

1 **The BTB transcription factor, Abrupt, acts cooperatively with Chronologically
2 inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg
3 regeneration**

4

5

6 Hesper Khong, Kayli Hattley and Yuichiro Suzuki

7

8

9

10

11

12 Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481

13

14

15

16

17

18

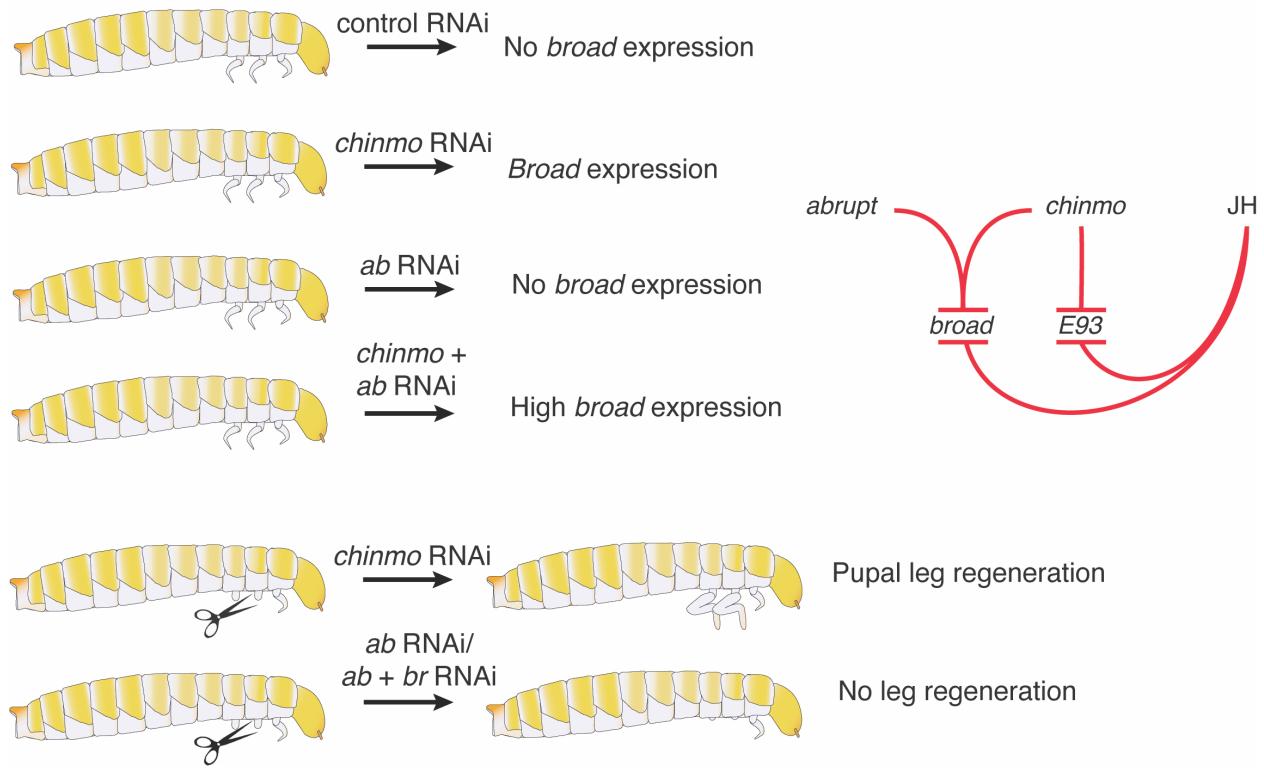
19

20

21 * Corresponding author: Yuichiro Suzuki, Department of Biological Sciences, Wellesley
22 College, 106 Central St., Wellesley, MA 02481; email ysuzuki@wellesley.edu; telephone
23 (+01)781-283-3100

24 **Abstract**

25


26 Many insects undergo the process of metamorphosis when larval precursor cells begin to
27 differentiate to create the adult body. The larval precursor cells retain stem cell-like properties
28 and contribute to the regenerative ability of larval appendages. Here we demonstrate that two
29 Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors,
30 Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to
31 repress metamorphosis in the flour beetle, *Tribolium castaneum*. Knockdown of *chinmo* led to
32 precocious development of pupal legs and antennae. We show that although topical application
33 of juvenile hormone (JH) prevents the decrease in *chinmo* expression in the final instar, *chinmo*
34 and JH act in distinct pathways. We demonstrate that another gene encoding the BTB domain
35 transcription factor, Ab, is also necessary for the suppression of *broad* (*br*) expression in *T.*
36 *castaneum* in a *chinmo* RNAi background and that simultaneous knockdown of *ab* and *chinmo*
37 leads to the precocious onset of metamorphosis. Furthermore, we demonstrate that knockdown of
38 *ab* leads to the loss of regenerative potential of larval legs independently of *br*. In contrast,
39 *chinmo* knockdown larvae exhibit pupal leg regeneration when a larval leg is ablated. Taken
40 together, our results show that both *ab* and *chinmo* are necessary for the maintenance of the
41 larval tissue identity and, apart from its role in repressing *br*, *ab* acts as a crucial regulator of
42 larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex
43 manner to regulate larval and pupal tissue homeostasis.

44

45 **Keywords**

46 Metamorphosis, limb regeneration, Chinmo, Abrupt, juvenile hormone, *Tribolium castaneum*

Graphical abstract

49 **Introduction**

50 Metamorphosis is associated with major morphological changes that lead to maturation
51 and proliferation of adult tissues. Holometabolous insects, insects that undergo complete
52 metamorphosis, are characterized by the presence of the larval, pupal, and adult stages. Larvae of
53 many holometabolous insects are distinguished by the presence of precursor cells, either detected
54 in the form of imaginal discs, tissues that are set aside during embryogenesis, or imaginal cells,
55 cells embedded within the larval epidermal cells that proliferate during metamorphosis (Truman,
56 2019). These precursor cells undergo extensive proliferation and movement during
57 metamorphosis to give rise to adult tissues. In most holometabolous insects, larval tissues also
58 contribute to the adult body, thus contributing to the formation of both larval and adult
59 structures. These cells can therefore be thought of as partially but not completely differentiated
60 cells (Suzuki et al., 2019). Although holometabolous larvae are characterized by tissues with
61 extensive regenerative abilities, many insects lose their ability to regenerate structures during
62 metamorphosis (Suzuki et al., 2019). How the larval tissues are maintained in an undifferentiated
63 state has important implications for our understanding of stem cell maintenance and
64 differentiation and the evolution of holometabolism.

65 The hormonal control of insect metamorphosis has been explored for over a century. Two
66 key groups of insect hormones have been identified: the sesquiterpenoid juvenile hormone (JH)
67 and the steroid hormones, ecdysteroids (Nijhout, 1998). JH acts as a *status quo* hormone,
68 maintaining the identity of the previous instar when ecdysteroids trigger a molt (Riddiford,
69 1996). Thus, topical application of JH on larvae can lead to extra larval molts (Hatakoshi et al.,
70 1988; Parthasarathy and Palli, 2009), and injection or topical application of JH in early pupae

71 induces the development of a second pupal cuticle (Gilbert and Schneiderman, 1960; Riddiford
72 and Ajami, 1973).

73 The molecular processes that act downstream of hormones are actively studied. JH binds
74 to the basic helix-loop-helix (bHLH) transcription factor, Methoprene tolerant (Met) (Charles et
75 al., 2011; Jindra et al., 2015). *Met* knockdown in the flour beetle, *Tribolium castaneum*, leads to
76 precocious metamorphosis (Konopova and Jindra, 2007; Parthasarathy et al., 2008b). In severely
77 affected individuals, the larvae skip the pupal stage and develop directly into adultoid animals
78 with adult cuticles and differentiated structures albeit with dramatically reduced appendage sizes
79 (Parthasarathy et al., 2008b). Once bound by JH, Met, in turn, activates the JH response gene,
80 *Krüppel homolog 1 (Kr-h1)*. Similar to *Met* knockdown larvae, precocious adult development
81 commences when *Kr-h1* expression is knocked down (Minakuchi et al., 2009). *Kr-h1* is
82 upregulated by JH and is present at high levels throughout much of the larval stage but drops in
83 the final larval stage when JH levels also drop (Minakuchi et al., 2009). Once the JH level drops
84 in the final larval instar, the pupal specifier gene encoding the Broad-complex/Tramtrack/Bric-à-
85 brac Zinc-finger/poxvirus and zinc finger (BTB/POZ) family transcription factor, Broad (Br), is
86 upregulated (Zhou et al., 1998; Zhou and Riddiford, 2001). Br is necessary and sufficient for the
87 appearance of pupal structures in holometabolous insects (Konopova and Jindra, 2008;
88 Parthasarathy et al., 2008a; Suzuki et al., 2008; Zhou and Riddiford, 2002). Topical application
89 of JH leads to extra larval molts and inhibition of *br* expression (Suzuki et al., 2008). When *br* is
90 knocked down in *T. castaneum* larvae, the prepupa molts into a larval-adult intermediate that
91 lacks pupal traits (Konopova and Jindra, 2008; Suzuki et al., 2008). Finally, the adult specifier
92 gene *ecdysone-induced protein 93F (E93)* promotes the differentiation of adult structures:
93 Knockdown of *E93* prevents adult differentiation and leads to the retention of pupal

94 characteristics (Urena et al., 2014). *E93* represses the expression of *Kr-h1* and *br* in the pupal
95 stage, leading to the development of the adult stage (Urena et al., 2014).

96 Recent studies in *D. melanogaster* have demonstrated that another BTB domain
97 transcription factor, Chronologically inappropriate morphogenesis (Chinmo), acts as a larval-
98 specific stage specifier (Chafino et al., 2023; Truman and Riddiford, 2022). Chinmo was
99 identified as a gene that maintains the temporal identity of neurons in the brain: Loss of Chinmo
100 leads to early-born neurons adopting the fate of a late-born neuron at an early developmental
101 stage (Zhu et al., 2006). Its removal leads to the precocious expression of Br in the nervous
102 system and the imaginal discs, precocious imaginal disc growth, and appearance of pupal traits in
103 first instar *D. melanogaster* larvae (Narbonne-Reveau and Maurange, 2019; Truman and
104 Riddiford, 2022). Independent of its role in repressing precocious *br* expression, Chinmo also
105 acts on the tissues to promote their growth and maturation (Chafino et al., 2023). Although there
106 are conflicting observations, when *chinmo* is removed, *E93* has also been reported to be
107 upregulated in the imaginal discs of first instar larvae (Truman and Riddiford, 2022; but see also
108 Chafino et al., 2023). When overexpressed, *chinmo* can repress *E93* during the pupal period and
109 prevent adult differentiation (Chafino et al., 2023). This role of *chinmo* in repressing *E93*
110 expression is also conserved in the cockroach, *Blattella germanica*, a hemimetabolous insect:
111 When *chinmo* is knocked down in L4 nymphs, the nymphs molt once before precociously
112 molting into an adult (Chafino et al., 2023).

113 In addition to regulating the timing of metamorphic transitions, *chinmo* has been
114 implicated in imaginal disc regeneration. Imaginal discs in *D. melanogaster* have an extensive
115 ability to regenerate (Bryant, 1971; Fox et al., 2020; Schubiger, 1971). Recent studies in *D.*
116 *melanogaster* have demonstrated that during metamorphosis, imaginal discs lose their ability to

117 regenerate (Karanja et al., 2022; Narbonne-Reveau and Maurange, 2019). This event is mediated
118 by the steroid hormones, ecdysteroids (Karanja et al., 2022). During the middle of the final
119 instar, ecdysone inhibits the expression of *chinmo* and activates the expression of *br* (Narbonne-
120 Reveau and Maurange, 2019). *Chinmo* promotes regeneration of imaginal discs whereas
121 activation of *Br* leads to the loss of regenerative potential and onset of differentiation (Narbonne-
122 Reveau and Maurange, 2019).

123 *Chinmo* has been shown to have many functional similarities with *Abrupt* (*Ab*), another
124 BTB domain transcription factor. Both *Chinmo* and *Ab* have been indicated to act as oncogenes
125 and their overexpression blocks differentiation and leads to the maintenance of progenitor-like
126 state in various tissues (Doggett et al., 2015; Turkel et al., 2013). Importantly, like *Chinmo*, *Ab*
127 is temporally regulated in muscles, neuromuscular junctions, and α'/β' to α/β neuronal transitions
128 in the mushroom body, and its expression must be repressed for the tissues to terminally
129 differentiate (Caygill and Johnston, 2008; Kucherenko et al., 2012). Both *Ab* and *Chinmo* are
130 regulated by the heterochronic microRNA, *let-7* (Caygill and Johnston, 2008; Wu et al., 2012).
131 Finally, *Chinmo* and *Ab* have been shown to play functionally overlapping roles, and the roles of
132 *Chinmo* can be unmasked when the function of *Ab* is compromised (Doggett et al., 2015). These
133 studies suggest that *Ab* and *Chinmo* act cooperatively to maintain the larval stage in *D.*
134 *melanogaster*.

135 Although *D. melanogaster* is an excellent genetic model system, it has a rather unusual
136 physiology where JH plays minimal developmental roles (Riddiford and Ashburner, 1991). In
137 many other insect species, JH plays a prominent role in regulating the timing of metamorphosis
138 and pupal commitment. In this study, we sought to examine the role of *Chinmo* and *Ab* in the
139 regulation of metamorphosis of *T. castaneum*. *T. castaneum* is a holometabolous insect with

140 physiological regulation of metamorphosis that is more typical of other insects. Although the
141 function of Ab has been studied during metamorphosis and leg regeneration of *T. castaneum*
142 (Angelini et al., 2012, 2009; Lee et al., 2013; Ravisankar et al., 2016), the role of Chinmo has not
143 yet been reported. In *T. castaneum*, *ab* knockdown larvae metamorphose at the normal
144 developmental time but develop into adults with appendage patterning defects: In the *ab*
145 knockdown adults, wings are severely reduced in size, the antennal segments are fused, and the
146 tarsal segments of the legs are lost or fused (Angelini et al., 2012, 2009; Ravisankar et al., 2016).
147 The larval appendages of *T. castaneum* allow us to probe the mechanism of stem cell-like cell
148 proliferation and differentiation (Chou et al., 2019; Suzuki et al., 2019). The first step of limb
149 regeneration is the formation of a blastema, a bump that comprises an epidermal layer with
150 precursor cells that give rise to the regenerating limb (Suzuki et al., 2019). When larval legs are
151 ablated, *ab* knockdown larvae fail to form a blastema and cannot regenerate their legs (Lee et al.,
152 2013). Since larval legs develop in *ab* knockdown embryos, the inability to regrow their legs
153 suggests that *ab* plays a regeneration-specific role, possibly by promoting the proliferation of
154 progenitor-like cells in the developing blastema (Lee et al., 2013).

155 Here we examined the roles of Ab and Chinmo in the regulation of metamorphosis and
156 larval leg regeneration in *T. castaneum* larvae. Using RNA interference (RNAi), we demonstrate
157 that *chinmo* represses *br* and *E93* expression in *T. castaneum* larvae, preventing premature pupal
158 differentiation of appendages. Moreover, through the simultaneous knockdown of *chinmo* and
159 *ab*, we reveal that *ab* also represses *br* and show that simultaneous knockdown of *ab* and *chinmo*
160 can lead to precocious metamorphosis. The expression of *chinmo* is not dependent on JH,
161 however. Independently of its role in regulating *br* expression, we show that *ab* is also necessary

162 for regenerative growth of larval legs. These findings support the growing evidence for BTB
163 domain proteins in regulating distinct tissue states.

164

165

166

167 **Methods**

168 *Animal husbandry*

169 The GA1 and Pu11 strains of *T. castaneum* were used in this study. The strains were maintained
170 in 95% whole wheat flour and 5% wheat germ. Unless otherwise noted, larvae were maintained
171 at 29.5°C and 60% relative humidity.

172

173 *cDNA synthesis and PCR amplification*

174 RNA was isolated from whole bodies following standard Trizol extraction. The RNA was
175 purified using RQ1 RNase-Free DNase (Promega) according to the manufacturer's instructions.
176 cDNA was synthesized from 1 µg of RNA using the First Strand cDNA Synthesis Kit (Thermo
177 Fisher Scientific). Primers were designed to amplify the *ab* (GenBank accession number
178 XM_969854.4), *chinmo* (GenBank accession number XM_015980027.1) and *br* core
179 (NM_001111264.1) through PCR (Table 1). To minimize off-target effects, the sequences
180 targeted by these primers were blasted in iBeetle Blast ([https://ibeetle-base.uni-](https://ibeetle-base.uni-goettingen.de/blast/)
181 [goettingen.de/blast/](https://ibeetle-base.uni-goettingen.de/blast/)). No stretches of nucleotide sequences greater than 17 bp were found outside
182 the targeted region. The *ab* and *chinmo* sequences were also aligned using Emboss Water
183 (Madeira et al., 2022). The output of the alignment is shown in Supplemental Fig. S1. A protein
184 tree of Chinmo and Ab is shown in Supplemental Fig. S2.

185

186 *dsRNA synthesis*

187 For dsRNA synthesis, the amplified PCR product was purified and subsequently cloned into
188 pCR-4 TOPO-TA vector. *E. coli* cells were transformed with this vector and grown overnight.
189 Following extraction using the QIAprep Spin Miniprep Kit (Qiagen), the plasmids were

190 sequenced and linearized using Spe1 and Not1 restriction enzymes (NE Biolabs). Single-
191 stranded RNA (ssRNA) was generated using the T3 and T7 MEGAscript Kits and the purified
192 linearized plasmids as the templates. The ssRNA was purified and annealed according to Hughes
193 and Kaufman (2000). The annealed product was analyzed by agarose gel electrophoresis.

194

195 *Phenotypic characterization of dsRNA-injected larvae*

196 Sixth instar larvae were injected with 0.5 μ L of 2 μ g/ μ L *chinmo* dsRNA, 0.5 μ L of 4 μ g/ μ L
197 *chinmo* dsRNA, 0.5 μ L of 2 μ g/ μ L *ab* dsRNA, 0.5 μ L of a combined solution of 2 μ g/ μ L *ab*
198 dsRNA and 2 μ g/ μ L *chinmo* dsRNA, 0.5 μ L of a combined solution of 2 μ g/ μ L *chinmo* dsRNA
199 and 2 μ g/ μ L *br* dsRNA, and 0.75 μ L of a combined solution of 2 μ g/ μ L *chinmo* dsRNA, 2 μ g/ μ L
200 *ab* dsRNA, and 2 μ g/ μ L *br* dsRNA. Larvae were also injected with 0.5 μ L of 2 μ g/ μ L *amp*^r
201 dsRNA as an injection control. Initial results obtained when *chinmo* dsRNA-injected larvae were
202 kept at 29.5°C led to variable phenotypic effects with increasing severity with longer time to
203 molt. To obtain robust phenotypic effects more consistently, larvae were transferred to 26°C
204 post-dsRNA injection. To observe the effects of *ab*, *chinmo* and *br* on larval leg regeneration,
205 larvae were injected with 0.5 μ L of 4 μ g/ μ L *chinmo* dsRNA, 0.5 μ L of 2 μ g/ μ L *ab* dsRNA, 0.5 μ L
206 of a combined solution of 2 μ g/ μ L *ab* dsRNA and 2 μ g/ μ L *br* dsRNA, 0.5 μ L of a combined
207 solution of 2 μ g/ μ L *chinmo* dsRNA and 2 μ g/ μ L *br* dsRNA, or 0.5 μ L of 2 μ g/ μ L *amp*^r dsRNA.

208

209 *Analysis of feeding behavior*

210 Sixth instar larvae were injected with 0.5 μ L of 4 μ g/ μ L *chinmo* dsRNA or 0.5 μ L of a combined
211 solution of 2 μ g/ μ L *ab* dsRNA and 2 μ g/ μ L *chinmo* dsRNA. Control larvae were injected with 4
212 μ g/ μ L *amp*^r dsRNA. Larvae were maintained at 26°C on regular 95% whole wheat/5%

213 nutritional yeast mixture. Upon molting to the next instar, larvae were placed on the same flour
214 mix containing 0.1 g of carmine/g of flour. The guts were dissected two days later and imaged in
215 phosphate-buffered saline (0.02 M phosphate, 0.15 M NaCl, 0.0038 M NaH₂PO₄, 0.012 M
216 Na₂HPO₄; pH 7.4).

217

218 *Methoprene treatment*

219 To determine the effect of methoprene on the expression of *ab* and *chinmo*, 0.5 µL of the JH
220 analog methoprene (60 or 120 µg/µL in acetone) was ectopically applied to the dorsal side of day
221 0 final instar larvae. Control larvae were treated with 0.5 µL of acetone. To determine whether
222 *ab* and *chinmo* act downstream of JH, sixth instar larvae were injected with either 0.5 µL of 4
223 µg/µL *chinmo* dsRNA or 0.5 µL of a combined solution of 2 µg/µL *ab* dsRNA and 2 µg/µL
224 *chinmo* dsRNA and treated with 0.5 µL of methoprene (30 or 60 µg/µL in acetone) or 0.5 µL of
225 acetone on the dorsal side.

226

227 *Quantitative PCR (qPCR)*

228 Sixth instar larvae were injected with 0.5µL of 2 µg/µL *chinmo* dsRNA, 0.5µL of 4 µg/µL
229 *chinmo* dsRNA, 0.5µL of 2 µg/µL *ab* dsRNA, 0.5µL of a combined solution of 2 µg/µL *ab*
230 dsRNA and 2 µg/µL *chinmo* dsRNA, 0.5µL of a combined solution of 2 µg/µL *chinmo* dsRNA
231 and 2 µg/µL *br* dsRNA, 0.75µL of a combined solution of 2 µg/µL *chinmo* dsRNA, 2 µg/µL *ab*
232 dsRNA, and 2 µg/µL *br* dsRNA, and 0.5µL of 2 µg/µL *amp^r* dsRNA. Larvae were kept at
233 29.5°C and collected three days later. To examine how the *chinmo* expression might be altered in
234 response to *Met*, *Kr-h1* and *jhamt3* RNAi, day 2 fifth instar larvae were injected with dsRNA and
235 collected on day 3 of the sixth instar so that the genes were sufficiently knockdown. All collected

236 larvae were immediately placed in Trizol and frozen. RNA was converted to cDNA as described
237 above. For qPCRs, SsoAdvanced SYBR Green Supermix (Bio-Rad) was used with primers listed
238 in Table 1. Three to four biological replicates, each containing two injected larvae, were used,
239 and each biological replicate was run in triplicates. The standard curve method was used to
240 analyze the data.

241

242 *Knockdown verification*

243 To confirm the knockdown of *ab* and *chinmo* expression, day 0 sixth instar larvae were injected
244 with *ab*, *chinmo* and *amp^r* dsRNA and kept at 29.5°C for three days. Larvae were then placed in
245 Trizol and RNA was isolated as described above. To verify knockdown, semi-quantitative PCR
246 was used. For *RP49*, 20, 25, and 30 cycles were used. For *chinmo*, 30, 35 and 40 cycles were
247 used (Supplemental Fig. S2).

248

249

250 **Results**

251 ***Chinmo* suppresses precocious metamorphosis of legs and antennae**

252 To investigate the role of *chinmo* in *T. castaneum*, *chinmo* dsRNA was injected into sixth
253 instar larvae. *chinmo* dsRNA-injected larvae exhibited larval-pupal mosaic phenotypes
254 characterized by lengthened or broadened legs with patches of reddish-brown discoloration (Fig.
255 1-2; Table 2). *Chinmo* knockdown also impacted the morphology of the antennae, which became
256 broader and longer (Fig. 3; Table 2). The morphological alterations, especially in the legs,
257 appeared to be partial pupal transformations (see additional evidence below). Aside from the leg
258 and antennal morphology, however, the *chinmo* knockdown larvae did not exhibit any major
259 alterations. The molted larvae failed to show signs of growth, possibly indicating internal
260 alterations. Using flour containing red food coloring, we found that *chinmo* knockdown larvae
261 did not feed (N=5; Fig. 3F). Since prepupae and pupae do not feed, the lack of feeding may
262 reflect behavioral changes associated with precocious metamorphosis.

263 *chinmo* and *ab* act cooperatively to suppress precocious metamorphosis

264 Because *chinmo* knockdown alone was insufficient to completely transform larval
265 structures to pupal structures, sixth instar larvae were injected with either *ab* dsRNA or a
266 combination of *chinmo* and *ab* dsRNA. *ab* knockdown alone did not yield any obvious
267 morphological defects although occasional larvae failed to completely shed their cuticle. When
268 *chinmo* and *ab* dsRNA were co-injected, larvae had deformed limbs with discoloration. On the
269 dorsal side, we observed projections at the base of the lateral bristles reminiscent of those found
270 on pupae (Fig. 1O'', blue dotted circles; Fig. 5B', 5B''). These larvae also did not eat (N=4;
271 Fig. 3F). In a subset of larvae (4 out of 22), we observed wing-like projections in the second and
272 third thoracic segments although these were very small and never exhibited any wing-specific

273 morphologies (Fig. 1O'). To investigate these projections further, we knocked down *chinmo* and
274 *ab* in the sixth instar Pu11 larvae, which express GFP in the wing imaginal cells under the
275 control of a *nubbin* enhancer (Clark-Hachtel et al., 2013). Intriguingly, GFP was not detected in
276 these tissues, indicating that despite the presence of projections, *nubbin* is not expressed (n=4;
277 Fig. 3G, H). To rule out the possibility that *ab* knockdown alone, which leads to miniature wings
278 (Ravishankar et al., 2016), might lead to the absence of GFP expression, we examined the GFP
279 expression in *ab* knockdown Pu11 prepupa and pupa. GFP was strongly expressed in these *ab*
280 knockdown animals (Fig. 3I-I'') indicating that the absence of GFP in *chinmo* + *ab* knockdown
281 cannot be attributed to the reduction of *ab* expression alone. Compound eyes were also absent in
282 the *chinmo* or *chinmo* + *ab* knockdown larvae (Fig. 2). Interestingly, a fraction (8 out of 22) of
283 *ab* + *chinmo* knockdown larvae underwent precocious metamorphosis and developed into a
284 prepupa without a molt (Fig. 4; Table 2). This occurred without notable delay (Fig. 4), indicating
285 that the entry into prepupal stage was unlikely to be mediated by starvation-induced precocious
286 metamorphosis (Chafino et al., 2019). Four out of eight of these prepupae underwent pupation
287 generating pupae with severely reduced wings and poorly developed gin traps (Fig. 5A). To
288 determine whether *ab* + *chinmo* removal can also produce pupal traits, fifth instar larvae were
289 co-injected with *ab* and *chinmo* dsRNA. These larvae also exhibited pupal traits (Table 2; Fig.
290 5E-E'') and one was also capable of progressing to the prepupa although this individual
291 subsequently molted into an animal with both larval and pupal traits (Table 2; Fig. 5C-D'').

292 *Chinmo and ab act cooperatively to repress br expression*

293 Recent studies in *D. melanogaster* have demonstrated that Chinmo represses Br to
294 maintain the larval stage (Chafino et al., 2023; Truman and Riddiford, 2022). Other studies have
295 also implicated *ab* as a repressor of *br* expression. To examine how *br* expression might be

296 regulated in *T. castaneum*, we injected 1 μ g of *chinmo* and 1 μ g of *ab* dsRNA at the onset of the
297 sixth instar and examined the expression of *br* core region, which is shared across all *br* isoforms
298 (Konopova and Jindra, 2008; Suzuki et al., 2008). Knockdown of *chinmo* led to elevated
299 expression of *br* core, although knockdown of *ab* alone did not lead to upregulation of *br* core
300 (Fig. 6A). When 1 μ g of *ab* dsRNA and 1 μ g of *chinmo* dsRNA were simultaneously injected, *br*
301 core expression was significantly elevated relative to those injected with 1 μ g of *chinmo* dsRNA
302 alone. While not statistically significant, this expression was slightly higher than that of larvae
303 that were injected with 2 μ g of *chinmo* dsRNA. Similar trends were observed for the *br*-Z3
304 isoform (Fig. 6B). These results indicated that although *chinmo* is necessary for *br* suppression,
305 *ab* acts cooperatively with *chinmo* to further suppress *br* expression.

306 To determine whether co-injection of *br* dsRNA would prevent the appearance of pupal
307 traits, we conducted *chinmo* + *br* double knockdowns and *chinmo* + *ab* + *br* triple knockdowns.
308 In both treatments, the larvae were affected less severely than those injected with either *chinmo*
309 dsRNA or *chinmo* + *ab* dsRNA. In addition, the larval leg occasionally transformed into a leg
310 with a morphology that is characteristic of larval-adult intermediate phenotypes that develop
311 when *br* dsRNA-injected prepupae molt (Fig. 2F; Konopova and Jindra, 2008; Parthasarathy et
312 al., 2008a; Suzuki et al., 2008). Thus, the observed precocious appearance of pupal traits is likely
313 due to the activity of *br*. Taken together, our results show that both *ab* and *chinmo* act
314 cooperatively to suppress the expression of *br* and that their simultaneous removal can lead to
315 pupal transformation.

316 We also examined the expression of the JH response gene, *Kr-h1*, and the adult specifier
317 gene, *E93*. *Kr-h1* expression was not altered in the *chinmo*, *ab*, or *chinmo* + *ab* knockdown
318 larvae (Fig. 6D; One way ANOVA: p=0.796). *E93* was significantly elevated in larvae injected

319 with 2 μ g *chinmo* dsRNA, while a modest increase was also observed in larvae injected with 1
320 μ g *chinmo* dsRNA and those injected with 1 μ g *chinmo* + 1 μ g *ab* dsRNA (Fig. 6C). No increase
321 was detected in those injected with *ab* dsRNA alone (Fig. 6C).

322 Finally, we explored the possibility that *chinmo* and *ab* might cross-regulate each other.
323 We therefore examined the expression of *ab* and *chinmo* in *chinmo* and *ab* knockdown larvae,
324 respectively. No change was observed in *chinmo* expression when *ab* was knocked down
325 (Fig. 6E). *ab* was slightly decreased when *chinmo* was knocked down although this difference
326 was not statistically significant (Fig. 6F). Therefore, *ab* is unlikely to regulate the expression of
327 *chinmo* and the enhanced expression of *br* and *E93* is not due to an indirect effect of *ab* RNAi on
328 *chinmo* expression.

329

330 *JH and chinmo interaction*

331 In *T. castaneum*, JH maintains the larval stage, and topical application of JH leads to
332 supernumerary larval molts. Chinmo could act upstream or downstream of JH. To determine
333 whether JH might act upstream of *chinmo*, larvae were injected with *chinmo* dsRNA and the JH
334 analog methoprene was ectopically applied. We found that even in the presence of methoprene,
335 the larvae exhibited the *chinmo* knockdown phenotype with malformed legs and antennae similar
336 to acetone-treated *chinmo* knockdown larvae (Table 3; Fig. 7A, B). Similarly, JH did not
337 ameliorate the phenotypes obtained through the double knockdown of *ab* and *chinmo* (Table 3;
338 Fig. 7C). A subset of *chinmo* + *ab* double knockdown larvae (2 out of 6 treated with 15 μ g
339 methoprene; 1 out of 5 treated with 30 μ g methoprene) entered the prepupal stage even when
340 they were treated with methoprene. When methoprene was topically applied to day 0 final instar
341 *T. castaneum* larvae, both *chinmo* and the JH response gene *Kr-h1* expression was significantly

342 higher than those treated with acetone. In contrast, *ab* expression was not significantly altered by
343 methoprene (One-way ANOVA: p=0.543).

344 We next examined whether *chinmo* expression might be altered when JH signaling is
345 disrupted. Because larvae injected with *Met*, *Kr-h1* or *jhamt3* dsRNA often undergo one or two
346 additional molts before undergoing precocious metamorphosis (Konopova and Jindra, 2007;
347 Minakuchi et al., 2008; Minakuchi et al., 2009), larvae were injected with dsRNA on day 2 of the
348 fifth instar and allowed to molt to the sixth instar before the expression was analyzed on day 3.
349 Neither the expression of *chinmo* nor *ab* was altered by the knockdown of *Met*, *Kr-h1* or *jhamt3*
350 (Fig. 7G, H). Taken together, these experiments demonstrate that JH is sufficient to maintain
351 high *chinmo* expression in the final instar but is not necessary for *chinmo* or *ab* expression.

352

353 *Ab*, but not *Chinmo*, is necessary for larval regeneration in *T. castaneum* legs

354 To investigate the regenerative role of *chinmo*, *chinmo* was knocked down in the sixth
355 instar and legs were ablated on the following day. In *amp^r* dsRNA-injected control larvae, when
356 legs were ablated one day after injection and left at 26°C, the larvae molted and regenerated their
357 legs (Table 4; Fig. 8A). When *chinmo* was knocked down, the larvae also regenerated their legs
358 (Table 4). In *chinmo* knockdown larvae that took longer to molt and therefore had a greater
359 amount of time to regenerate, the regenerated legs assumed a pupa-like leg morphology (Fig.
360 8B). These legs more closely resembled pupal legs compared to the unablated legs, suggesting
361 that the reduction of *chinmo* and hence upregulation of *br* did not alter their ability to regenerate.
362 Thus, although *Chinmo* has been shown to be necessary for regenerative proliferation, and *br* has

363 previously been shown to inhibit regeneration in *D. melanogaster* wings, in *T. castaneum*, legs
364 can regenerate even when *chinmo* expression is reduced and *br* expression is elevated.

365 In contrast, as previously reported, *ab* knockdown larvae failed to regenerate the larval
366 legs after a molt (Lee et al., 2013) (Table 4; Fig. 8C). To determine whether this is due to the
367 expression of *br*, *ab* and *br* were simultaneously knocked down and the legs were removed one
368 day later. These *ab* + *br* double knockdown larvae still failed to regenerate their legs (Table 4;
369 Fig. 8D), indicating that the inability of *ab* knockdown larvae to regenerate their legs is not due
370 to precocious upregulation of *br*. These findings indicate that in *T. castaneum*, the primary
371 regulator of blastema formation and proliferation is Abrupt, not Chinmo.

372 To determine whether JH signaling is involved in this *ab*-dependent regenerative
373 potential, we examined whether JH signaling was necessary for the regeneration of larval legs.
374 Day 2 fifth instar larvae were injected with *jhamt3*, *Kr-h1* or *Met* dsRNA and their legs were
375 subsequently ablated on day 1 of the sixth instar. Although the larvae initiated metamorphosis
376 without molting, all of the animals that eventually developed into adults had regenerated their
377 legs (n=4 for each treatment; Fig. 9). These results indicate that JH signaling is not necessary to
378 promote larval leg regeneration and that the role of Ab in promoting larval leg regeneration is
379 independent of JH signaling.

380

381

382 **Discussion**

383 In this study, we investigated the roles of two genes encoding the BTB domain
384 transcription factors, *chinmo* and *ab*, in the regulation of metamorphic timing and larval leg
385 regeneration. We found that *chinmo* knockdown alone causes the larval appendages to begin to
386 adopt pupal identities. Knockdown of both *ab* and *chinmo* caused more extensive pupal
387 transformation and de-repressed *br* expression.

388 *Chinmo and ab act cooperatively to regulate the timing of metamorphosis*

389 Knockdown of *chinmo* alone caused alterations to the antennae and legs after the first
390 molt. Especially given that the regenerated leg in *chinmo* knockdown larvae exhibit pupal
391 morphology (Fig. 8B) and *chinmo* knockdown larvae had elevated *br* expression (Fig. 6A,B), the
392 alterations we observed are likely partial pupal transformations. The *chinmo* knockdown larvae
393 also stopped feeding after the molt (Fig. 3F), indicating that the effects of knockdown extend
394 beyond the appendages. When *chinmo* is knocked down in *D. melanogaster*, a pupal cuticle is
395 induced in the epidermis (Truman and Riddiford, 2022). The imaginal discs also express *br* and
396 begin to proliferate in late first instar larvae, suggesting precocious metamorphic entry of these
397 tissues (Chafino et al., 2023; Truman and Riddiford, 2022). Thus, in *D. melanogaster*, both
398 tissues begin precocious metamorphosis albeit at slightly different developmental time points. In
399 *T. castaneum*, *chinmo* knockdown had the strongest visible effects on the appendages although
400 given the similarity between the larval and pupal cuticle, it is difficult to know whether slight
401 pupal characteristics were also induced in the epidermis of the *chinmo* knockdown larvae.

402 We found that the knockdown of *ab* augments the effects of *chinmo* knockdown by
403 inducing higher expression of *br* and causing whole-body transformations. Since the effects of

404 injecting 1 μ g *chinmo* and 1 μ g *ab* dsRNA are more severe than those seen after the injection of
405 2 μ g *chinmo* dsRNA, we suspect that *ab* and *chinmo* likely act synergistically to regulate the
406 expression of *br*. In *D. melanogaster*, both *ab* and *chinmo* have been shown to modulate the
407 temporal transition of the nervous system during metamorphosis (Kucherenko et al., 2012; Wu et
408 al., 2012; Zhu et al., 2006). Thus, we suspect that the roles of *chinmo* and *ab* in regulating the
409 timing of pupal commitment are conserved between the two species. Curiously, although the legs
410 and antennae were affected, the alternations to structures that develop *de novo* during
411 metamorphosis were either not affected or only minimally impacted. For example, compound
412 eyes did not develop, and only miniature wing-like projections developed. The use of Pu11
413 larvae demonstrated that the wing-like projections do not express *nubbin*, a key wing gene. Wing
414 cells in *T. castaneum* are contributed by both the cells in the notum and the pleural plates (Clark-
415 Hachtel et al., 2013). The pleural cells do not express *nubbin* whereas the notum expresses
416 *nubbin*. Thus, the absence of GFP expression in the *chinmo* + *ab* knockdown Pu11 strain
417 suggests that the notum cells are not present in the wing-like projections. These observations
418 suggest that knockdowns of *chinmo* or *chinmo* + *ab* are not sufficient to trigger the development
419 of tissues that begin to proliferate *de novo* during metamorphosis. In contrast, larval structures
420 that transform into adult structures can undergo metamorphosis when *chinmo* and *ab* are
421 knocked down. In holometabolous insects, three different types of cells have been identified: the
422 larva-specific cells, which only contribute to larval structures and are subsequently eliminated
423 during metamorphosis; the polymorphic cells, which contribute to both larval and adult
424 structures; and the imaginal cells, which proliferate during metamorphosis and contribute to the
425 adult structures (Tanaka and Truman, 2005). We propose that during the larval stage, the
426 knockdown of *chinmo* inhibits the proliferation of imaginal cells, similar to what has been seen

427 in *D. melanogaster* imaginal discs (Fig. 10A; Chafino et al., 2023). In *D. melanogaster*, in the
428 absence of *chinmo*, *br* is upregulated and prevents the growth of imaginal discs in the larvae
429 (Chafino et al., 2023). In many holometabolous insects, JH acts as an inhibitor of imaginal cell
430 proliferation (Truman et al., 2006; Villarreal et al., 2015). Thus, JH and Chinmo may act in
431 concert to regulate the proper timing of imaginal cell proliferation (Fig. 10A). In contrast,
432 polymorphic cells and the pre-existing nervous system are prevented from transforming into
433 pupal or adult cells due to the expression of *chinmo* and *ab* (Fig. 10B). When *chinmo* is knocked
434 down, *br* is induced, leading to the partial pupal transformation we observed.

435 In addition to inducing pupal appendages, *chinmo* knockdown led to the appearance of
436 reddish-brown pigmentation in parts of the legs and antennae. Given that the knockdown of
437 *chinmo* also led to the upregulation of *E93*, we suspect that melanin production may be
438 upregulated, leading to partial activation of adult-specific genes. Adult beetles are reddish black
439 due to the production of melanin and N- β -alanyldopamine in the cuticle (Arakane et al., 2009;
440 Kramer et al., 1984). Similar phenotypes were also obtained when *Kr-h1* was knocked down in
441 *T. castaneum* larvae (Minakuchi et al., 2009). *Chinmo* knockdown in the larvae therefore appears
442 to cause a precocious activation of both pupal and adult-specific genes. In the cockroach *B.*
443 *germanica*, *chinmo* also represses *E93*, and its removal leads to precocious onset of adult
444 development (Chafino et al., 2023). Our findings corroborate the notion that *chinmo* is required
445 for juvenile tissue identity and its removal leads to precocious activation of pupal and adult
446 tissues.

447 *JH is not necessary for chinmo expression*

448 We established that Chinmo does not act upstream of JH as *chinmo* or *ab + chinmo*
449 knockdown larvae treated with methoprene yielded phenotypes similar to those treated with
450 acetone (Fig. 7). Topical application of methoprene in the final instar maintained significantly
451 higher expression of *chinmo* relative to those treated with acetone (Fig. 7). Moreover,
452 knockdown of *chinmo* or *ab + chinmo* did not cause *Kr-h1* expression to differ across the
453 different knockdown treatments (Fig. 6D). These results show that *chinmo* is not an upstream
454 regulator of JH signaling. However, knockdowns of JH biosynthesis or signaling genes did not
455 alter the expression of *chinmo* (Fig. 7), demonstrating that JH is not necessary for *chinmo*
456 expression. This indicates that the elevated *chinmo* expression in response to topical application
457 of JH in the final instar may be a secondary effect due to the maintenance of the larval identity,
458 not a direct effect of JH on *chinmo* transcription.

459 In developing ovaries, ecdysone triggers the migration of cells known as border cells.
460 These cells originate in the follicle cells and migrate to the oocytes. The regulation of the timing
461 of this migration has been studied in *D. melanogaster*. In the ovaries of *D. melanogaster*, Ab
462 appears to repress the activity of Taiman (Tai), preventing the ecdysone-mediated border cell
463 migration. Ab binds directly to the bHLH domain of Tai, which is an activator of ecdysone
464 signaling. Ecdysone represses Abrupt expression, allowing Tai to promote border cell migration
465 (Jang et al., 2009). Although we do not know if Ab binds to Tai during the larval stage
466 metamorphosis, it is interesting to note that *T. castaneum* Tai has been shown to bind to *T.*
467 *castaneum* Met, the JH receptor (Jindra et al., 2021). Knockdown of one of the isoforms of Tai in
468 *B. germanica* leads to precocious adult metamorphosis (Lozano et al., 2014). While Ab
469 augments the role of Chinmo in maintaining the larval stage in *T. castaneum*, *ab* knockdown

470 alone does not cause precocious metamorphosis. Thus, whether Ab forms a complex with one of
471 the Tai isoforms that interacts with Met is unclear at this point.

472 *Ab but not Chinmo is required for larval leg regeneration*

473 In *D. melanogaster*, Chinmo has been shown to be necessary to maintain the regenerative
474 potential of imaginal discs (Narbonne-Reveau and Maurange, 2019). The loss of *chinmo*
475 expression coincides with the loss of the regenerative potential of imaginal discs in late third
476 instar larvae and induction of *br*, which promotes differentiation of imaginal discs.
477 Misexpression of one of the *br* isoforms, *br-Z1*, leads to restricted expression of *wingless*, a
478 marker for regeneration (Narbonne-Reveau and Maurange, 2019). Thus, in *D. melanogaster*,
479 Chinmo promotes imaginal disc regeneration and Br appears to counteract this effect. In *T.*
480 *castaneum*, we determined that *chinmo* knockdown larvae can regenerate their legs efficiently
481 and regrow a nearly perfect pupal leg after molting into another larva (Fig. 8B). This implies that
482 although Chinmo is necessary for inhibiting *br* expression, it does not play a major role in larval
483 leg regeneration. Ab, in contrast, is necessary for regeneration, and this effect appears to be
484 independent of Br since double knockdown of *ab* and *br* did not rescue the loss of regenerative
485 potential of larval legs (Fig. 8C, D). It is possible that the distinct regenerative roles of *ab* and
486 *chinmo* in *D. melanogaster* and *T. castaneum* may be due to differences in specific tissues and
487 species examined: *T. castaneum* develop functional larval appendages, whereas *D. melanogaster*
488 larvae lack appendages and instead have imaginal discs that grow internally. Moreover,
489 Narbonne-Reveau and Maurange (2019) examined wing discs whereas in this study, we
490 examined the effect of leg ablation. Alternatively, given that Chinmo and Ab both belong to the
491 BTB domain transcription factor family and share similar amino acid sequences, it is possible

492 that the target enhancer sequences can easily evolve to selectively bind one transcription factor
493 and not the other in a species-specific manner.

494 Taken together, we demonstrate that the role of *chinmo* in maintaining the larval stage is
495 likely conserved across the Holometabola. However, tissue specific responses are evident in *T.*
496 *castaneum* larvae, which have distinct life-history specific cell types. Our study also shows that
497 Ab and Chinmo act cooperatively to regulate the transition from the larval to pupal stage. Thus,
498 BTB domain transcription factors interact in a complex manner to regulate the transition between
499 life history stages.

500 **Acknowledgements**

501 We thank Dr. Lynn Riddiford and two reviewers for their helpful comments on this manuscript.
502 We also thank the members of the Suzuki lab for their assistance and helpful advice in
503 completing this project, and for their helpful inputs on this manuscript. This work was supported
504 by the National Science Foundation grant IOS-2002354 to YS and funds provided by Wellesley
505 College.

506

507

508 **Figure legends**

509 **Figure 1. Dorsal and lateral phenotypes of larvae injected with *amp^r*, *chinmo*, *ab*, and**

510 *chinmo + ab* dsRNA. (A-C'').) *amp^r* dsRNA-injected larva after one molt. (D-F'') Larva

511 injected with 1 μ g *chinmo* dsRNA after one molt. (G-I'') Larva injected with 2 μ g *chinmo*

512 dsRNA after one molt. (J-L'') Larva injected with 1 μ g *ab* dsRNA after one molt. (M-O'')

513 Larva injected with 1 μ g *chinmo* dsRNA + 1 μ g *ab* dsRNA after one molt. Black arrowhead

514 points to the ectopic wing-like structure. The first three columns are dorsal views of the whole

515 body, the head and thorax and the second (T2) and third (T3) thoracic segments (from left to

516 right). The last two columns are lateral views of the T2/T3 (left) and the abdomen (right).

517 Dashed blue circles indicate the base of the bristles, which are prominent in *chinmo + ab* RNAi

518 larvae. Scale bars represent 0.5 mm.

519 **Figure 2. Ventral and lateral phenotypes of larvae injected with *amp^r*, *chinmo*, *ab*, and**

520 *chinmo + ab* dsRNA. (A) *amp^r* dsRNA-injected larva after one molt. (B) Larva injected with 1

521 μ g *chinmo* dsRNA after one molt. (C) Larva injected with 2 μ g *chinmo* dsRNA after one molt.

522 (D) Larva injected with 1 μ g *ab* dsRNA after one molt. (E) Larva injected with 1 μ g *chinmo*

523 dsRNA + 1 μ g *ab* dsRNA after one molt. (F) Larva injected with 1 μ g *chinmo* dsRNA + 1 μ g *ab*

524 dsRNA + 1 μ g *br* dsRNA after one molt. Black arrowhead points to the ectopic wing-like

525 structure. The first two columns are ventral (left) and lateral (right) views of the head and thorax.

526 The last three columns are images of the foreleg (left), midleg (middle) and hindleg (right). Scale

527 bars represent 0.2 mm.

528 **Figure 3. Head morphology, feeding and ectopic wing-like projections of larvae injected**

529 with *amp^r*, *chinmo*, *ab*, and *chinmo + ab* dsRNA. (A) *amp^r* dsRNA-injected larva after one

530 molt. (B) Larva injected with 1 μ g *chinmo* dsRNA after one molt. (C) Larva injected with 2 μ g
531 *chinmo* dsRNA after one molt. (D) Larva injected with 1 μ g *ab* dsRNA after one molt. (E) Larva
532 injected with 1 μ g *chinmo* dsRNA + 1 μ g *ab* dsRNA after one molt. (F) Gut isolated from *amp^r*,
533 *chinmo*, and *chinmo* + *ab* dsRNA-injected larvae. Larvae were given flour containing red food
534 coloring after the molt and allowed to feed for two days before the guts were isolated and
535 imaged. (G-I'') GFP expression in *chinmo* + *ab* dsRNA injected Pu11 larva and *ab* knockdown
536 Pu11 prepupa. GFP is absent in the wing-like projections of *chinmo* + *ab* dsRNA injected larvae
537 (G, H) despite its presence in *ab* RNAi prepupa (I) and pupa (I''). (I') A brightfield image of the
538 *ab* knockdown pupa shown in I'' is provided for reference. White arrowheads point to wing-like
539 projections/wings.

540 **Figure 4. Summary of phenotypes and molting time of larvae injected with *amp^r*, *chinmo*,**

541 ***ab*, and *chinmo* + *ab* dsRNA.** On the X-axis is the time taken for the larvae to molt after being
542 injected with dsRNA. The Y-axis shows the range of phenotypes observed.

543 **Figure 5. Strongly affected phenotypes of *chinmo* + *ab* double knockdown larvae. (A-A'')**
544 Pupa that developed without undergoing any additional larval-larval molts after dsRNA injection
545 into the sixth instar larva. (B-B'') A larval-pupal intermediate that formed one molt after dsRNA
546 injection into the sixth instar larva. (C-D'') A larval-pupal intermediate that formed one molt
547 after dsRNA injection into the fifth instar larva. (D-D') Gin trap-like projections (black
548 arrowhead) are seen on some of the abdominal segments (inset is a magnified view of one of
549 these structures). (D'') A leg with pupa-like morphology. White arrowhead indicates the tip of
550 the pupa-like leg that is still encased in the fifth instar cuticle. (E-E'') A larva with pupal traits
551 that appeared one molt after dsRNA injection into the fifth instar larva.

552 **Figure 6. Expression of *br*, *E93* and *Kr-h1* in larvae injected with *amp^r*, *chinmo*, *ab*, *chinmo*
553 + *ab*, and *chinmo* + *ab* + *br* core dsRNA.** (A) Expression of the *br* core region. (B) Expression
554 of the *br-Z1* isoform. (C) Expression of *E93*. (D) Expression of the *Kr-h1*. Larvae were injected
555 with dsRNA on day 0 of the sixth instar and RNA was isolated 3 days later. Error bars represent
556 standard error. Each bar represents the mean of expression of three or four biological replicates.
557 Bars marked with different letters are significantly different from each other (one-way ANOVA
558 with Tukey HSD post-hoc test). Error bars are standard error bars.

559

560 **Figure 7. Methoprene does not alter the *chinmo* and *chinmo* + *ab* knockdown phenotypes
561 and maintains *chinmo* expression in the final instar.** (A) Acetone-treated *chinmo* RNAi larva.
562 (B) *chinmo* RNAi larva treated with 15 µg methoprene. (C) *chinmo* + *ab* RNAi larva treated with
563 15 µg methoprene. (D-E) Expression of *chinmo* (D), *Kr-h1* (E) and *ab* (F) three days after topical
564 application of acetone, 30 µg methoprene or 60 µg methoprene to day 0 final instar larvae. (G,
565 H) Knockdown of *Met*, *Kr-h1*, or *jhamt3* does not alter *chinmo* or *ab* expression. Bars marked
566 with different letters are significantly different from each other (one-way ANOVA with Tukey
567 HSD post-hoc test). Error bars are standard error bars.

568 **Figure 8. *ab* but not *chinmo* is necessary for *T. castaneum* larval leg regeneration.** (A)
569 Regenerated legs of a larva one molt after *amp^r* dsRNA injection. (B) Regenerated legs of a larva
570 one molt after *chinmo* dsRNA injection. (C) *ab* dsRNA-injected larva failed to regenerate its leg
571 (white arrowhead). (D) *br* RNAi does not rescue the loss of regenerative potential in the *ab*
572 dsRNA-injected larva. White arrowhead indicates the stump where a leg should have grown
573 back.

574 **Figure 9. JH signaling is not necessary for larval leg regeneration.** (A, B, C, E) *amp^r* (A),
575 *jhamt3* (B), *Met* (C), and *Kr-h1* (E) dsRNA-injected adult with regenerated legs. (A', B', D-D'',
576 F-F') Close-ups of the intact and regenerated legs. In all animals, dsRNA was injected into day 2
577 fifth instar larvae and left mid- and hindlegs were ablated on day 1 of the sixth instar. With the
578 exception of *amp^r* dsRNA-injected adults, the ablated larvae underwent metamorphosis without
579 undergoing any additional larval-larval molts. f = femur; ti = tibia; ta = tarsal segments.

580 **Figure 10.** Proposed summary of the major roles of Ab and Chinmo in regulating larval tissue
581 identity and leg regeneration in *T. castaneum*. (A) The proliferation of imaginal cells, which
582 proliferate *de novo* during metamorphosis, requires Ab / Chinmo but is inhibited by JH during
583 the larvae stage. (B) In polymorphic cells, which contribute to both larval and adult legs, Ab and
584 Chinmo prevent precocious expression of *br*, leading to the maintenance of larval identity.
585 During metamorphosis, Ab / Chinmo no longer repress Br, allowing tissues to become pupally
586 committed. Separately, regeneration of larval legs requires Ab.

587

588

589 **References**

590

591 Angelini, D.R., Kikuchi, M., Jockusch, E.L., 2009. Genetic patterning in the adult capitate
592 antenna of the beetle *Tribolium castaneum*. *Dev Biol* 327, 240–251.

593 Angelini, D.R., Smith, F.W., Jockusch, E.L., 2012. Extent with modification: leg patterning in
594 the beetle *Tribolium castaneum* and the evolution of serial homologs. *G3 Bethesda* 2,
595 235–48.

596 Arakane, Y., Lomakin, J., Beeman, R.W., Muthukrishnan, S., Gehrke, S.H., Kanost, M.R.,
597 Kramer, K.J., 2009. Molecular and functional analyses of amino acid decarboxylases
598 involved in cuticle tanning in *Tribolium castaneum*. *J Biol Chem* 284, 16584–16594.

599 Bryant, P.J., 1971. Regeneration and duplication following operations *in situ* on the imaginal
600 discs of *Drosophila melanogaster*. *Dev Biol* 26, 637–51.

601 Caygill, E.E., Johnston, L.A., 2008. Temporal regulation of metamorphic processes in
602 *Drosophila* by the *let-7* and *miR-125* heterochronic microRNAs. *Curr Biol* 18, 943–950.

603 Chafino S., Ureña E., Casanova J., Casacuberta E., Franch-Marro X., Martín D., 2019.
604 Upregulation of E93 gene expression acts as the trigger for metamorphosis independently
605 of the threshold size in the beetle *Tribolium castaneum*. *Cell Rep* 27, 1039-1049.e2.

606 Chafino, S., Giannios, P., Casanova, J., Martín, D., Franch-Marro, X., 2023. Antagonistic role of
607 the BTB-zinc finger transcription factors Chinmo and Broad-Complex in the
608 juvenile/pupal transition and in growth control. *Elife* 12.

609 Charles, J.P., Iwema, T., Epa, V.C., Takaki, K., Rynes, J., Jindra, M., 2011. Ligand-binding
610 properties of a juvenile hormone receptor, Methoprene-tolerant. *Proc Natl Acad Sci U A*
611 108, 21128–21133.

612 Chou, J., Ferris, A.C., Chen, T., Seok, R., Yoon, D., Suzuki, Y., 2019. Roles of Polycomb group
613 proteins Enhancer of zeste (E(z)) and Polycomb (Pc) during metamorphosis and larval
614 leg regeneration in the flour beetle *Tribolium castaneum*. *Dev Biol* 450, 34–46.

615 Clarck-Hachtel C.M., Linz D.M., Tomoyasu Y., 2013. Insights into insect wing origin provided
616 by functional analysis of vestigial in red flour beetle, *Tribolium castaneum*. *Proc Natl
617 Acad Sci* 110, 16951–16956.

618 Doggett, K., Turkel, N., Willoughby, L.F., Ellul, J., Murray, M.J., Richardson, H.E., Brumby,
619 A.M., 2015. BTB-zinc finger oncogenes are required for Ras and Notch-driven
620 tumorigenesis in *Drosophila*. *PLoS One* 10, e0132987.

621 Fox, D.T., Cohen, E., Smith-Bolton, R., 2020. Model systems for regeneration: *Drosophila*.
622 Development 147.

623 Gilbert, L.I., Schneiderman, H.A., 1960. The development of a bioassay for the juvenile
624 hormone of insects. Trans Am Microsc Soc 79, 38–67.

625 Hatakoshi, M., Nakayama, I., Riddiford, L.M., 1988. The induction of an imperfect
626 supernumerary larval moult by juvenile hormone analogues in *Manduca sexta*. J. Insect
627 Physiol. 34, 373–378.

628 Hughes, C.L., Kaufman, T.C., 2000. RNAi analysis of *Deformed*, *proboscipedia* and *Sex combs*
629 reduced in the milkweed bug *Oncopeltus fasciatus*: novel roles for Hox genes in the
630 Hemipteran head. Development 127, 3683–3694.

631 Jang, A.C.-C., Chang, Y.-C., Bai, J., Montell, D., 2009. Border-cell migration requires
632 integration of spatial and temporal signals by the BTB protein *Abrupt*. Nat Cell Biol 11,
633 569–579.

634 Jindra M., McKinstry W.J., Nebl T., Bittova L., Ren B., Shaw J., Phan T., Lu L., Low J.K.K.,
635 Mackay J.P., Sparrow L.G., Lovrecz G.O., Hill R.J., 2021. Purification of an insect
636 juvenile hormone receptor complex enables insights into its post-translational
637 phosphorylation. J Biol Chem 297, 101387.

638 Jindra, M., Uhlirova, M., Charles, J.P., Smykal, V., Hill, R.J., 2015. Genetic evidence for
639 function of the bHLH-PAS protein *Gce/Met* as a juvenile hormone receptor. PLoS Genet
640 11, e1005394.

641 Karanja, F., Sahu, S., Weintraub, S., Bhandari, R., Jaszcak, R., Sitt, J., Halme, A., 2022.
642 Ecdysone exerts biphasic control of regenerative signaling, coordinating the completion
643 of regeneration with developmental progression. Proc Natl Acad Sci U A 119.

644 Konopova, B., Jindra, M., 2008. Broad-complex acts downstream of *Met* in juvenile hormone
645 signaling to coordinate primitive Holometabolous metamorphosis. Development 135, 559–
646 568.

647 Konopova, B., Jindra, M., 2007. Juvenile hormone resistance gene *Methoprene-tolerant* controls
648 entry into metamorphosis in the beetle *Tribolium castaneum*. Proc Natl Acad Sci U A
649 104, 10488–10493.

650 Kramer, K.J., Morgan, T.D., Hopkins, T.L., Roseland, C.R., Aso, Y., Beeman, R.W., Lookhart,
651 G.L., 1984. Catecholamines and β -alanine in the red flour beetle, *Tribolium castaneum*:

652 roles in cuticle sclerotization and melanization. *Insect Biochem.* 14, 293–298.

653 Kucherenko, M.M., Barth, J., Fiala, A., Shcherbata, H.R., 2012. Steroid-induced microRNA let-7

654 acts as a spatio-temporal code for neuronal cell fate in the developing *Drosophila* brain.

655 *EMBO J.* 31, 4511–4523.

656 Lee, A.K., Sze, C.C., Kim, E.R., Suzuki, Y., 2013. Developmental coupling of larval and adult

657 stages in a complex life cycle: insights from limb regeneration in the flour beetle,

658 *Tribolium castaneum*. *Evodevo* 4, 20.

659 Lozano, J., Kayukawa, T., Shinoda, T., Belles, X., 2014. A role for Taiman in insect

660 metamorphosis. *PLoS Genet.* 10, e1004769.

661 Madeira F, Pearce M, Tivey ARN, et al. 2022. Search and sequence analysis tools services from

662 EMBL-EBI in 2022. *Nucl Acids Res* 50(W1), W276-W279.

663 Minakuchi C., Namiki T., Yoshiyama M., Shinoda T., 2008. RNAi-mediated knockdown of

664 *juvenile hormone acid O-methyltransferase* gene causes precocious metamorphosis in the

665 red flour beetle *Tribolium castaneum*. *FEBS J* 275, 2919–2931.

666 Minakuchi, C., Namiki, T., Shinoda, T., 2009. Kruppel homolog 1, an early juvenile hormone-

667 response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action

668 in the red flour beetle *Tribolium castaneum*. *Dev Biol* 325, 341–350.

669 Narbonne-Reveau, K., Maurange, C., 2019. Developmental regulation of regenerative potential

670 in *Drosophila* by ecdysone through a bistable loop of ZBTB transcription factors. *PLoS*

671 *Biol.* 17, e3000149.

672 Nijhout, H.F., 1998. *Insect Hormones*. Princeton University Press, Princeton, NJ.

673 Parthasarathy, R., Palli, S.R., 2009. Molecular analysis of juvenile hormone analog action in

674 controlling the metamorphosis of the red flour beetle, *Tribolium castaneum*. *Arch Insect*

675 *Biochem Physiol* 70, 57–70.

676 Parthasarathy, R., Tan, A., Bai, H., Palli, S.R., 2008a. Transcription factor broad suppresses

677 precocious development of adult structures during larval-pupal metamorphosis in the red

678 flour beetle, *Tribolium castaneum*. *Mech Dev* 125, 299–313.

679 Parthasarathy, R., Tan, A., Palli, S.R., 2008b. bHLH-PAS family transcription factor

680 methoprene-tolerant plays a key role in JH action in preventing the premature

681 development of adult structures during larval-pupal metamorphosis. *Mech Dev* 125, 601–

682 16.

683 Ravisankar, P., Lai, Y.-T., Sambrani, N., Tomoyasu, Y., 2016. Comparative developmental
684 analysis of *Drosophila* and *Tribolium* reveals conserved and diverged roles of abrupt in
685 insect wing evolution. *Dev Biol* 409, 518–529.

686 Riddiford, L.M., 1996. Juvenile hormone: The status of its “status quo” action. *Arch. Insect
687 Biochem. Physiol.* 32, 271–286.

688 Riddiford, L.M., Ajami, A.M., 1973. Juvenile hormone: its assay and effects on pupae of
689 *Manduca sexta*. *J Insect Physiol* 19, 749–762.

690 Riddiford, L.M., Ashburner, M., 1991. Effects of juvenile hormone mimics on larval
691 development and metamorphosis of *Drosophila melanogaster*. *Gen Comp Endocrinol* 82,
692 172–183.

693 Schubiger, G., 1971. Regeneration, duplication and transdetermination in fragments of the leg
694 disc of *Drosophila melanogaster*. *Dev Biol* 26, 277–95.

695 Suzuki, Y., Chou, J., Garvey, S.L., Wang, V.R., Yanes, K.O., 2019. Evolution and Regulation of
696 Limb Regeneration in Arthropods, in: Tworzydlo, W., Bilinski, S.M. (Eds.), *Evo-Devo:
697 Non-Model Species in Cell and Developmental Biology*. Springer International
698 Publishing, Cham, pp. 419–454.

699 Suzuki, Y., Squires, D.C., Riddiford, L.M., 2009. Larval leg integrity is maintained by Distal-
700 less and is required for proper timing of metamorphosis in the flour beetle, *Tribolium
701 castaneum*. *Dev Biol* 326, 60–7.

702 Suzuki, Y., Truman, J.W., Riddiford, L.M., 2008. The role of broad in the development of
703 *Tribolium castaneum*: implications for the evolution of the holometabolous insect pupa.
704 *Development* 135, 569–577.

705 Tan, A., Palli, S.R., 2008. Edysone receptor isoforms play distinct roles in controlling molting
706 and metamorphosis in the red flour beetle, *Tribolium castaneum*. *Mol Cell Endocrinol*
707 291, 42–49.

708 Truman, J.W., 2019. The Evolution of Insect Metamorphosis. *Curr Biol* 29, R1252–R1268.

709 Truman, J.W., Riddiford, L.M., 2022. Chinmo is the larval member of the molecular trinity that
710 directs *Drosophila* metamorphosis. *Proc Natl Acad Sci U A* 119, e2201071119.

711 Turkel, N., Sahota, V.K., Bolden, J.E., Goulding, K.R., Doggett, K., Willoughby, L.F., Blanco,
712 E., Martin-Blanco, E., Corominas, M., Ellul, J., Aigaki, T., Richardson, H.E., Brumby,
713 A.M., 2013. The BTB-zinc finger transcription factor abrupt acts as an epithelial

714 oncogene in *Drosophila melanogaster* through maintaining a progenitor-like cell state.
715 PLoS Genet 9, e1003627.

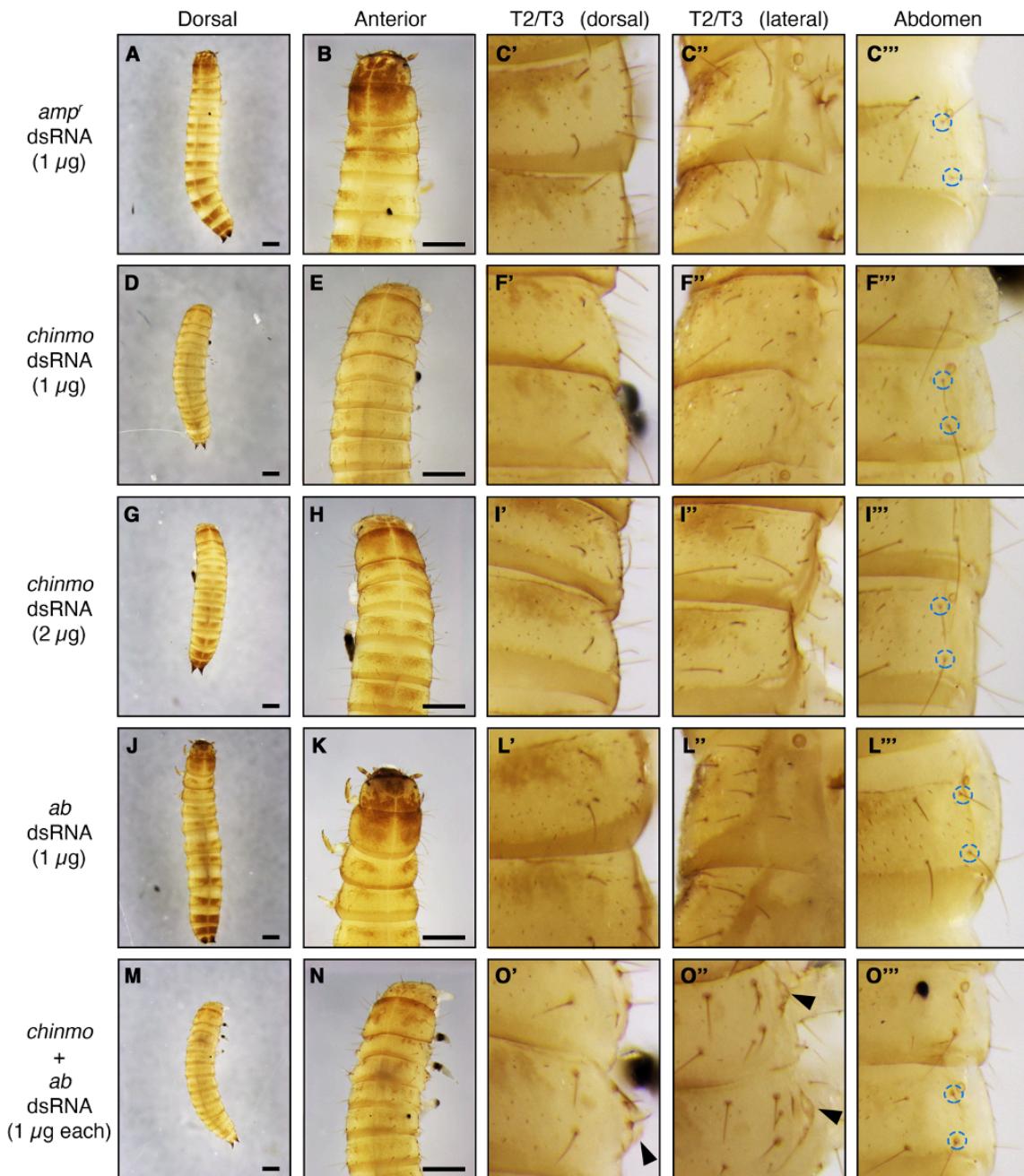
716 Urena, E., Manjon, C., Franch-Marro, X., Martin, D., 2014. Transcription factor E93 specifies
717 adult metamorphosis in hemimetabolous and holometabolous insects. Proc Natl Acad Sci
718 U A 111, 7024–9.

719 Villarreal, C.M., Darakananda, K., Wang, V.R., Jayaprakash, P.M., Suzuki, Y., 2015. Hedgehog
720 signaling regulates imaginal cell differentiation in a basally branching holometabolous
721 insect. Dev Biol 404, 125–135.

722 Wu, Y.-C., Chen, C.-H., Mercer, A., Sokol, N.S., 2012. Let-7-complex microRNAs regulate the
723 temporal identity of *Drosophila* mushroom body neurons via chinmo. Dev Cell 23, 202–
724 209.

725 Zhou, B., Hiruma, K., Shinoda, T., Riddiford, L.M., 1998. Juvenile hormone prevents
726 ecdysteroid-induced expression of *broad complex* RNAs in the epidermis of the tobacco
727 hornworm, *Manduca sexta*. Dev Biol 203, 233–244.

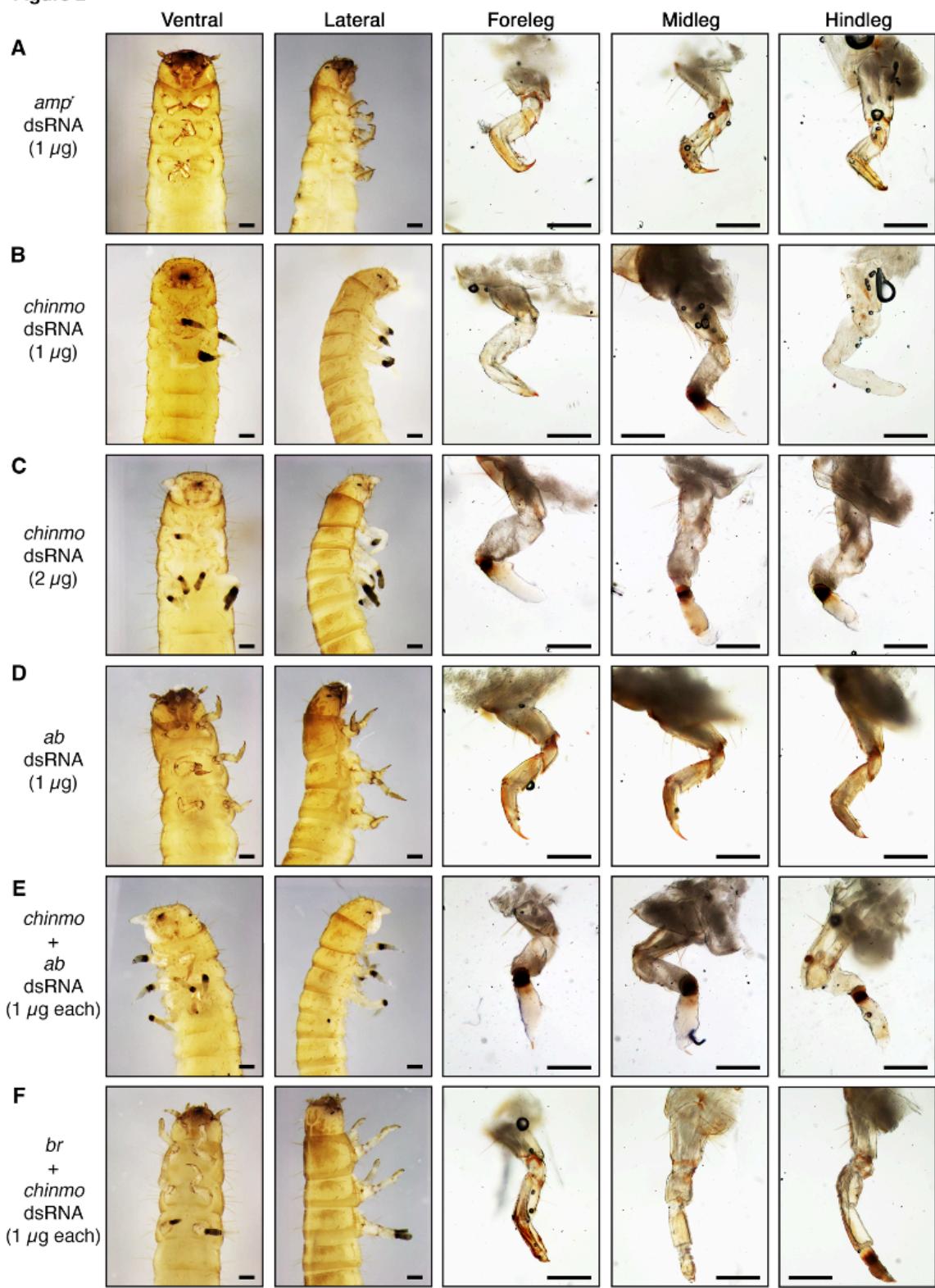
728 Zhou, B., Riddiford, L.M., 2001. Hormonal regulation and patterning of the Broad-Complex in
729 the epidermis and wing discs of the tobacco hornworm, *Manduca sexta*. Dev Biol 231,
730 125–137.

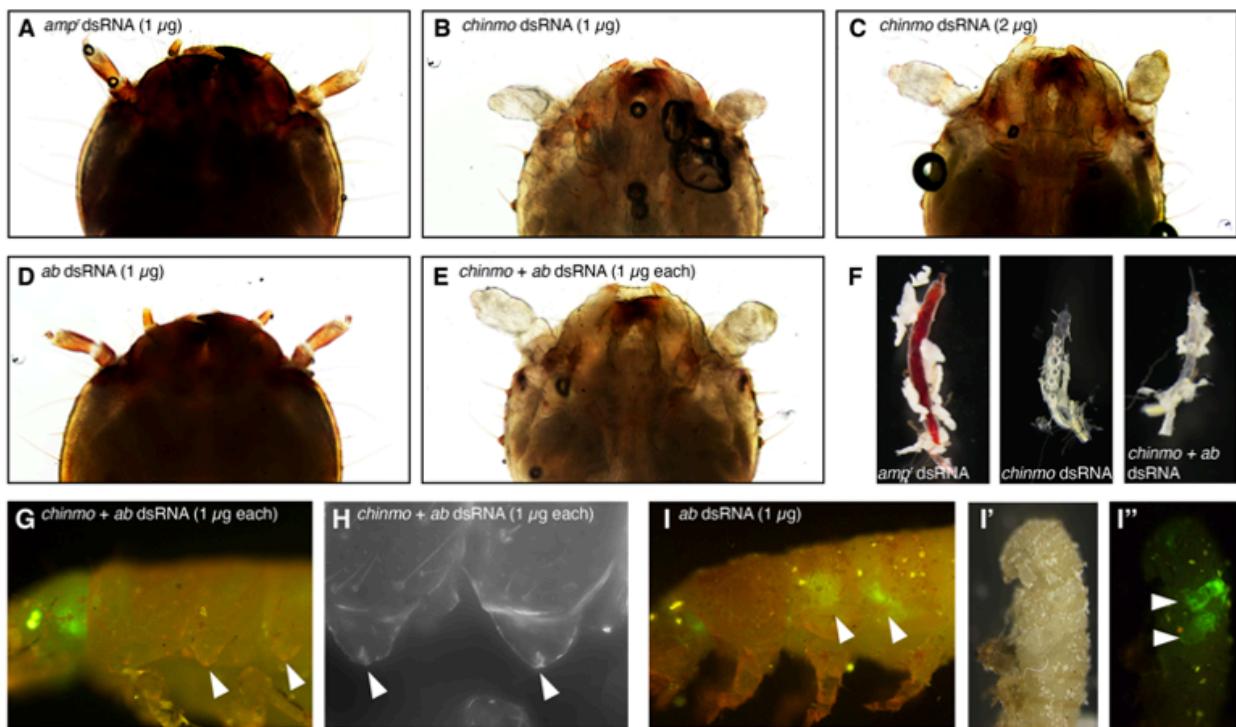

731 Zhou, X., Riddiford, L.M., 2002. Broad specifies pupal development and mediates the “*status
732 quo*” action of juvenile hormone on the pupal-adult transformation in *Drosophila* and
733 *Manduca*. Development 129, 2259–2269.

734 Zhu, S., Lin, S., Kao, C.F., Awasaki, T., Chiang, A.S., Lee, T., 2006. Gradients of the
735 *Drosophila* Chinmo BTB-zinc finger protein govern neuronal temporal identity. Cell 127,
736 409–22.

737

738


Figure 1


739

740

Figure 2

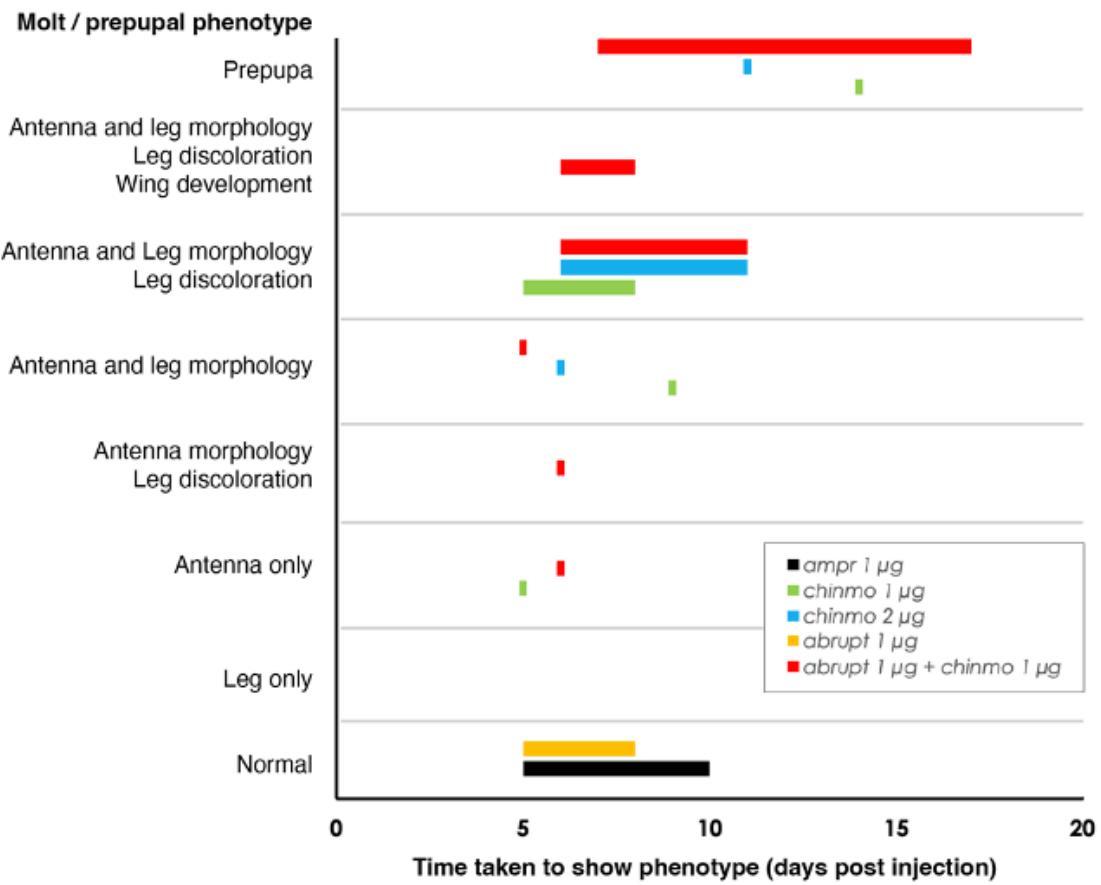
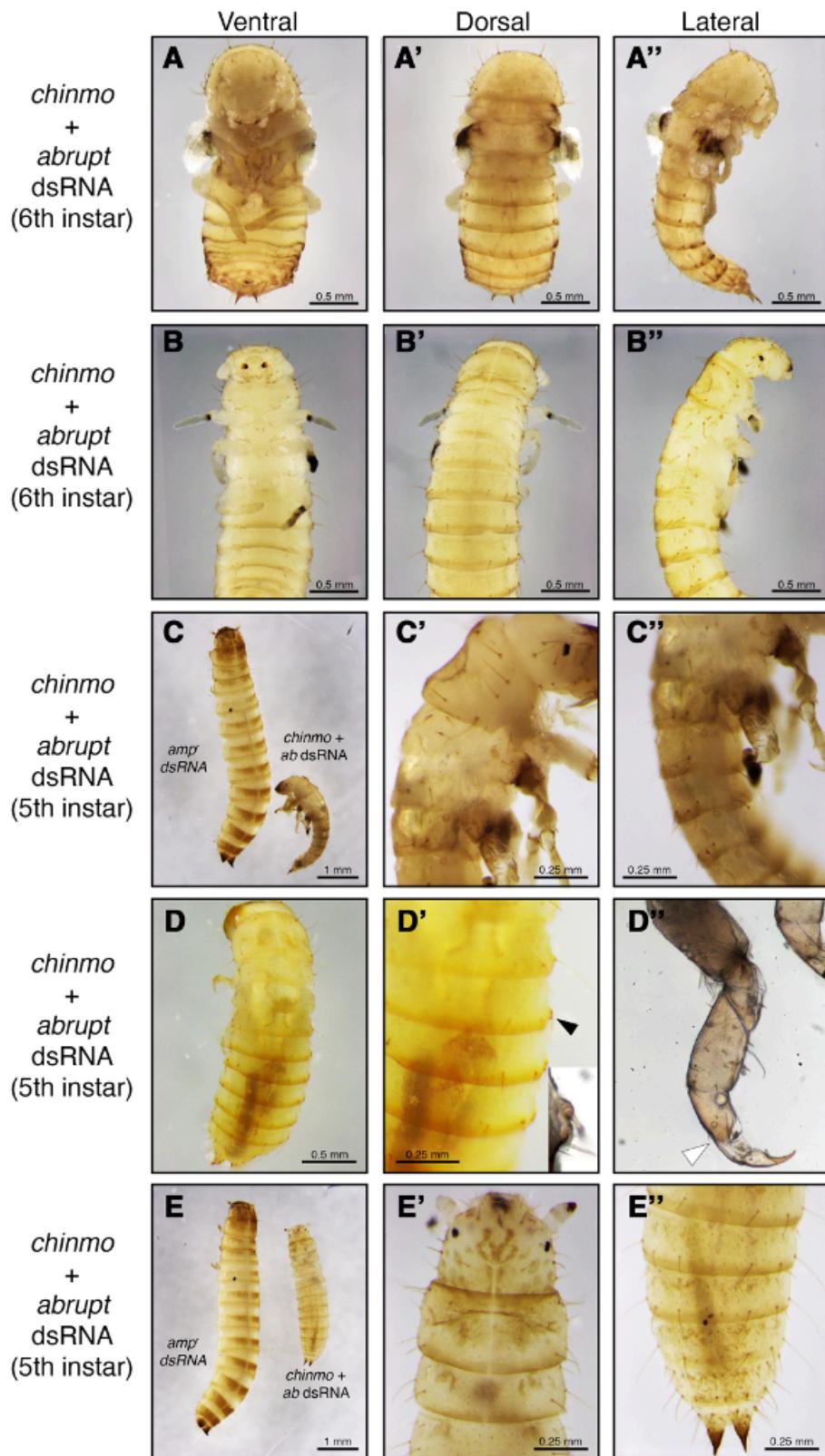
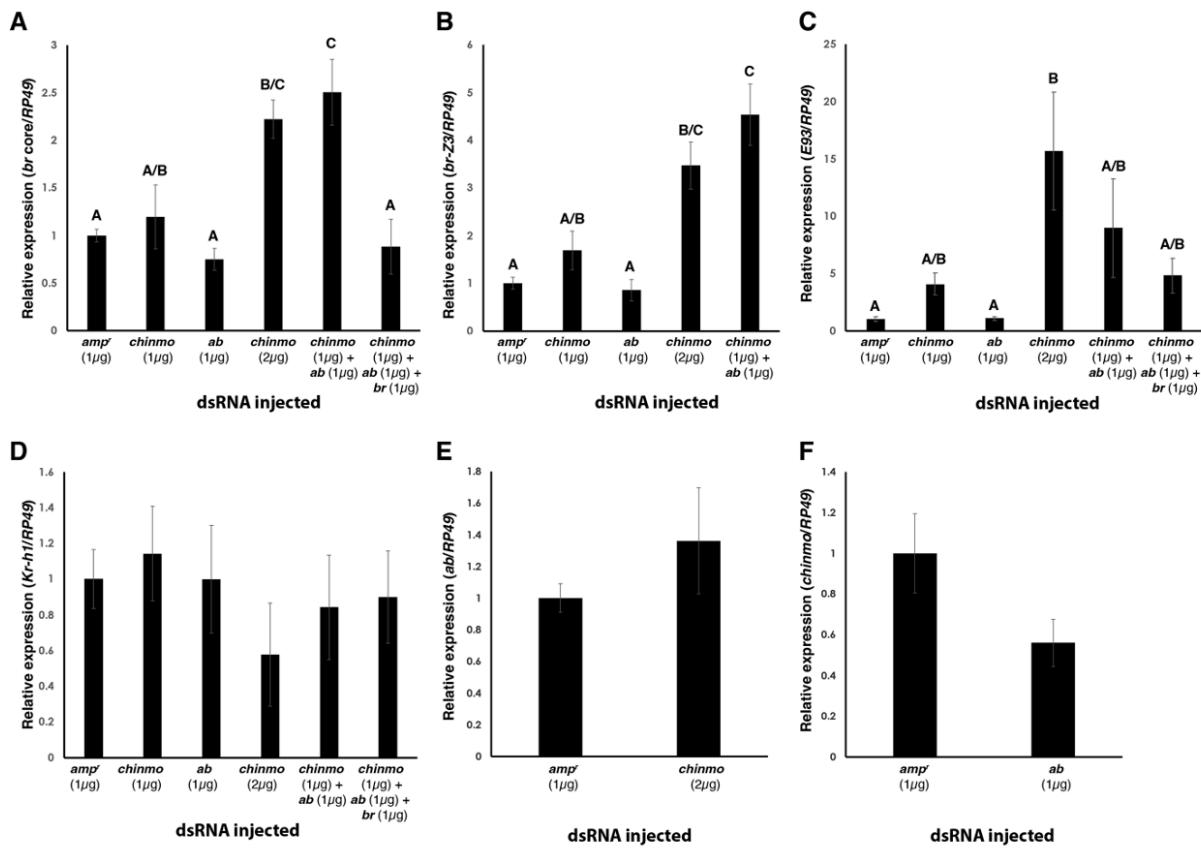


Figure 3



742


Figure 4

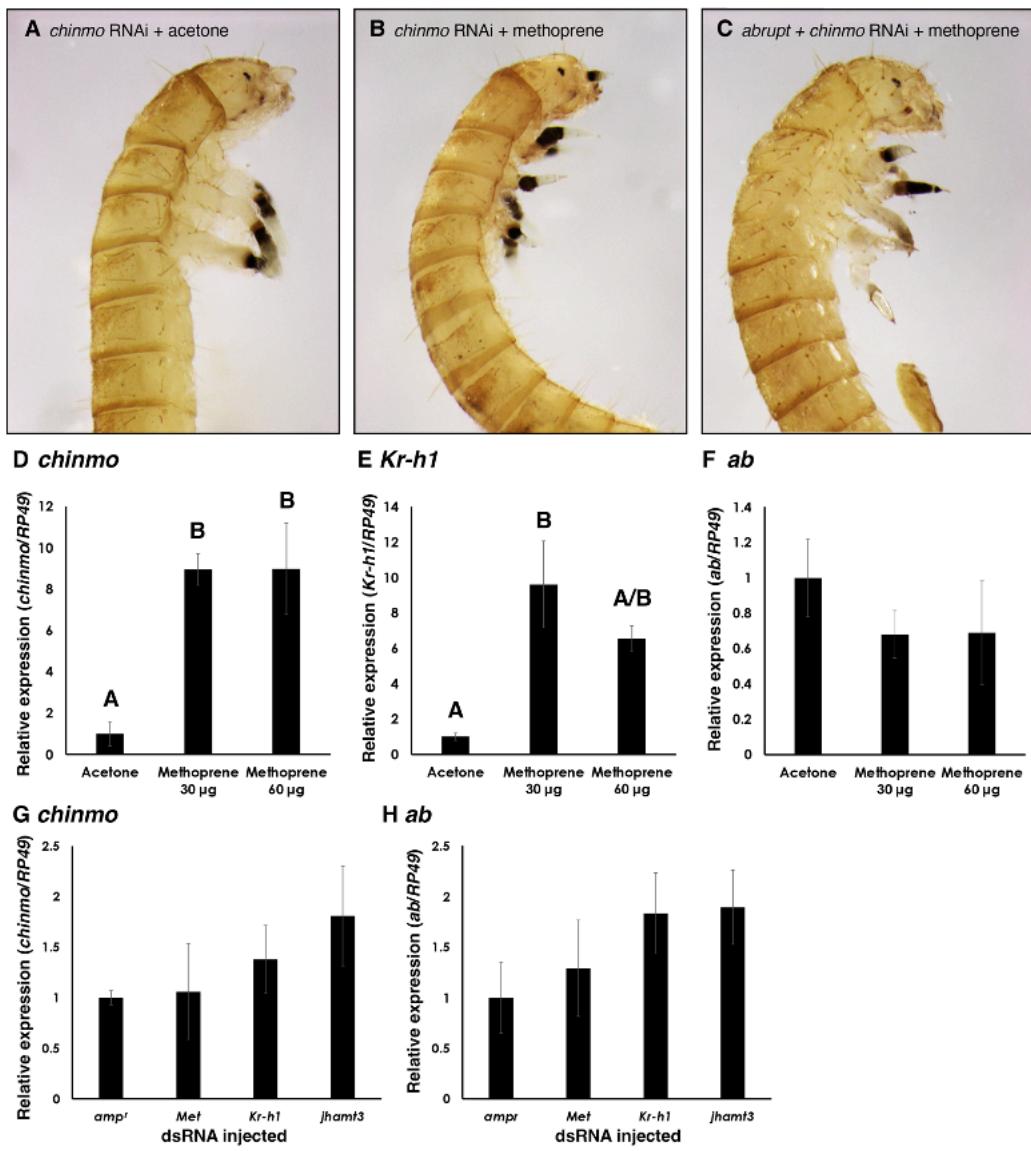

Figure 5

Figure 6

Figure 7

Figure 8

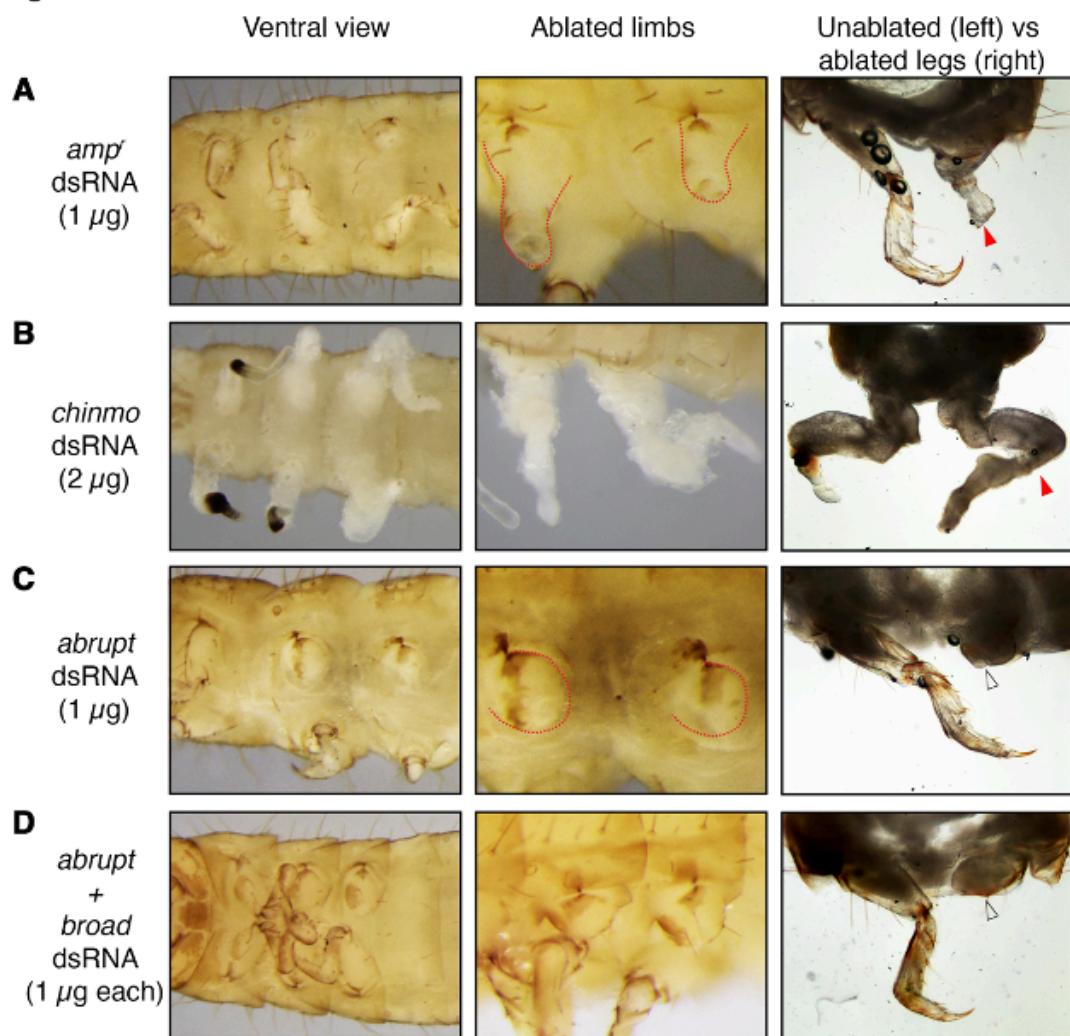
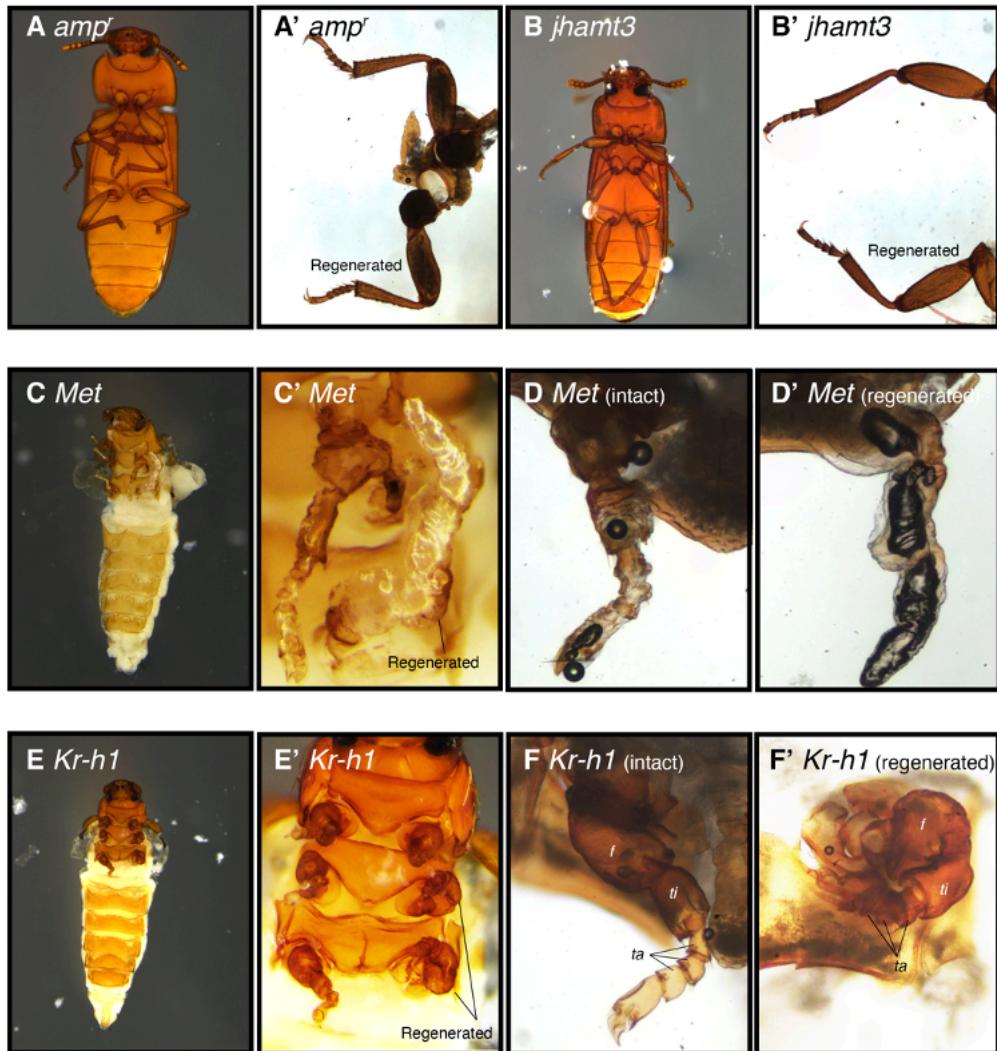
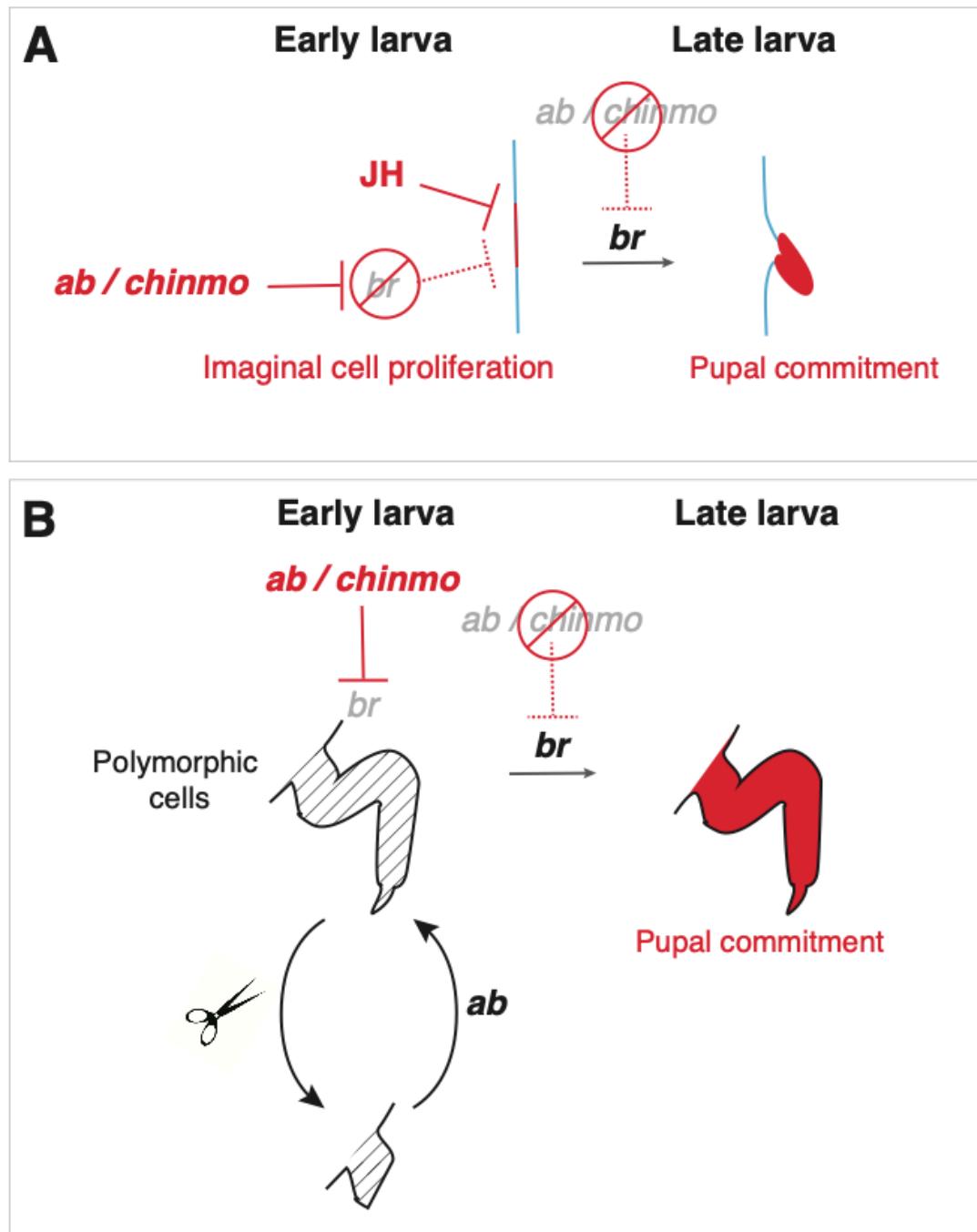




Figure 9

748

Figure 10

