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Abstract— Cloth manipulation is a category of deformable
object manipulation of great interest to the robotics community,
from applications of automated laundry-folding and home
organizing and cleaning to textiles and flexible manufacturing.
Despite the desire for automated cloth manipulation, the thin-
shell dynamics and under-actuation nature of cloth present
significant challenges for robots to effectively interact with
them. Many recent works omit explicit modeling in favor of
learning-based methods that may yield control policies directly.
However, these methods require large training sets that must
be collected and curated. In this regard, we create a framework
for differentiable modeling of cloth dynamics leveraging an
Extended Position-based Dynamics (XPBD) algorithm. Together
with the desired control objective, physics-aware regularization
terms are designed for better results, including trajectory
smoothness and elastic potential energy. In addition, safety
constraints, such as avoiding obstacles, can be specified using
signed distance functions (SDFs). We formulate the cloth
manipulation task with safety constraints as a constrained
optimization problem, which can be effectively solved by
mainstream gradient-based optimizers thanks to the end-to-
end differentiability of our framework. Finally, we assess the
proposed framework for manipulation tasks with various safety
thresholds and demonstrate the feasibility of result trajectories
on a surgical robot. The effects of the regularization terms are
analyzed in an additional ablation study.

I. INTRODUCTION

Cloth manipulation has numerous applications both in

housework and manufacturing for robotics, but it remains

challenging due to the material’s deformable, flexible, and

dynamic nature. The manipulation of cloth can be seen as an

overall trajectory planning process with a focus on changing

the shape configuration while maintaining geometrical or

topological properties. Unlike rigid objects, cloth is difficult

to manipulate due to the under-actuated control with infinite

degrees of freedom for shape deformation. Meanwhile, slight

disturbances on cloth can result in significantly dynamic

behaviors, such as bending, crumpling, and self-occlusion

[1]. Study into cloth manipulation in the robotics community

has covered various aspects, including visual representation

[2], latent-space modeling [3], cloth grasping primitive [4],

sequential multi-step control [5], imitation learning [6] and

reinforcement learning [7].

Trajectories play a pivotal role in addressing multiple

safety-critical tasks. In contrast to rigid objects, cloth dy-

namics exhibit diverse responses influenced by their interac-

tions with the environment, primarily through deformation.

Consequently, incorporating considerations of reliability and
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Fig. 1. Execution of an optimized physics-aware and safe cloth manip-
ulation trajectory in real work on a dVRK system (left) and in a XPBD
simulation with robot kinematics (right). The obstacles are represented
with spheres in the simulator. We show that we can make the cloth
follow trajectories through constrained environments while achieving goal
configurations under dynamic motion.

safety into cloth control poses a significant challenge for

modeling and planning. Even with the integration of a high-

fidelity deformable model for cloth with constraints, the task

of trajectory optimization remains challenging [8], [9], [10].

Therefore, our objective is to build a physics-based ap-

proach for manipulating cloth that can generate control

trajectories while taking into account both the dynamics of

cloth and regulations of trajectories for safety. The ideal

control sequence should ensure the cloth to a target position

through a smooth trajectory without overstretching the cloth

or breaking safety constraints.

A. Contributions

In recent years, simulations of deformable objects have

been increasingly developed in the field of Computer Graph-

ics. By simply defining various geometrical constraints,

position-based dynamics (PBD) has proven to be a promising

method for fast online simulation of deformable objects [11],

[12], [13], [14], [15]. Based on the extended position-based

dynamics (XPBD) algorithm [16], we propose a framework

for cloth manipulation that regularizes physics-aware metrics

and complies with safety constraints. To this end, we present

the following novel contributions :

• We leverage the full differentiability of the developed

XPBD simulation to power a gradient-based trajectory

optimization framework for cloth manipulation.
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• Physics-aware regularization terms are introduced and

integrated into our framework to prevent undesired

behaviors, such as over-stretching and wrinkling.

• Safety constraints such as obstacle avoidance require-

ments are formulated as a constraint function that can be

incorporated into the trajectory optimization framework.

• We evaluate the framework with non-trivial cloth ma-

nipulation tasks. Different metrics are extensively ana-

lyzed and the trajectory is executed by the dVRK robot

to verify its compatibility with real robot kinematics.

II. RELATED WORKS

A. Cloth Dynamics Modeling

Research in cloth dynamics, explored in computer graph-

ics and robotics, encompasses various modeling techniques,

from mass-spring systems to FEM-based continuum mechan-

ics [17], [9]. These models have informed cloth manipulation

strategies for motion controllers [18], [19], but can be

challenged by complex environments and local minima.

Recently, deep learning has driven interest in data-driven

approaches. One group employs neural networks to create

cloth dynamics models, applying latent space control [2],

[3], [20]. Another group uses model-free methods, such as

deep imitation learning [6], [21], [22], dynamic movement

primitives [23], [24], and reinforcement learning [7], [25],

[26], often based on trial-and-error in simulation. However,

these methods may face challenges with implicit models and

costly real robot training with defined reward functions.

B. Safe Manipulation

In recent years, robotics has focused on safety planning

and control, driven by methods like control barrier functions

(CBFs) [27], [28], [29]. However, these methods mainly

apply to rigid robots, addressing safety constraints like

contact forces and joint limits. Research spans legged robot

locomotion [30], [31] and robotic manipulators [32], [33].

Conversely, cloth manipulation, particularly with a safety

focus, has seen limited exploration. Recent work primar-

ily adopts learning-based approaches for safe manipulation

policies [34], [35] and learning to ensure safe interactions

between cloth and its environment [36], [37]. Notably,

Erickson et al. [38] demonstrated using learned models

for safe model predictive control. However, these methods

rely on substantial training data, which could benefit from

incorporating physics simulations.

III. METHODOLOGY

A. Problem Formulation

The state of the cloth is given by x ∈ R
N×3, where

N is the number of particles in the cloth mesh. At each

time step t, x
(t) can be computed from previous state

x
(t−1) by applying control u

(t−1). The control sequence

U is characterized as a list of displacement vectors as-

sociated with specific control points. Given control se-

quence U = [u(0),u(2), . . . ,u(T−1)]¦ and initial state x
init,

we can obtain a sequence of intermediate states X =

[x(1),x(2), . . . ,x(T )]¦. Then, the cloth manipulation task can

be formulated as a trajectory optimization problem, given by:

argmin
U

L(X,U)

s.t. x
(t) = XPBD

(

x
(t−1)

,u
(t−1)

)

x
(0) = x

init

C(X) g 0

(1)

where L is the objective function that includes error and reg-

ularization terms, XPBD represents the extended position-

based dynamics algorithm [16], and C specifies safety con-

straints on all intermediate states of the cloth.

B. XPBD Simulation

PBD [11] is a physics simulation algorithm based on

geometric constraints and positional updates that models

deformable objects as a discrete system with particles. Com-

pared with traditional force-based methods, PBD is more

stable and controllable and converges orders-of-magnitude

faster than force-based methods. These benefits make PBD

widely used in real-time interactive scenarios. XPBD [16]

is an extension to the original PBD algorithm to address

the issue of iteration and time step-dependent stiffness. It

also builds the connection between geometric constraints and

elastic potential energy. Later, we will use this physical in-

terpretation to formulate a regularization term that constrains

undesired cloth deformation.

In this work, we implement a quasi-static XPBD simula-

tion to simulate the state of the cloth under a slow-moving

control sequence. In a quasi-static process, the state of the

cloth evolves from one state to another infinitesimally slowly,

ensuring that it always remains in equilibrium. From this

assumption, velocity terms can be ignored. We use distance

and bending constraints to model the thin-shell deformation

of cloth, as shown in Fig. 2.

• Distance Constraint Cdist(xi,xj) is defined between

each pair of connected particles in each triangle.

• Bending Constraint Cbend(xi,xj) is defined between

each pair of non-neighboring particles in each pair of

adjacent triangles.

The shared constraint function is identically defined as:

Cdist/bend(xi,xj) = ∥xi − xj∥ − d
0
ij (2)

where d
0
ij is the initial distance between xi and xj . More

details of these constraint functions and their gradients can

be found in [11].

Fig. 2. Visualization of distance and bending constraints in particle-mesh
structure. (a) A triangular mesh with particles and edges. (b) Distance
constraints (gray solid line) and bending constraints (purple dashed line).



Fig. 3. An example of constructing independent sets of constraints. In this
example mesh, distance constraints are grouped into four independent sets
labeled with different colors. In each set, there is no particle that is shared
by any constraint. Therefore, the constraint projection in each set can be
done in parallel to speed up the simulation.

We adopt the Gauss-Seidel style solver [39], where the

result from one constraint projection is used in the next

constraint projection, as it exhibits good convergence and

stability. To parallelize the constraint projection steps while

avoiding data race conditions, we separate constraints into

independent sets where there is no particle shared by any

constraint, as shown in Fig. 3. We can then efficiently project

each set of constraints in parallel with broadcast syntax.

C. Objective Function and Safety Constraints

We define the terminal objective of the trajectory optimiza-

tion problem as positional alignments between a subset of

simulation particles x̄ ¢ x
(T ) and some user-defined target

position xtarget. The target error is the L2 distance between

the subset of particles and the target position.

G(x(T ),xtarget) = ∥xtarget − x̄∥ (3)

By only considering the terminal alignment of particles,

the framework may generate irregular trajectories inducing

excessive deformation on intermediate states of the cloth. To

ensure the smoothness of the trajectory U, the difference

between two neighboring control vectors should be limited.

Therefore, we regularize the trajectory irregularity as the

sum of the backward difference of the control sequence in

discrete time steps.

T (U) =
∑T

t=1
∥ui − ui−1∥ (4)

We emphasize that an optimal control sequence is aware of

the deformation physics of the cloth, preventing undesirable

overstretching and bending effects. This can be accomplished

by regularizing the potential energy of the cloth over time. In

our XPBD simulation, the total potential energy is the sum

of the energy of every geometric constraint. Let C(x(t)) =
[C1(x

(t)), C2(x
(t)), . . . , Cm(x(t))]¦ be a set of geometric

constraints, and let K = [k1, k2, . . . , km]T be their associ-

ated stiffness parameters. The potential energy of the cloth

through the control trajectory can be expressed as:

E(X) =
∑T

t=1

1/2 C(x(t))¦diag(K)C(x(t)) (5)

The objective function is then the combination of target

error, trajectory irregularity and potential energy regulariza-

tion:

L(X,U) = G(x(T ),xtarget) + αT (U) + βE(X) (6)

Here, α and β are scaling coefficients on two regularization

terms. Later we will study the effects of the regularization

terms in an ablation study.

Safety constraints are essential in many manipulation

tasks. Our formulation 1 allows us to incorporate various

safety constraints, such as robot joint limit, contact forces,

and obstacle avoidance, into the differentiable simulation

framework. For simplicity, we demonstrate its ability in an

obstacle avoidance scenario. The distance to the obstacle can

be specified by an SDF SDF where a positive value means

outside and a negative value means inside. To simplify the

computation of the SDF, we approximate different obstacle

shapes with numerous spheres. For a sphere s centered at

point c with radius r, the SDF can be written as:

SDFs(x) = ∥x− c∥ − r (7)

The SDF of the entire obstacle is then given by:

SDF(x) = min{SDFs(x) for s ∈ S} (8)

where S is the set of spheres making up the obstacle.

This approximation is highly popular in robotic planning

applications and in solving for feasible inverse-kinematic

solutions in constrained environments. Furthermore, the fact

that it is analytically and efficiently evaluated is beneficial to

the optimization procedure. We refer readers to Diffco [40]

for an alterative still-differentiable SDF formulation that goes

beyond spherical approximation for generality and is still

computationally efficient for trajectory optimization.

We can record the signed distance d
(t)
i = SDF(x

(t)
i )

of each particle at each time step. Then, a constant δ >

0 is subtracted from all signed distances, which gives us

flexible control of how far we want to avoid the obstacle. To

collect all values violating the safety constraint, we modify

the widely used Rectified Linear Unit (ReLU) function.

Considering function −ReLU(−d + δ), the value will be

d− δ when d is smaller than δ, 0 when d is no less than δ.

We can then express our obstacle avoidance safety constraint

Fig. 4. Illustration of the collision constraint. On the left, the cloth
penetrates the gray obstacle. The red dashed circle indicates the range of
collision avoidance shifted by the constant δ. All the particles result in
negative constraint values are marked by the red dots. On the right, we
plot the function −ReLU(−d + δ). It is clear that the function value is
negative for all d < δ, which is up to our control.



Algorithm 1: Differentiable XPBD Cloth Manipu-

lation Framework

Input : Initial state x(0),initial control sequence U, distance
stiffness kdis, bending stiffness kbend

Output: Optimized control sequence U∗

1 for t in 1...T do

2 x(t) ← x(t−1) + 1
2
g∆t2

3 x(t) ← applyControl
(

x(t),u(t−1)
)

// Constraints solving loop

4 while iter < iteration do

// Solve distance and bending (Eq. 2)

5 ∆xdis ← solveDistance
(

Cdist

(

x(t+1)
)

,kdis

)

6 ∆xbend ← solveBending
(

Cbend

(

x(t+1)
)

,kbend

)

// Update cloth state

7 x(t) ← x(t) +∆xdis +∆xbend

// Compute time step gradient

8 ∇XPBD ← ∂x(t)/∂u(t−1)

9 X ← x(0), · · · ,x(T )

// Obtain the loss function

10 L ← L (X,U)
// Obtain the safety constraint function

11 C ← C (X)
// Compute optimized control

12 U∗ ← optimizer

(

L, dL
dU

, C
)

as the sum of all the particles along the control trajectory.

C(X) =
∑T

t=1

∑N

i=1
−ReLU(−d

(t)
i + δ) (9)

This constraint function would be non-negative only when

signed distances of all particles are no less than threshold δ.

Fig 4 visualizes an example collision and plots the behavior

of the modified ReLU function we use in the constraint.

D. Differentiation Framework

To find the control sequence through optimization, it is

necessary to compute the gradient of the objective func-

tion with respect to U. Given objective function function

L(X,U), by chain rule we have:

dL

dU
=

∂L

∂U
+

∂L

∂X

dX

dU
(10)

We can perform gradient-based optimization using Newton

or quasi-Newton methods [41] [42]. It should be noticed

that the challenge is to evaluate the total derivative dX
dU .

According to the XPBD system in Eq. 1, each Jacobian

element in the total derivative can be expressed by:

[

dX

dU

](p,q)

=
dx(p)

du(q)
(11)

where

dx(p)

du(q)
=























∂x(p)

∂x(p−1)

dx(p−1)

du(q)
, q < p− 1

∇uXPBD |(x(p−1),u(p−1)), q = p− 1

0, otherwise

(12)

Therefore, it is clear that all we need to do is to compute

∇uXPBD iteratively at each time step.

We detailed our differentiable XPBD simulation in Al-

gorithm 1. It is implemented as a PyTorch differentiation

layer by subclassing the torch.autograd.Function.

This enables us to back-propagate from any state x
(p) and

compute its derivative with respect to past control input u(q).

The derivatives regarding objective function ∂L
∂U and ∂L

∂X are

also calculated using auto-differentiation operations, so the

entire computation process is end-to-end differentiable.

IV. EXPERIMENTS & RESULTS

A. Experiment Setup

We evaluate the performance of our proposed differen-

tiable cloth manipulation framework on a task with a U-

shaped obstacle. The cloth is discretized into a 10 × 10
square mesh. Distance and bending constraints are defined

between these 100 particles as discussed in section III-B.

Two control points are defined on the top two corners of

the cloth. The control sequence is of length 10, where each

control input is a 2×3 tensor specifying displacements on the

two control points respectively. At each time step, the XPBD

algorithm solves for 100 iterations to produce the next state.

The objective function we use is L = G + αT + βE , where

α = 1 and β = 1e− 4. The safety constraint is to avoid the

U-shaped obstacle made up of 18 uniform spheres. We can

analytically express the SDF of the obstacle, which is then

used to evaluate constraint function C. We run experiments

with a series of safety thresholds δ and analyze how their

values influence the optimized trajectories.

To verify the feasibility of the proposed framework in a

real environment, we obtain the optimized trajectory from

the experiment described above and recreate a real scene

following the simulation setup. We utilize the da Vinci

Research Kits (dVRK) [43] to manipulate a piece of cloth

while avoiding a real 3D-printed U-shaped obstacle. The real

obstacle has the same shape as the previous experiment with

a dimension of 3×12×18 cm, whereas the cloth has a square

shape with a size of 6× 6 cm. Finally, we solve for inverse

kinematics to generate dense way-points along the discrete

trajectory we obtain, then let the robotic grippers follow the

way-points. While this workflow assumes a pre-known 3D

environment for optimization, it is possible to obtain this

information with an RGB-D or stereo-camera setup.

B. Safety Constraints Experiment

In this experiment, we test our framework with the ob-

stacle avoidance safety constraint. The cloth is initialized on

one side of the U-shaped obstacle and the goal is to align the

bottom edge of the cloth to a horizontal line on the other side

of the obstacle. We compare how various safety thresholds

result in different control trajectories.

In Fig 5, we show how the cloth is moved to the target

position under manipulation trajectories with different safety

thresholds. When δ = 0.05, the resulting trajectory moves

the cloth diagonally through the opening of the U-shaped

obstacle. When δ = 0.20, the resulting trajectory rotates the

cloth more to pass through the opening. From the top view,

we can see that the paths of the two control points almost

align with each other at the opening. This manipulation

behavior helps the cloth to maintain a positive distance from



Fig. 5. Visualizations of optimized manipulation trajectories with different safety thresholds δ. Each row illustrates the trajectory with a safety threshold
from different viewing angles. Red points denote the target position and the involved particles on the cloth. The purple and green lines are the paths of the
two control points under the manipulation trajectory. The leftmost column only plots the initial state of the cloth. The right two columns show the initial
state, the terminal state, and one intermediate state of the cloth to visualize the whole dynamics under the manipulation trajectory.

TABLE I. RESULTING METRICS ON DIFFERENT SAFETY THRESHOLDS

Metrics δ = 0.05 δ = 0.20 δ = 0.40

G 0.23 0.27 0.41
T 0.57 1.33 1.30
E 1.65 1.56 1.34
C −4× 10−7 0.00 −6× 10−7

min {SDF} 0.05 0.20 0.40

the obstacle as specified by the larger safety threshold. If δ is

further increased to 0.40, we can observe that the trajectory

no longer passes through the U-shaped opening. Instead, our

framework produces a conservative manipulation trajectory

where the cloth is moved to the target position by going

around the obstacle.

In Table I, for each safety threshold, we list values of

the objective function, constraint function, and the minimum

distance from the cloth to the obstacle. Values of the two

regularization terms are scaled as mentioned in the setup.

For all three safety thresholds, our framework produces

trajectories satisfying the safety constraint C g 0 within

marginal tolerance. The minimum distances also agree with

the safety threshold as expected. Examining the target errors,

we observe that they fall within reasonable ranges for all

trajectories. The trajectory with δ = 0.05 manages to con-

verge to the lowest target error primarily because its safety

constraint is the least restrictive. For same reason, it also

has the smallest trajectory irregularity, while the other two

trajectories must undergo more drastic directional changes

to avoid obstacles. It is worth noting that the trajectory

with larger safety thresholds also has less total potential

energy. This suggests that trajectories optimized with higher

safety thresholds potentially prioritize maintaining the cloth’s

stability and minimizing stretching in order to constrain its

motion within the broader safety boundaries.

Fig. 6. Visualizations of the trajectory in inverse kinematics simulation
and on real robot. Two robot arms and corresponding control paths are
colored by purple and green respectively. The obstacle in real experiment
is highlighted in blue.

In Fig 6, we fed the trajectory into an inverse kinematics

solver and let the dVRK robot follow the trajectory. It

demonstrates that the trajectory is feasible for the real robot

and satisfies the obstacle avoidance safety constraint. Due

to the calibration accuracy, the real experiment does not

recreate the control trajectory perfectly. We can mitigate

the calibration error by adjusting the safety threshold to

constrain the movement of the cloth. Furthermore, additional

techniques (outside the scope of this paper) are available for

addressing this calibration gap [13].

C. Ablation Study on Objective function

We conduct an ablation study on different forms of the

proposed objective function. Specifically, we focus on differ-

ent regularization terms’ impact on the quality of optimized

trajectories. To facilitate this investigation, we simplify the

trajectory optimization problem by isolating the influence



Fig. 7. Visualizations of optimized cloth manipulation trajectories with different regularization strategies. The first row shows the results of the swing
task. The second row shows the results of the drop task. For both tasks, from left to right we optimize for target loss G only, target loss G with trajectory
regularization T , target loss G with energy regularization E and target loss G with both regularization terms T and E . Both T and E terms are crucial for
finding an efficient and physics-aware control trajectory.

of safety constraints, converting it into an unconstrained

optimization problem. We introduce two supplemental cloth

manipulation tasks for this study. They are (1) Swing:

swinging the cloth and aligning the bottom edge of the cloth

to a horizontal line; (2) Drop: dropping the cloth onto a flat

surface and aligning its four corners to a flat square. We

compare four variants of our objective, each minimizes:

1) G only: target error only.

2) G + T : target error and trajectory irregularity.

3) G + E : target error and potential energy.

4) G + T + E : target error and both regularization terms.

Notice that the regularization terms T and E are scaled by

α and β respectively to control their influences. In the first

task, we have α = 1 and β = 1e− 5. In the second task, we

have α = 1e− 1 and β = 1e− 5.

In Fig. 7, we show exemplar optimized cloth manipulation

trajectories on two obstacle-free manipulation tasks. Even

though all variants of our method successfully reach the

target, different combinations of regularization terms yield

significantly different trajectories and cloth dynamics. For G
only, the cloth is moved to the target position but experiences

a non-smooth trajectory and results in undesired wrinkles.

Optimizing G + T together, the trajectory converges to a

smooth straight line. However, this ignores the dynamics

of the cloth and causes extreme deformation. Conversely,

when optimizing for G + E , the cloth exhibits less defor-

mation overall, but the trajectory can become inefficient

and irregular. The most favorable outcomes are generated

when all three terms G + T + E are optimized simultane-

ously. Fig. 8 supports the same observation with quantitative

data. As aforementioned, the target error (yellow) is always

minimized to a sufficiently small value. However, by only

optimizing G + T , the potential energy (purple) could still

be large, which implies excessive deformation. Meanwhile,

if we only optimize G + E , trajectory irregularity (red) is

high, resulting in inefficient trajectories. It becomes evident

Fig. 8. Comparison of target error, trajectory irregularity and potential
energy across four variants of our method on the drop task. From left to
right, we optimize for G only, G+T , G+E and G+T +E . All cost values
are padded by 0.1 so some small values are visible in the same chart.

that it is necessary to optimize all three terms G+ T + E si-

multaneously to achieve an accurate, efficient, and physically

plausible manipulation trajectory.

V. DISCUSSION & CONCLUSIONS

In this study, we introduce a cloth manipulation frame-

work that places a strong emphasis on its awareness of

cloth deformation physics and safety constraint satisfaction.

Our framework leverages a differentiable XPBD simulation,

which enables us to efficiently minimize the cost function

with quasi-Newton optimization method to discover the

optimal control sequence. We confirm that the proposed

framework is able to yield safe, physics-aware manipulation

trajectories through a series of safety constraints experi-

ments and ablation studies. It holds the potential to advance

robot autonomy in deformable object manipulation scenarios

where safety and deformation mechanics are major concerns,

such as autonomous surgery and elderly care.
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