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Abstract— The ability to predict future states is crucial to
informed decision-making while interacting with dynamic envi-
ronments. With cameras providing a prevalent and information-
rich sensing modality, the problem of predicting future states
from image sequences has garnered a lot of attention. Current
state-of-the-art methods typically train large parametric models
for their predictions. Though often able to predict with accuracy
these models often fail to provide interpretable confidence
metrics around their predictions. Additionally these methods
are reliant on the availability of large training datasets to
converge to useful solutions. In this paper, we focus on the
problem of predicting future images of an image sequence with
interpretable confidence bounds from very little training data.
To approach this problem, we use non-parametric models to
take a probabilistic approach to image prediction. We generate
probability distributions over sequentially predicted images,
and propagate uncertainty through time to generate a confi-
dence metric for our predictions. Gaussian Processes are used
for their data efficiency and ability to readily incorporate new
training data online. Our method’s predictions are evaluated
on a smooth fluid simulation environment. We showcase the
capabilities of our approach on real world data by predicting
pedestrian flows and weather patterns from satellite imagery.

I. INTRODUCTION

Predicting the future states of an environment is key to

enabling smart decision-making. As humans, we use predic-

tions to inform daily decisions. This ranges from navigating

through a crowded crosswalk of pedestrians to using weather

forecasts to plan out our week. In robotics, we use such

predictive models not only to model robots and generate

complex control strategies, but also to enable robots to model

and better interact with their environment. Though perfectly

predicting such diverse phenomena requires underlying state

information and large trained complex models, humans are

often able to make predictions in completely novel envi-

ronments using imperfect models informed solely by visual

input. In this paper, we focus on the task of predicting the

future in smooth video sequences given only a very limited

number of initial frames for context and training.

With cameras becoming one of the most prevalent sensing

modalities, future video prediction is a well-researched topic.

Several works like [1] and [2] directly predict future frames

of video in the image space. Other works like [3] even use

these predictions for robotic control. However, most of these

works use complex parametric models like neural networks

that require large datasets to train. These works demonstrate

high predictive accuracy, but fail to provide good confidence

metrics around their predictions. In this work we take an
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Fig. 1: Two real-world pedestrian flow prediction results over time
generated by our method trained with only 10 images. Our method
predicts future pedestrian motion. Larger variance appears at regions
of moving pedestrians, roughly agreeing with regions of error.

initial step towards investigating confidence-aware video pre-

diction from low amounts of data using Gaussian processes

(GPs). In particular, we look at the problem of predicting the

next t frames of a video given the previous n consecutive

video frames, given very limited priors and training data.

Due to the difficulty posed by our restriction to the problem

with low training data, which may arise due to constraints

such as cost, regulations or entering an unseen scenario, we

focus our investigation on predicting smooth videos with

highly repetitive, but still complex motion. We focus our

evaluation on predicting videos of fluid viscosity flows. In

these videos a large amount of dynamic information can be

gained from just a few frames. We choose to focus on fluids

because the repetitive dynamics and patterns observed in

fluids are observed in and used to model many complex real

world phenomena such as the flow of pedestrians [4], [5],

[6] and weather prediction [7]. We showcase our method by

demonstrating predictions on real-world examples of crowd

flow (Figure 1) and videos of satellite weather patterns

(Figure 5). Additionally, due to our very limited training

distribution, we expect our models to have limited predictive

fidelity. To know when we can trust our predictions, we prop-

agate uncertainty through our predictions over time and give

confidence metrics on the prediction of future frames. Our
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use of GPs for prediction enables high-quality predictions

near our easily expandable training distributions, while also

providing variance estimates as interpretable metrics around

the confidence of our predictions.

In this paper we present the following novel contributions:

1) A framework for confidence-aware prediction from low

data on smooth videos using Gaussian Processes.

2) Evaluation of our framework and comparisons on fluid

viscosity prediction.

3) Examples of our framework on real-world data through

predictions on the flow of pedestrians and satellite

weather patterns.

II. RELATED WORKS

Solutions for image sequence prediction problems often

heavily rely on large datasets. There are several available

video datasets such as the Kitti [8], Camvid [9] and Cal-

tech Pedestrian Dataset [10] for prevalent problems like

autonomous driving. Some video datasets, such as the robot

pushing dataset [3], provide video data influenced by external

controls for tasks like robot manipulation. To solve the

problem settings captured by the aforementioned datasets,

researchers train large parametric neural networks.

Most state of the art methods in video prediction build

off of a few baseline neural network architectures: con-

volutional, recurrent and generative models. Convolutional

neural networks, which rely on learning 2D convolutional

kernels, enabled a breakthrough in problems in the image

domain [11]. They have also been extended to problems in

video through 3D convolutions [12], [13]. Recurrent neural

networks (RNNs) [14] and long short-term memory (LSTM)

networks [15] have more principled architectures to handle

the time dependencies that come with sequences of images.

They have been leveraged by works such as [16], [17],

and [18]. Generative adversarial networks directly model

the generative distribution of the predicted images [19]. To

handle uncertainty, some researchers have turned to using

Variational autoencoders [20] and ensemble networks [21].

Most approaches employ combinations of these architectures

to achieve state of the art results. Methods like [1] and [2] use

these methods to directly predict the pixels in future images.

We take inspiration from this direct prediction approach,

along with generative and convolutional approaches, and

design our method to directly generate distributions on output

pixels while iterating over the image in a kernel-like fashion.

There is also a large body of work on predicting and

simulating fluids. The motion of incompressible fluids is

governed by the Navier Stokes equations, a set of partially

differentiable equations (PDEs). Modern techniques such as

[22], [23], [24] and [25] use neural networks to learn to solve

complex PDEs from data. We compare our method against

the FNO2D-time and FNO 3D networks proposed in [25].

All the methods discussed above focus on a prediction

problem where large representative datasets are readily avail-

able, while failing to provide confidence metrics around their

predictions. In this paper, we focus on the case when the

available training data is limited to only a few frames and

thus understanding predictive confidence even more impor-

tant. In these low-data scenarios, the above methods often

fail to converge to useful solutions. We choose Gaussian

process regression as the core predictive component of our

method. Gaussian processes have been used across various

robotic and machine learning applications to estimate highly

nonlinear functions with probabilistic confidence [26]. These

non-parametric models have been regularly used to estimate

functions online with very little data. [27] use GPs to

model complex robot-object interactions online. The authors

of [28] use a GP-enhanced reinforcement learning model

to learn blimp dynamics online. This model improves the

state predictions of the traditional ODE modeling approach

while also giving a useful uncertainty estimate. SOLAR-GP

builds upon such system identification approaches and uses

localized sparse GP models to learn robot dynamics online

to improve teleoperation [29]. PILCO improves the system

identification approach further by learning a probabilistic

dynamics model [30]. They propagate prediction uncertainty

through time to facilitate long-term planning and improve

policy search methods for reinforcement learning with very

little data collection. GP’s predictive uncertainty measure

has also been widely used by the safety community. Safe

IML uses GPs to estimate an environment’s safety function

online [31]. They leverage the uncertainty outputted by the

GP to provide safety guarantees and inform intelligent and

risk-aware exploration that does not compromise the robot’s

safety. In this work, we use GPs for low data, confidence

aware predictions of future images from image sequences.

III. BACKGROUND: GAUSSIAN PROCESSES

The core predictive component of our method uses

a Single Output GP Regression Model. A GP mod-

els a function f , using training data (X, f(X)). X =
[x0, x1, . . . , xn−1] ∈ R

n×D are all the training inputs and

f(x) = [f(x0), . . . , f(xn−1)] ∈ R
n×1 are the training

outputs. Given test inputs X
′

∈ R
m×D we want to find

outputs f(X
′

). Let XA ∈ R
(m+n)×D refer to all the train

and test inputs and f(XA) be the corresponding outputs. A

GP relies on the assumption that all the outputs are char-

acterized by a multivariate gaussian distribution f(XA) ∼
N (µ(XA),ΣXAXA

). We assume the mean µ(XA) = 0, and

the covariance matrix is characterized by a kernel function

k(x, y) such that ΣXA,XA
[u, v] = k(XA[u], XA[v]). To

solve for the distribution of the test outputs p(f(X
′

)) ∼
N (µ(X

′

),ΣX
′
X

′ ) we use the marginal likelihood of a

multivariate gaussian p(f(X
′

|X, f(X), X
′

)) to get:

µ(X
′

) = k(X
′

, X)[k(X,X) + σ
2

nI]
−1

f(X) (1)

Σ
X

′
X

′ = k(X
′

, X
′

)− k(X
′

, X)[k(X,X) + σ
2

nI]
−1

k(X,X
′

)
(2)

here, k(X
′

, X)[u, v] = k(X
′

[u], X[v]), k(X
′

, X) ∈ R
n×n,

k(X
′

, X) = k(X,X
′

)T ∈ R
m×n, σ2

n is the noise variance,

and I ∈ R
n×n is the identity matrix. To train the GP

Regression model we optimize the noise variance, σ2
n, and

kernel parameters to maximize the log-likelihood of the

training data.
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Fig. 2: Overview of the proposed method. We begin by pre-processing the initial video frames [z0, . . . , zt0−1] to form the dataset to train
a GP regression model. During test time, three sequential input images are processed into test inputs. Our trained model predicts output
distributions from these test inputs. These distributions are then combined to form a predictive distribution of the image at the next time
step. The prediction is then incorporated into the next set of input images to recursively rollout a sequence of image probabilities.

We use the radial basis function (RBF) kernel:

k(x, y) = α2 exp(−
(x− y)TΛ−1(x− y)

2
) (3)

Kernel parameters, α and Λ, are optimized during training.

For outputs of dimension O > 1, we train a GP for each

dimension a ∈ [0, O − 1]. Each model has a kernel ka(., .),
trained by optimizing its parameters σn,a, αa and Λa.

IV. METHODS

A. Problem Statement and Prediction Framework

We define an image sequence as a sequence of frames

[z0, z1 . . . zt0−1, zt0 , . . . zt−1, zt . . . ]. Here zi ∈ R
H×W de-

notes the i-th frame in the sequence. Given initial training

frames [z0, . . . zt0−1], our objective is to predict frames

[zt0 , . . . zt, . . . ]. As additional frames [zt0 , . . . zt′ ] become

available, they may be incorporated into the model’s training

data to improve the accuracy of the future prediction.

Figure 2 provides an overview of our method. We train

a model to use recurring motion patterns to understand

scene dynamics to predict future images. Our model learns

and predicts on square image patches of dimension (p, p).
Predicting at a smaller scale enables us to better use our

limited training data and extract smaller repeating patterns

that are more likely to recur across space and time. Our

method predicts one frame at a time given the 3 most

recent, seen, and predicted frames. We use 3 input frames to

capture second-order dynamics. The GP regression models

predict per-pixel distributions in future images. These are

combined to form a random variable image. The predicted

image is incorporated into the next set of inputs, and the

process is repeated. Our method must handle a combination

of random and known inputs, while propagating probability

distributions through time.

B. Training

To construct our model, we first create a training data

set from frames [z0, . . . , zt0−1]. We divide the images into

sets of 4 sequential images [zi, zi+1, zi+2, zi+3], i ∈ [0, t0 −
4]. To create a datapoint we take p dimensional patches

corresponding to the same pixel locations from each image.

zi[k : k+p, l : l+p] ∈ R
p×p denotes a p by p patch in image

zi starting at pixel (k, l). A training input, xj ∈ R
3p2

, is

created by flattening and concatenating the patches from the

first 3 images. The corresponding training output, f(xj) ∈
R

(p−2b)2 , is created by flattening the corresponding patch

from the 4th image zi+3, cropped with a patch boundary term

b: zi+3[k+ b : k+ p− b, l+ b : l+ p− b] ∈ R
(p−2b)×(p−2b).

When b > 0, we do not predict the outer edges of the patch,

where predictions may suffer due to contributions from the

scene outside our input. Within each set of 4 sequential

images, we select data points with a stride of s pixels. In

this paper, we use a “wrapping” approach to handle patches

that extend beyond the edge of an image. This approach

assumes the frame zi captures a periodic environment where

z[H + i,W + j] = z[i − 1, j − 1] and z[−i,−j] = z[H −
(i + 1),W − (j + 1)]. Approaches like padding frames or

skipping incomplete patches are possible, but not further

explored in this paper. We repeat this procedure for every set

of images to create the training dataset with n data points:

(X, f(X)) = (xj , f(xj)), j ∈ [0, n − 1]. X ∈ R
n×3p2

and

f(X) ∈ R
n×(p−2b)2 .

We create a GP Regression model for every output dimen-

sion O = (p− 2b)2. Each model is trained by optimizing its

noise, σn,a, and kernel parameters, αa and Λa in ka(., .), to

maximize the log likelihood of the training data for output

dimension a ∈ [0, (p − 2b)2]. To predict future images,

each GP model outputs a mean and variance corresponding

to a pixel in the output patch. The predicted image zi, is

represented by a mean and variance image pair (Mi, Vi).
Each pixel in Mi and Vi corresponds to the mean and

variance of the predicted random gaussian variable for that

pixel location, respectively.

C. Prediction

Once trained, we can use our model to rollout predictions

for any T time steps into the future, starting from 3 known,

consecutive input images [zi, zi+1, zi+2]. We use a recursive

method to predict multiple frames into the future. Our model

takes the 3 most recently seen and predicted frames and uses



them to predict one future frame, represented as a random

variable. We incorporate this predicted random variable as

the latest image in the 3 frame inputs to predict the next time

step. This process is repeated to predict the desired T steps

into the future. We begin by discussing our predictions in

the context of predicting the fourth time step and onwards.

Starting at the fourth prediction, all the input images are

random variables previously outputted by our model. The

first three predictions incorporate known, observed input

images and predicted random input images. These initializing

predictions will be discussed as a special case of the more

general prediction from all random variable input images.

We discuss the general method of predicting zi+3 from

input images [zi, zi+1, zi+2], which are all random variables

outputted by our model. To predict zi+3, we create a set of m

test inputs x
′

j , j ∈ [0,m− 1]. Each test input is a multivari-

ate Gaussian random variable composed of 3p2 independent

Gaussian random variables selected from the input images.

Since the input images are predicted random variables, our

test inputs are selected from their corresponding mean and

variance images: [(Mi, Vi), (Mi+1, Vi+1), (Mi+2, Vi+2)]. We

make simplifying assumptions that the predictions of each

GP model as well as the outputs of the same model on

different inputs are independent. Without assuming indepen-

dence, we would have the computationally intractable task of

tracking the covariance across all pixels across all time. As

a result, the predicted images and their sub-patches can be

flattened, concatenated, and represented as one multivariate

Gaussian random variable. We use the patch-based selection

method described in Section IV-B, separately, on the sets of

consecutive mean and variance images to generate the mean

and variance input vectors, x
′

j,µ ∈ R
3p2

and x
′

j,σ ∈ R
3p2

respectively. These vectors specify the multivariate gaussian

distribution of the input x
′

j ∼ N (x
′

j,µ,Σx
′

j,σ
). To construct

Σx
′

j,σ
, we use our independence assumptions such that the

input covariance is a diagonal matrix with the vector of

variances, x
′

j,σ , along the diagonal. We adjust our stride to

generate an input to predict every pixel in the future image.

We discuss our method in the context of predicting a single

output dimension a ∈ [0, (p − 2b)2] from a single input

x
′

j . Our model predicts the random variable f(x
′

j)[a]. As in

standard GP Regression, we are solving for the distribution

of p(f(x
′

j)[a]). We solve for p(f(x
′

j)[a]) by marginalizing

p(f(x
′

j)[a]|X, f(X), x
′

j) over the input image distributions.

p(f(x
′

j)[a]) =

∫

∞

−∞

p(f(x
′

j)[a]|x
′

j , X, f(X)[:, a])p(x
′

j)dx
′

j

(4)

Solving this integral is analytically intractable. We ap-

proximate the posterior distribution from equation 4 to be

Gaussian. Having the outputs form a multivariate Gaussian,

like the inputs, enables recursive prediction. To solve for

p(f(x
′

j)[a]) we take advantage of this assumption and use

moment matching in a method akin to [30]. Our method is

distinguished from [30] in its use of multiple past states as

inputs, prediction on images, and incorporation of known in-

put states. Moment matching enables us to directly solve for

the mean µ(x
′

j)[a] and variance Σ(x
′

j)[a, a] of the outputted

Gaussian distribution. This gives us the following formula to

predict the mean of an output pixel from all random inputs:

µ(x
′

j)[a] = dTa βa

da[i] = α2
a(|Σx

′

j,σ
Λ−1
a + I|)−

1

2 e
−

1

2
vT
i (Σ

x
′

j,σ

+Λa)
−1vi

βa = [ka(X,X) + σ2
nI]

−1f(X)[:, a]

(5)

Here da ∈ R
n. vi = x

′

j,µ − xi where xi is the ith training

input. To predict variance from random inputs we use:

Σ(x
′

j)[a, a] = α2
a − Tr

(

(ka(X,X) + σ2
n,aI)

−1Qaa

)

+

βT
a Qaaβa − µ(x

′

j)[a]
(6)

Qaa[i, k] = ka(xi, x
′

j,µ)ka(xk, x
′

j,µ)|R|−
1

2 e

1

2
zTikR

−1
Σ

x
′

j,σ

zik

(7)

Here Qaa ∈ R
n×n, R = Σx

′

j,σ
2Λ−1

a + I ∈ R
n×n and

zik = Λ−1
a vi + Λ−1

a vk. These equations are used on all

the test inputs to predict the mean and variance for every

pixel in zi+3. The predicted image zi+3 is stored as a mean

and variance image tuple: (Mi+3, Vi+3). To continue the

predictive rollout, we incorporate the latest prediction into

a new set of input images [zi+1, zi+2, zi+3] to predict zi+4.

The mean images [Mi, . . . ,Mi+3, . . . ] act as our predictions,

while the variance images [Vi, . . . , Vi+3, . . . ] act as a confi-

dence measure on our prediction.

In the first 3 predictions some or all of the input images

are known, observed images. Predictions with these inputs

are special cases of the general formulation with all random

variable inputs. To solve this case, we still consider all

components of our input as random variables. We use our in-

dependence assumptions to disentangle the predictive method

into parts that solely interact with the input dimensions

contributed from the known observed images, x
′K
j , and those

contributed from the predicted random variable images, x
′R
j .

We treat the predicted random variable component of the

input as a multivariate Gaussian, x
′R
j ∼ N (x

′R
j,µ,Σx

′R
j,σ

), and

use a Dirac delta, δ(x−x
′K
j,µ), to describe the distribution at

the observed components. We split up the RBF kernel func-

tion ka(x, y) = kKa (xK , yK)kRa (x
R, yR) into components

that interact solely with the known, kKa , and random, kRa
dimensions of the inputs. These known and random kernels

have parameters αa,K ,Λa,K and αa,R,Λa,R respectively.

We use moment matching with these representations to

solve the intractable integral from equation 4 for distributions

on future predictions. The delta distribution at the known

pixels allows us to integrate out certain contributions from

the known components during the moment matching steps.

This gives us the following equation to predict the mean

from these hybrid inputs:

µ(x
′

j) = dTa,hβa

da,h[i] = kKa (xK
i , x

′K
j,µ)·

α2
a,R

√

|Σx
′R
j,σ

Λ−1
a,R + I|

e
−

1

2
v¦

i,R

(

Σ
x
′R
j,σ

+Λa,R

)

−1

vi,R

(8)
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Fig. 3: Forward Prediction Experiment: Our model, trained using frames [z0, . . . , z9], is used to predict frames [z10, . . . , z24] of a 2D
Navier Stokes simulation. (a) Ground truth, predicted mean, l1-error, and variance images. (b-c) Graphs of the prediction’s relative error
(RE) and mean standard deviations off (StdE). This shows our model’s ability to accurately predict dynamic scenes. Error and variance
increases overtime. Before t = 19, the variance effectively informs the erroneous region. At later timesteps the variation in the variance
becomes less informative. The base variance increases with the model becoming more uncertain overall. The accuracy of the model’s
confidence in its own predictions naturally oscillates as seen in the mean std off plot in Figure. 3c. The decrease in this metric is caused
when the model’s predicted variance grows faster than the true-error, while an increase correlates to the inverse. The increase in the
predicted variance eventually dominates true error causing mean stds off to decrease, which is preferable as it ensures we provide a
conservative estimation where the predicted bounds capture the ground truth.

Where the · operator represents elementwise multiplication.

βa is defined in equation 5, and vi,R = x
′R
j,µ − xR

i . Here

xK
i , xR

i are the components of the ith training data input that

correspond to the known and random components of the test

input respectively. To predict the variance from the hybrid

inputs we use:

Σ(x
′

j)[a, a] = α
2

a − Tr((ka(X,X) + σ
2

n,aI)
−1

Qaa,h)+

β
T
a Qaa,hβa − µ(x

′

j)[a]

Qaa,h = Qaa,K ·Qaa,R

Qaa,K = k
K
a (x

′K
j,µ, X

K)T ka,K(x
′K
j,µ, X

K) ∈ R
n×n

Qaa,R[i, k] =
1

√

|RR|

k
K
a (xR

i , x
′R
j,µ)k

R
a (x

R
k , x

′R
j,µ)e

1

2
zTik,RR

−1

R
Σ

x
′R
j,σ

zik,R

(9)

The · operator represents elementwise multiplication. XK

are the dimensions associated with the known inputs across

all training inputs. RR = Σx
′R
j,σ,

(2Λ−1
a,R) + I , and zik,R =

Λ−1
a,Rvi,R +Λ−1

a,wvk,R. Additionally, αa, σn,a are parameters

of the original (unsplit) kernel function ka. Together we use

equation 5, equation 6, equation 8 and equation 9 to predict

the mean and confidence bounds on future images.

V. EXPERIMENTS AND RESULTS

We test our methods by predicting the vorticity of an

incompressible fluid in a unit torus environment. Our data

is computed using the 2D Navier Stokes Equations. We

generate our data with traditional PDE solvers using the

code and approach detailed in [25]. The fluid simulation

generates image sequences whose pixels change smoothly

over both space and time. This environment is well suited to

the RBF kernel. The dynamics of the toroidal environment

wrap around the square image frame. This enables us to

utilize the “wrapping” approach when creating edge patches.

Each image pixel is a float centered at 0. We directly predict

future pixels using our 0-mean GP regression model.

As shown in Figure 3(a), each image zt ∈ R
H×W in the

image sequence represents the vorticity of the fluid at time t.

We fix our fluid viscosity at 1e−3, time step at 1e−4 seconds

and image resolution at H = W = 32. Our experiments use

input patch dimension p = 15 with patch boundary b =
7, resulting in (1, 1) output patches. We use a single GP

Regression model to predict this single output dimension.

We generate training inputs using a stride of s = 2 and test

inputs using a test stride of s = 1. Each experiment predicts

15 frames into the future. The training images and initial

input images are specified for each experiment.

We use two metrics: relative error [25] (RE(z, z̃)) and

mean standard deviations off (StdE(z, z̃µ, z̃σ)) to analyze

the performance of our model. The relative error is given by

RE(z, z̃) =
||z − z̃||2
||z||2

(10)

where z ∈ R
H×W is the ground truth image, z̃ ∈ R

H×W is

the predicted image, and ||.||2 is the 2-norm. This normalizes



the error with the magnitude of the original image.

Mean standard deviations off is given by

StdE(z, z̃µ, z̃σ) =
1

H ·W

H−1
∑

i=0

W−1
∑

j=0

(

|z[i, j]− z̃µ[i, j]|
√

z̃σ[i, j]

)

,

(11)

where z ∈ R
H×W is the ground truth image, z̃µ, z̃σ ∈

R
H×W is the predicted mean and variance images, and |.| is

the absolute value function. This metric provides the average

absolute standard deviations between our predicted mean

image and the ground truth.

Forward Prediction Experiment: We train our model

using the first t0 = 10 frames of a video [z0, . . . z9]. This

model is used to predict the next 15 frames [z10, . . . , z24],
from input images [z7, z8, z9]. The results of this experiment

are shown in Figure 3. Our model’s predicted mean images

track the complex dynamics of the ground truth with very

little training data. Figure 3a indicates that our model predic-

tions are relatively accurate. Despite the error increases over

time shown by the error images and Figure 3b, our method’s

uncertainty also increases as shown by the variance images.

Note that our model’s predicted variance is more trustworthy

at earlier prediction time points (e.g. t ≤ 19), agreeing with

the error image. However, relative spatial variations become

ineffective when predicting far into the future. A graph of

StdE in Figure 3c shows the oscillation in the accuracy of

the model’s confidence in its predictions. StdE decreases

when the model’s predicted variance grows faster than the

true error. Meanwhile a lower predicted variance but larger

true error results in this metric increasing. In Figure 3c we

can see that the growth of the predicted variance eventually

dominates the true error causing the StdE to decrease.

This behavior is preferable as a lower StdE ensures our

predictions provide a conservative estimate and our predicted

bounds capture the ground truth.

Predictive Comparison Experiment: We compare our

method’s performance to the FNO2D-time and FNO 3D neu-

ral network methods in [25]. All methods are trained using

a similarly low number of training images. We also contrast

with a non-parametric K Nearest Neighbors approach. We set

k = 20, use the same input and output pre-processing, and

use the same optimized RBF kernel-based similarity metric

to provide a fair comparison. The results are in Figure 4a.

Both the neural networks and the KNN fail to learn the

complex dynamics from the few available training frames,

and simply output noise or sequences of identical frames.

Figure 4b shows the relative error averaged over prediction

experiments on 100 different Navier Stokes simulations.

Real World Experiments: We evaluate the proposed

method on the image prediction task of pedestrians on a pub-

lic dataset [32]. The dataset contains videos of pedestrians

and vehicles taken from an overhead camera. We create grey-

scale images representing pedestrians’ positions by dilating

and smoothing their pixel coordinates on images. Figure 1

shows the prediction results on the grey-scale images. The

proposed approach can predict pedestrian motion trends. At
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Fig. 4: Predictive Comparison Experiment: This figure compares the
predictions on 2D Navier Stokes simulations between our method,
a non-parametric KNN-based method, and the neural network-
based methods, FNO-2D-time and FNO-3D trained on similarly
low data. (a) Snapshots from predictions on a single test sequence.
(b) Relative error vs the predictive time step averaged across 100
prediction tests.

the end of the prediction, variance is higher in regions of

larger pedestrian motion. Higher-variance regions overlap

with regions of larger error.

In addition, our method is evaluated with a real satellite

video of the hurricane Ian [33]. An example hurricane image

and related results are shown in Figure 5. We crop out

patches of the video and convert them to grey-scale. Our

method can capture interesting dynamics such as translation

and expansion of features. As expected, it fails at predicting

trends that are not presented in the training images, such

as the emergence of new features. The predicted variance is

larger at regions that have high-intensity variation, indicating

that our method becomes more uncertain when the dynamics

are complex.
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Fig. 5: Real-world hurricane satellite image results generated by our method trained with only 10 images. Training and prediction are
performed on gray-scale satellite image patches. A snapshot of the satellite video and selected patches are shown on the left, whereas
prediction results are shown in the middle and right. Our method can predict translation dynamics and relatively complex dynamics such
as a region expanding. Note that it cannot predict trends that are not present in training, for example, emergence of new regions.

VI. CONCLUSION AND FUTURE DISCUSSION

In this paper we provided a novel method using non-

parametric GP-Regression models for confidence aware pre-

diction of future images in an image sequence with very

little training data. We evaluated our method on predictions

of a 2D Navier Stokes simulation environment. These ex-

periments demonstrated our method’s ability to confidently

capture the ground truth image sequence within our predicted

image distribution for complex dynamic environments. We

showcased our approach on real world environments by

predicting pedestrian traffic flows as well as satellite weather

phenomenon. This demonstrates our method’s ability to be

applied to real world applications, especially tasks where

collecting a large representative dataset may be difficult due

to constraints from cost or regulation restrictions.

This work is an initial step into using GPs to predict

images with interpretable confidence metrics. More research

is needed on using GPs for image prediction to improve

their abilities to learn these complex visual dynamics, en-

hance their predictive accuracy and tighten their predicted

confidence bounds. We also seek to explore avenues to

combine the benefits of our approach, such as the ability

to cater towards newly acquired small batches of data and

provide interpretable confidence metrics with the accuracy

and sharpness benefits that come from big data and large

parametric model driven approaches. Finally we hope to

use the predictions from these approaches and their con-

fidence metrics to better guide online decision making for

autonomous robotic systems.
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APPENDIX

A. Predictions: The first 3 Predictions in a sequence of

predictions

The first three predictions of a rollout involve predicting

from a combination of known and predicted random variable

sets of input images. We treat these predictions as special

cases of the more general case presented in Section IV-

C. Each input x
′

j is composed of 3p2 independent random

variables, with p2 random variables contributed from each

input image. We separate the input x
′

j along the dimensions

of the input that are known and random, to handle the

different components separately. x
′

j,Rn and x
′

j,Kn are random

variables that denote the random and known components of

the input respectively. XRn, XKn and xi,Rn, xi,Kn reference

the corresponding known and random dimensions in all the

training inputs and a single training input respectively.

The kernel functions ka and the probability distribution

over the input p(x
′

j) are the only forms of interaction with the

inputs while predicting the output distribution p(f(x
′

j)[a]).
The structure of these functions and our independence

assumptions allow us to cleanly split up our inputs into

known and random components. We use the Radial Basis

Function (equation 3) as our kernel function ka(x, y). In this

function the inputs interact with one another along the same

dimension, allowing us to re-write the kernel as:

ka(x, y) = α2
a exp

(

−
(x− y)TΛ−1

a (x− y)

2
)

)

= α2
a,Kn·

exp

(

−
(xKn − yKn)

TΛ−1
a,Kn(xKn − yKn)

2

)

·

α2
a,Rn exp

(

−
(xRn − yRn)

TΛ−1
a,Rn(xRn − yRn)

2

)

= ka,Kn(xKn, yKn) · ka,Rn(xRn, yRn)
(12)

The subscripts on the inputs correspond to their known

and random dimensions. ka,Rn and ka,Kn are the kernel

functions that act on the known and random dimensions

respectively. Each are parameterized by their own set of ker-

nel parameters: αa,Kn,Λa,Kn and αa,Rn,Λa,Rn respectively.

αa,Rn · αa,Kn = αa. Λa,Kn and Λa,Rn are block diagonal

matrices sampled from Λa, a large diagonal matrix, along

the known and random dimensions. Using our assumption

that all predicted pixels within and across images are inde-

pendent, we separate the probability distribution:

p(x
′

j) = p(x
′

j,Kn) · p(x
′

Rn) (13)

p(x
′

j,Rn) is a multivariate gaussian distribution of the random

components of the input and p(x
′

Kn) denotes the joint

distribution of all the known input pixels.

We construct our inputs according to this split input struc-

ture. The random component of each input is a multivariate

gaussian distribution, x
′

j,Rn ∼ N (x
′

j,µ,Σx
′

j,σ
), specified by

its mean and covariance matrix. To create x
′

j,µ and Σ
x
′

j,σ

for the random test inputs, we use the method described

in Section IV-C. We sample and concatenate patches from

the mean and variance images corresponding to the subset

of input images that are random variables. Pixels in the

analogous patches of the known input images are flattened

and concatenated to form x
′

j,Kn,µ, the observed values of

x
′

j,Kn the random variable that is the known component of

the test input. If all the input images are known, the test

inputs are created in the same manner as the training inputs,

as described in section IV-B

Our model output is the predicted random variable

f(x
′

j)[a]. To solve for our model’s output, we must find the

distribution p(f(x
′

j)[a]) by solving the intractable integral in

equation 4. We approach a solution with the same moment

matching procedure presented in section IV-C, using the split

kernel (equation 12) and probability distribution (equation

13) derived above. The values of the known pixels have

been definitively observed with the assumption of no noise.

The joint probability distribution of all known pixels can be

substituted with a delta function at the observed values: δ(x−
x

′

j,Kn,µ). This allows us to integrate out certain contributions

from the known components during the moment matching

steps. Solving for the mean of f(x
′

j)[a] using these hybrid

inputs we get:

µ(x
′

j) = dTa,hybridβa

da,hybrid[i] = ka,Kn(xi,Kn, x
′

j,Kn,µ)·

α2
a,Rn

√

|Σ
x
′

j,σ
Λ−1
a,Rn + I|

· e
−

1

2
vT
i,Rn

(

Σ
x
′

j,σ

+Λa,Rn

)

−1

vi,Rn

(14)

We use the · operator to denote element wise multiplication.

βa is defined in equation 5 and vi,Rn = x
′

j,Rn,µ−xi. Solving

for the variance of f(x
′

j)[a] from the hybrid inputs we get:

Σ(x
′

j)[a, a] = α2
a − trace((ka(X,X) + σ2

n,aI)
−1Qaa,hybrid)+

βT
a Qaa,hybridβa − µ(x

′

j)[a]

Qaa,hybrid = Qaa,Kn ·Qaa,Rn

Qaa,Kn = ka,Kn(x
′

j,Kn,µ, XKn)
T

ka,Kn(x
′

j,Kn,µ, XKn) ∈ R
n×n

Qaa,Rn[i, k] =
1

√

|RRn|
·

ka,Rn(xi,Rn, x
′

j,µ)ka,Rn(xk,Rn, x
′

j,µ) · e
1

2
zT
ik,RnR

−1

Rn
Σ

x
′

j,σ

zik,Rn

(15)

RRn = Σ
x
′

j,σ,
(2Λ−1

a,Rn) + I and zik,Rn = Λ−1
a,Rnvi,Rn +

Λ−1
a,wvk,Rn. We use these equations to predict every pixel in

the future image. Specific details for each step of the rollout

are discussed in section C A walkthrough derivation of these

equations along with the specifics for each step of the rollout

can also be found in section C.

B. Prediction with all random inputs: Derivations

In this section we discuss the derivations for the equations

5 and 6. These equations predict the mean and variance

of the output distribution of a single pixel in a future

image p(f(x
′

j)[a]). These predictions are done from input



x
′

j which is a multivariate gaussian random variable x
′

j ∼

N (x
′

j,µ,Σx
′

j,σ
) defined in section IV-C.

a) Mean Prediction Derivation: : We begin by walking

through the derivation of the mean µ(x
′

j)[a] of the out-

put distribution p(f(x
′

j)[a]) presented in equation 5. For

the following derivations we simplify the notation from

p(f(x
′

j)[a]|x
′

j , X, f(X)[:, a]) to p(f(x
′

j)[a]|x
′

j) as X and

f(X)[:, a] are known quantities. We begin our moment

matching based derivation by taking the mean of the in-

tractable integral presented in equation 4.

µ(x
′

j)[a] = Ef [

∫

∞

−∞

p(f(x
′

j)[a]|x
′

i)p(x
′

j)dx
′

i]

= E
f,x

′

j
[p(f(x

′

j)[a]|x
′

j)]

= E
x
′

j
[Ef [p(f(x

′

j)[a]|x
′

j)]]

(16)

Ef [p(f(x
′

j)[a]|x
′

j)] is the analytical form of the mean during

Gaussian Process Regression from equation 1. Substituting

this formula into the above equations we get:

µ(x
′

j)[a] = E
x
′

j
[ka(x

′

j , X)[ka(X,X) + σ2
n,aI]

−1f(X)[:, a]]

(17)

We denote βa ∈ R
n to be [ka(X,X) + σ2

nI]
−1f(X)[:, a]].

We denote da ∈ R
n to be E

x
′

j
[ka(x

′

j , X)].

da[i] =

∫

∞

−∞

ka(x
′

j , xi)p(x
′

j)dx
′

j (18)

µ(x
′

j)[a] = dTa βa = βT
a da ∈ R (19)

Expanding ka to the RBF kernel equations and p(x
′

j) to the

multivariate gaussian pdf, we solve for da using [34]. This

gives us the mean prediction equations listed in 5 and relisted

below in equation 20:

µ(x
′

j)[a] = dTa βa

da[i] =
α2
a

√

|Σ
x
′

j,σ
Λ−1
a + I|

e
−

1

2
vT
i (Σ

x
′

j,σ

+Λa)
−1vi

βa = [ka(X,X) + σ2
nI]

−1f(X)[:, a]

(20)

b) Variance Prediction Derivation: : We now walk

through the derivation of the predicted variance Σ(x
′

i)[a, a] ∈
R. Let Σ(x

′

i) ∈ R
(p−b)2×(p−b)2 be the covariance matrix of

the predicted output, where Σ(x
′

i)[a, a] ∈ R is the variance

of output f(x
′

i)[a]. Due to our independence assumptions

between outputted pixel distributions, we assert that the co-

variance between outputs f(x
′

j)[a] and f(x
′

j)[b], representing

different output dimensions, Σ(x
′

i)[a, b] = 0, ∀a ̸= b.

Σ(x
′

j) = E
x
′

j

[

(

f(x
′

j)− µ(x
′

j)
)T (

f(x
′

j)− µ(x
′

j)
)

]

(21)

This is simplified using the law of total variance.

Σ(x
′

j)[a, a] = E
x
′

j

[

varf (f(x
′

j)[a]|x
′

j)
]

+

E
f,x

′

j

[

f(x
′

j)[a]f(x
′

j)[a]
]

− µ(x
′

j)[a]
2

(22)

E
f,x

′

j

[

f(x
′

j)[a]f(x
′

j)[a]
]

=
∫

∞

−∞

Ef

[

f(x
′

j)[a]|x
′

j

]

Ef

[

f(x
′

j)[a]|x
′

j

]

p(x
′

j)dx
′

j

(23)

Ef

[

f(x
′

j)|x
′

j

]

is the mean output of standard Gaussian

Process Regression from equation 1.

Substituting this into the above equations we have:

E
f,x

′

j

[

f(x
′

j)[a]f(x
′

j)[a]
]

=

∫

∞

−∞

βT
a ka(x

′

j , X)T ka(x
′

j , X)βap(x
′

j)dx
′

j

= βT
a

∫

∞

−∞

ka(x
′

j , X)T ka(x
′

j , X)p(x
′

j)dx
′

jβa

(24)

We define Qaa =
∫

∞

−∞
ka(x

′

j , X)T ka(x
′

j , X)p(x
′

j)dx
′

j ∈

R
(p−b)2×(p−b)2 . βa is defined in the above sections. This

gives us:

E
f,x

′

i

[

f(x
′

i)[a]f(x
′

i)[a]
]

= βT
a Qaaβa

Qaa[i, k] =
ka(xi, x

′

j)ka(xk, x
′

j)
√

|R|
e
zT
ikR

−1Σ
x
′

j,σ

zik
(25)

zik = Λ−1
a vi+Λ−1

a vk and R = Σ
x
′

j,σ
[Λ−1

a +Λ−1
a ]+I where

I ∈ R
n×n is the identity matrix.

In the first term of equation 22, E
x
′

j

[

varf (f(x
′

j)[a]|x
′

j)
]

,

varf (f(x
′

j)[a]|x
′

j) is the variance output of Gaussian Process

Regression from equation 2. Simplifying this term we get:

E
x
′

j

[

varf (f(x
′

j)[a]|x
′

j)
]

= α2−

trace
(

(ka(X,X) + σ2
n,aI)

−1Qaa

)

(26)

We substitute the equations from 26, 25 and 5 into equa-

tion 22 to compute the variance for each outputted pixel

corresponding to output dimensions a ∈ [0, (p − b)2 − 1].
This results in the variance prediction formula presented in

equations 6 and 7 and relisted below as equations 27 and 28

Σ(x
′

j)[a, a] = α2
a − trace((ka(X,X)+

σ2
n,aI)

−1Qaa)) + βT
a Qaaβa − µ(x

′

j)[a]
(27)

Qaa[i, k] =
ka(xi, x

′

j)ka(xk, x
′

j)
√

|R|
e

1

2
zT
ikR

−1Σ
x
′

j,σ

zik
(28)

C. Prediction with Hybrid and Fully Known inputs: Deriva-

tions and Additional Details

In this section we discuss the derivations for the equations

14 and 15. These equations predict the mean and variance

of the output distribution of a single pixel in a future image

p(f(x
′

j)[a]). These predictions are done from input x
′

j which

is composed of two random variables x
′

j,Rn and x
′

j,Kn

explained in section C.



a) Mean Prediction Derivation: : In this section we

discuss the derivation of the mean prediction µ(x
′

j)[a] of the

output distribution p(f(x
′

j)[a]) when using a combination of

known and random input images, for the first 3 predictions

of a rollout. We show the derivation for equation 14. Since

this is a special case of prediction from all random inputs

we begin our derivation from the derivation of the mean

prediction equations for all random inputs in section B We

begin our derivation from equations 17, 18 and 19.

In this derivation we use the split kernel and probability

density functions in equations 12 and 13 to deal with the

hybrid, random and known, nature of the inputs. The joint

probability distribution of all known pixels can be substituted

with a delta function at the known values: δ(x − x
′

j,Kn,µ).
This allows us to integrate out certain contributions from the

known components. βa, being a constant, remains unchanged

and we re derive da as da,hybrid.

da,hybrid[i] = E
x
′

j
[ka(x

′

j , X[i])]

= E
x
′

j,Rn
,x

′

j,Kn
[ka,Rn(x

′

j,Rn, XRn[i])ka,Kn(x
′

j,Kn, XKn[i])]

= E
x
′

j,Rn
[ka,Rn(x

′

j,Rn, XRn)]Ex
′

j,Kn
[ka,Kn(x

′

j,Kn, XKn)]

=

∫

∞

−∞

ka,Kn(x
′

j,Kn, XKn)δ(x
′

j,Kn,µ − x
′

j,Kn)dx
′

j,Kn

∫

∞

−∞

ka,Rn(x
′

j,Rn, XRn)p(x
′

j,Rn)dx
′

Rn

(29)

Solving this yields the mean prediction for the third rollout

given in equation 14 relisted below as equation 30:

µ(x
′

j) = dTa,hybridβa

da,hybrid[i] = ka,Kn(xi,Kn, x
′

j,Kn,µ) ·
α2
a,Rn

√

|Σ
x
′

j,σ
Λ−1
a,Rn + I|

·

e
−

1

2
vT
i,Rn

(

Σ
x
′

j,σ

+Λa,Rn

)

−1

vi,Rn

(30)

b) Variance Prediction Derivation: : Here we discuss

the derivation of the variance Σ(x
′

i)[a, a] ∈ R in equation

15 from hybrid and random inputs. We follow the method

outlined in the derivation for all random inputs. We use the

split kernel and probability density functions in equations

12 and 13 to separately deal with the random and known

components of the inputs. With this we arrive at an iden-

tical formulation to the case with all random inputs where

Qaa,hybrid is used in place of Qaa.

Qaa,hybrid = E
x
′

j
[ka(x

′

j , X)T ka(x
′

j , X)]

= E
x
′

j,Rn
[ka,Rn(x

′

j,Rn, XRn)
T ka,Rn(x

′

j,Rn, XRn)]·

E
x
′

j,Kn
[ka,Kn(x

′

j,Kn, XKn)
T ka,Kn(x

′

j,Kn, XKn)]

=

∫

∞

−∞

ka,Kn(x
′

j,Kn, XKn)
T ka,Kn(x

′

j,Kn, XKn)

δ(x
′

j,Kn − x
′

j,Kn,µ)dx
′

j,Kn
∫

∞

−∞

ka,Rn(x
′

j,Rn, XRn)
T ka,Rn(x

′

j,Rn, XRn)p(x
′

j,Rn)dx
′

Rn

(31)

Here · denotes the element wise multiplication operator.

The integrals with the multivariate gaussian pdfs result in

the same solution as elaborated in the random variance

derivation. Solving this yields the variance prediction given

in equation 15 relisted below as equation 32:

Σ(x
′

j)[a, a] = α2
a−

trace((ka(X,X) + σ2
n,aI)

−1Qaa,hybrid)+

βT
a Qaa,hybridβa − µ(x

′

j)[a]

Qaa,hybrid = Qaa,Kn ·Qaa,Rn

Qaa,Kn = ka,Kn(x
′

j,Kn,µ, XKn)
T ka,Kn(x

′

j,Kn,µ, XKn) ∈ R
n×n

Qaa,Rn[i, k] =
1

√

|RRn|
· ka,Rn(xi,Rn, x

′

j,µ)ka,Rn(xk,Rn, x
′

j,µ)·

e
1

2
zT
ik,RnR

−1

Rn
Σ

x
′

j,σ

zik,Rn

(32)

c) Rollout Discussion: : In this section we discuss the

composition of our inputs and additional details of each

step in our predictive rollout. In a predictive rollout we

are predicting T time steps into future starting from 3
known, consecutive input images [zi, zi+1, zi+2]. With each

prediction we predict a single time step into the future before

incorporating our prediction into our next set of inputs. We

continue this process until we predict the desired number of

time steps.

First Step: The first step of the predictive rollout predicts

zi+3 from input images [zi, zi+1, zi+2]. For this first predic-

tion all the input images are known quantities. As a result

for each test input x
′

j j ∈ [0,m − 1], the entire test input

is known, x
′

j = x
′

j,Kn, and x
′

j,Rn does not exist. x
′

j,Kn,µ ∈

R
3p2

is formed in a manner identical to the training inputs.

When plugging these inputs into the hybrid mean prediction

equation 14 and variance prediction equation 15 we remove

the random components of the equations giving us:

da,hybrid[i] = ka,Kn(xi,Kn, x
′

j,Kn,µ) (33)

Qaa,hybrid = Qaa,Kn (34)

Substituting these back into the equations 14 and 15 we

get the formulas to predict a single output dimension of for

a single test input for the first prediction. These equations

equivalent to the basic Gaussian Process Regression equa-

tions for mean and variance prediction. Using these formulas



we predict the distribution for every pixel in zi+3 from the m

test inputs. This gives us the final predicted image zi+3 which

is stored as a mean, variance image tuple (Mi+3, Vi+3).
Second Step: The second step of the predictive rollout

predicts zi+4 from input images [zi+1, zi+2, zi+3]. zi+3 is

a random variable, from the first prediction, represented by

the mean and variance image tuple (Mi+3, Vi+3). zi+1 and

zi+2 are known. When constructing each test input, x
′

j,Kn,µ

is constructed from flattened and concatenated patches of

[zi+1, zi+2]. x
′

j,µ is constructed from flattened patches of

Mi+3 and x
′

j,σ is constructed from flattened patches of Vi+3

to create the random input x
′

j,Rn. These components together

form a single test input x
′

j . We plug these inputs into the

hybrid mean prediction equation 14 and variance prediction

equation 15 to compute the model’s output distribution for a

single output dimension. We repeat this to predict the output

distributions for each pixel in the future image zi+4 which

is stored as a mean and variance image tuple (Mi+3, Vi+3).
Third Step: The third step of the predictive rollout

predicts zi+5 from input images [zi+2, zi+3, zi+4]. zi+3

and zi+4 are random variables, from the first and second

predictions, represented by the mean and variance image

tuples (Mi+3, Vi+3), (Mi+4, Vi+4). zi+2 is known. When

constructing each test input, x
′

j,Kn,µ is constructed from

flattened patches of [zi+2]. x
′

j,µ is constructed from flattened

concatenated patches of Mi+3,Mi+4 and x
′

j,σ is constructed

from flattened patches of Vi+3, Vi+4 to create the random

input x
′

j,Rn. These components together form a single test

input x
′

j . We plug these inputs into the hybrid mean pre-

diction equation 14 and variance prediction equation 15 to

compute the model’s output distribution for a single output

dimension. We repeat this to predict the output distributions

for each pixel in the future image zi+5 which is stored as a

mean and variance image tuple (Mi+5, Vi+5).
Fourth Step and Onwards: The third step of the predictive

rollout predicts zi+6 from input images [zi+3, zi+4, zi+5].
For this and all subsequent predictions, all the input images

are random variables outputted by our model. To predict the

future image we utilize the approach detailed in the section

IV-C on Prediction with all random inputs.

D. Training Input Creation Graphic

The Figure 6 graphically demonstrates the process of

creating a training datapoint from patches of 4 consecutive

video frames.

E. Additional Experiments and Details

1) Predictive Comparison Experiment: Additional De-

tails: In this section we highlight additional details on the

methodology used to generate the results for the ’Predic-

tive Comparison’ Experiment in Section V. To compare

all three methods, we predict frames [z10, . . . , z24] given

frames [z0, . . . , z9]. For our method we train our model

using [z0, . . . , z9] and begin our prediction with input images

[z7, z8, z9], identical to the approach outlined in the ‘Forward

Prediction’ Experiment.

The FNO-2d-time model convolves across the two spatial

dimensions to predict a single future image with a recurrent

structure in time. This model uses a rollout method to predict

longer video sequences. The model predicts one future frame

at a time and incorporates its last prediction into its next

input. We continue this until we have predicted the desired

number of frames. The model is structured to take an input

of three images and predict a single future image. We

train this method in a manner similar to ours. The training

data is created using the first 10 frames [z0, . . . , z9]. These

frames are separated into data points of 4 consecutive images

[zi, . . . , zi+3]; ∀i ∈ [0, 6], where the first three images form

the input and the fourth is the output. The model is trained

over 20 epochs. The trained model is then used to predict

15 frames [z10, . . . , z24] of the same sequence.

The FNO-3d model is a neural network that convolves

in space and time to directly output several frames from a

set of input frames. We train this model using the first 25
frames from two unique sequences, generated using the same

simulation parameters. The first 10 images are used as the

inputs, with the remaining 15 serving as the training outputs.

Once trained over 20 epochs this model is given a set of

10 consecutive frames [z0, . . . , z9] to predict the next 15:

[z10, . . . , z24].
The results of this comparison are shown in fig. 4.

2) Average Result Metrics: We showcase the average

relative error and average mean standard deviations off of

our model’s predictions evaluated on 100 separate video

sequences in Figure 8. For each video sequence our model

is trained using the first 10 frames [z0, . . . , z9] and used

to predict the next 15 frames, [z10, . . . , z24]. We use the

parameters discussed in the ’Forward Prediction’ experiment.

3) Sequential Prediction Experiment: : In this experiment

we examine the benefits of incorporating recent data into

our model. We incrementally train models with the first

5, 10 and 15 images of a video sequences. Each of these

models is used to predict 15 frames into the future, starting

from their last training image. In Figure 7 we can visually

see the improvement in prediction accuracy as we update

our models. In the relative error graph (Figure 7c) we also

show the results of starting predictive rollouts for the lower

data models, trained with 5 and 10 images, later in the

sequence. This provides a fair evaluation to compare the

impact of adding recent data, by mitigating the added error

compounded as a result of the predictive rollouts. The graph

shows a large improvement in accuracy as we incorporate

data into our model.

4) Additional Visual Results: Figures 9 and 10 show

additional results for predictions on different Navier Stokes

simulations using the ”Forward Prediction Experiment” de-

tailed in section V.



Fig. 6: Graphic to visualize the process of generating a training data point from a sequence of 4 consecutive video frames. Each grey
figure represents a labelled video frame. The red squares represent the patches that are sampled to create the input output pair. In the
fourth image the green pixel represents the output patch after cropping the patch with patch border b. The patches from the first 3 images
are flattened and concatenated to form the input. The patch from the fourth image is flattened and used as the output. In this case the
output patch is a single pixel.

(a) Ground Truth Image Frames

(b) Sequence Prediction Mean Images (c) Sequence Prediction Errors

Fig. 7: Sequential Prediction Experiment: Our model, trained using frames [z0, . . . , zt0−1], is used to predict frames [zt0 , . . . , zt0+15]
of a 2D Navier Stokes simulation. Prediction results for t = 5, 10, 15 are shown along the rows of 7b, respectively. Figure 7a displays
ground truth images. Figure 7b shows the predicted mean images. Figure 7c displays a graph of the relative error of the predicted means.
In Figure 7c we show additional error results where we start predictive rollouts with the models trained with 5, 10 images from later time
steps. This provides a fair experiment to show the predictive improvement resulting from incorporating recent data into our model.



(a) Average Relative Errors (b) Average Mean Standard Deviations off

Fig. 8: Averaged Metrics: Figure 8a Shows the average relative error metrics using our method over 100 results on separate video sequences.
Figure 8b Shows the average mean standard deviations off the predicted image is from the ground truth using the mean and variance
generated using our method. This result is also averaged over predictions on 100 different video sequences. To generate the above results
our model was trained on frames [z0, . . . , z9] of each sequence and used to predict the next 15 frames, [z10, . . . , z24]

(a) Forward Prediction: Image Results

(b) Relative Error Graph

(c) Mean Standard Deviations off

Fig. 9: Forward Prediction Experiment: Additional Experiment 1: Our model, trained using frames [z0, . . . , z9], is used to predict frames
[z10, . . . , z24] of a 2D Navier Stokes simulation. Figure 9a shows the ground truth, predicted mean and variance images. Figure 9b and
Figure 9c show graphs of the prediction’s relative error and mean standard deviations off.

(a) Forward Prediction: Image Results

(b) Relative Error Graph

(c) Mean Standard Deviations off

Fig. 10: Forward Prediction Experiment: Additional Experiment 2: Our model, trained using frames [z0, . . . , z9], is used to predict frames
[z10, . . . , z24] of a 2D Navier Stokes simulation. Figure 10a shows the ground truth, predicted mean and variance images. Figure 10b and
Figure 10c show graphs of the prediction’s relative error and mean standard deviations off.
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