
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024 3187

Do Algorithms and Barriers for Sparse

Principal Component Analysis Extend

to Other Structured Settings?
Guanyi Wang , Mengqi Lou , and Ashwin Pananjady

Abstract—We study a principal component analysis problem
under the spiked Wishart model in which the structure in
the signal is captured by a class of union-of-subspace models.
This general class includes vanilla sparse PCA as well as its
variants with graph sparsity. With the goal of studying these
problems under a unified statistical and computational lens, we
establish fundamental limits that depend on the geometry of
the problem instance, and show that a natural projected power
method exhibits local convergence to the statistically near-optimal
neighborhood of the solution. We complement these results with
end-to-end analyses of two important special cases given by
path and tree sparsity in a general basis, showing initialization
methods and matching evidence of computational hardness.
Overall, our results indicate that several of the phenomena
observed for vanilla sparse PCA extend in a natural fashion
to its structured counterparts.

Index Terms—Principal component analysis, structured spar-
sity, nonconvex iterative optimization, computational hardness.

I. INTRODUCTION

P
RINCIPAL component analysis (PCA) is a preponderant

tool for dimensionality reduction and feature extraction.

PCA and its generalizations have been used for numerous

applications including wavelet decomposition [5], [41], rep-

resentative stock selection from business sectors [3], human
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face recognition [28], [45], eigen-gene selection and shaving

[1], [25], [29], handwriting classification [30], clustering of

functional connectivity [26], and single-cell RNA sequencing

analysis [53], to name but a few.

Given a set of n samples x1, . . . ,xn ∈ R
d, PCA is tradi-

tionally phrased as the problem of recovering the direction of

maximal variance. However, in high dimensions when d� n,

it is well-known that the vanilla estimator given by the maximal

eigenvector of the sample covariance matrix of the data is incon-

sistent (see, e.g., Johnstone and Lu [32] and references therein).

This inconsistency motivates imposing sparsity assumptions

on the “ground-truth” principal component and studying the

resulting problem under a generative model for the data. Indeed,

sparsity has emerged as a key structural assumption inspired

by the diverse applications mentioned earlier, and a wealth of

literature now exists on the sparse PCA problem. In practice,

additional structure exists on the ground truth principle compo-

nent. For instance, in applications involving wavelet decompo-

sitions, the signal is well-modeled by structured sparsity defined

on a binary tree [5]. Similarly, path sparsity on the principal

component is a reasonable assumption when dealing with data

representing stocks across distinct business sectors [3].

In this paper, we study a class of union-of-linearly-structured

models (see Section II), which includes vanilla sparse PCA and

path/tree sparse PCA as special cases. Our goal is to under-

stand, through a statistical and computational lens, if and to

what extent the theoretical results and insights developed for

vanilla sparsity extend to these structured settings. In particular,

given that the vanilla sparse PCA has a delicate statistical-

computational gap, a conceptual question that motivates our

research is

Does such a statistical-computational gap persist when

additional structure is imposed in PCA?

Generally speaking, statistical-computational gaps in related

problems are delicate1, and so understanding the influence of

additional structure in such problems is an important goal. In

making progress toward this goal, we carry out a detailed sta-

tistical and computational study of a broad family of structured

PCA problems.

1For one such example, note that gaps disappear in the sparse stochastic
block model in the presence of a “monotone adversary” [42].
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A. Contributions and Organization

In Section II, we formally introduce a family of union of

linearly structured PCA problems under the spiked Wishart

model. Section III presents our main results: We begin by

studying the fundamental limits of estimation under this model,

providing both upper and lower bounds on the �2 error of

estimation that depend on the geometry of the problem. Our

upper bound is achieved by an exhaustive search algorithm, and

we analyze a natural projected power method to approximately

compute its solution. We show that this iterative method enjoys

local geometric convergence to within a neighborhood of the

ground truth solution that attains the optimal statistical rate as

a function of the sample size and geometry of the problem

instance. We also present a general initialization algorithm for

this method. In Section IV, we study two prototypical examples

of structured PCA—those given by path and tree sparsity—in

an end-to-end fashion, additionally providing explicit initializa-

tion methods and evidence of computational hardness (see in

particular Propositions 1 and 2). Detailed proofs of our results

can be found in the supplementary material.

Through our statistical, algorithmic, and reduction-based re-

sults, we find that several features of vanilla sparse PCA—on

both the statistical and computational fronts—persist and ex-

tend in natural ways to its structured counterparts. In particular,

while the imposition of structure can help mildly, it does not

seem to make the problem significantly easier to solve in a

computationally efficient manner.

B. Related Work

Structured PCA has been studied extensively over the past

two decades, and we cannot hope to cover this vast literature

here. We discuss the papers most relevant to our results.

a) Optimization Algorithms for Sparse PCA: The most

commonly used and studied structural assumption in PCA is

(vanilla) sparsity, in which the true principal component is

assumed to be k-sparse. Letting Σ̂ := 1
n

∑n
i=1 xix

�
i denote the

sample covariance matrix, such a sparse principal component

can be found by solving the following optimization problem:

max
v∈Rd

v�
Σ̂v s.t. ‖v‖2 = 1, ‖v‖0 ≤ k, (1)

where ‖ · ‖0 denotes the �0 norm or number of nonzeros.

This program was first proposed by [12]. In contrast to

classical PCA (which is akin to program (1) but without the

�0 norm constraint), solving the sparse PCA problem (1) is

NP-hard. Many computationally efficient reformulations of

sparse PCA have been proposed over the years. [33] give the

first computational tractable method—termed SCoTLASS—

which reformulates the program (1) using an �1-norm

regularization akin to the LASSO [44]. [62] and [63] propose

an ElasticNet version of SPCA, and [54] study connections

between SCoTLASS and ElasticNet SPCA. [16], [24] propose

alternative formulations and show the convergence of their

alternating gradient methods to stationary points. Another

approach focuses on convex relaxations of sparse PCA.

For example, [17], [23], [35], [48], [61] consider a convex

relaxation by lifting the variable space v ∈ R
d to its product

space, and relax to a semidefinite programming problem.

More recently, [20], [21], [36] provide a more computationally

scalable type of convex relaxation for problem (1) using mixed-

integer programming with theoretical worst-case guarantees.

Other than methods based on convex relaxation, there is also

a substantial literature on specialized iterative algorithms for

finding good feasible solutions. Examples include the deflation

method [40], generalized power method [34], truncated power

method [59], and iterative thresholding [39].

b) Statistical and Computational Limits of Sparse PCA:

Several papers have established (by now classical) minimax

lower bounds for sparse PCA in a purely statistical sense, i.e.,

without computational considerations. Examples for vector re-

covery in �2 norm include [8] and [14]; the latter is phrased in

terms of estimating the principal subspace and considers a more

general model than the rank-1 model. [49] present nonasymp-

totic lower and upper bounds for the minimax risk considering

both row-sparse and column-sparse principal subspaces. [2]

study the rank-1 spiked covariance model considered here, but

establish minimax lower bounds for support recovery.

Sparse PCA has also been a key cog in the study of compu-

tational lower bounds in high dimensional statistics problems,

and has received a lot of attention from the perspective of

reductions, sum-of-squares and low-degree lower bounds, as

well as approaches rooted in statistical physics; let us cover

a non-exhaustive list of examples here. Assuming the planted

clique conjecture, [6] show that a sub-Gaussian variant of

sparse PCA is hard, in that the optimal rate of estimation is

not achievable in polynomial time. Ma and Wigderson [38]

show degree-4 sum of squares lower bounds for k-sparse PCA

(see Section IV-B). [60] study the fundamental statistical-

computational barriers of inference and estimation problems as

phase transitions and develop new algorithms using techniques

from statistical physics. [52] show computational lower bounds

for estimation for a distributionally-robust variant of sparse

PCA. [27] show computational lower bounds for sparse PCA

in the spiked covariance model, and [11] provide an alternative

reduction based on random rotations to strengthen these

lower bounds. Ding et al. [22] explore subexponential-time

algorithms for sparse PCA, and give rigorous evidence that their

proposed algorithm is optimal by analyzing the low-degree

likelihood ratio. [9] give a reduction from planted clique that

yields the first complete characterization of the computational

barrier in the spiked covariance model, providing tight lower

bounds at all sparsities k.

c) Structured PCA and Related Problems: While vanilla

sparsity (and the resulting sparse PCA problem) is by far the

most well-studied, there also exist other examples of structure

one could impose. Examples from the literature on sparse linear

regression include graph sparsity [31], group sparsity structure

[58], block and tree sparsity [5], and subspace constraints [7].

For PCA in particular, several structural constraints have been

studied, such as non-negative orthant cone structure [43], and

general cone structure [19], [56]. Asteris et al. [3] study path-

sparse structure in the PCA problem. Some of these papers

study fundamental limits of estimation for their specific forms

of structure, and Asteris et al. [3] and [56] propose specialized

projected power methods. [13] present a unified framework for
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the statistical analysis of structured principal subspace estima-

tion and lower and upper bounds on the minimax risk. In recent

work, [37] study structured PCA under the assumption that

the true principal component is generated from an L-Lipschitz

continuous generative model, showing that the projected power

method enjoys local geometric convergence. While their result

is related in spirit to a subset of our results on the projected

power method, our structural assumptions are different (see

Definition 1 and discussions following Theorem 2) for a de-

tailed comparison. There are also papers that study computa-

tional hardness in structured settings, both from the perspective

of low-degree polynomials [4] and reductions from the so-

called “secret-leakage” variant of the planted clique conjecture

[10]. Our work adds to this literature for a particular family of

structured PCA problems.

II. PROBLEM SETTING, BACKGROUND, AND EXAMPLES

Throughout this paper, we operate under the spiked Wishart

model. Assume that our data set consists of n i.i.d. sam-

ples {xi}ni=1 drawn from a d-dimensional Gaussian distribu-

tion with zero-mean and covariance Σ := λv∗v
�
∗ + Id×d. For

brevity, we use D(λ;v∗) :=N (0d, λv∗v
�
∗ + Id×d) to denote

the distribution of each xi. Here λ > 0 represents the strength of

the signal, and v∗ is a d-dimensional, unit-norm ground truth

vector that we wish to estimate. In addition to the unit norm

condition, we also assume the inclusion v∗ ∈M, where M is

a known union of subspaces satisfying a certain union of linear

structures assumption defined below.

Definition 1: Union of linear structures condition. Let

B := {φ1, . . . , φd} be an orthonormal basis of R
d and L :=

{L1, . . . , LM} be a collection of M distinct linear subspaces

such that for each m ∈ [M ] := {1, . . . ,M}, we have Lm =
span(Bm) for some Bm ⊆ B. We say set M obeys the union

of linear structures condition if M :=
⋃M

m=1 Lm, i.e., M is the

union of all linear subspaces in L.

Remark 1: It is worth noting that the union of linear struc-

tures condition in Definition 1 resembles a structured sparsity

condition. Indeed, using the rotation invariance of the Gaussian

distribution, the problem of estimating v∗ from observations

{xi}ni=1 is statistically equivalent to estimating the structured-

sparse vector Φ�v∗ from {Φ�xi}ni=1, where Φ ∈ R
d×d is an

orthonormal matrix with columns φ1, . . . , φd. However, the two

problems may not be computationally equivalent when Φ is

unknown. Here, we provide an example (see Example 1 in

Appendix A) to illustrate that if an efficient projection oracle

onto the union of subspaces M is accessible, then it is more

computationally efficient to estimate the vector v∗ directly,

rather than to estimate Φ
�v∗ from {Φ�xi}ni=1 by first com-

puting Φ. Accordingly, the rest of the paper assumes that Φ is

unknown, and that we have access to a projection oracle onto

the union of subspaces M.

A. Examples of Union of Linearly Structure in Section II

Clearly, vanilla sparse PCA is covered by our formulation.

We instantiate the union of linear structures assumption with

two other canonical examples.

1) Example 1: Tree-Sparse PCA: Motivated by applications

in signal and image processing and computer graphics [5],

a particular model for the underlying signal is tree sparsity

in an underlying basis. In particular, consider the following

simplified model for tree-sparsity with one-dimensional signals

and binary wavelet trees as a typical such instance. We require

some notation to introduce it formally.

Given a natural number h, a complete binary tree or CBT of

size d= 2h − 1 is given by the following construction. Create

h levels {1, . . . , h}, with 2�−1 nodes in �-th level. Index each

node from 1 to d, top to bottom and left to right in the following

way. The root node rCBT of CBT has index 1, and for any node

with index i ∈ {2, . . . , 2h−1 − 1}, its parent is the node with

index � i
2� and its children are the nodes with indices 2i, 2i+ 1.

Define the collection of vertex sets

T k :=
{
T :|T |= k, root node 1 ∈ T,

the subgraph of CBT induced by T is connected
}
.

Abusing notation slightly, consider a bijection between

the coordinates of any d-dimensional vector and the vertices

of a CBT. The vector v∗ is said to be k-tree-sparse if

supp(v∗) ∈ T k.

Therefore, tree-sparse PCA is a specific example of union of

linear structures in our formulation. To see this, let ei ∈ Sd−1

denote the i-th standard basis vector in R
d, and set

B := {e1, . . . , ed}, and L :=
{
L= span({ei}i∈T ) | T ∈ T k

}

in Definition 1.

2) Example 2: Path-Sparse PCA: Another commonly used

variant of union-of-linearly structured PCA is path-sparse PCA

[3], in which the support set of v∗ forms a path on an underlying

directed acyclic graph G= (V,E). For a vertex v in this graph,

let δout(v) denote the out-neighborhood of v.

Definition 2: (d, k)-Layered Graph. A directed acyclic graph

G= (V,E) is a (d, k)-layered graph if

• V = {vs, vt} ∪ Ṽ such that |Ṽ |= d− 2 and vs, vt /∈ Ṽ .

• Ṽ = ∪k
i=1Vi where Vi ∩ Vj = ∅ for all i �= j ∈ [k] and

|V1|= · · ·= |Vk|= d−2
k .

• δout(v) = Vi+1 for all v ∈ Vi and i= 1, . . . , k − 1, and

• δout(vs) = V1 and δout(v) = {vt} for all v ∈ Vk.

Let G= (V,E) be a (d, k)-layered graph and we define the

collection of vertex sets

Pk :=
{
P ⊆ V | vs, vt ∈ P and |P ∩ Vi|= 1 ∀ i ∈ [k]

}
.

Once again, we consider the natural bijection between the coor-

dinates of any d-dimensional vector and the vertices of a (d, k)-
layered graph, and a vector v∗ is said to be k-path-sparse if

supp(v∗) ∈ Pk. It is straightforward to see that the set of all

k-path-sparse vectors satisfies the union of linear structures

condition in Definition 1 with

B := {e1, . . . , ed}, and L := {L= span({ei}i∈P ) | P ∈ Pk}.

B. Notation

We use Id×d to denote the d-by-d identity matrix, and

λi(M) to denote the i-th largest eigenvalue of a symmetric
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matrix M . We use X := [x1 | · · · | xn]
� ∈ R

n×d to denote

the sample matrix where the i-th row of X is the i-th sample

xi. The sample covariance matrix is given by Σ̂ := 1
nX

�X ,

and we let

W := Σ̂−Σ (2)

denote the d× d matrix of noise. For any linear subspace

L⊆ R
d and its projection matrix PL ∈ R

d×d, we use Σ̂L :=
P�
L Σ̂PL to denote the sample covariance matrix restricted

to the subspace L. We also use the analogous notation

ΣL := P�
LΣPL and WL := P�

LWPL. We index the subspaces

L1, . . . , LM in some consistent lexicographic order. We re-

serve the notation M :=
⋃M

m=1 Lm to denote the set containing

v∗, and the notation L∗ ∈ {L1, . . . , LM} to denote the spe-

cific linear subspace that contains v∗, with ties broken lexi-

cographically. We use [M ] := {1, . . . ,M} to denote the index

set indexed from 1 to M . We let Sd−1 := {v ∈ R
d : ‖v‖2 = 1}

denote the unit �2-sphere in d-dimensional Euclidean space.

For any subspace L, let v̂L := argmaxv∈Sd−1 v�
Σ̂Lv =

argmaxv∈Sd−1∩L v�
Σ̂v be the leading eigenvector of the re-

stricted sample covariance Σ̂L. For an arbitrary symmetric ma-

trix M ∈ R
d×d and set S ⊆ R

d, define the scalar

ρ(M , S) := max
‖v‖2=1,v∈S

∣∣v�Mv
∣∣. (3)

For two sequences of non-negative reals {fn}n≥1 and {gn}n≥1,

we use fn � gn to indicate that there is a universal positive

constant C such that fn ≤ Cgn for all n≥ 1. We also use

standard order notation fn =O(gn) to indicate that fn � gn
and fn = Õ(gn) to indicate that fn � gn ln

c n for some uni-

versal constant c. We say that fn =Ω(gn) (resp. fn = Ω̃(gn))
if gn =Ω(fn) (resp. gn =Ω(fn)). We use fn =Θ(gn) (resp.

fn = Θ̃(gn)) if fn =O(gn) and fn =Ω(gn) (resp. fn = Õ(gn)
and fn = Ω̃(gn)). We say that fn = o(gn) (resp. fn = õ(gn))
when limn→∞ fn/gn = 0 (resp. limn→∞ fn/(gn ln

c n) = 0 for

some universal constant c). We also use fn = ω(gn) to indicate

that limn→∞ fn/gn =∞. Throughout, we use c, c1, c2, . . . and

C,C1, C2, . . . to denote universal positive constants, and their

values may change from line to line.

III. GENERAL RESULTS

In this section, we present our general results for union

of linearly structured PCA, covering both fundamental limits

of estimation and local convergence properties of a projected

power method. Recall the notation ρ(M , S) from Eq. (3) for

any symmetric matrix M ∈ R
d×d and set S ⊆ R

d. We let

v̂ES := argmax
v∈M∩Sd−1

v�
Σ̂v (4)

denote the general exhaustive search estimator.

A. Fundamental Limits of estimation

We begin by studying the fundamental limits of estima-

tion for linearly structured PCA, without computational con-

siderations. These serve as baselines for the results to follow.

We first introduce some notation before presenting main results.

Recall L= {L1, . . . , LM}, the collection of M linear sub-

spaces, and subsets of bases Bm ⊆ B = {φ1, . . . , φd} such that

Lm = span(Bm). For each m ∈ [M ], define the characteristic

vector zm ∈ {0, 1}d of each subset Bm as follows

zm(i) :=

{
1 if φi ∈ Bm

0 if φi /∈ Bm
, for all i ∈ [d], (5)

where zm(i) is the i-th entry of zm. We further define

i∗ := argmax
i∈[d]

M∑

m=1

zm(i) (6)

as the index with the most ones among {zm}Mm=1, breaking ties

lexicographically. In words, this is the index of the basis vector

that appears in the most subspaces. Now let

Z∗ := {zm ∈ {z1, . . . ,zM} | zm(i∗) = 1} . (7)

be the set of characteristic vectors with zm(i∗) = 1. For any

fixed integer r ≥ 0 and characteristic vector z ∈ {zm}Mm=1,

we use NH(z; r) := {z′ ∈ Z∗ | δH(z, z′)≤ r} to denote the

neighborhood of z in Z∗ with Hamming ball distance

δH(z, z′) := |{i : z(i) �= z′(i)}| at most r. We further state As-

sumption 1 for the minimax lower bound.

Assumption 1: This assumption has two parts:

(a) For all m ∈ [M ], |Bm|= k for some k ≤ d.

(b) There exists ξ ∈ [3/4, 1) such that

|Z∗|
maxz∈Z∗

|NH(z; 2(1− ξ)k)| ≥ 16. (8)

Assumption 1(a) is clearly satisfied by vanilla sparse PCA,

tree-sparse PCA, and path-sparse PCA. For a general L, one

can always set k =maxm∈[M ] |Bm|. Assumption 1(b), on the

other hand, controls the ratio of the sizes between the largest

neighborhood NH(z; 2(1− ξ)k) (among z ∈ Z∗) and Z∗. Ge-

ometric intuition for this assumption will be provided shortly.

It is worth noting that the specific constant 16 in Ineq. (8)

is arbitrary, and any constant greater than 2 can be used. We

choose 16 for simplicity and convenience in presenting the

subsequent theoretical results (Theorem 1(b)).

We are now poised to state the main result of this subsection.

Recall that L∗ denotes the subspace containing the vector v∗.

Let L̂ ∈ L be the linear subspace such that v̂ES ∈ L̂ (once again

breaking ties lexicographically) and let F̂ := conv(L̂ ∪ L∗).
Theorem 1: Suppose the union-of-linear structures condition

in Definition 1 holds.

(a) Let v̂ES be defined in equation (4). Without loss of

generality, suppose 〈v∗, v̂ES〉 ≥ 0. Then for all v∗ ∈
Sd−1 ∩M, we have

‖v̂ES − v∗‖2 ≤
2
√
2

λ
ρ
(
W , F̂

)
, (9a)

where the function ρ is defined in Eq. (3).
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(b) Let ξ ∈ [3/4, 1) such that Assumption 1 holds. We have

the minimax lower bound

inf
v̂

sup
v∗∈Sd−1∩M

E

[∥∥∥v̂v̂� − v∗v
�
∗

∥∥∥
F

]
≥
√
2(1− ξ)

4
·

min

{
1,

√
1 + λ

8λ2

·
√
log

( ∣∣Z∗

∣∣
maxz∈Z∗

∣∣NH(z; 2(1− ξ)k)
∣∣

)}
.

(9b)

Here, the infimum is taken over all measurable functions

of the observations {xi}ni=1, which are drawn i.i.d. from

the distribution D(λ;v∗).
Theorem 1(a) provides a deterministic upper bound on the �2

error between the estimate v̂ES and the ground truth v∗, show-

ing that this error can be bounded on the order ρ
(
W , F̂

)
for any

fixed λ. We provide the proof of this result in Section B1 of the

supplementary material. While the result is deterministic, we

will see that Eq. (9a) nearly matches the minimax lower bound

Eq. (9b) for our special cases of interest. Consequently, we use

Theorem 1(a) as a heuristic baseline to assess the performance

of efficient algorithms.

On its own, Theorem 1(b) provides a minimax lower bound

that depends on the local structure of M around any choice of

ground truth v∗. The proof uses the generalized Fano inequality

[46], and we construct a rich packing set Vε in Sd−1 ∩M
(i.e., V in Proposition 4 of Section B2 in the supplementary

material) such that the points in Vε are O(ε) separated in some

appropriate distance measure. In contrast to existing proofs for

sparse PCA [47] and path PCA [3], the set Vε here is constructed

so that there exists a common support index (i.e., the index

i∗, defined in Eq (6)) for every point v ∈ Vε that one can use

to construct the packing. On a related note, a paper by Cai

et al. [13] studies the minimax risk of a general structured

principal subspace estimation problem, including vanilla sparse

PCA as a special case. These bounds are phrased in terms

of critical inequalities that arise from local packing numbers

(see [50], [55]). Our lower bound instead takes a more global

approach, which we show suffices for union-of-linear structure.

In particular, the minimax lower bound (9b) is controlled by

the relative ratio between |NH(z; 2(1− ξ)k)| and |Z∗|: Our

assumption in Ineq. (8) avoids the scenario that many linear

subspaces heavily overlap on a few bases.

Finally, it is instructive to note that Theorem 1(b) recov-

ers the existing minimax lower bound for vanilla sparse PCA

[Theorem 2.1, 47]. Indeed, supposing that d� k and ap-

plying Theorem 1(b) for sparse PCA, we obtain the known

lower bound

inf
v̂

sup
v∗∈Sd−1,‖v∗‖0≤k

E

[∥∥v̂v̂� − v∗v
�
∗

∥∥
F

]

�min

{
1,

√
1 + λ

8λ2

√
k log d

n

}
. (10)

The proof of inequality (10) is provided in Section A.6.6

of Wang et al. [51] for completeness due to page limit.

Algorithm 1 Projected Power Method

Input: Sample covariance matrix Σ̂.

1: Initialize with a vector v0 ∈M∩ Sd−1.

2: for t= 0, 1, . . . , T − 1 do

3: Compute ṽt+1 = Σ̂vt/
∥∥Σ̂vt

∥∥
2
.

4: Project vM
t+1 =ΠM(ṽt+1).

5: Normalize to unit sphere vt+1 =
v
M

t+1

‖vM
t+1

‖2
∈

M∩ Sd−1.

6: end for

Output: vT .

In Section IV, we provide novel corollaries for tree-sparse PCA

and path-sparse PCA.

B. A Locally Convergent Projected Power Method

In Section III-A, we studied the fundamental limits of the

problem, where our upper bounds were achieved by the exhaus-

tive search estimator v̂ES. Given the computational challenge

of searching over every linear subspace L ∈ L, we propose

the following iterative projected power method (Algorithm 1)

and show that with access to a suitable exact projection or-

acle, it locally converges to a statistical neighborhood of the

ground truth.

Definition 3 (Exact projection): For all v ∈ R
d, let

ΠM(v) := argmin
v′∈M

‖v′ − v‖2 = argmin
v′∈Lm,m∈[M ]

‖v′ − v‖2,

where ties between subspaces are broken lexicographically.

Owing to the tie-breaking rule, this projection is always

unique. As we will see in Section IV, an exact projection oracle

ΠM can be constructed efficiently (in time nearly logarithmic

in M ) in some specific examples of union-of-linearly structured

PCA. We are now in a position to present the projected power

method, described formally in Algorithm 1.

Using the notation ρ(M , S) from Eq. (3), we define F ∗ :=
argmaxF ρ

(
W , F

)
s.t. F = conv

(
Lm1

∪ Lm2
∪ Lm3

)
, ∀m1,

m2,m3 ∈ [M ]. We now state the definition of a “good region”;

Theorem 2 to follow shows that once Algorithm 1 is initialized

in this region, it will converge geometrically to a neighborhood

of the ground truth v∗.

Definition 4 (Good region): For eigen gap λ > 2ρ(W , F ∗),
we define the good region

G(λ) =
{
v ∈M∩ Sd−1 : 〈v,v∗〉 ≥ t1(λ)

}
, where

t1(λ) :=
4

λ+ 1− ρ(W , F ∗)
+

5ρ(W , F ∗)

λ− 2ρ(W , F ∗)
.

Note that G(λ) becomes a larger set as λ increases. To en-

sure that such a good region is non-empty, it is necessary to

have t1(λ)< 1. In our proof of convergence (see Supplemen-

tary Material C), we require that the good region is not just
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non-empty but large enough. In particular, we require the eigen-

gap λ to be large enough so that

t2(λ) :=
4

λ+ 1− ρ(W , F ∗)
+

10ρ(W , F ∗)

λ− 2ρ(W , F ∗)
< 1. (11)

Note that this automatically ensures that t1(λ)< 1 since

t2(λ)> t1(λ). We are now poised to state our main result for

this subsection.

Theorem 2: Suppose the eigengap satisfies λ > 2ρ(W , F ∗),
and condition (11) holds. Suppose in Algorithm 4 the initial-

ization satisfies v0 ∈G(λ). Then for all t≥ 1, we have

‖vt+1 − v∗‖2 ≤
1

2t
· ‖v0 − v∗‖2 +

6ρ(W , F ∗)

λ− 2ρ(W , F ∗)
. (12)

The proof of Theorem 2 can be found in Section C. Once

(a) an exact projection oracle ΠM is accessible; and (b) an

initial vector v0 is in the good region G(λ), Theorem 2 ensures

a deterministic convergence result. Note that the result paral-

lels that of [59] for vanilla sparse PCA, where ρ(W , F ∗) =
O(
√
k log d/n). The key additional technique that we use to

control the error accumulated at each iteration is based on an

“equivalent replacement” step; see Section C2.

The projected power method was also recently analyzed by

Liu et al. [37] for PCA with generative models when given

access to an exact projection oracle. While they also proved lo-

cal geometric convergence results given access to a sufficiently

correlated initialization, there are significant differences in the

assumptions of that paper and our own. First, our work imposes

the union-of-linear structure assumption on the principal com-

ponent, which is an altogether different structural assumption

from a generative model. Given this, our proof techniques differ

significantly from those of Liu et al. [37]. Second, we present

a computationally efficient initialization method and matching

evidence of computational hardness for two prototypical exam-

ples; see below.

C. Initialization Method

Recall that Theorem 2 requires an initialization v0 in the

good region G(λ). In this subsection, we provide such an ini-

tialization method (see Algorithm 2) that works when given a

projection oracle, provided the following assumption holds.

Assumption 2: The set M satisfies

M⊆{v ∈ R
d : ‖v‖0 = k}, where k ∈ N.

Assumption 2 is not guaranteed by Definition 1, but in-

cludes many typical examples. For instance, the sets T k and

Pk for tree-sparse or path-sparse PCA, respectively, satisfy

Assumption 2 in addition to union-of-linear structure. More-

over, if the orthonormal matrix Φ is known, one can reformulate

the problem as estimating the structured-sparse vector Φ
�v∗

from observations {Φ�xi}ni=1 (see Remark 1).

Theorem 3: Suppose Assumption 2 holds and k2 ≤ d/e.

There exists a tuple of universal, positive constants

Algorithm 2 Initialization Method – Covariance Thresholding

with Projection Oracle

Input. {xi}ni=1, parameter k ∈ N, thresholding parameter τ and

exact projection ΠM.

1: Compute covariance matrix Σ̂=
∑n

i=1 xix
�
i /n.

2: Set the soft-thresholding matrix Ĝ(τ) as:

If Σ̂ij − [Id]ij ≥ τ/
√
n,

then [Ĝ(τ)]ij = Σ̂ij − [Id]ij − τ/
√
n;

else if Σ̂ij − [Id]ij ≤−τ/
√
n,

then [Ĝ(τ)]ij = Σ̂ij − [Id]ij + τ/
√
n;

else [Ĝ(τ)]ij = 0.

3: Compute v̂soft := max‖v‖2=1 v
�Ĝ(τ)v as the leading

eigenvector of Ĝ(τ).
4: Project v0 := ΠM(v̂soft)/‖ΠM(v̂soft)‖2.

Return v0 ∈ Sd−1 ∩M.

(C1, C2, C3, C) such that the following holds. Suppose n≥
max{C log d, k2} and let τ∗ := C1 max{λ, 1}

√
log(d/k2).

Set the thresholding level according to

τ :=

⎧
⎪«
⎪¬

τ∗ when τ∗ ≤
√
log d/2,

C2τ∗ when τ∗ ≥
√
log d/2,

0 otherwise.

(13)

Then for any 0< c0 < 1, if

n≥ n0(c0) :=
18C3 max{λ2, 1}k2

2(1− c0)2λ2
log(d/k2),

then the initial vector v0 ∈ Sd−1 ∩M obtained from

Algorithm 2 satisfies 〈v0,v∗〉 ≥ c0 with probability 1− C ′ exp
(−min{

√
d, n}/C ′) for some positive constant C ′.

The proof of Theorem 3, which builds on existing results

in [18], can be found in Section D. Let us now show that

the output of this algorithm serves as a valid initialization for

the projected power method, since this is not immediate given

that the event E1 = {〈v0,v∗〉 ≥ c0} depends on the samples

{xi}ni=1. Recall the quantities t1(λ) and t2(λ) in Definition 4

and Eq. (11), respectively. In Theorem 3, set c0 := t2(λ) and

recall that t2(λ)> t2(λ) by definition. Suppose λ≥ 5 for con-

venience. Then it can be shown that the event E2 = {t1(λ)<
t2(λ) = c0 < 7/8} ⊆ {ρ(W , F ∗)< 9/400} occurs with prob-

ability at least 1− C ′ exp(−min{
√
d, n}/C ′). Consequently,

on the high probability event E1 ∩ E2, we have that the initial-

ization v0 obtained by Algorithm 2 satisfies v0 ∈G(λ). The

projected power method can thus be employed after this initial-

ization to guarantee convergence to a small neighborhood of v∗.

A key feature of Theorem 3 is the lower bound n0 =
Θ(k2 log(d/k2)) on the number of samples required for the

Algorithm 3 to succeed. Note that this is of a strictly larger order

than the number of samples required information-theoretically
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Algorithm 3 Exact Projection Oracle – Path Sparse PCA

Input: A (d, k)-layered graph G, a vector v ∈ R
d.

1: for �= 1, . . . , k do

2: Pick S� the index set of the �-th layer in G.

3: Compute path sparsity vector vPS as follows: for its sub-

vector vPS

S�
, set

[vPS

S�
]i :=

⎧
⎪⎪«
⎪⎪¬

[vS�
]i if component i has

the largest absolute value,

breaking ties lexicographically

0 otherwise

.

4: end for

5: Normalize vPS := vPS/‖vPS‖2.

Output: vPS.

even for vanilla sparse PCA—this is a well-known phe-

nomenon. In the next section, we show that even with the addi-

tional structure afforded by tree and path sparsity, this larger

sample size is in some sense necessary for computationally

efficient algorithms.

IV. END-TO-END ANALYSIS FOR SPECIFIC EXAMPLES

In this section, we provide end-to-end analyses for path-

sparse and tree-sparse PCA, including results on their

information-theoretic limits of estimation as well as the

performance of the projected power method when initialized

using covariance thresholding. We complement these with

what may be considered as the main results of this section:

matching suggestions of computational hardness.

A. Path-Sparse PCA

1) Fundamental Limits for Path-Sparse PCA: Recall the

notation Pk as the structure set of path-sparse PCA from

Section II-A2. We write v ∈ Pk if the support set satisfies

supp(v) ∈ Pk. We use

v̂PS := argmax
v

v�
Σ̂v s.t. v ∈ Sd−1 ∩ Pk (14)

to denote the corresponding estimate from exhaustive search.

Corollary 1: There exists a pair of positive constants (c, C)
such that the following holds.

(a) Without loss of generality, assume 〈v∗, v̂PS〉 ≥ 0. Then

for any c1 > 0 and v∗ ∈ Sd−1 ∩ Pk, we have

∥∥v̂PS − v∗

∥∥
2
≤ C

(
1 + λ

λ

)√
3(ln d− ln k)k + c1k

n

with probability at least 1− 2 exp(−c1k).
(b) Suppose that d≥ 16k2 and k ≥ 4. Then we have the

minimax lower bound

inf
v̂

sup
v∗∈Sd−1∩Pk

E

[∥∥∥v̂v̂� − v∗v
�
∗

∥∥∥
F

]

≥ c ·min

⎧
«
¬1,

√
1 + λ

8λ2

√
k ·

(
ln d
2 − ln k

)

n

«
¬
­ .

Here, the infimum is taken over all measurable functions

of the observations {xi}ni=1 drawn i.i.d. from the distri-

bution D(λ;v∗).
Corollary 1(a) gives an upper bound on the estimation error of

v̂PS by showing that the statistical noise term2 ρ(W , P ∗) is

of the order (λ+ 1)
√

k · (ln d− ln k)/n. The minimax lower

bound obtained in Corollary 1(b) is of the same order as the

minimax lower bound given in [Theorem 1, 3] with the outer de-

gree parameter |Γout(v)|= (d− 2)/k. The full proof of Corol-

lary 1 is omitted due to space constraints, and can be found in

[Section A.6.1, Wang et al. 51].

As we can observe from Fig. 1, methods with path-sparse

projection outperform the methods with k-sparse projection

with respect to the performance metric point distance and prob-

ability of success, especially as dimension d and sparsity level

k increases.

2) Local Convergence and Initialization:

a) Exact Projection Oracle: We build the exact projection

oracle for path-sparse PCA ΠPk by picking the component

with the largest absolute value in each partition (layer) for a

given (d, k)-layered graph G. The formal procedure is given in

Algorithm 3 as follows, and has running time O(d).
Corollary 2: Suppose the initialization v0 in Algorithm 1

satisfies v0 ∈ Pk ∩ Sd−1 and 〈v0,v∗〉 ≥ 1/2. There exists a

tuple of universal positive constants (c, C1, C2, C3) such that

for λ≥ C1, n≥ C2k ln(d), and all t≥ 1, the iterate vt from

Algorithm 1 satisfies

‖vt − v∗‖2 ≤
1

2t
· ‖v0 − v∗‖2 + C3

√
k(2 ln d− ln k)

n
,

with probability at least 1− exp(−ck).
Corollary 2 is proved by applying Theorem 2, and the full

proof can be found in [Section A.6.2, Wang et al. 51].

The final problem is to obtain an initialization v0. To do

so, note that the set Pk satisfies Assumption 2, leading to the

following corollary of Theorem 3.

Corollary 3: Assume k2 ≤ d/e. There exists a pair of uni-

versal positive constants (C,C ′) such that if n≥max{C log d,
k2} and n≥ C ′ max

{
1, λ−2

}
log(d/k2)k2, then the

initial vector v0 ∈ Sd−1 ∩ Pk obtained from Algorithm 2

satisfies 〈v0,v∗〉 ≥ 7/8 with probability 1− C ′ exp(−min
{
√
d, n}/C ′).

In words, Corollary 3 provides an initialization method

whose outputs can be used for the general projected power

method (Algorithm 1) for path-sparse PCA when the number

of samples satisfies3 n� k2 log(d/k2).
As previously mentioned, there is a gap between the con-

dition n� k required for Corollary 2 and the stronger con-

dition above. We will now show evidence that k2 samples

are necessary. In particular, we will show that no randomized

2As expected, this term does not differ significantly from the corresponding
term for vanilla sparse PCA, since the number of sparsity patterns for path
sparse PCA |Pk| is on the order (d/k)k .

3The constant 7/8 in 〈v0,v∗〉 ≥ 7/8 can be replaced by any posi-
tive constant within (0, 1) provided it ensures the good region condition
〈v0,v∗〉> t2(λ).
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Fig. 1. Given the sparsity k, the number of nodes L in each layer, sample dimension d= L× k, and eigengap λ, we choose a particular path sparsity
support set P∗ ∈ Pk and set the ground truth vector v∗ as [v∗]i =± 1√

k
if i ∈ P∗ and [v∗]i = 0 if i /∈ P∗. Given a tuple of (λ, d, k, n), for each trial, we

generate samples from the distribution D(λ,v∗) based on the Wishart model in Section II, and we run Algorithm 2 (covariance thresholding) for initialization,
and Algorithm 1 (projected power method) with general k-sparse projection or with path-sparse projection for local refinement. Each trial is repeated 50
times independently. We set λ= 3 and choose (d, L, k) = (128, 16, 8), (288, 32, 9), (1280, 128, 10). For each choice of (d, L, k), we simulate for each
n= {20, 40, . . . , 200}. In the left column, we plot the �2 distance ‖vT − v∗‖2 versus the number of samples n. The two curves in each panel correspond
to the averaged values over 50 independent trials of the proposed methods with general k-sparse projection or with path-sparse projection; the shaded parts
represent the empirical standard deviations over 50 trials. As we can observe, using path-sparse projection achieves smaller estimation error (for a given,
small sample size) than using general k-sparse projection. In the right column, we further plot of the success probability of support recovery of the methods
using general k-sparse projection or using path-sparse projection verse the number of samples n. The support of v∗ is considered as successfully recovered
if supp(vT ) = P∗. The success probability is then computed as the ratio of the number of trials that successfully recover the support over 50 independent
trials. For a fixed small sample size, we observe that using path-sparse projection achieves higher success probability of support recovery compared with using
the vanilla k-sparse projection.
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polynomial-time algorithm can “solve” (i.e. produce a con-

sistent estimate for) path-sparse when n� k2, provided we

assume the average-case hardness of the secret-leakage planted

clique problem. This can be regarded as the main takeaway for

path-sparse PCA: The additional structure has minimal effect

on its statistical and computational limits.

3) Average-Case Hardness of Path Sparse PCA: This sec-

tion focuses on the average-case hardness of the path sparse

PCA, which is obtained via a reduction from the K-partite

planted clique (PC) detection problem, which is in turn con-

jectured to be hard.

Definition 5: Secret Leakage PCD Detection Prob-

lem, [10]. Given a distribution D on K-subsets of [N ], let

GD(N,K, 1/2) be the distribution on N -vertex graphs sampled

by first sampling G∼ G(N, 1/2) and S ∼D independently and

then planting a K-clique on the vertex set S in G. The secret

leakage PCD detect problem PCD(N,K, 1/2) is defined as the

resulting hypothesis testing problem between

H0 : G∼ G(N, 1/2) and H1 : G∼ GD(N,K, 1/2).

Now consider the following K-partite PC as a special case

of the secret leakage PCD detection problem.

Definition 6:K-Partite Planted Clique Detection Problem

(with source and terminal). The K-partite planted clique

detection problem K-PC(N,K, 1/2) is a special case of the se-

cret leakage planted clique detection problem PCD(N,K, 1/2).
Here the vertex set of G has two special vertices: source and

terminal, and the remaining vertices are evenly partition into

K parts of size (N − 2)/K. The distribution D always picks

source, terminal and uniformly picks one element at random in

each part.

Like the well-known planted clique conjecture, the K-Partite

PC problem K-PC(N,K, 1/2) is believed to satisfy the follow-

ing hardness conjecture.

Conjecture 1: K-Partite PC Hardness Conjecture, restate-

ment of [10]. Suppose that {AN} is a sequence of randomized

polynomial time algorithms AN : GN →{0, 1} and KN is a

sequence of positive integers satisfying that lim supN→∞ logN
KN < 1/2 with GN the set of graphs with N nodes. Then

if G is an instance of K-PC(N,KN , 1/2), it holds that

lim infN→∞ (PH0
[AN (G) = 1] + PH1

[AN (G) = 0])≥ 1.
Definition 7: Qualified Estimator. A qualified estima-

tor v̂(n, dn, kn, λn, ε) for path-sparse PCA is a sequence of

functions Estn : Rdn×n → R
dn mapping {xi}ni=1 �→ v̂ such

that if the set of samples {xi}ni=1 are drawn i.i.d. from

D(λn,v∗) for some v∗ ∈ Sdn−1 ∩ Pkn then lim infn→∞

Pr
{
‖v̂ − v∗‖2 < 1

4

}
≥ 1

2 + ε for some fixed 0< ε < 1/2.

From this point onward, we do not make ε explicit when

referring to a qualified estimator. It suffices for the reader to

think of it as a small positive constant that does not depend

on n. Geometrically, a qualified estimator v̂ exhibits proximity

to the ground truth v∗ ∈ Sdn−1 ∩ Pkn with probability at least

1/2 + ε as n→∞. Note that Definition 7 does not require

explicit control on the behavior of v̂ for a general vector v∗ /∈
Sdn−1 ∩ Pkn .

It is also worth noting (using Corollary 2 and Corollary 3

and the corresponding algorithms) that our end-to-end estimator

for path-sparse PCA is a polynomial-time computable qualified

estimator provided n≥ Ck2 log(d/k) and λ=Ω(1).
Proposition 1: There exists a universal constant c > 0 such

that the following holds. Let 1/2≤ β < 1 and 0< ε < 1/2 be

fixed. Here, we use integer j as our index parameter. Suppose

the sequence of parameters {(kj , dj , λj , τj)}j∈N is in the pa-

rameter regime

kj = �jβ�, dj = j, λj =
k2j

τj · j
· (log 2)2

4(6 log(j) + 2 log 2)
,

where τj is an arbitrarily slowly growing function of j. If the

K-Partite PC hardness conjecture (Conjecture 1) holds, then

there is no qualified estimator v̂(nj , dj , kj , λj , ε) running in

time polynomial in dj when the sample size nj satisfies nj ≤
c
(

k2
j

2τj log kj

)
.

The proof of Proposition 1 is given in Section E1 of the

Supplementary Material. In particular, when the eigengap sat-

isfies4 λ=Θ(1), it shows that n= Ω̃
(
k2
)

is necessary for

computationally efficient estimation.

B. Tree-Sparse PCA

1) Fundamental Limits for Tree-Sparse PCA: Recall the

notation T k as the set of all rooted binary subtrees in the

underlying complete binary tree from Section II-A1. We write

v ∈ T k if the support set of v satisfies supp(v) ∈ T k. Let

v̂TS := argmax
v

v�
Σ̂v s.t. v ∈ Sd−1 ∩ T k (15)

denote the estimator obtained from exhaustive search.

Corollary 4: There exists a pair of positive constants (c, C)
such that the following holds.

(a) Without loss of generality, suppose 〈v∗, v̂TS〉 ≥ 0. Then

for any c1 > 0 and v∗ ∈ Sd−1 ∩ T k, we have

∥∥v̂TS − v∗

∥∥
2
≤ C

(
1 + λ

λ

)
·
√

(3 + ln 2 + c1)k

n

with probability at least 1− 2 exp(−c1k).
(b) We have the minimax lower bound

inf
v̂

sup
v∗∈Sd−1∩T k

E

[∥∥∥v̂v̂� − v∗v
�
∗

∥∥∥
F

]

≥ c ·min

{
1

4
√
log k

,
1

4

√
1 + λ

8λ2

√
k/ log k

n

}
.

Here, the infimum is taken over all measurable functions

of the observations {xi}ni=1 drawn i.i.d. from the distri-

bution D(λ;v∗).
The full proof of Corollary 4 is provided in [Section A.6.3,

Wang et al. 51]. The term
√

k/n arises from evaluating the

cardinality of the set T k in tree-sparse PCA. In particular,

we have |T k| ≤ (2e)k/(k + 1) [5], and taking logarithms

4This can be ensured for dimension dj = j growing such that
kj

τjdj log dj
=

Θ(1).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 15,2025 at 20:26:50 UTC from IEEE Xplore.  Restrictions apply. 



3196 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 72, 2024

results in a logarithmic factor gain over vanilla sparse PCA.

Corollary 4(b) provides a minimax lower bound of

Ω(
√

k/(n log k)) for tree-sparse PCA, which has a

logarithm gap
√
1/ log k compared with the upper bound

in Corollary 4(a). This gap is small for small k, but we

conjecture that it can be eliminated.

Remark 2: Compared with the fundamental limits for

vanilla sparse PCA, the upper bounds for tree-sparse PCA in

Corollary 4 save a factor log d, which parallels the model-based

compressed sensing literature. The saving could be significant

in practice when d is large (see Fig. 2 to follow)—indeed, this is

one of the successes behind model-based compressive sensing.

2) Local Convergence and Initialization:

a) Exact Projection Oracle: We use the projection

method proposed in [15] as our tractable exact projection

oracle ΠT k for tree sparse PCA. This oracle has running

time O(kd). With our projection oracle in hand, we can now

state our corollaries for the projected power method for tree

sparse PCA.

Corollary 5: Suppose in Algorithm 1 that the initialization

v0 ∈ T k ∩ Sd−1 satisfies 〈v0,v∗〉 ≥ 1/2. There exists a tuple

of universal positive constants (c, C1, C2, C3) such that for

λ≥ C1, n≥ C2k and all t≥ 1, the iterate vt from Algorithm 4

satisfies

‖vt − v∗‖2 ≤
1

2t
· ‖v0 − v∗‖2 + C3

√
k

n
,

with probability at least 1− exp(−ck).
Corollary 5 can be derived directly from Theorem 2, but

we provide the full proof in [Section A.6.4, Wang et al. 51]

for completeness. We can also use the exact projection oracle

ΠT k to obtain the following corollary for our initialization

method.

Corollary 6: Assume k2 ≤ d/e. There exists a pair of uni-

versal positive constants (C,C ′) such that if n≥max{C log d,
k2} and n≥ C ′ max

{
1, λ−2

}
log(d/k2)k2, then Algorithm 2

returns an initial vector v0 ∈ Sd−1 ∩ T k satisfying 〈v0,v∗〉 ≥
1/2 with probability 1− C ′ exp(−min{

√
d, n}/C ′).

Like Corollary 3, it is straightforward to see that Corollary

6 follows from Theorem 3 by specifying c0 = 1/2.

Corollary 6 shows that provided n=Ω(k2), the output v0 ∈
Sd−1 ∩ T k satisfies the initialization condition required for

the subsequent projected power method to succeed. Putting

these two results together, we have produced an end-to-end and

computationally efficient algorithm that produces a statistically

efficient solution provided n=Ω(k2). The next section is con-

cerned with the question of whether the condition n=Ω(k2)
is necessary for polynomial-time algorithms.

3) SDP Hardness for Tree Sparse PCA: To understand the

aforementioned gap in sample size, we now provide a compu-

tational lower bound for a class of SDP solutions to tree-sparse

PCA, showing that they require on the order of k2 samples.

To make things formal, we consider the following sub-

class of tree sparse PCA problems: every entry of the k tree-

sparse ground truth unit vector v∗ only takes one of the

values {0,±k−1/2}. With knowledge of this side information in

addition to tree sparsity, the natural choice of exhaustive

estimator is given by the maximizer of the following optimiza-

tion problem:

max
v

v�
Σ̂v

s.t. ‖v‖22 = 1, ‖v‖0 = k

v(i)2 ≤ v(�i/2�)2 for all 2≤ i≤ d. (16)

The natural semidefinite programming (SDP) relaxation of the

program (16) is then given by

SDP(Σ̂) = max
M∈Rd×d

d∑

i=1

d∑

j=1

Σ̂ijMij

s.t.

d∑

i=1

M2
ii = 1

d∑

i=1

d∑

j=1

|Mij | ≤ k

M � 0d×d

Mii ≤M�i/2
�i/2


for all 2≤ i≤ d. (17)

It is well-known that for vanilla sparse PCA, the SDP attains

the best-known sample complexity among all polynomial time

algorithms. Proving a lower bound for this class of algorithms

is thus powerful—when this subclass of low-degree estimators

fails at the indicated threshold, it suggests a natural hardness

result.

Proposition 2: Suppose data X are drawn from the distri-

bution D(λ;v∗) with ground truth v∗ given by a k tree-sparse

unit vector with every entry of taking one of the values in the set

{0,±k−1/2}. There exists a tuple of universal positive constants

(c, c1, C, C1) such that for c1d≤ n≤ C1d, n≤ ck2 and 1≤
λ≤ d

Cn , the optimal solution M∗ of the SDP relaxation (17)

satisfies
∥∥M∗ − v∗v

�
∗

∥∥
2
≥ 1

5 with probability at least 1− c̃d−c̃

for some constant c̃≥ 1.

In words, Proposition 2 shows that unless the number of sam-

ples satisfies n≥ C ′k2 for some positive constant C ′ ≥ c, the

optimal solution M∗ of the SDP relaxation (17) fails to estimate

the ground truth consistently, even with the side information

that its entries take only one of three values. The full proof of

Proposition 2 can be found in [Section A.7.2, Wang et al. 51],

and is built on the techniques proposed in [Section 4, 38].

V. DISCUSSION

We studied the local convergence properties of the projected

power method in a general class of structured PCA problems.

We also established the fundamental limits of estimation in

this family of problems, and studied a general family of ini-

tialization methods. Our work generalizes these statistical and

algorithmic results from vanilla sparse PCA to this more general

class of models. We specialized our results to two commonly

used notions of structure—given by tree and path sparsity—

showing end-to-end estimation algorithms accompanied by ev-

idence of computational hardness.

Let us close with some potential questions for future in-

vestigation. The first is to generalize these results to other
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Fig. 2. Given the sample dimension d= 2L − 1, sparsity k, and eigengap λ, we choose a particular tree sparsity support set T∗ ∈ T k and set the ground
truth vector v∗ as [v∗]i =± 1√

k
if i ∈ T∗ and [v∗]i = 0 if i /∈ T∗. Given a tuple of (λ, d, k, n), for each trial, we generate samples from the distribution

D(λ,v∗) based on the Wishart model in Section II, and we run Algorithm 2 for initialization, and Algorithm 1 with general k-sparse projection or with
tree-sparse projection for local refinement. Each trial is repeated 50 times independently. We set λ= 3 and choose (d, k) = (255, 9), (511, 10), (1023, 13).
For each choice of (d, k), we simulate for each n= {20, 40, . . . , 200}. In the left column, we plot the �2 distance ‖vT − v∗‖2 versus the number of samples
n. The two curves in each panel correspond to the averaged values over 50 independent trials of the proposed methods with general k-sparse projection
or with tree-sparse projection; the shaded parts represent the empirical standard deviations over 50 trials. As we can observe, using tree-sparse projection
achieves smaller estimation error (for a given, small sample size) than using general k-sparse projection. In the right column, we further plot of the success
probability of support recovery of the methods using general k-sparse projection or using tree-sparse projection verse the number of samples n. The support of
v∗ is considered as successfully recovered if supp(vT ) = T∗. The success probability is then computed as the ratio of the number of trials that successfully
recover the support over 50 independent trials. For a fixed small sample size, we observe that using tree-sparse projection achieves higher success probability
of support recovery compared with using the vanilla k-sparse projection.
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Algorithm 4 Projected Power Method for Rank-r Case

Input: Sample covariance matrix Σ̂, rank parameter r.

1: Set Σ̂
(1)

= Σ̂.

2: for �= 1, . . . , r do

3: Compute ṽ(�) ← Algorithm 1 with current input co-

variance Σ̂
(�)

.

4: Orthogonalized current point

v(�) ← (Id −Q�−1Q
�
�−1)ṽ

(�)

‖(Id −Q�−1Q
�
�−1)ṽ

(�)‖2
with Q�−1 := (v(1)| · · · |v(�−1)) an orthogonal matrix.

5: Update covariance Σ̂
(�+1) ← Σ̂

(�) − λ(�)v(�)(v(�))�

with λ(�) = (v(�))�Σ̂
(�)

v(�).

6: end for

Output: v(1), . . . ,v(r).

forms of structured PCA [56]. Another natural direction is

to consider more than a single principal component. Progress

has been made towards establishing general fundamental limits

in these settings [13]; there are also natural analogs for the

projected power method in these settings and it would be in-

teresting to analyze it under a general structural assumption

along with statistical and computational limits. In particular,

for finding top-rk-sparse principal components, i.e., rank-r
case, similar to the spiked Wishart model used for rank-1 case,

we assume the covariance matrix Σ=
∑r

j=1 λjv
j
∗(v

j
∗)

� + I ,

where v
j
∗ ∈M for all j ∈ [r], 〈vj

∗,v
j′

∗ 〉= 0 with j �= j′ ∈ [r]
and λ1 > · · ·> λr > 0 (=: λr+1) with a fixed positive eigengap

∆ :=minrj=1{λj − λj+1}> 0.

• Without shared structure. Suppose the top-r principal

components do not have the same structure (i.e., we have

v
j
∗ ∈ L(j) ∈M, ∀ j ∈ [r], and corresponding linear sub-

space L(j) may not equal to L(j′) when j �= j′ ∈ [r]), we

can apply the proposed projected power method with an

additional deflation method (see Section 2.3.3 of Mackey

[40]). See Algorithm 4 below. An interesting direction for

future work is to extend our analysis techniques to handle

Algorithm 4.

• With shared structure. Suppose the top-r principal com-

ponents have the same structure, that is to say, there exists

a linear subspace L∗ ∈M such that all top-r principal

components satisfy v1
∗, . . . ,v

r
∗ ∈ L∗. In this case, solving

the exact projection subproblem

argmin
U∈Rd×r

‖V −U‖2F s.t. U ∈M, U�U = Ir

is challenging even for vanilla sparse PCA, and we are not

aware of an efficient algorithm.

Having said that, an inexact projected power method

ensures local convergence for vanilla sparse PCA (see

Theorem 3.1 of Ma [39]). It is an interesting open ques-

tion whether inexact projections suffice for path-/tree-

sparse PCA.

Algorithm 5 Intersection Verification for B or Φ

Input. L, each linear subspace L ∈ L is represented by dim(L)
independent vectors in L.

1: Initialize L(0) := ∅,B(0) := ∅, t= 0.

2: while |B(t)|< d do outer while-loop

3: Pick a linear subspace L(t) ∈ L\L(t).

4: while True do inner while-loop

5: Select L̃(t) ∈ L\{L(t)} uniformly at random with-

out replacement.

6: if L(t) ∩ L̃(t) �= {0} then

7: Compute three bases for L(t), L̃(t).

8: Update B(t+1) via adding the above three bases.

9: Update L(t+1) := L(t) ∪ {L(t), L̃(t)}.

10: Break inner while-loop.

11: end if

12: end while

13: end while

Output. B(t+1) or Φ with columns all bases in B(t+1).

APPENDIX

A. Time-Consuming Case in Section II

Example 1: Time-Consuming Case. Given L= {L1, . . . ,
Ld−1, Ld} with Li = span(φi, φi+1) for i= 1, . . . , d− 1 and

Ld = span(φ1, φd). Each linear subspace Li is known by given

two linearly independent but not necessarily orthonormal vec-

tors, say u
(i)
1 ,u

(i)
2 , in Li. As a result, for a given linear subspace

L, we do not know the index i ∈ [d] of this linear subspace

L based on the given vectors u
(·)
1 ,u

(·)
2 ∈ L. Hence the corre-

sponding two bases that spans this known linear subspace L is

unknown to us.

From the Example 1, if two linear subspaces L,L′ have a

non-zero intersection, i.e., L ∩ L′ �= {0}, then the base φ=
L ∩ L′ ∈ B is uniquely determined, and so as the rest two

bases in L,L′ respectively. Thus computing Φ from L :=
{L1, . . . , Ld−1, Ld} is equivalent to find out all bases φ ∈ B
via intersection verification. Since we do not know the index

corresponding to each linear subspace, to compute one base in

B, what we can do is to verify the intersection of two randomly

chosen linear subspaces. The detailed procedures of computing

the unknown orthonormal basis B are presented in the random-

ized algorithm 5.

Proposition 3: Expected Running Time of Algorithm 5.

Under the setting of L presented in Example 1, the expected

running time of Algorithm 5 is of order O(d3).
Thus, finding all bases takes more than d2/9 intersection ver-

ifications in expectation. Each intersection verification requires

O(d) time. Then the expected running time of computing Φ is

O(d3). In contrast, computing the exact projection of v onto

M takes O(d2) running time5. Therefore, the above analysis

illustrates that extracting Φ takes way more time than just

5Projecting onto a 1D linear subspace takes O(d) time, and there are d
linear subspaces in total.
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implementing the projection, which further explains why Φ is

not necessary to recover the true PC v∗.

Moreover, under the general setting of L= {L1, . . . , LM},

given a set of independent and not necessarily orthonormal

vectors u
(m)
1 , . . . ,u

(m)
dim(Lm) of each linear subspace Lm with

m ∈ [M ], it is unclear whether and how long one could find the

orthonormal basis Φ from L via solving the following variant

of dictionary learning problem (18),

min
Φ,R

∥∥∥[U (1) | · · · | U (M)]−Φ[R(1) | · · · | R(M)]
∥∥∥
2

F

s.t. ΦΦ
� = Id, ‖R(m)‖0 ≤ dim(Lm) ∀ m ∈M

,

(18)

where, for all m ∈ [M ], U (m) denotes the matrix with columns

u
(m)
1 , . . . ,u

(m)
dim(Lm) and ‖R(m)‖0 ≤ dim(Lm) denotes that the

number of non-zero rows of R(m) is at most dim(Lm).
Proof of Proposition 3: First, based on the setting of each

Li for i= 1, . . . , d, Li has non-zero intersection with Li−1 and

Li+1. Thus the expected number of selections (i.e., inner while-

loop (4)) for step (5) of Algorithm 5 satisfies

E[number of selections]

= 1 · 2

d− 1
+ 2 · d− 3

d− 1

2

d− 2
+ 3 · d− 3

d− 1

d− 4

d− 2

2

d− 3
+ · · ·

=
d−2∑

i=1

i · 2(d− i− 1)

(d− 1)(d− 2)
=

d

3
.

Every time we find L(t) ∩ L̃(t) �= {0}, in step (8) of

Algorithm 5, we can add three more new bases to B(t+1) if

L̃(t) /∈ L(t), and one more new base to B(t+1) if L̃(t) ∈ L(t).

Therefore, the number of outer while-loop (2) of Algorithm 5

satisfies

number of outer while-loop

= selection with 3 more bases + selection with 1 more bases.

Moreover, the stopping criteria of outer while-loop (2) of

Algorithm 5 ensures that the number of outer while-loop (2)

is greater than or equal to d/3, where the equality holds when

we can add three more new bases at every inner while-loop (4)

of Algorithm 5. Therefore, in expectation, the total number of

selections of Algorithm 5 satisfies

E[total number of selections]

= number of outer while-loop × E[number of selections]

≥ d2/9.

Since we do an intersection verification for each selection, and

an intersection verification takes O(d) running time, then the

expected total running time of computing Φ is O(d3). �
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