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Abstract— Large offline learning-based models have enabled
robots to successfully interact with objects for a wide variety of
tasks. However, these models rely on fairly consistent structured
environments. For more unstructured environments, an online
learning component is necessary to gather and estimate infor-
mation about objects in the environment in order to successfully
interact with them. Unfortunately, online learning methods like
Bayesian non-parametric models struggle with changes in the
environment, which is often the desired outcome of interaction-
based tasks. We propose using an object-centric representation
for interactive online learning. This representation is generated
by transforming the robot’s actions into the object’s coordinate
frame. We demonstrate how switching to this task-relevant
space improves our ability to reason with the training data
collected online, enabling scalable online learning of robot-
object interactions. We showcase our method by successfully
navigating a manipulator arm through an environment with
multiple unknown objects without violating interaction-based
constraints.

I. INTRODUCTION

Automated robot manipulation is rapidly being adopted

throughout industry to improve efficiency and accuracy

across several manufacturing tasks [1], [2]. For applications

that require interaction with objects in the environment

(e.g. assembling automobile components), current success-

ful methods require highly structured and consistent envi-

ronments, such as assembly lines. This structure enables

established planning algorithms and offline learning-based

models to work well. Unfortunately, these offline methods

are usually parametric and have the drawback of being nearly

impossible to update online as new data is observed. In many

unstructured environments that are not perfectly modeled,

this becomes a drawback, as there are many attributes of

the environment that are difficult to learn without actively

interacting with the environment.

Navigating and interacting with objects in less structured

environments like warehouses, construction sites, or even

a common household remains challenging. As an example,

picture a household pantry with many opaque containers.

Multiple parameters (e.g. center of mass, friction coeffi-

cients) are difficult to estimate without active interaction,

and may drastically affect the results of the interaction. In

these cases, it becomes important to have an online learning

component that can help bridge this gap by learning through

interaction.

Most work on online learning focuses on estimating par-

ticular model parameters or uncertainty pertinent to the robot

This work was supported by NDSEG and NSF award #2045803. The
authors are with the University of California, San Diego. {nshinde, jjj025,
sherbert, yip}@ucsd.edu.

Fig. 1. Method Overview: Top: We apply our framework to the task of
reaching a goal by pushing unknown objects on a table without knocking
any over. The robot has no prior knowledge of how to interact with
the objects, and reasons online using composable object-centric Gaussian
process regression. A cartoon example of the robot’s learned model is shown
in the top figure. Bottom: The chart shows an overview of our method and
how our online model would fit into a general planning framework.

model itself rather than interactions with objects. One pop-

ular approach is the use of Bayesian non-parametric models

for online learning [3]. These can readily incorporate priors,

these can be in the form of offline-learned base models,

which enable predictions in low-data scenarios. They provide

interpretable confidence metrics around their predictions in

the form of a posterior distribution. These methods are data-

driven and create Bayesian models on an effectively infinite-

dimensional parameter space where the complexity of the

model is allowed to grow with the size of the data [4]. In

particular, in this work, we use a form of Bayesian modeling

called Gaussian processes (GPs) to model the robot-object

interaction attributes.

GPs are data-driven and rely on a new observation’s

similarity to the support set formed by its training data points.

In interaction-based tasks, this can become challenging as

the state of the objects and the robots, which form the

datapoints, are constantly changing. The notion of finding the

right data representation for a task has been very popular in

offline learning methods [5]. Because the interaction between

a robot and an object during manipulation tasks is largely20
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object-centric in nature, recent literature in offline learning

for manipulation have used object-centric representations to

improve automation [6], [5], [7].

Inspired by these recent developments, we apply object-

centric representations to improve online learning for manip-

ulation tasks. Our framework is shown in Fig. 1. We show

that using an object-centric representation for online learning

can be beneficial for capturing task-relevant features in our

input representation and allow the model to learn better and

be used online for the task at hand.

II. RELATED WORKS

Different sensor modalities using images [8], sound [9],

and touch [10] have been proposed in the literature to

capture object-centric properties like deformation, relative

pose, mass, friction, and texture. But these sensor values are

subject to noise and need to be actively tracked. Numerous

works have shown the benefits of tracking these errors for

downstream robotic tasks [11]–[13]. In [14], the authors use

GPs to estimate object deformation. The model uses prior

data to fit the GP model and cannot generalize to new

objects with different material characteristics. In [15], the

authors actively track deformations using GPs, but it is not

generalizable to other modalities. An application of this work

looks at how environment uncertainty can be reduced by

moving objects occluding the sensors [16]. Still, it is not

object-centric and doesn’t consider how to interact with the

environment. The authors in [17] track the noise in pose

estimates using an ensemble of learning models, but these

cannot capture object properties like friction and mass.

Recent works have looked at object representation, all

specifically using neural networks. Zhu et al. [7] propose an

object-centric learned representation using different camera

views and proprioceptive data and uses the fused features

to accomplish downstream manipulation tasks. Similarly,

SORNet [5] uses a transformer-based architecture to generate

latent embeddings for different objects that generalize to

objects with similar shapes and textures. Still, since it uses

images, it can’t capture physical properties like friction and

mass. Kofinas et al. [18] propose object representation that

is rotation and translation invariant, which makes learning

more efficient.

Most similar to our work with regards to learnable rep-

resentations, the authors in [19] describe an object-centric

embedding specifically for task and motion planning. The

authors train an encoder-decoder structure by optimizing for

task representations and pixel-wise segmentation of images.

These models require large datasets for training, and the

generated latent representations are difficult to interpret.

In unstructured environments, we are data deprived, and

data is costly to acquire, rendering these neural network

representations unrealistic to train and inadapatable.

In summary, there continue to exist many challenging

unstructured environments where interaction dynamics are

unknown and must be estimated through online interaction.

Most prior object representation work have focused on neural

networks that are data-hungry to train and difficult to adapt

online. On the other hand, methods that leverage online

adaptation tend to be specialized towards tracking a singular

or very small set of parameter errors in a given system model,

with fewer considering the involved challenge of learning

the potentially nonlinear, potentially stochastic, parameter

function online. To address this gap, we described the paired

use of (i) non-parametric methods that can learn, online, a

statistical model of the measureable outcomes of interaction,

and (ii) a task-relevant, object-centric representation that

result in more scalable online learning.

III. GAUSSIAN PROCESS REGRESSION

GPs are Bayesian non-parametric models that capture the

distribution over continuous functions using a set of Gaussian

random variables. The distribution over all functions f :
R

m → R is parameterized with a mean function, µp(x),
and a covariance or kernel function, k(x, z), written as

f(x) ∼ GP(µp(x), k(x, z)) (1)

µp(x) = E[f(x)] (2)

k(x, z) = E[(f(x)− µp(x))(f(z)− µp(z))] (3)

where E[·] represents the expectation operation.

Given a set of training data inputs X =
{x0, x1 . . . xn}, xi ∈ R

m and their corresponding

noisy target values Y = {y1, y2, . . . , yn} where

yi = f(xi) + N ,N ∼ N (0, Ã2

n), the posterior mean

and variance for a new point x∗ is given by:

f(x∗)|X,Y, x∗ ∼ N (µ∗, Ã∗) (4)

µ∗ = µp(X) +K(X,x∗)TK−1

y (Y − µp(X)) (5)

Ã∗ = k(x∗, x∗)−K(x∗, X)K−1

y K(X,x∗) (6)

where Ky = K + Ã2

nI,K ∈ R
n×n and K(X,x∗)T =

K(x∗, X) ∈ R
n. The matrix K is constructed by comparing

all pairs of points in the given dataset using the kernel

function i.e., K(i, j) = k(xi, xj). Similarly, the vector

K(X,x∗) is constructed by comparing all values in X with

x∗. The prior mean function, µp(x), can be set to 0 without

loss of generality.

For this paper, we used the radial basis function (RBF)

kernel function for k given by

k(x, z) = ³ exp
(

− 1

2
l−2(x− z)T (x− z)

)

(7)

where scaling factor ³ and lengthscale l are hyperparameters

that can be tuned. Any kernel function that belongs to the

class of covariance functions can be chosen. An example of

an alternate kernel is the forward kinematics kernel [20].

Due to the non-parametric nature of this method, this

model is able to fit diverse data types. With enough data,

the posterior distribution will overcome the model priors.

IV. OBJECT-CENTRIC REPRESENTATIONS FOR ONLINE

LEARNING

We model the attributes of the interaction dynamics be-

tween the robot and the objects in the environment using

GPs by leveraging data collected online, purely through in-

teractions. We need interaction in unstructured environments
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Fig. 2. Single object-centric GP: This figure demonstrates the benefit of using our object-centric GPs vs. a Full State GP baseline. In this experiment, we
are probing a single object. We utilize the learned GP at different stages of interaction to predict the mean and variance of the tipping angle as a function
of the robot state in the world frame and the current position of the object. We show this in two setups, one where the interaction largely causes the object
to tip: ”Tipping object” and one where the interaction largely causes the object to translate ”Pushing object”. Our object-centric representation allows our
model to retain its predictive abilities despite changes in the object state, which cause the baseline GP quickly loses its ability to predict.

because the physical properties of these objects are not well-

defined or may change with time. For example, consider

an environment with 5 opaque bottles on a tabletop. The

robot would like to reach a goal without knocking over

these bottles. The properties of the bottles such as the center

of mass and friction coefficients are challenging to model

from visual sensors alone and are better understood by

interactions. In our experiments, we model the tipping angle

of each object because it encapsulates different physical

parameters of the objects.

Consider a simple illustrative running example shown in

Fig. 2 with one object, O0, and the robot. The robot has an

end effector which is primarily responsible for interactions

with the object. For this paper, we consider fairly homo-

geneous environments that do not have a large variation

in their terrain for the bounds of the environment. The

object state is denoted by O0 : pO0
∈ R

3, qO0
∈ SO(3).

Here pO0
and qO0

denotes the position and orientation of

O0 respectively. The robot end effector state is denoted by

A : pA ∈ R
3, qA ∈ SO(3). Here pA and qA denote the

position and orientation of the robot. All orientations are

represented using quaternions in this paper. These states are

with respect to a world coordinate frame.

The interaction attribute that we model is denoted by y.

This interaction attribute is a function of the object state

in the world frame, the robot state in the world frame

and the robot action in the world frame. For the purposes

of this paper, we consider a quasi-static environment so

that the interactions can be modeled using only the states

without loss of generality. We can readily extend this to

consider additional action parameters in our inputs and by

transforming them with the same or similar object-centric

representation. The true value of y can be computed using

f(O0, A, ¹) where ¹ denotes an unknown number of inde-

pendent parameters that specify the real system. In practice,

we only get noisy observations of the interaction attribute

yt paired with noiseless observations of the object and robot

state: Ot
0
, At, yt at any timepoint.

A naive implementation of the GP uses the object state

and the robot state {Ot
0
, At}, or some subset of each of the

states, as an input and outputs y in attempt to model the true

function f . GP regression is highly reliant on its similarity

metric or kernel function and the observed data points in

order to model behavior at a new unseen datapoint. As seen

in Eq. 5, 6, it uses the similarity metric to compare the new

input to the support set of inputs contained in its training

dataset. In tasks involving interacting with and manipulating

objects, the object states will change as a result of the robot

motion. Changes in the object state will cause all future

inputs to the GP to appear to be further from the support

set of training points that may not contain the object state

in question. As a result, when the object state is altered by

the robot, the GP Regression model’s predictive capabilities

will falter, resulting in prediction values close to the GP’s

prior with a very high variance indicating a low measure of

confidence. We can see this behavior in Fig. 2. As the robot

interacts with the object and alters its state, the predictive

variance on previously seen robot states increases drastically,

and the predictive mean falls back to the GP prior.

Despite the change in the object state in the world frame,

the model should still be able to rely on its support set

of datapoints from past interactions and allow reasoning

about new interactions in this updated object state. This is

because these manipulation/interaction-based tasks are fairly

object-centric in nature, as discussed in section II. The

interaction between the robot and the object is a function of
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the state/action of the robot in the relative frame of the object.

Thus despite the object state changing, the model should

be able to continue to reason about certain robot-object

interactions. We leverage this understanding by learning the

interaction attribute using an object-centric GP. The object-

centric GP uses the state of the robot in the object frame

At
O0

, or some subset of the state, as an input and outputs a

prediction on the interaction attribute y.

To compute At
O0

we start by using O0 to create a trans-

formation matrix TO0

w to convert coordinates in world frame

to coordinates in the frame of the object 00. To get TO0

w we

start with the pose O0. We first compute the rotation matrix

RW
O0

using the quaternion specifying the orientation of pose

O0 : qO0
= [q0, q1, q2, q3].

RW
O0

=

[

1− 2q2
1
− 2q2

2
2q0q1 − 2q3q2 2q0q2 + 2q3q1

2q0q1 + 2q3q2 1− 2q2
0
− 2q2

2
2q1q2 − 2q3q0

2q0q2 − 2q1q3 2q1q2 + 2q3q0 1− 2q2
0
− 2q2

1

]

(8)

This rotation matrix is used with the position of O0 : pO0
to

compute the desired transformation matrix TO0

w at time t.

TW
O0

=

[

RW
O0

pO0

0⃗ 1

]

, 0⃗ = [0, 0, 0] (9)

TO0

w = [TW
O0

]−1 (10)

This transformation matrix is utilized to transform coor-

dinates, such as the state of the robot, into the object frame.

At
O0

: pAt

O0

∈ R
3, qAt

O0

∈ SO(3). RW
At is the rotation matrix

corresponding to the orientation qAt , computed similar to 8.
[

RW
At

O0

pAt

O0

0⃗ 1

]

= TO0

w

[

RW
O0

pAt

0⃗ 1

]

, 0⃗ = [0, 0, 0] (11)

RW
At

O0

is the rotation matrix describing the orientation of

At
O0

in the frame of O0, which can be converted back to

a quaternion qAt

O0

. These transformed representations are

used with the object-centric GP. The transformation can be

augmented or simplified by leveraging geometric symmetries

of the object or other task-specific simplifications.

This object-centric representation consolidates the object

and robot state and switches the input space of the GP to be

more task-relevant, allowing better online modeling. Since

the interaction attribute should only be a function of the

robot state relative to the object state this representation

provides a better space to compare new datapoints to the

support set of datapoints collected online. Thus even if the

object state has moved in the world frame, the model can

leverage previous datapoints and reason about new robot

states. By consolidating the two state spaces, we also reduce

the dimensionality of the input space of the GP. We can see

this behavior in Fig. 2. As the robot interacts with the object

and alters its state we still maintain a high confidence over

previous states that have been sampled.

In the case of multiple objects {0, 1, . . . n − 1} we can

model the pairwise interactions between the robot and each

object using a separate object-centric GP for each object.

This can be done when the robot accounts for a majority of

what is measured in the interaction attribute. Each of these

GPs can be updated intelligently, based on the proximity of

the robot, to improve efficiency. The outputs of these GPs can

be combined coherently, based on the task. This combined

output can be used by a high-level planner to make intelligent

decisions on how to move through the environment and

interact with objects. One example of how multiple object-

centric GPs can be composed is illustrated in section V.

V. EXPERIMENTS AND RESULTS

To showcase our method, we consider a problem with

multiple objects on a tabletop with different attributes such as

mass and center of mass. The interaction dynamics of the ob-

jects are unknown and estimated through online interaction.

We consider a task involving non-prehensile manipulation

where the robot must push the objects to reach a specified

goal region. The robot wants to get to the goal without

tipping the objects beyond a certain angle and knocking

them over. We use GPs to directly learn the interaction by

mapping the object-centric robot state to the tipping angle of

the object, for each object. For these experiments the robot

is constrained to motion in the x, y plane at a fixed height,

thus we only visualize the GP over robot states in the x, y

plane. We initialize our GPs with samples in the empty space

around the robot for all experiments.

In Fig. 2 we demonstrate what our model learns when

interacting with a single object. To do this, we run our robot

in open-loop to probe a single object. We add the samples

gathered during this open loop maneuver to update our GP

model online. Each sample datapoint consists of the robot

end effector state in the object-centric frame and the observed

tip angle of the object. To visualize the GP at a point in

time we plot the mean and standard deviation (std) of the

predicted tipping angle for robot end effector positions in

the world coordinate frame for the current object state. We

compare this to the “Full State GP” baseline. For this GP a

sample datapoint’s input contains the robot and object state

in the world frame, with the corresponding object’s tip angle

as the output.

In Fig. 2, we show the results of probing two different

types of objects: A “tipping object” whose interaction pa-

rameters cause it to mainly tip on contact, and a “pushing

object” whose parameters allow it to be pushed by the

robot. As the object state changes, the full state GP fails

to properly leverage support points from its training dataset

to make valuable predictions about the tipping angle beyond

the immediate position of the robot. This occurs when the

object state changes slightly due to tipping and is much

more exaggerated when the object is pushed. In contrast, our

object-centric representation enables the model to continue

to make meaningful predictions by leveraging its support set

in spite of changes in the object state.

Multiple object open loop experiment: We repeat

the same experiment to show this methodology scaling to

multiple objects, as shown in Fig. 3 The Full State GP

takes the state of the robot and objects in the world frame

as its input and maps it to the maximum tip angle in the

environment. With the object-centric, approach we split the
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Fig. 3. Multiple object-centric GPs: This figure demonstrates the benefit of using a composition of object-centric GPs to model robot-object interactions
in environments with multiple objects. The robot runs an open loop path and interacts with multiple objects. We show frames of the robot as well as the
mean and standard deviation of the tipping angle predicted by the online learned GP models as a function of the robot state in the world frame and the
object states at that time point. Even in complex environments with multiple objects, our object-centric representation allows us to maintain a good model
of the robot object interactions, while the full state GP fails once the objects have been interacted with.

problem up to consider pairwise interactions between the

robot and each object separately. We learn each interaction

online with a separate object-centric GP. These GPs can then

be used to predict pairwise interactions, and their outputs can

be combined for the task at hand.

This scenario focuses on predicting the worst-case tip-

ping angle in the environment in terms of the probabilis-

tic upper bound of our understanding. We first predict

the mean and variance of the tipping angle with each of

our GPs: {(µ0, Ã0), (µ1, Ã1), . . . , (µn−1, Ãn−1)}. The upper

bound u(µ, Ã) = µ + ´Ã is then computed for each

output: {u0, . . . un−1}. The mean and variance prediction

corresponding to the highest upper bound: (µi, Ãi), i =
argmaxi ui, is then used. From Fig. 3 we can see that the

object-centric representations enable useful predictions, in

stark contrast to the full state, even after multiple objects

have begun to move from their original states.

Object-centric model integration with planner: Our

online learned models can be integrated with planners, as

shown in Fig. 4. The environment contains 5 objects with

unknown centers of mass, mass, and completely unknown

interaction dynamics. The robot is attempting to get to a

goal region at the other side of the table without knocking

over the objects. The robot state space is bounded so that

it can not trivially go around the objects. If the robot

attempts to naively push through the objects, some objects

will tip excessively and fall over. To showcase our models,

the planner lacks any prior on how the objects will move

in response to interactions. Additionally, to showcase the

learning capabilities of our GPs, they are initialized with

a naive prior mean function, µp(x) = 0, that indicates

that the robot can move without affecting the objects. The

planner uses the online learned models to ensure that the

robot will not cause the bottles to fall over. The predicted

mean and variance of the tipping angles are used, by the

planner, to determine where the robot should sample to learn

more about the environment, while balancing exploration

and exploitation to get to the goal. Using our algorithm the

robot is able to successfully learn about the environment

through multiple sampling maneuvers. The robot is able to

leverage small gaps created between the objects as they are

manipulated to squeeze between the objects in a manner that

doesn’t tip them over beyond a set threshold, to get to the

goal region. The sampling maneuvers can be seen between

timesteps [0.04³, 0.9³] in Fig. 4, before the robot exploits

the gap between the bottles between timesteps [0.9³, 0.94³]

VI. CONCLUSION

We enable better online learning for robot-object inter-

action tasks in unknown environments through our use of

task-relevant object-centric representations. We showcase the

potential of our method by integrating it with a planner to

navigate through complex obstacle-filled environments.

This work’s restriction to learning online limited our

choice of predictive models for learning. Though GPs pro-

vide an efficient, non-parametric way to learn online they

have limitations. These limitations include cubic computa-

tional complexity with increased samples, difficulty predict-

ing in high dimensional spaces and difficulty in choosing

hyperparameters. The drawbacks posed by these limitations

can often be mitigated. Sparse GPs, local GPs or techniques

such as thresholding the number of used predictive samples

can help reduce predictive computational complexity. Creat-

ing an efficient kernel to leverage geometric similarities in
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Fig. 4. Online learning with object-centric GPs for Planning: The robot is trying to get to a goal on the other side of several objects with unknown
interaction dynamics without knocking any of them over. The robot uses a composition of object-centric GPs to learn about its effect on the objects through
online interaction. The robot’s planner queries the GP models and uses their predictions and confidence bounds to balance exploring the environment and
exploiting what it has learned to get to the goal, the other side of the table. We show the plan at different frames between timesteps [0, α]. We also show
the mean and variance predictions of the worst-case tipping angle generated with our method at the final timestep. This prediction is done over the robot
states in the world frame with respect to the object states at the final timestep.

the scene or focus on more relevant features can help extend

this method to more complex high dimensional spaces.

While certain hyperparameters can be set by maximizing the

likelihood of the observed data, setting these parameters can

also serve as a way to enforce principled priors on extending

the learned model to uncertain, unsampled regions of the

state space.
This work provides an initial step in interactive online

learning to improve interaction-based tasks in unknown envi-

ronments. Such a object-centric representation can be used to

incorporate richer state information that can ultimately lead

to more intelligent interactions with deformable objects, for

tasks such as tissue manipulation for surgical automation.
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