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ABSTRACT

We present a novel Graph-based debiasing Algorithm for Un-
derreported Data (GRAUD) aiming at an efficient joint esti-
mation of event counts and discovery probabilities across spa-
tial or graphical structures. This innovative method provides
a solution to problems seen in fields such as policing data and
COVID-19 data analysis. Our approach avoids the need for
strong priors typically associated with Bayesian frameworks.
By leveraging the graph structures on unknown variables n

and p, our method debiases the under-report data and esti-
mates the discovery probability at the same time. We validate
the effectiveness of our method through simulation experi-
ments and illustrate its practicality in one real-world applica-
tion: police 911 calls-to-service data.

Index Terms— Graph signal separation, Data debiasing,
Alternating minimization

1. INTRODUCTION

Bias in data collection is a prevalent issue in many real-world
applications due to a variety of reasons. One common sce-
nario is under-reporting, as elucidated by [1]. For example,
police 911 calls-to-service reports, as [2] illustrates, poten-
tially omitting a significant number of unrecorded incidents.
Similarly, during the COVID-19 pandemic, data collection,
as indicated by [3], only accounted for those individuals who
tested positive, which overlooked asymptomatic individuals
and those who hadn’t undergone testing, further perpetuating
data bias.

The challenge in addressing underreporting data is that a
substantial identifiability issue exists. For instance, while the
count of observed cases, denoted by y, is known, the count
of unobserved instances is not uniquely determined. This is
due to the fact that there are infinitely many solutions for the
equation y = np when only y is known.

The problem of estimating the probability p in a binomial
Bin(n, p) distribution when the number of trials n is known
has been thoroughly addressed in the classic statistical liter-
ature. However, the circumstance where both n and p are
unknown is much harder and more interesting. This gives
rise to the binomial n problem [4]. In the realm of statistics,

this problem is a well-known issue regarding one-dimensional
cases. Traditionally, the approach to resolving it involves
utilizing Bayesian methodologies, as detailed in works like
[5, 6, 7, 8, 9]. However, this leads to the secondary challenge
of selecting an appropriate prior.

Following the setting mentioned before, where there are n
possible events, each being observed with a probability p. We
are then confronted with a count, y, which is modeled as a Bi-
nomial random variable, Binomial(n, p). Our primary focus
is on estimating the parameters n and p while relying exclu-
sively on the observations of y. A significant complication
arises from the fact that the expected value of y is np. Al-
though we mentioned the identifiability issue, we may utilize
additional information to help circumvent the identifiability
issue. This paper presents a graph-prediction-based approach
for debiasing underreported data called GRAUD.

1.1. Related work

The early studies on simultaneously estimating the parame-
ters n and p were spearheaded by Whitaker [10], Fisher [11],
and Haldane [12]. They introduced the Method of Moments
Estimators (MMEs) and Maximum Likelihood Estimates
(MLEs). While Fisher argued that an adequately extensive
dataset would make n discernible, this becomes impractical
for smaller p values as the required dataset would be exces-
sively large.

Recently, DasGupta and Rubin [4] introduced two inno-
vative, more efficient estimators. The first is a novel moment
estimator that utilizes the sample maximum, mean, and vari-
ance, while the second introduces a bias correction for the
sample maximum. These estimators have shown superior per-
formance in various scenarios, and their asymptotic properties
have been thoroughly studied.

Several prior works have also considered the binomial n
problem from a Bayesian viewpoint. For example, Draper and
Guttman [7] proposed a Bayes point estimate that presumes
a discrete uniform distribution for n over a set 1, 2, . . . , N .
Other researchers have proposed Bayes estimators based on
various prior distributions for n [13, 14, 15]. While Bayesian
approaches have successfully mitigated some difficulties as-
sociated with classical approaches, they lack grounding in

9781979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P 

20
24

 - 
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
72

72

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 15,2025 at 18:27:11 UTC from IEEE Xplore.  Restrictions apply. 



asymptotic theory, thus better suiting ”small” practical prob-
lems.

In the scenario where n is to be estimated with p known,
Feldman and Fox [8] have provided estimates based on MLE,
MVUE, and MME and explored their asymptotic properties.

Despite these efforts, the binomial n problem remains
fundamentally challenging when p is unknown. The prob-
lem is characterized by intrinsic instability, and both n and p

parameters have been proven not to be unbiasedly estimable
[4], resulting in difficulties in obtaining reliable estimates.
The most common issue across estimators is the severe un-
derestimation of n, particularly when n is large or p is small.
Without replication, drawing inferences about n becomes
impossible.

2. PROBLEM SETTING

Consider the following scenario. Let’s assume that we are
able to observe a collection of counts at the vertices of a graph
consisting of M nodes with index set V and edge set E. At
every individual node, the observed number of incidents is
denoted as yi, where i → V . We further assume that at each
node, the probability of observing an incident is pi, and the
true number of incidents, though unknown, is ni. This prob-
lem can be expressed as a binomial model in the form of:

yi ↑ Binomial(ni, pi) (1)

and the expected value of yi is E[yi] = nipi. Our target is to
jointly estimate the set pi, ni given the observed data yi and
the graph structure, which can be denoted by the adjacency
matrix A. It’s worth noting that there is an identifiability issue
[4] associated with this problem, and hence, we must impose
additional structure and regularization to make this problem
meaningful and solvable.

In numerous practical applications, such as the analysis of
policing data, spatial information forms an inherent part of the
data [16]. Consider a scenario where we partition a state into
various regions and represent each region by a node, where
each node corresponds to a count yi. The aim is to recover
the true number of incidents ni and the discovery probability
pi in each region. Inspired by this setup, we put forth two
reasonable assumptions to address the identifiability issue in-
herent to this problem.

Our first assumption is that the discovery probabilities pi
are spatially smooth, which means that the probability across
neighboring regions should not vary significantly. The graph
Laplacian quadratic form [17] is often used to represent such
smoothness, we posit that the quantity p

T
Lp should be small.

Here, p = [p1, . . . , pM ]T represents the vector of discovery
probabilities, and L = D ↓ A signifies the graph Laplacian,
where D stands for the degree matrix. Based on the equation

p
T
Lp =

1

2

∑

(i,j)→E

(pi ↓ pj)
2
, (2)

a small value of pTLp indicates that the absolute difference
|pi ↓ pj | is small for all edges (i, j) → E. This aligns with
our assumption that the discovery probability remains fairly
uniform across adjacent regions.

Our second assumption is that the true counts of inci-
dents, represented as ni, are determined by an underlying
model. Socioeconomic factors and characteristics of each re-
gion, such as population density, average income, education
level, and other pertinent demographic or geographic factors,
influence this model. We posit that ni follows a log-linear
model [18], a common choice for count data. This leads us to
the following equation:

log n = Xω + ε, (3)

where n = (n1, · · · , nM )T → NM↑1 is the vector of true
counts, ε ↑ N(0,ϑ2

n
IM ) is the error term, ω → RK↑1 is

the vector of parameters, and X → RM↑K is the known ma-
trix representing the influence of the features on the incident
counts.

3. PROPOSED DEBIASING ALGORITHM: GRAUD

This section introduces an optimization problem as a part of a
novel debiasing algorithm, GRAUD. The optimization prob-
lem revolves around two variables: n and p under certain
constraints. The formulation originates from the fact that
E[y] = np combined with graph smoothness and the under-
lying model of n. Then, a series of transformations and ma-
nipulations are conducted, leading to an alternative but con-
ceptually equivalent optimization problem. To begin with, we
can consider the following estimation problem:

min
n,ω,0↓p↓1

↔y↓n↗p↔2+ϖ1p
T
Lp+ϖ2↔ log n↓Xω↔2, (4)

where ↗ is elementwise (Hadamard) product, y = [y1, . . . , yM ]T ,
n = [y1 . . . , yM ]T , X is a M ↘K matrix and the regulariza-
tion parameters are ϖ1 > 0 and ϖ2 > 0. The two regulariza-
tion parameters control the trade-off between the data-fitting
term and the regularization terms

Given that both n and y represent count data in this case,
a log transformation might be beneficial as it can make the
data more normally distributed and reduce the variability [19].
Due to these advantages, applying a log transformation to
count data is a common practice in statistical analysis. Fur-
thermore, using log transformations can simplify the formu-
lation of the problem.

In this formulation, optimal ω can be directly computed
through least-squares regression:

ω
↔ = argmin

ω
↔ log n↓Xω↔2 = (XT

X)↗1
X

T log n. (5)

Upon substituting the optimal ω↔, the optimization prob-
lem transforms into:

min
n↘1,0<p↓1

↔ log y ↓ log n↓ log p↔2

+ϖ1p
T
Lp+ ϖ2 log n

T
H log n,

(6)
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Algorithm 1 Graph-based debiasing Algorithm for Underre-
ported Data (GRAUD)
Require: Initial u1, v1, ỹ, ϖ1, ϖ2, L, H , iteration Tin, Tout,

threshold ε, stepsize ϱ

Ensure: n
↔ = exp(u), p↔ = exp(v)

for k = 1, · · · , Tout do:
for t = 1, · · · , Tin do:

du = uk + vk ↓ ỹ + ϖ2Huk

uk = uk ↓ ϱdu

for t = 1, · · · , Tin do:
dv = uk + vk ↓ ỹ + ϖ2Lvk

vk = vk ↓ ϱdv

uk+1 = uk, vk+1 = vk

where H = I ↓X(XT
X)↗1

X
T is the projection matrix.

With the new variables ỹ = log y, u = log n and v =
log p, the optimization problem can be expressed as:

min
u↘0,v↓0

↔ỹ ↓ u↓ v↔2 + ϖ1v
T
Lv + ϖ2u

T
Hu. (7)

An alternating minimization algorithm can be utilized to ad-
dress this optimization problem, and this proposed method is
outlined in Algorithm 1.

4. THEORETICAL ANALYSIS

4.1. Assumptions

First, let’s enumerate the assumptions vital to our approach.
These assumptions direct the algorithm design and lead to
theoretical guarantees. Here we denote u0 = log n0 and
v0 = log p0 as ground truth.

Assumption 1. Let εu = u
T

0 Hu0 and εv = v
T

0 Lv0, we as-

sume that the quantity εu and εv are small.

Assumption 2. Assume {x1, · · · , xrX
} form an orthonormal

basis of the column space of X , {l1, · · · , lrL} form an or-

thonormal basis of the null space of L, where rX is the di-

mension of the column space of X (null space of H), and rL

is the dimension of the null space of L. There exists a ς1 > 0
so that min≃ε≃=1 ↔φT (x1, · · · , xK , l1, · · · , lt)↔2 = ς1.

The first assumption, as discussed in the preceding sec-
tion, plays a crucial role in the accuracy of GRAUD. The sec-
ond assumption essentially states that the zero vector is the
only common element between the null spaces of H and L.
This assumption is important for resolving the identifiability
problem.

4.2. Recovery Guarantee

In this section, we dissect the properties of our proposed prob-
lem. We aim to showcase the applicability of this method in

debiasing the under-count data. We clarify how this optimiza-
tion problem aligns with our goal.

Recall that u = log n ≃ 0, v = log p ⇐ 0 and ỹ = log y,
where y ↑ Binomial(n, p). All the proof of theorems can be
found in the Appendix.

Proposition 4.1. Under assumption 2, problem (7) is convex

and has a unique solution.

Let εy = log y ↓ log n0 ↓ log p0, and εu, εv defined in
Assumption 1. The following is our main theorem.

Theorem 4.2. Under assumption 1 and 2, the solution u
↔

and

v
↔

of the optimization problem (7) satisfies

↔u↔ ↓ u0↔ ⇐ c̃1↔εy↔2 + ↔εu↔2

↔v↔ ↓ v0↔ ⇐ c̃2↔εy↔2 + ↔εv↔2,
(8)

for some constant c̃1, c̃2 > 0.

The term ↔εy↔ diminishes towards zero with a high prob-
ability as n increases. Additionally, based on our initial as-
sumptions, the terms ↔εu↔ and ↔εv↔ are expected to be very
small. Given these factors, we can infer that the upper bound
delineated on the right side of the equation will be consider-
ably small.

Besides, we have a global convergence result for our Al-
gorithm 1.

Proposition 4.3. The output (uk, vk) generated by Algorithm

1 converges to a critical point of Problem (6), which is the

unique global minimum.

5. NUMERICAL EXPERIMENTS

5.1. Simulated Examples

We proceed to evaluate the efficacy of GRAUD through two
simulated examples. In the initial experiment, we arbitrarily
select X ↓ 2 → RM↑K from a standard normal distribution,
setting ω → RK↑1 as a vector with all elements equal to one.
We adopt M = 10 and K = 3 for this experiment. Then,
we create n = [exp(Xω)], ensuring that Assumption (1) is
satisfied by maintaining n

T
Hn relatively small. For p, we

compute it using p = 0.7 + 0.1ε, where ε → N(0, IM ) is de-
rived from a standard normal distribution. We subsequently
constrain p to fall within the [0.05, 0.95] interval to circum-
vent extreme scenarios. Furthermore, we set pTLp ⇐ 0.02 to
satisfy Assumption 1. In this context, ϖ1 is set at 0.01, and ϖ2

at 0.9. We select the regularization parameters through 5-fold
cross-validation. As for the initial values, we assign n1 = y

and p1 = y/n1. This results in u1 = log n1 and v1 = log p1.
As demonstrated in Figure 1, the debiased solution gen-

erated by GRAUD is closely aligned with the ground truth,
indicating high accuracy in our approach. The proximity of
GRAUD’s output to the ground truth underscores its reliabil-
ity in providing accurate results, thus justifying its application
in this context.
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Fig. 1. The plot presents a comparison between the true value
of p and its estimated counterpart, as well as a comparison
between the true value of n, the estimated value of n, and y.
The relative ↼1 error for p stands at 0.035, while the relative
↼1 error for n is 0.029.

5.2. Real Data Experiment

In the real-world experiment, we direct our attention towards
emergency (911) call data originating from Atlanta, specif-
ically from the year 2019, which comprises approximately
580,000 instances. Notably, the actual number of emergency
situations is likely higher than represented by these calls, as
they tend to underestimate the true magnitude of emergencies.
We use this data to establish the variable yi for every individ-
ual beat, with a beat referring to the distinct geographical area
assigned to a police officer for patrolling. These beats subdi-
vide Atlanta into 78 distinct sections, which offers a naturally
discrete geographical division for our research.

To enhance our understanding, we create a graphical
model in which each beat is symbolized as a node, and edges
are formed between nodes corresponding to neighboring
beats. This graph-based representation allows us to visual-
ize and comprehend the spatial connections and proximity
among the different beats more intuitively.

To supplement our dataset further, we include the cen-
sus data from 2019, factoring in aspects such as population
size, income, and level of education (quantified as the frac-
tion of the population that has achieved at least a high school
diploma). These factors constitute our xij variables, thereby
incorporating socioeconomic factors into our analysis.

To begin our analysis, we set the initial pi vector as a vec-
tor of all 0.8s and ni = yi/pi. The localized solution we
achieve from this starting point is represented in Figure 3.
The yellow areas represent a higher discovery probability, and
those areas with higher discovery rates are mainly located in
the downtown, midtown, or other prosperous areas in Atlanta.
This makes sense because those flourishing areas usually have
better public security, thus resulting in higher discovery rates.

Fig. 2. The estimated pi in each beat when initializing with
the discovery probability of all 0.8.
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Fig. 3. The estimated p̂i from data (when converges to lo-
cally). The pi are initialized to be constant 0.1. Clearly, the
different regions may have different levels of crime discovery.

6. CONCLUSION

In this paper, we proposed a novel graph prediction method
for debiasing under-count data. We utilize the intrinsic graph
structure in the problem and overcome the identifiability is-
sue. We reformulate the problem as an optimization problem
and establish the connection between the binomial n problem
and the graph signal separation problem. We provide an al-
ternating minimization optimization algorithm for efficiently
recovering data. We establish recovery bounds and conver-
gence results for our proposed method and conduct several
experiments on both synthetic data and real data, demonstrat-
ing the accuracy and efficiency of our proposed method.
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