6-year
age difference with the average drop in TAR from 87.24%
to 71.32%. Our analysis, focusing on specific age groups,
reveals a notable trend indicating a decrease in TAR over



Table 4. Comparative analysis of prior child face recognition studies: database, model, and accuracy.

Database Longest time gap

Time interval

Accuracy Model

ECLF [5] 6 years 1 year

FaceNet: 84.55
PFE: 98.90
ArcFace: 99.38
COTS: 99.62

TAR at 0.1% FAR

ITWCC-D1 [16] - -

TAR at 0.1% FAR FR Model: COTS
FR-A: 0.676
FR-B: 0.598
FR-C: 0.463
FR-D: 0.434
FR-E: 0.759
FR-F: 0.738
FR-G: 0.718
FR-H: 0.695

NITL [3] 2 years 1 year

TAR at 0.1% FAR COTS: 60.94

CLF [6] 3 years 3 year

TAR at 0.1% FAR COTS: 49.33

FaceNet: 59.80

CMBD [15] - 5

PCA: 38.8

LBP:28.8

LDA :71.3

Fine-tuned VGG-Face:
83.0

Triplet CNN : 72.7
Proposed CNN: 85.1

Rank-1 Accuracy

YFA [2] 3 years 6 months

TAR at 0.1% FAR Facenet-V1: 76.0
ArcFace : 81.1
ArcFace-Focal : 91.6

MagFace: 94.9

Ours -YFA extended 8 years 6 months

TAR at 0.1% FAR MagFace: 95.48

time following enrollment. We observed the most substan-
tial decline in accuracy among children aged 3-5 years old,
where the TAR dropped to 63.1%. This decline occurred
particularly within a verification age gap of (6.5-8) years.
Conversely, the age group of (5.5-7) years old exhibited the
highest TAR 80.2%. Our examination further reveals that
the accuracy performance does not exhibit consistent trends
with increasing age within enrollment age groups. For in-
stance, within the verification age group of (6.5-8) years
for children aged (3-5) years, the TAR dropped to 63.1%.
However, for the age group of (5.5-7) years, the accuracy
notably increases to 80.2%. This trend reverses once more
for the (7.5-9) age group, with accuracy dropping to 65.6%.
Interestingly, there is a slight uptick in accuracy observed
in the subsequent age groups. These fluctuations under-
score the complexity of age-related dynamics in biometric
verification accuracy and suggest the need for tailored ap-
proaches to address variations across different age ranges.
These findings not only contribute to a deeper understand-
ing of facial recognition technology’s for children and can
inform its implementation. Moving forward, our research
sets a foundation for continued exploration and refinement
of FR systems to ensure their efficacy and fairness across
all age demographics.

The research faces several limitations concerning its
database. Although the study encompasses children aged
3 to 18 years, the distribution of subjects within this age
range is uneven, potentially impacting the generalizability
of findings. While the collectors attempted to control var-
ious quality factors, variations in facial movement, angle,
and facial expressions were present. All collections were
performed in a classroom environment with the lights on.
However, there are still inconsistencies in lighting across
collections. Moreover, disparities in subjects’ appearance,
such as some wearing glasses and caps, further complicate
the recognition process. The lack of demographic diver-
sity within the database, particularly in terms of ethnicity,
poses a significant limitation to the generalizability of the
findings. In this study, we use the MagFace face-matching
algorithm. Other face matchers or fine-tuning the existing
algorithm can impact the results. The study aims to assess
children’s facial recognition for critical applications, such
as identifying missing or abducted children. However, the
findings are in a controlled environment and performance
may be lower in real-world scenarios due to factors like im-
age quality variations, environmental conditions, and oper-
ational constraints.
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