2024 1EEE International Conference on Mobility, Operations, Services and Technologies (MOST) | 979-8-3503-0773-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/MOST60774.2024.00025

2024 IEEE International Conference on Mobility, Operations, Services and Technologies (MOST)

Hazardous Area Aware Path-Planning for Drone
Swarms

1% Vinh Quach
Department of Computer Science and Engineering
University of North Texas
Denton, Texas
vinh.quach@unt.edu

37 Cihan Tunc
Department of Computer Science and Engineering
University of North Texas
Denton, Texas
cihan.tunc@unt.edu

Abstract—Path-planning for drones in areas with complex
and unknown environments, constrained by various obstacles,
presents a significant challenge in drone operations. This problem
extends beyond merely finding an appropriate path from the
starting point to the destination; it also involves selecting the
ideal path among all available options based on given conditions.
In this paper, we propose a novel smart path planning algorithm
based on the Breadth-First Search (BFS) algorithm, taking into
account both swarm energy and task completion. Performance
metrics include the percentage of tasks completed, unachievable,
and incomplete. Our novel algorithm demonstrates a significant
improvement over traditional methods, outperforming them by
an average of 10-15% in task completion. In extreme cases,
this margin increases to nearly 20%. Analysis of unachievable
tasks reveals that our method greatly reduces their occurrence.
This research underscores the potential of our novel algorithm
in enhancing operational performance for drone-based tasks,
especially in hazardous contexts.

Index Terms—Drone, Unmanned Aerial Vehicle, UAV, path-
planning, hazard, task management

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), or called drones, have
become very attractive in recent years for various operations
such as delivery, search and rescue, surveillance, traffic mon-
itoring, smart agriculture [1]-[3]. Overall drone market was
estimated by ReportLinker to be around $27.4 billion in 2021
and is projected to reach $58.4 billion by 2026 [4]. Drones
have some incomparable advantages compared to any other
vehicle because drones require little to no physical infrastruc-
ture, can traverse areas regardless of most terrain, are highly
flexible, and can reduce costs [5], [6]. Regardless of their
advantages, drones also have limitations and concerns such as
very limited payload capability and limited flight time [2], [3],
[71], [8]. As an alternative, drone swarms offer better solutions
than a single drone in terms of single-point failure, mission
handling, and performance [1], [2], [9]. For large regions,
drone swarms can spread and execute the mission cohesively.
They can execute the tasks simultaneously to reduce the

2" Burak Tufekci
Department of Computer Science and Engineering
University of North Texas
Denton, Texas
burak.tufekci@unt.edu

4™ Ram Dantu

Department of Computer Science and Engineering
University of North Texas
Denton, Texas
ram.dantu@unt.edu

execution time with better fault tolerance by eliminating the
single point of failure.

The most attractive application scenario and also a major
issue for drone swarm is to execute tasks autonomously in
harsh environments. With the increasing popularity and use
of drones, the concept of “hash environments” has expanded
beyond just physical hazards to include cyber-threats [10].
Among those challenging problems, anti-failure robustness
becomes the most challenging problem [9]. Therefore, a high
level of robustness and intelligence is needed from drone
swarms, which can be defined as the ability to complete
missions despite losing some drones and dynamically adapting
to real-time circumstantial changes. Moreover, airspace may
contain drones from other organizations or obstacles, and it
might be governed by government authorities or corridors.
Drones operating in the wild have the potential to encounter
environments that were not anticipated by their operators. This
is where algorithmic path planning becomes crucial.

Path planning for drones in areas with complex and un-
known environments, which are restricted by various obstacles,
is one of the most significant challenges facing drone opera-
tions [11]. This problem is not only limited to searching for
an appropriate path from a starting point to a destination but
also related to how to choose an ideal path among all available
paths based on given conditions. Path planning for drones must
be dynamic and adapt in real-time to circumstantial changes to
ensure effective distributed behavior. The first step toward the
deployment of such complex systems in real-world scenarios
is simulation because drone deployment can pose several
safety challenges and would be highly expensive and time-
consuming [12], [13]. However, the greater majority of exist-
ing simulators utilize a 3D engine, require expensive systems
and expertise to set up, and can even have a licensing price.
These simulators also require high computational complexity
and users who want to dive into the research field of drone
swarms often need to interface with multiple programming

979-8-3503-0773-3/24/$31.00 ©2024 IEEE 168
DOI 10.1109/MOST60774.2024.00025
Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

languages, which makes it impractical for abstract-level studies
and experiments to create a drone-based environment.

In this paper, we propose a path-planning approach for
drone swarms with hazardous area awareness. Our approach
considers battery level, number of drones, environmental con-
ditions, and uncompleted missions. Before planning a path,
the drones communicate with each other to collect their
information in terms of battery, pending tasks, and distance
from the destination to determine which path to choose.
We are using the best-effort approach so every aspect of
the mission is being considered. Energy constraints greatly
influence all the parameters of the drone system, as well as the
mission itself. Hence the energy and mission burden are being
shared among the members of the swarm to ensure mission
succession. To demonstrate our work, we used a previously in-
house developed simulator and even further improved it with
additional capabilities.

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III, we describe our
problem statement, provide definitions, present our algorithms.
In Section IV, we present our experimental study and discuss
them. Finally, we conclude with our remarks and discuss
possible applications of our novel algorithm in Section V.

II. RELATED WORK

Swarm intelligence and smart path planning are established
concepts in the realm of drone technology. The existing body
of literature extensively explores various facets of swarm intel-
ligence, particularly in the context of path planning [8], [14].
However, a noticeable gap in this literature is the consideration
of the drone swarm as a cohesive, singular entity. There
appears to be a lack of studies where drones are programmed
to assess their collective situation with queries like: ‘What if
a drone in the swarm fails? Will the remaining drones have
sufficient battery life to not only complete their assigned tasks
but also the failed drone’s task? How would this impact the
overall completion of the assigned packages or missions?’
Adopting a ‘best-effort approach’ within this perspective is
critical for enhancing the efficiency and reliability of drone
swarms, especially in complex, unknown environments and
in the event of drone failures. This approach ensures that the
remaining drones strive to maximize their operational capacity
and task completion. In this section, we provide related works
in the domain of drone and drone swarm route planning.

Hamdi et al. [14] proposed an uncertainty-aware route-
planning algorithm that factors in weather conditions and in-
dividual drone capabilities within predefined sky-paths, using
the A* and greedy Dijkstra’s algorithm. However, while their
approach plans routes based solely on these factors, it fails
to account for the conditions or capabilities of other drones
in the swarm, as well as the contingency plans for drone
failures. This oversight is critical because the algorithm does
not consider the collective capability of the entire swarm,
especially in the face of uncertain weather predictions. For
instance, a ‘50% chance of rain’ in forecasts indicates a 50%
probability of rain occurring at any point in the forecast area,

169

which does not guarantee rain over half the area or half
the time. Therefore, planning routes without considering the
potential risk of choosing a path with even a low chance of
adverse weather can lead to suboptimal path selection. It is
equally important to recognize that a forecast of a 50% chance
of hazardous weather also implies a 50% chance of favorable
conditions. This duality highlights the importance of weighing
both risk and reward when selecting routes. In such scenarios,
taking a path with a forecasted risk of adverse weather could
potentially offer significant advantages if the weather remains
favorable. This underscores the necessity of incorporating
the swarm’s overall status and accounting for the relative
uncertainties in route planning, as highlighted in our proposed
approach. Balancing the potential risks with the potential
rewards is crucial for optimal decision-making, particularly in
scenarios marked by uncertain weather conditions and other
unpredictable factors.

In contrast to Hamdi et al.’s approach in [14], Alkouz et
al. [8] proposed a time-constrained algorithm where the swarm
is required to perform tasks as quickly as possible, under
the assumption of a deterministic environment. They assumed
constant operating conditions for the drones and stable weather
over time. This assumption represents a major drawback of
their design, as the most efficient or ‘optimal’ path cannot
truly be deemed optimal without considering the surrounding
environmental variables. While they acknowledged this lim-
itation and have expressed intentions to address it in future
work, it’s crucial to note that a truly comprehensive approach
should include the consideration of uncertainties. In our case,
these are classified as hazardous zones, which could be due
to a variety of factors such as adverse weather conditions,
mechanical breakdowns, physical attacks, cyberattacks, etc.

Iliyan [3] conducted a comparative evaluation between
Dijkstra’s algorithm and Breadth-First Search (BFS), but their
experimental environment lacked any obstacles or uncertain-
ties. As a result, both algorithms appeared to compute identical
paths, likely due to the simplicity of the setup. Husain et
al. [15] proposed an algorithm tailored for Search and Rescue
(SAR) scenarios, which successfully demonstrated the algo-
rithm’s advantages and its capability to prevent over-utilization
of resources. Their design employed Dijkstra’s algorithm to
determine the shortest path, testing it within a maze-like
environment. However, they neglected to incorporate energy
calculations or to use them as constraints in their evaluation.

The authors in [16] acknowledged the presence of dangers
in the environment and highlighted how other researchers often
assume a constant risk level from the starting point to the
endpoint in their analyses. However, their approach involves
either completely avoiding these risks or circumventing them
by moving far away, without considering the potential benefits
of taking calculated risks. As previously mentioned, this
method effectively removes consideration of both hazardous
and favorable conditions in a somewhat indiscriminate manner.
Majd et al. [17] proposed a swarm system designed to prevent
collisions between drones and objects in the environment,
while also ensuring that each drone has sufficient resources

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

to complete its assigned tasks. They successfully integrated
safety as a key element of the fitness function, but the stringent
safety requirement has become a constraint in planning. This
overly cautious stance does not take into account the potential
benefits of accepting certain risks, which might, in some cases,
lead to more optimal solutions.

In summary, our method considers both the operational
condition of the swarm and the constantly changing environ-
mental conditions, along with the task queue. While avoiding
hazardous zones is beneficial, it is not always the optimal
strategy, particularly when drones are far from their base
and unable to recharge. Navigating through hazardous zones
entails certain risks. Therefore, it is crucial to weigh these
risks carefully before planning the path.

III. METHODOLOGY
A. Problem statement

In addressing the path planning for drones in complex
and unknown environments, which as impeded by various
obstacles and include hazardous zones, this paper goes beyond
and also tackles the challenge of selecting the ideal path from
all available options under specific conditions. Even though
the current approaches (e.g., [14], [16]) involve smart drones
completely avoiding hazardous zones, as depicted in Figure 1,
this approach becomes cumbersome when multiple factors are
in play simultaneously. Often, the only viable path may be
excessively long, rendering it impractical to fulfill multiple
tasks or missions. Hazardous zones need to be taken into
account for drone swarms’ path-planning. However, rather
than completely blocking out a large area, we can consider
a weakening effect for weather conditions or even cyber-
attacks. For instance, signal propagation (for the case of cyber-
attacks) weakens as it distances from the broadcasting device,
akin to the diminishing intensity of a storm or rain as it
moves from its epicenter. It is also possible that the very
destination lies within a hazardous zone. Therefore, this study
proposes the use of drone swarms for collaborative learning,
evolution, and autonomous decision-making to determine the
best action course. As shown in Figure 1, Path 1 and Path
2 for a single drone (for simplicity purposes), though the
shortest, cross the hazardous zone’s center, entailing higher
or absolute risks. Excluding these, Path 3 emerges as the
next shortest alternative, only marginally touching the haz-
ardous zone’s outer edge. While the likelihood of an attack
is not definite, and the signal weakens with distance, similar
to variable weather probabilities. Traditional methods would
favor Path 4 as it avoids hazardous zones entirely, despite
being significantly longer. However, this approach raises a
critical question: what if the destination is within a hazardous
zone? Complete avoidance of hazardous zones could render
the mission undeliverable or unachievable.

B. Drones and Their Operations

1) Drones: We define a drone as a self-governing vehicle
that navigates through a virtual 2D/3D environment. It per-
ceives its surroundings, completes assigned tasks, and com-

170

municates with other drones. A real-world drone comprises
various elements, such as motors with propellers, a power
source like a battery, computational units including a flight
controller and planner, an array of sensors, and actuators,
for instance, servo actuators. These components, along with
the drone’s initial position and velocity, are defined in our
simulation environment using a JSON file. A sample definition
is shown in Listing 1 where a drone is defined with an ID:
3, with a maximum battery capacity of 10,000 mAh, and 10
mAh consumption per tick (i.e., smallest time unit of our
simulation). The drone has a speed of 1 cell per tick with
an initial position (“init_pos”) of (2, 1, 0) in the simulation
space (i.e., X for lateral, Y for longitudinal, and Z for vertical
movements — for simplicity, we have not used Z in our work).
We have set the battery cut-off level to 30%. This simulates
real-world conditions where batteries shouldn’t be overly
discharged. It is also crucial for path planning, as the drone
needs to consider its neighbor’s battery level to determine
whether to risk traversing a hazardous zone or to opt for a
safer, longer route. To further emphasize the strength of our
path-planning algorithm, we do not allow drones to recharge
their batteries. This ensures they must consider battery levels.
1"drones":
2
3 {
' THEIT 3,
5 "battery_max": 10000,
6 "battery_move_cost":
7 "speed": 1,
8 "init_pos":
9 "sensors":
10 }
1]
Listing 1: Example of a section of a scenario JSON containing
a drones list and one drone item.

10,

(2,
{}

1, 01,

2) Drone Communication: We use a network class to sim-
ulate communication between drones and ground controllers,
where the class manages a list of messages with functions to
add, remove, and search for them. Each message is an object
containing a type, sender and receiver device identifiers, and
dynamic contents based on the message type. This network
ensures devices and drones receive messages intended for
their specific device ID, facilitating coordinated autonomous
or human-controlled operations.

3) Tasks and Instructions: A task for a drone in our defini-
tion is an ordered list of instructions using a task identifier, a
controller identifier, a drone identifier, and a Boolean definition
if it is tracked. In this context, ‘tasks’ can be interpreted
as various types of missions. These might include package
delivery scenarios, surveying assignments, or even military
operations. In the simulator, these tasks are represented by
the letter “T” (we will illustrate these in Figure 3 and Figure 4
in Section 1V).

C. Simulation World

The simulation world is the representation of the real world
in the simulation, which contains a 2D map (grid of cells)

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

No Drone Zone

Hazardous
Zong

No Drone Zone

@..

Pl s
J ®
Solrce #& . .

-/'
_

No Drone Zone

- -

¥

—-—
o

No Drone Zone

Fig. 1: A demonstration of a scenario showing a drone’s source and destination.

and interacts with it. We define the smallest building block of
a map as a cell to guide the drone (using it to show where
the drone is located) and to contain the information about
characteristics of that area such as possible obstacles (blocking
the cell completely), hazardous cells, hazardous zones, etc.

1) Blocked Cells: In real-world environments, there are var-
ious obstacles that drone operators or autonomous drones need
to navigate. These include tall trees, power lines, big lakes,
buildings, controlled airspace, and no-drone zones. To replicate
these challenges in our simulator, we introduced ‘blocked
cells’. Blocked cells are areas that cannot be traversed, and
drones must avoid them. Our path-planning approach recog-
nizes these cells and assigns them predefined values, forcing
drones to take alternative routes around them. In the simulator,
these cells are marked with the letter ‘X’.

2) Hazardous Cells: Our living world is full of hazardous
events, especially for flying objects like drones. These hazards
can include strong winds, thunderstorms, or heavy rain. They
can also be surface-to-air missiles, physical attacks, or cyber-
attacks by humans. These cells are not blocked, but yet a drone
should not be flying through them. In our system, hazardous
cells are predefined in JSON environment files and represented
by the letter ‘H’. Before any encounter with drones, they
remain labeled as ‘H’. This is because, prior to an encounter,
they are considered normal cells, further implementing the idea
of an ‘unknown environment’. Only after an encounter that
results in a drone being removed, these cells will be marked
as ‘blocked cells’. At this point, the representation changes
from ‘H’ to ‘X’, indicating their new status and that a drone
has failed at this location.

If a drone encounters a hazardous cell, it is permanently
removed from the simulator. This simulates the real-life con-
sequences of a drone being physically damaged or cyber-
attacked, hindering its ability to participate in future missions.
When a drone encounters a hazardous cell, it becomes in-
capable of broadcasting or alerting about its compromised

171

state. However, the drone network can detect such issues
by the absence of updates from that drone. The last known
location of the drone is then marked as a blocked cell.
Concurrently, any tasks that were assigned to the compromised
drone are reassigned back to the task queue. Additionally, the
area surrounding the hazardous cell is then designated as a
hazardous zone to alert other drones in that network.

3) Hazardous Zones: In real life, signal propagation weak-
ens as it distances from the broadcasting device, similar to
how intensity of a storm or rain diminishes as it moves
away from its epicenter. To mirror this, we introduce the
concept of hazardous zones, which are the areas in the vicinity
of hazardous cells (the 8 cells forming a square around a
hazardous cell). These areas carry certain risks, but not all
of them are hazardous cells. In our simulator, we represent
the hazardous cells within these zones by the letter ‘E’,
indicating the eliminating potential of traversing through these
cells. Once encountered, ‘E’ will change to ‘X’ indicating a
newly blocked cell. This is illustrated in Figure 2a (before)
and Figure 2b (after). This further restricts available paths,
forcing drones to navigate more intelligently through these
dense obstacles, hazardous cells, and hazardous zones.

7 h H h 7 h H h
8 h h h 8 X h h
9 E H h 9 X X h
10X X h h h X X X h h h X
11 - X 11 X
1z - X 1z - X

(a) BEFORE (b) AFTER

Fig. 2: Hazardous cells and zones BEFORE and AFTER the
encounter.

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

The non-destructive hazardous zones in our system are
represented by the letter ‘h’. It is important to note that these
hazardous cells and zones can be customized to fit the specific
environment users wish to simulate. In our case, we choose
to set the number of hazardous cells equal to the number of
drones. This approach ensures that, in the worst-case scenario,
all drones could be removed, yet it also provides them with the
opportunity to complete their assignments. Setting this number
too high would prematurely terminate the simulation, which
would not be sensible as it would not give the drones even a
chance to compete for their success.

D. Algorithms

In this section, we describe the algorithms used in this
study. The primary algorithms are Breadth First Search (BFS),
Smart BFS, and Dijkstra’s algorithms. Additionally, there is
an intermediate algorithm that bridges BFS and Smart BFS
algorithms, providing an alternative path when BFS cannot
populate the path.

1) Breadth First Search (BFS) algorithm: BFS is a graph
traversal algorithm that starts from the starting point and
explores its neighbors first before moving to the next level
of nodes. It uses a queue to keep track of the nodes to be
visited, ensuring that each node is explored in the order it
was discovered [18]. The steps for generating the path using
this algorithm are given in Algorithm 1. The Costmap_Builder
function, as indicated in line 4, constructs a costmap beginning
at the starting point, assigning a value of 100 to hazardous
zones to simulate the conventional approach of avoiding these
areas. As indicated in line 6, the algorithm will avoid zones
marked with this value, which can sometimes lead to negative
effects, such as being unable to find a path or failing to reach
a destination that lies within a hazardous zone.

2) Smart BFS algorithm: This algorithm utilizes the classic
BFS, but makes significant revisions in the costmap and path
selection. It takes into account all major aspects of drone
operation; e.g., battery level, pending tasks, uncompleted tasks,
the number of drones, and the capabilities of neighboring
drones in completing tasks if the current drone fails. For
instance, as stated in line 4 of Algorithm 2, when there are
fewer than two drones available, the destination is not in a
hazardous zone, and there are still tasks pending, the algorithm
will select the safest path, which is the standard BFS approach.

However, if this conservative path cannot be traversed for
any reason, it can switch to an alternative method referred to
as ‘Try BFS’, which is detailed in Algorithm 3. When using
“Try BFS’, the drone attempts to plan its path using BFS.

In worst-case scenarios, where a path cannot be found,
it will revert to a smart path-planning approach by calling
function Risk_Aware_Path_Builder, summarized in Algorithm
4. In this mode, it accepts associated risks and makes its
best effort to complete the task. Another difference of ‘Smart
BFS’ lies in the construction of the costmap. Since it thor-
oughly analyzes the situation before selecting a path, the
Risk_Aware_Costmap_Builder treats hazardous zones simi-
larly to normal cells, recognizing that there is a chance of

172

Algorithm 1 Breadth First Search Algorithm

1: Input: drone_id, pos_a, pos_b

2: Output: path from pos_a to pos_b

3: function BFS

4 point_queue < Costmap_Builder(grid width, grid
length, pos_a, pos_b)

5: path.insert(0, point_queue[0])

6: while cost_map[path[0].x][path[0].y] != O and
cost_map[path[0].x][path[0].y] < 100 do

7: surrounding <— getSurroundingPositions(path[0])

8: last_cell < path[0]

9: best_cell < last_cell

10: best_cost < cost_map[path[0].x][path[0].y]

11: for cell in surrounding do

12: if cost_map[cell.x][celly] != -1 and
cost_mapl[cell.x][cell.y] < best_cost then

13: best_cell < cell

14: best_cost <— cost_map[cell.x][cell.y]

15: end if

16: end for

17: if last_cell == best_cell then

18: break

19: end if

20: path.insert(0, best_cell)

21: end while

22: path.pop(0)

23: return path

24: end function

success. The level of risk can be adjusted based on the
criticality of the assignments. In critical scenarios, such as life-
saving operations, drones can tolerate higher risks. Conversely,
in more routine scenarios where it’s acceptable to forego
certain tasks, the drones can operate at lower risk levels.

Algorithm 2 also addresses situations where a neighboring
drone is no longer communicating its location, or it has
completed the task and is returning home, even when the
instructions do not specify the destination for completed tasks.
It is important to emphasize that there are times when a
destination falls within a hazardous zone, and in such cases,
the drone must definitely go there to complete the task.

3) Dijkstra’s algorithm: Dijkstra’s algorithm is a method
for finding the shortest path between nodes in a graph. It
starts by assigning a tentative distance to every node: zero
for the initial node and infinity for all others. The algorithm
repeatedly selects the node with the smallest tentative dis-
tance, calculates and updates the distances of its neighbors,
and marks the node as visited. This process continues until
all nodes are visited or the shortest paths to all remaining
nodes are determined [19]. The aforementioned process can
be summarized in Algorithm 5. This algorithm also avoids
hazardous zones.

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Smart BFS Algorithm

Algorithm 3 Try Breadth First Search Algorithm

1: Input: drone_id, pos_a, pos_b

2: Output: path from pos_a to pos_b

3: actual_count < num_drones

4: if actual_count < 2 and not
(cells[pos_b.x]|[pos_b.y.is_hazardous_zone) and
(tasks_ready > 0) then

5 path <— BFS(drone_id, pos_a, pos_b)

6: if path is empty then

7: path < Try_BFS(drone_id, pos_a, pos_b)
8: end if

9 return path

10: end if

11: num_tasks_ready <— length(tasks_ready)
12: for each drone_object_id in drones_info do

13: if drone_object_id =! drone_id then > Analyze
neighbor drone

14: Obtain battery level, init-pos, final-pos, instruc-
tions

15: if drone_object_id in list_of_active_drones
then > Obtain position of neighbor drone

16: if position is not empty then

17: Save position

18: else

19: Select appropriate BFS strategy

20: return path

21: end if

22: end if

23: if position conditions met then

24: Calculate battery requirement and select path

25: else

26: Select appropriate BFS strategy

27: end if

28: end if

29: end for

30: Update battery counts based on predefined percentages

31: if destination is in hazardous zone then

32: path < Risk_Aware_Path_Builder(drone_id, pos_a,
pos_b)

33: return path

34: else

35: Choose path based on number of drones, task counts,
and battery levels

36: end if

IV. EXPERIMENTAL STUDY

A. Experimental Setup

In order to demonstrate our drone swarm path-finding
approaches, we have used our in-house drone simulator, which
was explained in [20]. In this work, we further enhanced
the simulator by introducing the ability to modify environ-
mental factors. These enhancements include adding blocked
cells, incorporating wind effects, designating hazardous cells,
managing drone numbers, and reintegrating pending tasks

1: Input: drone_id, pos_a, pos_b

2: Output: path from pos_a to pos_b

3: function TRY_BFS

4: point_queue < Costmap_Builder(grid width, grid
length, pos_a, pos_b)

5: path.insert(0, point_queue[0])
6: while cost_map[path[0].x][path[0].y] != O and
cost_map[path[0].x][path[0].y] < 100 do
surrounding <— getSurroundingPositions(path[0])
last_cell < path[0]
9: best_cell < last_cell
10: best_cost <— cost_map[path[0].x][path[0].y]
11: for cell in surrounding do
12: if cost_map[cell.x][celly] != -1 and
cost_mapl[cell.x][cell.y] < best_cost then
13: best_cell < cell
14: best_cost <— cost_map[cell.x][cell.y]
15: end if
16: end for
17: if last_cell == best_cell then
18: break
19: end if
20: path.insert(0, best_cell)
21: end while

22: path.pop(0)
23: if path is empty then

24: path < Risk_Aware_Path_Builder(drone_id,
pos_a, pos_b)

25: return path

26: end if

27: end function

into the queue, along with the addition of new tasks. In
our experimental simulations, we used various configurations
including number of drones, blocked cells, and hazardous en-
vironments. The following simulations were run on a 12th Gen
Intel(R) Core(TM) i7-1255U processor with 16GB RAM. Our
experiments generally took no significant resource utilization
and execution time.

B. Experimental Results

In order to evaluate the performance of our proposed
hazard-aware path-finding algorithms for a drone swarm, we
simulated a task completion scenario. The initial stage, shown
in Figure 3, features a simulation space with nine tasks
at corresponding locations for four drones. Recharging is
not allowed, forcing the drones to conserve battery power
and make informed decisions based on battery level. All
assignments begin from the center of the grid and spread
out to nine locations, distributed near the outer edges of the
grid to maximize travel distance and increase the likelihood
of encountering hazardous cells. Figure 4 shows the final
positions of the tasks and the ideal scenario where all four
drones return safely. The percentage of blocked cells ranges

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 Risk Aware Path Builder

: Input: drone_id, pos_a, pos_b
: Output: path from pos_a to pos_b
. function RISK_AWARE_PATH_BUILDER
point_queue < Risk Aware_Costmap_Builder(grid
width, grid length, pos_a, pos_b)

AW =

5: path.insert(0, point_queue[0])

6: while cost_map|[path[0].x][path[0].y] != 0 do

7: surrounding < getSurroundingPositions(path[0])
8: last_cell < path[0]

9: best_cell < last_cell

10: best_cost <— cost_map[path[0].x][path[0].y]

11: for cell in surrounding do

12: if cost_map[cell.x][cell.y] != -1 and

cost_map[cell.x][cell.y] < best_cost then

13: best_cell « cell

14: best_cost <— cost_map[cell.x][cell.y]
15: end if

16: end for

17: if last_cell == best_cell then
18: break

19: end if

20: path.insert(0, best_cell)

21 end while

22: path.pop(0)

23: return path

24: end function

Algorithm 5 Dijkstra’s Algorithm

: Input: drone_id, pos_a, pos_b
: Output: path from pos_a to pos_b
: current_cell < pos_b
. last_cell < None
path < empty list
while current_cell # pos_a do
path.insert (0, current_cell)
surrounding <+ getSurroundingPositions(current_cell)
min_cost <— oo
next_cell < None

for all neighbor in surrounding do
if 0 < neighbor.x < width and 0 < neighbor.y < length
and not cells[neighbor.x][neighbor.y].is_hazardous_zone then

R A A A

-
=4

—_
[

13: if cost_map[neighbor.x][neighbor.y] < min_cost
then

14: min_cost <— cost_map[neighbor.x][neighbor.y]

15: next_cell <— neighbor

16: end if

17: end if

18: end for

19: last_cell < current_cell

20: current_cell < next_cell

21: end while

return path

174

from 15%, 20%, to 25% randomly placed, with the number
of hazardous cells equal to the number of drones. 10% of the
hazardous zones have an eliminating effect. These parameters
are customizable to suit specific user scenarios. We found
this to be a balanced scenario, as it allows the drones to
perform their tasks while imposing significant restrictions. In
our experiments, at most, 1 out of every 4 cells is a blocked
cell (25%) to compel drones to critically think and analyze
the environment. This forces the drones not only to conserve
battery but also to accept appropriate risks while employing
a best-effort approach to complete as many tasks as possible
within the constraints of the battery level.

*x Tigk 0 **x
e 1 2 3 & 5 € 71 8

w
=
°

15 16 17 18 19
x - -

0 X X X X
- - X R - n X X X - - X
2 X X E H n X X

3 0x X x x h h h X

4 X - X

5 b X X X

€ X X X X

7 X X 1T T T X X X
8 x 2 T T T X

@ X X 3 T T X X

10 X X X @ T X

11 h h h

12 X X n H n X X X

13 X X n X h X X X X X
4% X

15 - X

16 - X X X X - X

7 - - X X - - X X X n X

8 - - - - - X H n X - X X - X
1% - - X - - - E h n X X X

Fig. 3: The initial stage of the simulation where all drones and
tasks are located in the center. This scenario shows 20% of
blocked cells.

We evaluate the performance by comparing the percentages
of completed tasks, unachievable tasks, and incomplete tasks
between the three algorithms. The results for these two algo-
rithms are somewhat comparable, similar to what is reported
in [3]. Our novel algorithm outperformed both, on average,
in terms of the percentage of completed tasks, ranging from
10-15% better. In some extreme cases, the difference can be
nearly 20%, while their best performer is still 8% worse than
our worst performer. The bar graph in Figure 5 shows the
percentage of completed tasks in three different scenarios for
the three algorithms. Our algorithm consistently completed
more than 91% of the tasks in all cases.

Both unachievable tasks and incomplete tasks for the BFS
and Dijkstra’s algorithms are close to each other but are
significantly higher than for our novel approach in all cases, as
shown in Figures 6 and Figure 7, respectively. Unachievable
tasks can occur in a few different scenarios: the most obvious
is when the destination is within a hazardous zone, a drone is
trapped in areas surrounding hazardous zones, or the initial
location of the task is within hazardous zones. Note that
the percentage of unachievable tasks is directly caused by

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

*x%k Tick 96 *x*
o 1 2 3 4

o
o
L a
@
w0

0 X X X X x

1 X T h X X X X
2 X X E HE h X X
3 X X X X h B h X

4 X T X T

5 X X X X

6 X X X X

7 X X 1 X X X
8 X - 2 X

g T X X 3 X X T
- X X - - - X - a4 - - - - X

i - - - - n nh n - - - - - T

12 - - X - - X h H n - X - - - X X

13- X - X - n X n - X X X X - - - - - X
14K X - - - - .-7

1s - - - T N X

- - - X - - - - - X X - X - - - - X

7 - - X X - - X X X n - - - - - - X
- - - - - - - - X ®WH T - X - - X X - X
19 - - X - - - E B h - X - X X

Fig. 4: The final stage of the simulation where all drones come
back to the initial locations and all tasks have been completed.
This scenario shows 20% of blocked cells.

15% Blocked 20% Blocked 25% Blocked

Percentage (%)
8

HBFS mDijkstra's ®mSmart BFS

Fig. 5: Percentage of completed tasks

selecting the traditional BFS algorithm when only one drone
is left, further proving that our novel approach is superior.
Incomplete tasks can be caused by drones running out of
battery before reaching the task or by drones changing their
status to ‘HOME’ before the assignment is added back to
the queue. In either case, our algorithm outperforms both
algorithms.

Figure 8 and Figures 9 show the cost maps for the BFS and
Dijkstra’s algorithms, respectively. When examining Figure 8,
it becomes evident that the center of the image is filled
with numbers valued at 100 or greater, indicating that these
cells are non-traversable when using the BFS algorithm. This
implies two constraints: entities within these areas cannot
exit, and those outside cannot enter, significantly limiting the
available paths for drones. Sometimes, this can render certain
tasks unachievable. Similarly, upon examining Figure 9, we

175

Percentage (%)
=
o

8

6

il 1 HD
2

0 —

15% Blocked 20% Blocked 25% Blocked

W BFS MW Dijkstra's mSmart BFS

Fig. 6: Percentage of unachievable tasks

25

20

| I II
0 II II_ I

15% Blocked 20% Blocked 25% Blocked

Percentage (%)
.
o

«

WBFS mDijkstra's mSmart BFS

Fig. 7: Percentage of incomplete tasks

observe comparable scenarios. Certain areas are encircled by
‘inf” values, indicating that if a final destination lies within
these zones, the tasks become unachievable. Contrary to these
approaches, our costmap, as illustrated in Figure 10, treats
the hazardous zone as normal cells after careful consideration
of all other factors. This gives the drones in our case more
available paths, thereby enhancing the completion rate.

-1-1-1-1-1-1-1-1-1-1-1-1-1-1-112-1-1-1-1
-1-1-1-1-1-1-1-1-1-1-1-1-1-112 1112 -1 -1 -1
-1-1-1-1-1-1-1-1-1-1-1-1-112 11 10 11 12 -1 12
-1-1-1-1-1-1-1-1-1-1-1-112 11 10 9 10 11 12 11
-1-1-1-1-1-1-1-1-1-1-1121110 % 8 -1 10 11 10
-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 7 8 8510 8
-1-1-1-1-1-1-1-1-1121110 9 & 7 6 7 -1-1 8
-1-1-1-1-1-1-1-1-11110 5-1 7 6 5 & 5 & 7
-1-1-1-1-1-1-1-11110 % 8 9 -1 5 4-1 4 5 &
-1-1-1-1-1-1-11110 % 8 7-1 5 4 3 2 3 4 5
-1-1-1-1-1-1-1-11110-1 &6 5 4 3 2 1 2 3 4
-1 -1-1-1-1-1-1103 12 11100100100 -1 2 1 0 -1 4 5
-1-1-1-1-1-1-1-1103 12 -1 -1100 & -1 2 1 -1 5 -1
-1 -1-1-1-1-1-1-1104 -1100100100 5 4 3 2 3 4 -1
-1 -1-1-1-1-1-1104103102101 -1 7 & 5 4 3 4 -1 8
-1-1-1-1-1-1-1-1-1103102 -1 8 7 & 5 -1 5 & 7
-1-1-1-1-1-1-1-1-1-1-110 9 &8 7 & 7-1 7-1
-1-1-1-1-1-1-1-1-1-1-1-110 9% 8-1 8 8 8 8
-1-1-1-1-1-1-1-1-1-1-1-1-110 %10 % 10 98 1d
-1-1-1-1-1-1-1-1-1-1-1-112 1110 -1 10 11 10 -1

Fig. 8: Costmap when using BFS algorithm for path planning

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

infinfinfinfinf 14 13 12 11 10 11 12 13inf 13 12 13infinfinf
infinfinfinf 14 13 12 11inf 9 10 11 12inf 12 11 12 13 14inf
infinfinf 14 13 12 11 10 % 8 9 10 11 12 11 10 11 1Zinf 14
infinf 14 13 12inf 12infinf 7 & 9 10 11 10 9 10 11 12 13
inf 14 13 12 11 10inf & 7 € 7 & 9 10 &5 8inf 10 11 12
inf 13 12 1linf 9 8 7 €& Sinfinfinfinfinf 7 8 9 10 11
13 12 11 10 9inf 7infinf 4 3 2 3 4 5 €& 7Tinfinf 12
infinfinfinf 8 7 6 5 4 3 2 1linf 5 6 7 & 95 10 11
13 12 11 10 9 8inf €& 5 4inf 0 1linf 7 8inf 10 11 12
inf 13 12inf 10 %inf 5 4 3 2 1linf 5 €& 7 & 9 10 11
inf 14 13 14infinf 7 €6 5 4inf 2 3 4 5 € 7 & 9 10
infinfinfinfinfinf & 7 € Sinfinfinfinf 6 7 8inf 10 11
infinfinfinf 13 12infinf 7 &infinfinf 12inf 8 9inf 1linf
infinf 14 13 12 11 10 9 ginfinfinfinf 11 10 9 10 11 12inf
infinfinf 14 13inf 11 10 9 10 1linf 13 12 11 10 11 12Zinfinf

infinfinfinf 14 13 12 11inf 11 12inf 14 13
infinfinfinfinfinf 13infinfinfinfinfinf 14 13 12 13infinfinf
infinfinfinfinfinf l14infinfinfinfinfinfinf 14inf l4infinfinf
inf
inf

12 11inf 13 14inf

Fig. 9: Costmap when using Dijkstra’s algorithm for path
planning

-1
-1
-1
-1
-1
-1
-1-1-1-1-1-1-1 7-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1-1 6 7 -1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1 7-1 5 € 7 &-1-1-1-1-1-1-1-1-1
-1-1-1-1-1 6 5 4 5 66 7-1-1 8-1-1-1-1-1-1
-1-1-1 7-1 5 4 3-1 7 g8-1-1 7 &-1-1-1-1-1
-1-1 7 &€ 5-1-1 2 1-1-1-1 5 & 7 8&-1-1-1-1
-1-1-1-1 4 3 2 1 0 1 2 3 4 5 & 7 8-1-1-1
-1-1-1-1-1-1 3% 2 1 2-1-1 5 & 7 8&-1-1-1-1
-1-1-1-1-1-1 4 3 2-1-1 7 6 7 &-1-1-1-1-1
-1-1-1 &8 7 €6 5 4-1-1-1 & 7 8&-1-1-1-1-1-1
-1-1-1-1-1 7 66 5 6-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1 8% 7-1-1-1-1-1-1-1-1-1-1-1-1-1
-1-1-1-1-1-1 #8-1-1-1-1-1-1-1-1-1-1-1-1-1
-1

Fig. 10: Costmap when using our Smart BFS algorithm for
path planning

V. CONCLUSION

In this paper, we presented an approach for drone swarms’
path-finding for hazardous environments. We provided a novel
presentation of the hazardous areas to avoid once a problem
is detected. To avoid such environments and possible obsta-
cles, we provided multiple algorithms, including Breadth First
Search (BFS) and Dijkstra’s algorithms as well as an improved
version of BFS that we call Smart BFS. The algorithm
presented in this paper demonstrates significant potential in
enhancing the efficiency and adaptability of drone swarm
operations in various challenging environments. Through its
dynamic analysis of drone status, task completion, and envi-
ronmental factors, our approach offers customizable solutions
tailored to the demands and critical nature of diverse mis-
sions. Our experimental results demonstrate the superiority
of Smart BFS compared to the other algorithms by 20%
higher task completion ratio. Particularly in contexts such as
military operations, active disaster search and rescue, and aid
delivery to isolated regions post-disaster, our algorithm shows
promising applicability. This research not only contributes to
the current body of knowledge but also opens avenues for
future exploration in optimizing drone swarms for critical and
time-sensitive tasks.

176

ACKNOWLEDGMENT

This research was partially supported by the National
Science Foundation (NSF) Award Number 2149969 and the
National Centers of Academic Excellence in Cybersecurity,
housed in the Division of Cybersecurity Education, Innova-
tion and Outreach, at the National Security Agency (NSA)
grants H98230-20-1-0329, H98230-20-1-0414, H98230-21-1-

0262, H98230-21-1-0262, and H98230-22-1-0329.

[1]

[2

[3]

[4

[5]

[6]

[7]

[8

[9]

(11]

REFERENCES

M. Campion, P. Ranganathan, and S. Faruque, “Uav swarm communica-
tion and control architectures: A review,” Journal of Unmanned Vehicle
Systems, vol. 7, no. 2, pp. 93-106, June 2019.

Y. Aydin, G. K. Kurt, E. Ozdemir, and H. Yanikomeroglu, “Authenti-
cation and handover challenges and methods for drone swarms,” IEEE
Journal of Radio Frequency Identification, vol. 6, pp. 220-228, 2022.
1. Z. Boychev, “Research algorithms to optimize the drone route used
for security,” in 2018 IEEE XXVII International Scientific Conference
Electronics - ET, Sep. 2018, pp. 1-4.

“The global UAV market is estimated to be USD 27.4 billion
in 2021 and is projected to reach USD 584 billion by
2026, at a CAGR of 16.4%,” Jun 2021. [Online]. Available:
https://www.globenewswire.com/news-release/2021/06/18/2249504/
0/en/The-global-UAV-market-is-estimated- to-be-USD-27-4-billion-
in-2021-and-is-projected-to-reach-USD-58-4-billion-by-2026-at-a-
CAGR-of-16-4.html

E. Yagdereli, C. Gemci, and A. Z. Aktas, “A study on cyber-security of
autonomous and unmanned vehicles,” The Journal of Defense Modeling
and Simulation, vol. 12, no. 4, pp. 369-381, 2015.

A. Nayyar, B.-L. Nguyen, and N. G. Nguyen, “The Internet of Drone
Things (IoDT): future envision of smart drones,” in First International
Conference on Sustainable Technologies for Computational Intelligence:
Proceedings of ICTSCI 2019. Springer, 2020, pp. 563-580.

G. Raja, S. Anbalagan, A. Ganapathisubramaniyan, M. S. Selvakumar,
A. K. Bashir, and S. Mumtaz, “Efficient and secured swarm pattern
multi-uav communication,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 7, pp. 7050-7058, 2021.

B. Alkouz, A. Bouguettaya, and S. Mistry, “Swarm-based drone-as-a-
service (sdaas) for delivery,” in 2020 IEEE International Conference on
Web Services (ICWS), 2020, pp. 441-448.

W. Chen, J. Liu, H. Guo, and N. Kato, “Toward robust and intelligent
drone swarm: Challenges and future directions,” IEEE Network, vol. 34,
no. 4, pp. 278-283, July 2020.

M. Krichen, W. Y. H. Adoni, A. Mihoub, M. Y. Alzahrani, and T. Nahhal,
“Security challenges for drone communications: Possible threats, attacks
and countermeasures,” in 2022 2nd International Conference of Smart
Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi
Arabia, 2022, pp. 184-189.

K. Bezas, G. Tsoumanis, and K. Oikonomou, “A coverage path planning
algorithm for self-organizing drone swarms,” in 2021 International
Balkan Conference on Communications and Networking (BalkanCom),
2021, pp. 122-126.

S. Baidya, Z. Shaikh, and M. Levorato, “FlyNetSim: An Open
Source Synchronized UAV Network Simulator based on ns-3 and
Ardupilot,” in Proceedings of the 21st ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
Montreal QC Canada: ACM, Oct 2018, p. 37-45. [Online]. Available:
https://dl.acm.org/doi/10.1145/3242102.3242118

P. S. Andrews, S. Stepney, and J. Timmis, “Simulation as a scientific
instrument,” in Proceedings of the 2012 workshop on complex systems
modelling and simulation, Orleans, France. Citeseer, 2012, pp. 1-10.
A. Hamdi, F. D. Salim, D. Y. Kim, A. G. Neiat, and A. Bouguettaya,
“Drone-as-a-service composition under uncertainty,” IEEE Transactions
on Services Computing, vol. 15, no. 5, pp. 2685-2698, 2022.

H.Z, A.Z. A, H H, S. F, R. D, and 1. AF, “Search and rescue in a
maze-like environment with ant and dijkstra algorithms,” Drones, vol. 6,
no. 10, p. 273, 2022.

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

[16] J. Li and Y. Shi, “Auv path planning for environment changes over
time,” in 2018 2nd International Conference on Electronic Information
Technology and Computer Engineering (EITCE 2018), ser. MATEC
Web of Conferences, vol. 232, no. 04020, EITCE. EDP Sciences,
2018, p. 04020, published online: 2018-11-19. [Online]. Available:
https://doi.org/10.1051/matecconf/201823204020

[17] A. Majd, M. Loni, G. Sahebi, and M. Daneshtalab, “Improving
motion safety and efficiency of intelligent autonomous swarm of
drones,” Drones, vol. 4, no. 3, p. 48, 2020. [Online]. Available:
https://doi.org/10.3390/drones4030048

[18] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in SC ’12: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1-10.

[19] E. W. Dijkstra, “A note on two problems in connexion with
graphs:(numerische mathematik, 1 (1959), p 269-271),” 1959.

[20] E. B. Putnam, D. N. Senarath, G. R. Urquijo, C. Tunc, and R. Bryce, “A
lightweight drone simulator,” in 2023 Tenth International Conference on
Software Defined Systems (SDS). 1EEE, 2023, pp. 52-59.

177

Authorized licensed use limited to: University of North Texas. Downloaded on March 14,2025 at 04:00:51 UTC from IEEE Xplore. Restrictions apply.

