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Principal Component Analysis Extend
to Other Structured Settings?
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Abstract—We study a principal component analysis problem
under the spiked Wishart model in which the structure in
the signal is captured by a class of union-of-subspace models.
This general class includes vanilla sparse PCA as well as its
variants with graph sparsity. With the goal of studying these
problems under a unified statistical and computational lens, we
establish fundamental limits that depend on the geometry of
the problem instance, and show that a natural projected power
method exhibits local convergence to the statistically near-optimal
neighborhood of the solution. We complement these results with
end-to-end analyses of two important special cases given by
path and tree sparsity in a general basis, showing initialization
methods and matching evidence of computational hardness.
Overall, our results indicate that several of the phenomena
observed for vanilla sparse PCA extend in a natural fashion
to its structured counterparts.

Index Terms—Principal component analysis, structured spar-
sity, nonconvex iterative optimization, computational hardness.

1. INTRODUCTION

RINCIPAL component analysis (PCA) is a preponderant
Ptool for dimensionality reduction and feature extraction.
PCA and its generalizations have been used for numerous
applications including wavelet decomposition [5], [41], rep-
resentative stock selection from business sectors [3], human
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face recognition [28], [45], eigen-gene selection and shaving
[11, [25], [29], handwriting classification [30], clustering of
functional connectivity [26], and single-cell RNA sequencing
analysis [53], to name but a few.

Given a set of n samples x1,...,x, € R%, PCA is tradi-
tionally phrased as the problem of recovering the direction of
maximal variance. However, in high dimensions when d > n,
it is well-known that the vanilla estimator given by the maximal
eigenvector of the sample covariance matrix of the data is incon-
sistent (see, e.g., Johnstone and Lu [32] and references therein).
This inconsistency motivates imposing sparsity assumptions
on the “ground-truth” principal component and studying the
resulting problem under a generative model for the data. Indeed,
sparsity has emerged as a key structural assumption inspired
by the diverse applications mentioned earlier, and a wealth of
literature now exists on the sparse PCA problem. In practice,
additional structure exists on the ground truth principle compo-
nent. For instance, in applications involving wavelet decompo-
sitions, the signal is well-modeled by structured sparsity defined
on a binary tree [5]. Similarly, path sparsity on the principal
component is a reasonable assumption when dealing with data
representing stocks across distinct business sectors [3].

In this paper, we study a class of union-of-linearly-structured
models (see Section II), which includes vanilla sparse PCA and
path/tree sparse PCA as special cases. Our goal is to under-
stand, through a statistical and computational lens, if and to
what extent the theoretical results and insights developed for
vanilla sparsity extend to these structured settings. In particular,
given that the vanilla sparse PCA has a delicate statistical-
computational gap, a conceptual question that motivates our
research is

Does such a statistical-computational gap persist when
additional structure is imposed in PCA?

Generally speaking, statistical-computational gaps in related
problems are delicate', and so understanding the influence of
additional structure in such problems is an important goal. In
making progress toward this goal, we carry out a detailed sta-
tistical and computational study of a broad family of structured
PCA problems.

'For one such example, note that gaps disappear in the sparse stochastic
block model in the presence of a “monotone adversary” [42].
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A. Contributions and Organization

In Section II, we formally introduce a family of union of
linearly structured PCA problems under the spiked Wishart
model. Section III presents our main results: We begin by
studying the fundamental limits of estimation under this model,
providing both upper and lower bounds on the ¢y error of
estimation that depend on the geometry of the problem. Our
upper bound is achieved by an exhaustive search algorithm, and
we analyze a natural projected power method to approximately
compute its solution. We show that this iterative method enjoys
local geometric convergence to within a neighborhood of the
ground truth solution that attains the optimal statistical rate as
a function of the sample size and geometry of the problem
instance. We also present a general initialization algorithm for
this method. In Section IV, we study two prototypical examples
of structured PCA—those given by path and tree sparsity—in
an end-to-end fashion, additionally providing explicit initializa-
tion methods and evidence of computational hardness (see in
particular Propositions 1 and 2). Detailed proofs of our results
can be found in the supplementary material.

Through our statistical, algorithmic, and reduction-based re-
sults, we find that several features of vanilla sparse PCA—on
both the statistical and computational fronts—persist and ex-
tend in natural ways to its structured counterparts. In particular,
while the imposition of structure can help mildly, it does not
seem to make the problem significantly easier to solve in a
computationally efficient manner.

B. Related Work

Structured PCA has been studied extensively over the past
two decades, and we cannot hope to cover this vast literature
here. We discuss the papers most relevant to our results.

a) Optimization Algorithms for Sparse PCA: The most
commonly used and studied structural assumption in PCA is
(vanilla) sparsity, in which the true principal component is
assumed to be k-sparse. Letting ¥ := 2 3" @@ denote the
sample covariance matrix, such a sparse principal component
can be found by solving the following optimization problem:

max v' Sv st |[v]o=1,|v]o <k, (1)
veRd
where || - || denotes the £y norm or number of nonzeros.

This program was first proposed by [12]. In contrast to
classical PCA (which is akin to program (1) but without the
{y norm constraint), solving the sparse PCA problem (1) is
NP-hard. Many computationally efficient reformulations of
sparse PCA have been proposed over the years. [33] give the
first computational tractable method—termed SCoTLASS—
which reformulates the program (1) using an ¢;-norm
regularization akin to the LASSO [44]. [62] and [63] propose
an ElasticNet version of SPCA, and [54] study connections
between SCoTLASS and ElasticNet SPCA. [16], [24] propose
alternative formulations and show the convergence of their
alternating gradient methods to stationary points. Another
approach focuses on convex relaxations of sparse PCA.
For example, [17], [23], [35], [48], [61] consider a convex
relaxation by lifting the variable space v € R? to its product
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space, and relax to a semidefinite programming problem.
More recently, [20], [21], [36] provide a more computationally
scalable type of convex relaxation for problem (1) using mixed-
integer programming with theoretical worst-case guarantees.
Other than methods based on convex relaxation, there is also
a substantial literature on specialized iterative algorithms for
finding good feasible solutions. Examples include the deflation
method [40], generalized power method [34], truncated power
method [59], and iterative thresholding [39].

b) Statistical and Computational Limits of Sparse PCA:
Several papers have established (by now classical) minimax
lower bounds for sparse PCA in a purely statistical sense, i.e.,
without computational considerations. Examples for vector re-
covery in ¢5 norm include [8] and [14]; the latter is phrased in
terms of estimating the principal subspace and considers a more
general model than the rank-1 model. [49] present nonasymp-
totic lower and upper bounds for the minimax risk considering
both row-sparse and column-sparse principal subspaces. [2]
study the rank-1 spiked covariance model considered here, but
establish minimax lower bounds for support recovery.

Sparse PCA has also been a key cog in the study of compu-
tational lower bounds in high dimensional statistics problems,
and has received a lot of attention from the perspective of
reductions, sum-of-squares and low-degree lower bounds, as
well as approaches rooted in statistical physics; let us cover
a non-exhaustive list of examples here. Assuming the planted
clique conjecture, [6] show that a sub-Gaussian variant of
sparse PCA is hard, in that the optimal rate of estimation is
not achievable in polynomial time. Ma and Wigderson [38]
show degree-4 sum of squares lower bounds for k-sparse PCA
(see Section IV-B). [60] study the fundamental statistical-
computational barriers of inference and estimation problems as
phase transitions and develop new algorithms using techniques
from statistical physics. [52] show computational lower bounds
for estimation for a distributionally-robust variant of sparse
PCA. [27] show computational lower bounds for sparse PCA
in the spiked covariance model, and [11] provide an alternative
reduction based on random rotations to strengthen these
lower bounds. Ding et al. [22] explore subexponential-time
algorithms for sparse PCA, and give rigorous evidence that their
proposed algorithm is optimal by analyzing the low-degree
likelihood ratio. [9] give a reduction from planted clique that
yields the first complete characterization of the computational
barrier in the spiked covariance model, providing tight lower
bounds at all sparsities k.

c) Structured PCA and Related Problems: While vanilla
sparsity (and the resulting sparse PCA problem) is by far the
most well-studied, there also exist other examples of structure
one could impose. Examples from the literature on sparse linear
regression include graph sparsity [31], group sparsity structure
[58], block and tree sparsity [5], and subspace constraints [7].
For PCA in particular, several structural constraints have been
studied, such as non-negative orthant cone structure [43], and
general cone structure [19], [56]. Asteris et al. [3] study path-
sparse structure in the PCA problem. Some of these papers
study fundamental limits of estimation for their specific forms
of structure, and Asteris et al. [3] and [56] propose specialized
projected power methods. [13] present a unified framework for
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the statistical analysis of structured principal subspace estima-
tion and lower and upper bounds on the minimax risk. In recent
work, [37] study structured PCA under the assumption that
the true principal component is generated from an L-Lipschitz
continuous generative model, showing that the projected power
method enjoys local geometric convergence. While their result
is related in spirit to a subset of our results on the projected
power method, our structural assumptions are different (see
Definition 1 and discussions following Theorem 2) for a de-
tailed comparison. There are also papers that study computa-
tional hardness in structured settings, both from the perspective
of low-degree polynomials [4] and reductions from the so-
called “secret-leakage” variant of the planted clique conjecture
[10]. Our work adds to this literature for a particular family of
structured PCA problems.

II. PROBLEM SETTING, BACKGROUND, AND EXAMPLES

Throughout this paper, we operate under the spiked Wishart
model. Assume that our data set consists of n i.i.d. sam-
ples {x;}”_, drawn from a d-dimensional Gaussian distribu-
tion with zero-mean and covariance X := \v, v, + I3 4. For
brevity, we use D(\;v.) := N (04, \v,v, + I4x4) to denote
the distribution of each «;. Here A > 0 represents the strength of
the signal, and v, is a d-dimensional, unit-norm ground truth
vector that we wish to estimate. In addition to the unit norm
condition, we also assume the inclusion v* € M, where M is
a known union of subspaces satisfying a certain union of linear
structures assumption defined below.

Definition 1: Union of linear structures condition. Let
B:={1,...,64} be an orthonormal basis of R? and L :=
{L1,..., Ly} be a collection of M distinct linear subspaces
such that for each m € [M]:={1,..., M}, we have L,, =
span(B,,,) for some 5, C B. We say set M obeys the union
of linear structures condition if M := Uf\,f:l L,,,1.e., M is the
union of all linear subspaces in L.

Remark 1: It is worth noting that the union of linear struc-
tures condition in Definition 1 resembles a structured sparsity
condition. Indeed, using the rotation invariance of the Gaussian
distribution, the problem of estimating v, from observations
{x,;}", is statistically equivalent to estimating the structured-
sparse vector ® ' v, from {® " x,;}7_,, where ® € R?*? is an
orthonormal matrix with columns ¢+, . . ., ¢4. However, the two
problems may not be computationally equivalent when ® is
unknown. Here, we provide an example (see Example 1 in
Appendix A) to illustrate that if an efficient projection oracle
onto the union of subspaces M is accessible, then it is more
computationally efficient to estimate the vector v, directly,
rather than to estimate ® ' v, from {® ' x;}7_, by first com-
puting ®. Accordingly, the rest of the paper assumes that ® is
unknown, and that we have access to a projection oracle onto
the union of subspaces M.

A. Examples of Union of Linearly Structure in Section Il

Clearly, vanilla sparse PCA is covered by our formulation.
We instantiate the union of linear structures assumption with
two other canonical examples.
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1) Example 1: Tree-Sparse PCA: Motivated by applications
in signal and image processing and computer graphics [5],
a particular model for the underlying signal is tree sparsity
in an underlying basis. In particular, consider the following
simplified model for tree-sparsity with one-dimensional signals
and binary wavelet trees as a typical such instance. We require
some notation to introduce it formally.

Given a natural number h, a complete binary tree or CBT of
size d = 2" — 1 is given by the following construction. Create
hlevels {1,...,h}, with 2/=! nodes in ¢-th level. Index each
node from 1 to d, top to bottom and left to right in the following
way. The root node rcgt of CBT has index 1, and for any node
with index i € {2,...,2"~1 — 1}, its parent is the node with
index | £ | and its children are the nodes with indices 2i, 2i + 1.
Define the collection of vertex sets

T":={T:|T|=k, root node 1 € T,
the subgraph of CBT induced by T is connected}.

Abusing notation slightly, consider a bijection between
the coordinates of any d-dimensional vector and the vertices
of a CBT. The vector v, is said to be k-tree-sparse if
supp(v.) € TF.

Therefore, tree-sparse PCA is a specific example of union of
linear structures in our formulation. To see this, let e; € S~ 1
denote the i-th standard basis vector in R?, and set

B:={e1,...,eq}, and L := {L =span({e;}ier) | T € T"}

in Definition 1.

2) Example 2: Path-Sparse PCA: Another commonly used
variant of union-of-linearly structured PCA is path-sparse PCA
[3], in which the support set of v, forms a path on an underlying
directed acyclic graph G = (V, E). For a vertex v in this graph,
let doue(v) denote the out-neighborhood of v.

Definition 2: (d, k)-Layered Graph. A directed acyclic graph
G = (V,FE) is a (d, k)-layered graph if

o V={vs, v} U V such that [V|=d — 2 and v,, v, ¢ V.

e V=U",V; where V;NV; =0 for all i#j € [k] and

Vi| = =|Vi| = &2

* dou(v)=Viyq forallveV;andi=1,...,k—1, and

* out(vs) = V1 and oy (v) = {v,} for all v € V.

Let G = (V, E) be a (d, k)-layered graph and we define the
collection of vertex sets

Pk::{PgV\US,thPand|PﬂVi|:1Vi€[k]}.

Once again, we consider the natural bijection between the coor-
dinates of any d-dimensional vector and the vertices of a (d, k)-
layered graph, and a vector v, is said to be k-path-sparse if
supp(v.) € PF. It is straightforward to see that the set of all
k-path-sparse vectors satisfies the union of linear structures
condition in Definition 1 with

B:= {61, RN ed}, and L := {L = span({ei}iep) | Pe Pk}

B. Notation

We use I, .4 to denote the d-by-d identity matrix, and
Ai(M) to denote the i-th largest eigenvalue of a symmetric
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matrix M. We use X :=[z; | -+ | z,]" € R"*? to denote
the sample matrix where the i-th row of X is the i-th sample
x;. The sample covariance matrix is given by =1 =X X,
and we let

W =3_-X 2

denote the d x d matrix of noise. For any linear subspace
L CR? and its projection matrix P, € R¥*?, we use ¥, :=
P P, to denote the sample covariance matrix restricted
to the subspace L. We also use the analogous notation
X = P—LFEPL and Wy, := PIWPL. We index the subspaces
Ly,...,Ly in some consistent lexicographic order. We re-
serve the notation M := Un]\le L,, to denote the set containing
vy, and the notation L, € {Ly,..., Ly} to denote the spe-
cific linear subspace that contains v, with ties broken lexi-
cographically. We use [M]:={1,..., M} to denote the index
set indexed from 1 to M. We let S¥~ 1 := {v e R?: ||v|s = 1}
denote the unit f2-sphere in d-dimensional Euclidean space.
For any subspace L let ¥y :=argmax,cga1v TSiv=
argmax,cga-1n, U TSv be the leading eigenvector of the re-
stricted sample covariance s . For an arbitrary symmetric ma-
trix M € R%*4 and set S C R?, define the scalar

p(M,S) = |v" M. 3)

max
llvll2=1,0€S
For two sequences of non-negative reals { f,, },,>1 and {gy, }n>1,
we use f, 2= gn to indicate that there is a universal positive
constant C' such that f,, <Cg, for all n>1. We also use
standard order notation f,, = O(gy) to indicate that f, < g,
and f, = O(g,) to indicate that f,, < g, In°n for some uni-

~

versal constant ¢. We say that f,, = Q(g,,) (resp. fn = Q(gn))
if g, = Q(fn) (resp. gn = Q(fn)). We use f, =O(gn) (resp.
fn = @(gn)) if fn = O(gn) and fn = Q(gn) (resp. fn = O(Qn)
and f‘n = Q(gn)) We say that fn = O(QH) (resp. f’n = 6(9”))
when lim,, o0 fn/gn = 0 (resp. lim,, oo fr/(gn In°n) = 0 for
some universal constant ¢). We also use f,, = w(g,,) to indicate
that lim,, o0 f1/gn = co. Throughout, we use ¢, ¢1, co, . .. and
C,(Cq,Cs, ... to denote universal positive constants, and their
values may change from line to line.

III. GENERAL RESULTS

In this section, we present our general results for union
of linearly structured PCA, covering both fundamental limits
of estimation and local convergence properties of a projected
power method. Recall the notation p(M, S) from Eq. (3) for
any symmetric matrix M € R%*? and set S C RY. We let

argmax v v “4)
veEMNSI-1

Vgs :=

denote the general exhaustive search estimator.

A. Fundamental Limits of estimation

We begin by studying the fundamental limits of estima-
tion for linearly structured PCA, without computational con-
siderations. These serve as baselines for the results to follow.
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We first introduce some notation before presenting main results.
Recall £L={Lq,...,Lp}, the collection of M linear sub-
spaces, and subsets of bases B,,, C B = {¢1,..., ¢4} such that
L,,, = span(B,,). For each m € [M], define the characteristic
vector 2, € {0,1}% of each subset 13,, as follows

. 1 if
Zm(i) = {0 if

where z,, (i) is the i-th entry of z,,. We further define

¢iEBm

61 ¢ B for all i € [d], (5)

M

2 (1) (6)

m=1

14 1= argmax
i€(d]

as the index with the most ones among {zm}%le, breaking ties
lexicographically. In words, this is the index of the basis vector
that appears in the most subspaces. Now let
Zo={zme{z1,...,zm} | zm(is) =1}. (7

be the set of characteristic vectors with z,,(i.) = 1. For any
fixed integer > 0 and characteristic vector z € {z,, }M_,,
we use Ny(z;r):={z' € Z,|du(z,z") <r} to denote the
neighborhood of z in Z, with Hamming ball distance
0m(z,2") :=|{i: 2(i) # 2’(i) }| at most r. We further state As-
sumption 1 for the minimax lower bound.

Assumption 1: This assumption has two parts:

(a) For all m € [M], |B,,| =k for some k < d.

(b) There exists £ € [3/4,1) such that

|2.] > 16. (8)
(z:2(1 - QK)| —

Assumption 1(a) is clearly satisfied by vanilla sparse PCA,
tree-sparse PCA, and path-sparse PCA. For a general £, one
can always set k = max,,ca] | Bm|. Assumption 1(b), on the
other hand, controls the ratio of the sizes between the largest
neighborhood Ny (z;2(1 — €)k) (among z € Z,) and Z,. Ge-
ometric intuition for this assumption will be provided shortly.
It is worth noting that the specific constant 16 in Ineq. (8)
is arbitrary, and any constant greater than 2 can be used. We
choose 16 for simplicity and convenience in presenting the
subsequent theoretical results (Theorem 1(b)).

We are now poised to state the main result of this subsection.
Recall that L. denotes the subspace containing the vector v,.
Let L € £ be the linear subspace such that vgs € L (once again
breaking ties lexicographically) and let Fi= conv(L UL,).

Theorem 1: Suppose the union-of-linear structures condition
in Definition 1 holds.

(a) Let vgs be defined in equation (4). Without loss of

generality, suppose (v.,Vgs) > 0. Then for all v, €
891N M, we have

maX,ecz,

2V2

[ Bes — valla < Tp(vv,ﬁ), (9a)

where the function p is defined in Eq. (3).
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(b) Let & €[3/4,1) such that Assumption 1 holds. We have
the minimax lower bound

2(1 —
inf sup E {H@'ET —v,] } > v2i-9 .
UV owp,eSiInM F 4
mind 1 /LEA
TV e
. log( |Z*| > .
max,cz, NH(z;Q(l—g)k)‘
(9b)

Here, the infimum is taken over all measurable functions
of the observations {x;}?_,, which are drawn i.i.d. from
the distribution D(\; v,).

Theorem 1(a) provides a deterministic upper bound on the ¢
error between the estimate Vgs and the ground truth Vs, show-
ing that this error can be bounded on the order p (W7 F ) for any
fixed \. We provide the proof of this result in Section B1 of the
supplementary material. While the result is deterministic, we
will see that Eq. (9a) nearly matches the minimax lower bound
Eq. (9b) for our special cases of interest. Consequently, we use
Theorem 1(a) as a heuristic baseline to assess the performance
of efficient algorithms.

On its own, Theorem 1(b) provides a minimax lower bound
that depends on the local structure of M around any choice of
ground truth v,.. The proof uses the generalized Fano inequality
[46], and we construct a rich packing set V. in S¢~! N M
(i.e., V in Proposition 4 of Section B2 in the supplementary
material) such that the points in V. are O(¢) separated in some
appropriate distance measure. In contrast to existing proofs for
sparse PCA [47] and path PCA [3], the set . here is constructed
so that there exists a common support index (i.e., the index
14, defined in Eq (6)) for every point v € V. that one can use
to construct the packing. On a related note, a paper by Cai
et al. [13] studies the minimax risk of a general structured
principal subspace estimation problem, including vanilla sparse
PCA as a special case. These bounds are phrased in terms
of critical inequalities that arise from local packing numbers
(see [50], [55]). Our lower bound instead takes a more global
approach, which we show suffices for union-of-linear structure.
In particular, the minimax lower bound (9b) is controlled by
the relative ratio between [Ny (z;2(1 — &)k)| and |Z.|: Our
assumption in Ineq. (8) avoids the scenario that many linear
subspaces heavily overlap on a few bases.

Finally, it is instructive to note that Theorem 1(b) recov-
ers the existing minimax lower bound for vanilla sparse PCA
[Theorem 2.1, 47]. Indeed, supposing that d >k and ap-
plying Theorem 1(b) for sparse PCA, we obtain the known
lower bound

inf sup E [H@ﬁT - ’U*’UIHF]

U €81 o, o<k

. [1+ X [klogd
Zmln{l, W n } (10)

The proof of inequality (10) is provided in Section A.6.6
of Wang et al. [51] for completeness due to page limit.
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Algorithm 1 Projected Power Method

Input: Sample covariance matrix 5.

1: Initialize with a vector vg € M N S41,
2. fort=0,1,..., T —1do

3: Compute i;Hl:zvt/HgthQ'
4: Project v}y = I a((Dey1)-
M
5 Normalize to unit sphere w11 = H;’aﬁ
t+1
MnNSL
6: end for

Output: vp.

In Section IV, we provide novel corollaries for tree-sparse PCA
and path-sparse PCA.

B. A Locally Convergent Projected Power Method

In Section III-A, we studied the fundamental limits of the
problem, where our upper bounds were achieved by the exhaus-
tive search estimator vgs. Given the computational challenge
of searching over every linear subspace L € L, we propose
the following iterative projected power method (Algorithm 1)
and show that with access to a suitable exact projection or-
acle, it locally converges to a statistical neighborhood of the
ground truth.

Definition 3 (Exact projection): For all v € R?, let
[v" = vll2,

Iz (v) ;= argmin ||[v" —v|2 = argmin
’

v’ €Ly, ,me [M]

where ties between subspaces are broken lexicographically.

Owing to the tie-breaking rule, this projection is always
unique. As we will see in Section IV, an exact projection oracle
IIp4 can be constructed efficiently (in time nearly logarithmic
in M) in some specific examples of union-of-linearly structured
PCA. We are now in a position to present the projected power
method, described formally in Algorithm 1.

Using the notation p(M, S) from Eq. (3), we define F* :=
argmaxp p(W, F) s.t. F = conv(Lp,, U Ly, U Ly, ), Vmy,
ma, mg € [M]. We now state the definition of a “good region”;
Theorem 2 to follow shows that once Algorithm 1 is initialized
in this region, it will converge geometrically to a neighborhood
of the ground truth v,.

Definition 4 (Good region): For eigen gap \ > 2p(W, F'™*),
we define the good region

G(\) = {'v eEMnNnSLt. (v,v,) > tl()\)}, where
h(\) = 4 S5p(W, F™*)
BTN L= p(W L Fr) T A= 2p(W Fr)

Note that G(\) becomes a larger set as A increases. To en-
sure that such a good region is non-empty, it is necessary to
have t1 () < 1. In our proof of convergence (see Supplemen-
tary Material C), we require that the good region is not just
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non-empty but large enough. In particular, we require the eigen-
gap A to be large enough so that

4 10p(W, F*)
A+1—p(W,F*)  \—2p(W, F*)

ta(A) == <1. (1)

Note that this automatically ensures that ¢;(A\) <1 since
t2(A) > t1(X). We are now poised to state our main result for
this subsection.

Theorem 2: Suppose the eigengap satisfies A > 2p(W, F*),
and condition (11) holds. Suppose in Algorithm 4 the initial-
ization satisfies vo € G(\). Then for all ¢ > 1, we have

6p(W, F*)

N— 2w, 7y 1P

1
lvesr = vullz < o5 - [lvo — will2 +

The proof of Theorem 2 can be found in Section C. Once
(a) an exact projection oracle Il is accessible; and (b) an
initial vector vy is in the good region G(\), Theorem 2 ensures
a deterministic convergence result. Note that the result paral-
lels that of [59] for vanilla sparse PCA, where p(W, F*) =
O(y/klogd/n). The key additional technique that we use to
control the error accumulated at each iteration is based on an
“equivalent replacement” step; see Section C2.

The projected power method was also recently analyzed by
Liu et al. [37] for PCA with generative models when given
access to an exact projection oracle. While they also proved lo-
cal geometric convergence results given access to a sufficiently
correlated initialization, there are significant differences in the
assumptions of that paper and our own. First, our work imposes
the union-of-linear structure assumption on the principal com-
ponent, which is an altogether different structural assumption
from a generative model. Given this, our proof techniques differ
significantly from those of Liu et al. [37]. Second, we present
a computationally efficient initialization method and matching
evidence of computational hardness for two prototypical exam-
ples; see below.

C. Initialization Method

Recall that Theorem 2 requires an initialization vq in the
good region G(\). In this subsection, we provide such an ini-
tialization method (see Algorithm 2) that works when given a
projection oracle, provided the following assumption holds.

Assumption 2: The set M satisfies

MC{veR?:|vllo =k},

where k& N.

Assumption 2 is not guaranteed by Definition 1, but in-
cludes many typical examples. For instance, the sets 7" and
PF for tree-sparse or path-sparse PCA, respectively, satisfy
Assumption 2 in addition to union-of-linear structure. More-
over, if the orthonormal matrix ® is known, one can reformulate
the problem as estimating the structured-sparse vector &,
from observations {® " x;}"_, (see Remark 1).

Theorem 3: Suppose Assumption 2 holds and k% < d/e.
There exists a tuple of universal, positive constants
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Algorithm 2 Initialization Method — Covariance Thresholding
with Projection Oracle

Input. {z;} ,, parameter k € N, thresholding parameter 7 and
exact projection II 4.

1: Compute covariance matrix 3 :Z?:l x;xz] /n.
2: Set the soft-thresholding matrix G(7) as

It 3 — L)
then [é(
else if f)ij — [Id],-j < —T/f

else

3: Compute Dof = MAX| |, =1 v G(T)v as the leading
eigenvector of G(7).
4: Project vg := Iy (Dsort) / ITLat (Dsost) || 2-
Return vy € S~ N M.

(C1,C4,C5,C) such that the following holds. Suppose n >
max{C'logd, k*} and let 7.:=C}max{\,1}/log(d/k?).
Set the thresholding level according to

Ta when 7, < /logd/2,
Cyr.  when 7, > /logd/2,

0 otherwise.

13)

T =

Then for any 0 < ¢y < 1, if

18C3 max{\?, 1}k?

21— co)202 log(d/k?),

n>mnp(co) :=

then the initial vector vy € S 1N M obtained from
Algorithm 2 satisfies (vg, v.) > ¢ with probability 1 — C” exp
(—min{v/d,n}/C") for some positive constant .

The proof of Theorem 3, which builds on existing results
n [18], can be found in Section D. Let us now show that
the output of this algorithm serves as a valid initialization for
the projected power method, since this is not immediate given
that the event & = {(vg,v.) > co} depends on the samples
{x;}_,. Recall the quantities ¢; () and t2()\) in Definition 4
and Eq. (11), respectively. In Theorem 3, set ¢g := t2(\) and
recall that ¢5(\) > t3(\) by definition. Suppose A > 5 for con-
venience. Then it can be shown that the event & = {t1(\) <
ta(N) =co <T7/8} C{p(W,F*)<9/400} occurs with prob-
ability at least 1 — C” exp(— min{v/d,n}/C"). Consequently,
on the high probability event & N &>, we have that the initial-
ization vy obtained by Algorithm 2 satisfies vy € G(\). The
projected power method can thus be employed after this initial-
ization to guarantee convergence to a small neighborhood of v..

A key feature of Theorem 3 is the lower bound ng =
©(k?log(d/k?)) on the number of samples required for the
Algorithm 3 to succeed. Note that this is of a strictly larger order
than the number of samples required information-theoretically

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 15,2025 at 20:26:50 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: DO ALGORITHMS AND BARRIERS FOR SPARSE PRINCIPAL COMPONENT ANALYSIS EXTEND TO OTHER STRUCTURED SETTINGS?

Algorithm 3 Exact Projection Oracle — Path Sparse PCA
Input: A (d, k)-layered graph G, a vector v € RY,
1: for/=1,...,kdo
2: Pick Sy the index set of the /-th layer in G.
3: Compute path sparsity vector v™° as follows: for its sub-
vector vgi, set

vg,|; if component ¢ has
¢ p
[025); = the largest absolute value,
Selv breaking ties lexicographically °
0 otherwise
4: end for

5: Normalize v*S := v"S /||v™5||5.
Output: v®5.

even for vanilla sparse PCA—this is a well-known phe-
nomenon. In the next section, we show that even with the addi-
tional structure afforded by tree and path sparsity, this larger
sample size is in some sense necessary for computationally
efficient algorithms.

IV. END-TO-END ANALYSIS FOR SPECIFIC EXAMPLES

In this section, we provide end-to-end analyses for path-
sparse and tree-sparse PCA, including results on their
information-theoretic limits of estimation as well as the
performance of the projected power method when initialized
using covariance thresholding. We complement these with
what may be considered as the main results of this section:
matching suggestions of computational hardness.

A. Path-Sparse PCA

1) Fundamental Limits for Path-Sparse PCA: Recall the
notation P* as the structure set of path-sparse PCA from
Section 1I-A2. We write v € P¥ if the support set satisfies
supp(v) € P*. We use

Tps :=argmax v' Zw st veS NPk (14)
v

to denote the corresponding estimate from exhaustive search.
Corollary 1: There exists a pair of positive constants (¢, C')
such that the following holds.
(a) Without loss of generality, assume (v, Ups) > 0. Then
for any ¢; > 0 and v, € ST~ N PF, we have

1+ /\) \/3(lnd —Ink)k + c1k
A

with probability at least 1 — 2 exp(—cik).
(b) Suppose that d > 16k? and k > 4. Then we have the
minimax lower bound

~~T
E [H’UU — ’U*UT

s~ v.ll, < ( .

inf sup
v w,eSiinpk

M+X k- (e _1nk
>c-minq 1, 8_;2 <2n n)

*
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Here, the infimum is taken over all measurable functions

of the observations {@;}?_; drawn i.i.d. from the distri-

bution D(\; v.).
Corollary 1(a) gives an upper bound on the estimation error of
Ups by showing that the statistical noise term? p(W, P*) is
of the order (A + 1)/k - (Ind — Ink)/n. The minimax lower
bound obtained in Corollary 1(b) is of the same order as the
minimax lower bound given in [Theorem 1, 3] with the outer de-
gree parameter |Toy(v)| = (d — 2)/k. The full proof of Corol-
lary 1 is omitted due to space constraints, and can be found in
[Section A.6.1, Wang et al. 51].

As we can observe from Fig. 1, methods with path-sparse
projection outperform the methods with k-sparse projection
with respect to the performance metric point distance and prob-
ability of success, especially as dimension d and sparsity level
k increases.

2) Local Convergence and Initialization:

a) Exact Projection Oracle: We build the exact projection
oracle for path-sparse PCA Ilp. by picking the component
with the largest absolute value in each partition (layer) for a
given (d, k)-layered graph G. The formal procedure is given in
Algorithm 3 as follows, and has running time O(d).

Corollary 2: Suppose the initialization vg in Algorithm 1
satisfies vop € P¥ N S9! and (v, v.) > 1/2. There exists a
tuple of universal positive constants (¢, Cy, Ca, C3) such that
for A > C1, n > Cokln(d), and all t > 1, the iterate v; from
Algorithm 1 satisfies

1 kE(2Ind —Ink
lvg — vill2 < o [lvg — vill2 + Cs ¥7

with probability at least 1 — exp(—ck).

Corollary 2 is proved by applying Theorem 2, and the full
proof can be found in [Section A.6.2, Wang et al. 51].

The final problem is to obtain an initialization vy. To do
s0, note that the set P¥ satisfies Assumption 2, leading to the
following corollary of Theorem 3.

Corollary 3: Assume k2 < d/e. There exists a pair of uni-
versal positive constants (C, C”) such that if n > max{C'logd,
k?} and n>C’max{1,A\"?}log(d/k?*)k?, then the
initial vector vy € S9! NP* obtained from Algorithm 2
satisfies (v, v,) > 7/8 with probability 1 — C”exp(— min
{v/d,n}/C").

In words, Corollary 3 provides an initialization method
whose outputs can be used for the general projected power
method (Algorithm 1) for path-sparse PCA when the number
of samples satisfies® n > k2 log(d/k?).

As previously mentioned, there is a gap between the con-
dition n 2 k required for Corollary 2 and the stronger con-
dition above. We will now show evidence that k2 samples
are necessary. In particular, we will show that no randomized

2 As expected, this term does not differ significantly from the corresponding
term for vanilla sparse PCA, since the number of sparsity patterns for path
sparse PCA |PF| is on the order (d/k)*.

3The constant 7/8 in (vp,v.) >7/8 can be replaced by any posi-
tive constant within (0,1) provided it ensures the good region condition
<’U()7 'v*) > tg()\).
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Fig. 1. Given the sparsity k, the number of nodes L in each layer, sample dimension d = L X k, and eigengap A, we choose a particular path sparsity
support set P € P* and set the ground truth vector v as [v.]; = :I:ﬁ if 1 € Py and [v4]; = 0 if ¢ ¢ Px. Given a tuple of (X, d, k,n), for each trial, we
generate samples from the distribution D(\, v, ) based on the Wishart model in Section II, and we run Algorithm 2 (covariance thresholding) for initialization,
and Algorithm 1 (projected power method) with general k-sparse projection or with path-sparse projection for local refinement. Each trial is repeated 50
times independently. We set A =3 and choose (d, L, k) = (128,16, 8), (288, 32,9), (1280, 128, 10). For each choice of (d, L, k), we simulate for each
n = {20,40,...,200}. In the left column, we plot the {2 distance ||[vp — v«||2 versus the number of samples n. The two curves in each panel correspond
to the averaged values over 50 independent trials of the proposed methods with general k-sparse projection or with path-sparse projection; the shaded parts
represent the empirical standard deviations over 50 trials. As we can observe, using path-sparse projection achieves smaller estimation error (for a given,
small sample size) than using general k-sparse projection. In the right column, we further plot of the success probability of support recovery of the methods
using general k-sparse projection or using path-sparse projection verse the number of samples n. The support of v is considered as successfully recovered
if supp(vr) = Px. The success probability is then computed as the ratio of the number of trials that successfully recover the support over 50 independent
trials. For a fixed small sample size, we observe that using path-sparse projection achieves higher success probability of support recovery compared with using
the vanilla k-sparse projection.
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polynomial-time algorithm can “solve” (i.e. produce a con-
sistent estimate for) path-sparse when n < k2, provided we
assume the average-case hardness of the secret-leakage planted
clique problem. This can be regarded as the main takeaway for
path-sparse PCA: The additional structure has minimal effect
on its statistical and computational limits.

3) Average-Case Hardness of Path Sparse PCA: This sec-
tion focuses on the average-case hardness of the path sparse
PCA, which is obtained via a reduction from the K -partite
planted clique (PC) detection problem, which is in turn con-
jectured to be hard.

Definition 5: Secret Leakage PCp Detection Prob-
lem, [10]. Given a distribution D on K-subsets of [V], let
Gp(N, K, 1/2) be the distribution on N-vertex graphs sampled
by first sampling G ~ G(N,1/2) and S ~ D independently and
then planting a K -clique on the vertex set S in G. The secret
leakage PCp detect problem PCp (N, K, 1/2) is defined as the
resulting hypothesis testing problem between

Now consider the following K -partite PC as a special case
of the secret leakage PCp detection problem.

Definition 6: K -Partite Planted Clique Detection Problem
(with source and terminal). The K-partite planted clique
detection problem K-PC(N, K, 1/2) is a special case of the se-
cret leakage planted clique detection problem PCp (N, K, 1/2).
Here the vertex set of G has two special vertices: source and
terminal, and the remaining vertices are evenly partition into
K parts of size (N — 2)/K. The distribution D always picks
source, terminal and uniformly picks one element at random in
each part.

Like the well-known planted clique conjecture, the K -Partite
PC problem K-PC(N, K, 1/2) is believed to satisfy the follow-
ing hardness conjecture.

Conjecture 1: K-Partite PC Hardness Conjecture, restate-
ment of [10]. Suppose that {.Ax} is a sequence of randomized
polynomial time algorithms Ay : Gy — {0,1} and Ky is a
sequence of positive integers satisfying that lim sup 5_, . log
Ky <1/2 with Gy the set of graphs with N nodes. Then
if G is an instance of K-PC(N,Ky,1/2), it holds that
liminf y_ oo (]PHU [AN(G) = 1] + PHl [.AN(G) = 0]) > 1.

Definition 7: Qualified Estimator. A qualified estima-
tor v(n,dy,, kn, \n, €) for path-sparse PCA is a sequence of
functions Est,, : R¥*" — R mapping {x;} ; — o such
that if the set of samples {x;}? , are drawn i.i.d. from
D(Ap,v,) for some v, €S¥ 1 NPk then liminf, ..
Pr{||o — v.|]2 < 3} > % + € for some fixed 0 < € < 1/2.

From this point onward, we do not make e explicit when
referring to a qualified estimator. It suffices for the reader to
think of it as a small positive constant that does not depend
on n. Geometrically, a qualified estimator ¥ exhibits proximity
to the ground truth v, € S%~1 N Pk» with probability at least
1/2+4 € as n — oo. Note that Definition 7 does not require
explicit control on the behavior of ¥ for a general vector v, ¢
Sdn=1 nPhn,

H(): GNg(N and H12 GNQD(N,K,1/2).
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It is also worth noting (using Corollary 2 and Corollary 3
and the corresponding algorithms) that our end-to-end estimator
for path-sparse PCA is a polynomial-time computable qualified
estimator provided n > Ck?log(d/k) and A\ = Q(1).

Proposition 1: There exists a universal constant ¢ > 0 such
that the following holds. Let 1/2< 3 <1 and 0 <e < 1/2 be
fixed. Here, we use integer j as our index parameter. Suppose
the sequence of parameters {(k;,d;, \;, 7j)}jen is in the pa-
rameter regime

ki = [°] i (log 2)®
e 77 A(Glog(j) + 2log?)’
where 7; is an arbitrarily slowly growing function of j. If the
K-Partite PC hardness conjecture (Conjecture 1) holds, then
there is no qualified estimator ¥(n;,d;, k;, A;, €) running in
time polynomial in d; when the sample size n; satisfies n; <

2
c kj
27;logk; ) °

The proof of Proposition 1 is given in Section El of the
Supplementary Material. In particular, when the eigengap sat-
isfies* A =©O(1), it shows that n = (k?) is necessary for
computationally efficient estimation.

dj=j, A=

B. Tree-Sparse PCA

1) Fundamental Limits for Tree-Sparse PCA: Recall the
notation 7% as the set of all rooted binary subtrees in the
underlying complete binary tree from Section II-A1. We write
v € T" if the support set of v satisfies supp(v) € T*. Let

UTs 1= argmax v v st veSTInTk (15)
denote the estimator obtained from exhaustive search.
Corollary 4: There exists a pair of positive constants (¢, C')
such that the following holds.
(a) Without loss of generality, suppose (v, v1s) > 0. Then
for any ¢; > 0 and v, € S NT*, we have

N 1+ (3+1In2+ c1)k
frs vl = ¢ (S5 :

with probability at least 1 — 2 exp(—cik).
(b) We have the minimax lower bound

inf sup }
UV y,eSi-1ATk

> ¢ min /1+)\ /k:/logk:
4\/10g 4

Here, the infimum is taken over all measurable functions
of the observations {x;}?_; drawn i.i.d. from the distri-
bution D(\; v.).

The full proof of Corollary 4 is provided in [Section A.6.3,
Wang et al. 51]. The term \/k/n arises from evaluating the
cardinality of the set 7% in tree-sparse PCA. In particular,
we have |T%|<(2e)*/(k+1) [5], and taking logarithms

[Hw ~w.0]

4This can be ensured for dimension dj = j growing such that

kj _
Tjd;logd;
o(1).
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results in a logarithmic factor gain over vanilla sparse PCA.
Corollary 4(b) provides a minimax lower bound of
Q(y/k/(nlogk)) for tree-sparse PCA, which has a
logarithm gap +/1/logk compared with the upper bound
in Corollary 4(a). This gap is small for small %k, but we
conjecture that it can be eliminated.

Remark 2: Compared with the fundamental limits for
vanilla sparse PCA, the upper bounds for tree-sparse PCA in
Corollary 4 save a factor log d, which parallels the model-based
compressed sensing literature. The saving could be significant
in practice when d is large (see Fig. 2 to follow)—indeed, this is
one of the successes behind model-based compressive sensing.

2) Local Convergence and Initialization:

a) Exact Projection Oracle: We use the projection
method proposed in [15] as our tractable exact projection
oracle Il for tree sparse PCA. This oracle has running
time O(kd). With our projection oracle in hand, we can now
state our corollaries for the projected power method for tree
sparse PCA.

Corollary 5: Suppose in Algorithm 1 that the initialization
vo € TH NS4 1 satisfies (vg,v,) > 1/2. There exists a tuple
of universal positive constants (¢, Cy,Csy, C3) such that for
A>C1,n>Csk and all t > 1, the iterate v, from Algorithm 4

satisfies
1 k
lve —vill2 < 5 [vo — vill2 + Csy o

with probability at least 1 — exp(—ck).

Corollary 5 can be derived directly from Theorem 2, but
we provide the full proof in [Section A.6.4, Wang et al. 51]
for completeness. We can also use the exact projection oracle
ITI7+ to obtain the following corollary for our initialization
method.

Corollary 6: Assume k2 < d/e. There exists a pair of uni-
versal positive constants (C, C”) such that if n > max{C'log d,
k?} and n > C" max {1, A2} log(d/k?)k?, then Algorithm 2
returns an initial vector vg € 41 N T satisfying (vo, v.) >
1/2 with probability 1 — C’ exp(— min{/d,n}/C").

Like Corollary 3, it is straightforward to see that Corollary
6 follows from Theorem 3 by specifying ¢ = 1/2.

Corollary 6 shows that provided n = Q(k?), the output v €
S9=1 N T* satisfies the initialization condition required for
the subsequent projected power method to succeed. Putting
these two results together, we have produced an end-to-end and
computationally efficient algorithm that produces a statistically
efficient solution provided n = 2(k?). The next section is con-
cerned with the question of whether the condition n = Q(k?)
is necessary for polynomial-time algorithms.

3) SDP Hardness for Tree Sparse PCA: To understand the
aforementioned gap in sample size, we now provide a compu-
tational lower bound for a class of SDP solutions to tree-sparse
PCA, showing that they require on the order of k2 samples.

To make things formal, we consider the following sub-
class of tree sparse PCA problems: every entry of the % tree-
sparse ground truth unit vector v, only takes one of the
values {0, +£k~1/2}. With knowledge of this side information in
addition to tree sparsity, the natural choice of exhaustive
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estimator is given by the maximizer of the following optimiza-
tion problem:
max v Swv
v
2
st vz =1, [[vflo =k

v(i)?> <wv(|i/2])? forall2<i<d.  (16)

The natural semidefinite programming (SDP) relaxation of the
program (16) is then given by

SDP(E) = max
M eRdxd

s.t. ZMZ =1

M;; < Mi2)1i/2)

for all 2 <i<d. (17)

It is well-known that for vanilla sparse PCA, the SDP attains
the best-known sample complexity among all polynomial time
algorithms. Proving a lower bound for this class of algorithms
is thus powerful—when this subclass of low-degree estimators
fails at the indicated threshold, it suggests a natural hardness
result.

Proposition 2: Suppose data X are drawn from the distri-
bution D(\; v, ) with ground truth v, given by a k tree-sparse
unit vector with every entry of taking one of the values in the set
{0, 4k~ 1/2}. There exists a tuple of universal positive constants
(¢,c1,C,C1) such that for c;d <n < Cyd, n<ck? and 1 <
A< %, the optimal solution M, of the SDP relaxation (17)
satisfies || M, — v, v ||, > & with probability at least 1 — éd—°
for some constant ¢ > 1.

In words, Proposition 2 shows that unless the number of sam-
ples satisfies n > C’k? for some positive constant C’ > c, the
optimal solution M, of the SDP relaxation (17) fails to estimate
the ground truth consistently, even with the side information
that its entries take only one of three values. The full proof of
Proposition 2 can be found in [Section A.7.2, Wang et al. 51],
and is built on the techniques proposed in [Section 4, 38].

V. DISCUSSION

We studied the local convergence properties of the projected
power method in a general class of structured PCA problems.
We also established the fundamental limits of estimation in
this family of problems, and studied a general family of ini-
tialization methods. Our work generalizes these statistical and
algorithmic results from vanilla sparse PCA to this more general
class of models. We specialized our results to two commonly
used notions of structure—given by tree and path sparsity—
showing end-to-end estimation algorithms accompanied by ev-
idence of computational hardness.

Let us close with some potential questions for future in-
vestigation. The first is to generalize these results to other
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Fig. 2. Given the sample dimension d = 2 — 1, sparsity k, and eigengap A, we choose a particular tree sparsity support set T € 7% and set the ground
truth vector v. as [v.]; = & —= if i € Th and [v.]; = 0 if i ¢ Tx. Given a tuple of (X, d, k,n), for each trial, we generate samples from the distribution
D(X, vs«) based on the Wishart model in Section II, and we run Algorithm 2 for initialization, and Algorithm 1 with general k-sparse projection or with
tree-sparse projection for local refinement. Each trial is repeated 50 times independently. We set A = 3 and choose (d, k) = (255,9), (511, 10), (1023, 13).
For each choice of (d, k), we simulate for each n = {20, 40, ...,200}. In the left column, we plot the /5 distance |[v — v« ||2 versus the number of samples
n. The two curves in each panel correspond to the averaged values over 50 independent trials of the proposed methods with general k-sparse projection
or with tree-sparse projection; the shaded parts represent the empirical standard deviations over 50 trials. As we can observe, using tree-sparse projection
achieves smaller estimation error (for a given, small sample size) than using general k-sparse projection. In the right column, we further plot of the success
probability of support recovery of the methods using general k-sparse projection or using tree-sparse projection verse the number of samples . The support of
v, is considered as successfully recovered if supp(vr) = T%. The success probability is then computed as the ratio of the number of trials that successfully
recover the support over 50 independent trials. For a fixed small sample size, we observe that using tree-sparse projection achieves higher success probability
of support recovery compared with using the vanilla k-sparse projection.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 15,2025 at 20:26:50 UTC from IEEE Xplore. Restrictions apply.



3198

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

Algorithm 4 Projected Power Method for Rank-r Case

Algorithm 5 Intersection Verification for B or ®

Input: Sample covariance matrix 3, rank parameter 7.
AP RES)
2: for (=1,...,r do
3: Compute o0 Algorithm 1 with current input co-
¢

variance .
4: Orthogonalized current point

©® (Ia— Q1 Q)oY
v —
[(Ta = Qp1Qp—1)0"" |2

with Q,_, := (vM]---|v~1)) an orthogonal matrix.

~(+1) A
5. Update covariance s s MO ()T
with A = (v©) TSy ®).
6: end for

Output: vV, ... v,

forms of structured PCA [56]. Another natural direction is
to consider more than a single principal component. Progress
has been made towards establishing general fundamental limits
in these settings [13]; there are also natural analogs for the
projected power method in these settings and it would be in-
teresting to analyze it under a general structural assumption
along with statistical and computational limits. In particular,
for finding top-rk-sparse principal components, i.e., rank-r
case, similar to the spiked Wishart model used for rank-1 case,
we assume the covariance matrix X = Z;:l Nvl(vl)T +1,
where v] € M for all j € [r], ('vl,vi/> =0 with j #£ 5" €[r]
and \; > -+ > A\, > 0 (=: A1) with a fixed positive eigengap
A= min;:1{>\j — )‘j+1} > 0.
* Without shared structure. Suppose the top-r principal
components do not have the same structure (i.e., we have
vl € LW € M, V j € [r], and corresponding linear sub-
space L) may not equal to L") when j # j" € [r]), we
can apply the proposed projected power method with an
additional deflation method (see Section 2.3.3 of Mackey
[40]). See Algorithm 4 below. An interesting direction for
future work is to extend our analysis techniques to handle
Algorithm 4.
¢ With shared structure. Suppose the top-r principal com-
ponents have the same structure, that is to say, there exists
a linear subspace L, € M such that all top-r principal
components satisfy v!, ..., v" € L,. In this case, solving
the exact projection subproblem

argminHV—UH% st. Ue M, U'U =1,
UeRdX’!'

is challenging even for vanilla sparse PCA, and we are not
aware of an efficient algorithm.

Having said that, an inexact projected power method
ensures local convergence for vanilla sparse PCA (see
Theorem 3.1 of Ma [39]). It is an interesting open ques-
tion whether inexact projections suffice for path-/tree-
sparse PCA.

Input. £, each linear subspace L € L is represented by dim(L)
independent vectors in L.
1: Initialize £(*) := (), B©) :=(,t = 0.
2: while |BY)| < d do outer while-loop
3 Pick a linear subspace L") € £\L£(®).
while True do inner while-loop
Select L®) e £\{L®} uniformly at random with-
out replacement.
6 if L) N L® +£{0} then
7: Compute three bases for L) L),
8
9

AN

Update B (t+1) via adding the above three bases.
Update £+ .= £O y {L®) L1},

10: Break inner while-loop.
11: end if
12: end while

13: end while
Output. B4+Y or & with columns all bases in B#+D).

APPENDIX
A. Time-Consuming Case in Section Il

Example 1: Time-Consuming Case. Given £ = {L,...,
Lq_1,Lq} with L; =span(¢;, ¢i4q1) fori=1,...,d—1 and
Lq = span(¢1, ¢q). Each linear subspace L; is known by given
two linearly independent but not necessarily orthonormal vec-
tors, say ugi), ugi) ,in L;. As aresult, for a given linear subspace
L, we do not know the index 7 € [dg of this linear subspace
L based on the given vectors ug'), u) € L. Hence the corre-
sponding two bases that spans this known linear subspace L is
unknown to us.

From the Example 1, if two linear subspaces L, L’ have a
non-zero intersection, i.e., L N L' # {0}, then the base ¢ =
LN L €B is uniquely determined, and so as the rest two
bases in L, L’ respectively. Thus computing ® from L :=
{L1,...,Lq—1,Lq4} is equivalent to find out all bases ¢ € B
via intersection verification. Since we do not know the index
corresponding to each linear subspace, to compute one base in
BB, what we can do is to verify the intersection of two randomly
chosen linear subspaces. The detailed procedures of computing
the unknown orthonormal basis B are presented in the random-
ized algorithm 5.

Proposition 3: Expected Running Time of Algorithm 5.
Under the setting of £ presented in Example 1, the expected
running time of Algorithm 5 is of order O(d?).

Thus, finding all bases takes more than d? /9 intersection ver-
ifications in expectation. Each intersection verification requires
O(d) time. Then the expected running time of computing ® is
O(d?). In contrast, computing the exact projection of v onto
M takes O(d?) running time’. Therefore, the above analysis
illustrates that extracting ® takes way more time than just

SProjecting onto a 1D linear subspace takes O(d) time, and there are d
linear subspaces in total.
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implementing the projection, which further explains why ® is
not necessary to recover the true PC v,.

Moreover, under the general setting of £ ={Lq,...,La},
given a set of independent and not necessarily orthonormal
vectors ugm), o uc(lﬁ)( 1,y of each linear subspace Ly, with
m € [M], it is unclear whether and how long one could find the
orthonormal basis ® from £ via solving the following variant

of dictionary learning problem (18),

2
min H[U(l) | UM —@[RY | ... |R(M)]H
& R P

st. @' =1, |[R™)|<dim(L,) YVmeM
(18)

where, for all m € [M], U™ denotes the matrix with columns

ul™ ,u((l/ir:l)(L ) and |R™)||y < dim(L,,,) denotes that the

number of non-zero rows of R(™ is at most dim(L,,).

Proof of Proposition 3: First, based on the setting of each
L;fori=1,...,d, L; has non-zero intersection with L, 1 and
L; 1. Thus the expected number of selections (i.e., inner while-
loop (4)) for step (5) of Algorithm 5 satisfies

E[number of selections]

_ 1. 2 +2.de 2 Jr3.d73d74 2 4.
d—1 d—1d—-2 d—1d—2d—-3

22 d-i-1) d

_;Z'(d_n(d_m_?

Every time we find L) N L® #£{0}, in step (8) of
Algorithm 5, we can add three more new bases to B(+1) if
L® ¢ LM, and one more new base to B¢+ if LW e £,
Therefore, the number of outer while-loop (2) of Algorithm 5
satisfies

number of outer while-loop

= selection with 3 more bases + selection with 1 more bases.

Moreover, the stopping criteria of outer while-loop (2) of
Algorithm 5 ensures that the number of outer while-loop (2)
is greater than or equal to d/3, where the equality holds when
we can add three more new bases at every inner while-loop (4)
of Algorithm 5. Therefore, in expectation, the total number of
selections of Algorithm 5 satisfies

E[total number of selections]
= number of outer while-loop x E[number of selections]
> d?)9.
Since we do an intersection verification for each selection, and

an intersection verification takes O(d) running time, then the
expected total running time of computing ® is O(d?). [ |
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