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Abstract— Motivated by decentralized sensing and policy
evaluation problems, we consider a particular type of dis-
tributed stochastic optimization problem over a network, called
the online stochastic distributed averaging problem. We design a
dual-based method for this distributed consensus problem with
Polyak—-Ruppert averaging and analyze its behavior. We show
that the proposed algorithm attains an accelerated deterministic
error depending optimally on the condition number of the
network, and also that it has an order-optimal stochastic
error. This improves on the guarantees of state-of-the-art
distributed stochastic optimization algorithms when specialized
to this setting, and yields—among other things—corollaries for
decentralized policy evaluation. Our proofs rely on explicitly
studying the evolution of several relevant linear systems, and
may be of independent interest.

I. INTRODUCTION

Consider an online, stochastic distributed averaging prob-
lem in which noisy data becomes available sequentially
to agents residing on a network. More precisely, we con-
sider a network (undirected connected graph) 4 = (A, &)
consisting of a set of nodes .4/ = {1,...,N} and a set
of edges & C A x .4, where each edge (i,j) € & is an
unordered pair of distinct nodes. The set of neighbors of node
i€ is denoted by A ={jec AN | (i,]) € &}. At every
time step t = 0,1,2,..., each node i € .4 receives a local
random vector R/ € R”, with mean vector E [R/] = y; € R"
and covariance matrix Cov [R/| = X; € R™". Of particular
interest will be the individual variances Gfl e an of the n
components of Ri. We assume that the local random vectors
are generated independently across time and nodes. The goal
is to iteratively estimate the average of the mean vectors
o= %2?1:1 U; at every node, via a distributed algorithm in
which the nodes can only communicate with their neighbors.
Such a setting is motivated by the following two particular
examples:

a) Distributed linear parameter estimation [2], [3]:
Here, we want to estimate a parameter vector * € R?
using observations from a network of N distributed sensors
modeled by a graph ¥ = (A,&). At time ¢ > 0, sensor
i € 4 makes an m;-dimensional noisy measurement

Y =AB* +¢,

where A; is an m; X d matrix known only to sensor #, and
g € R™ is a zero-mean noise vector, that is independent
across sensors and time, with covariance matrix X} € R™*™
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org/pdf/2207.11425.pdf.
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We work in the fully decentralized setting where each
sensor can only exchange data with its neighbors; there is no
central fusion center. The goal is for each sensor to have an
estimate of the unknown parameter 3*. To make the problem
well-posed when m; < d for all i € 47, we will assume
that the matrix YN | A;TA; is invertible (i.e. the “distributed
invertibilty” condition from [4]).

With ;== [A] Y] =AA;B*, we have

NE%“

Thus, each sensor can form an estimate of §* by estimating
the global averages A := %Z_?/:lA,'TAi and fi := %Z{-V:l ;.
The problem of estimating A and fi are covered by our
setting. We will present finite-time bounds on how accurately
B* can be approximated given each sensor’s estimates of A
and [i.

b) Decentralized multi-agent policy evaluation [5], [6]:
A central problem in reinforcement learning is to estimate
the value function of a given stationary policy in a Markov
decision process, often referred to as the policy evaluation
problem. Because the policy is given and applied automati-
cally to select actions, such a problem is naturally formulated
as value function estimation in a Markov reward process
(MRP).

Here, N agents operate in a common environment modeled
by a finite MRP consisting of a set of states . ={1,--- ,n}, a
state transition matrix P € [0, 1]"*", rewards r; € R" for agent
i € ./ being in each state, and a discount factor y € [0,1). We
again work in the decentralized setting where agents can only
communicate with their neighbors in a network ¥ = (.4, &).
Their goal is to cooperatively estimate the value function
J*: ¥ — R defined for all s € .7 as

J(s):=E li Y7, ls0 :s] ,

t=0

1Y
=S LA A
B N;

where 5,41 ~ P(s;,-) for all # > 0 and 7; is the j-th component
of 7:= %):?/:1 r;. It is known that J* solves the Bellman
equation

J=F+yPJ (1)

meaning J* = (I—yP) 'F.

In the learning setting, P and ry,...,ry are unknown, and
we instead assume access to a black box simulator. This
observation model is often referred to as the generative model
[7]: for each time step > 0 and for each state j € .7, each
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agent i € ./ observes a common random next state X; ; ~
P(j,"), and a local random reward R; ; with mean r;; and
variance Gf ;- We assume that the local random rewards are
generated independently across time and agents.

A natural approach for solving this problem is to use

the samples collected to construct estimates (ﬁ?) of the

pair (P,7), and then plug these estimates into the Bellman
equation [8]. The problem of estimating 7 in a decentralized
manner is covered by our framework, and we will provide
finite-sample bounds on how precisely J* can be approxi-
mated given each agent’s estimates of the pair (P,7).

A. Related work

There has been much recent interest in developing dis-
tributed algorithms for applications in robotics [9], power
system control [10] and multi-agent reinforcement learning
[5]. This is motivated mainly by the emergence of large-
scale networks, where large amount of data are involved, and
generation and processing of information is not centralized.
Notable among these are those algorithms that can be used
by a group agents to reach a consensus in a distributed
manner. The distributed consensus problem has been studied
extensively in the computer science literature [11] and has
found a number of applications including coordination of
UAVs [12], information processing in sensor networks [13],
and distributed optimization [14].

The distributed averaging problem is a special case in
which the goal is to compute the exact average of the
initial values of the agents via a distributed algorithm. The
most common distributed averaging algorithms are linear and
iterative, which can be classified as deterministic or random-
ized. Several well-known deterministic distributed averaging
algorithms were proposed and analyzed in [15], [16], [17],
[18], [19], where at each time step, every agent takes a
weighted average of its own value with values received from
some of the other agents. For other deterministic algorithms,
we refer the reader to [19] and the references therein. There
are also two popular randomized algorithms, where at each
time step, either two randomly selected nodes interchange
information [20], or a randomly selected node broadcasts
its value to all its neighbors [21]. For a discussion of other
randomized algorithms, we refer the reader to [22] and the
references therein.

Many existing algorithms for distributed averaging require
that agents are able to receive precise measurement values.
However, constrained by limited sensing, agents might only
be able to observe noisy measurements. Moreover, modern
distributed systems involve a large amount of data available
in a sequential order. As each agent is subject to computation
and storage constraints, it needs to process and distribute
information received in an online fashion. Motivated by these
considerations, in this paper, we study the natural online
stochastic distributed averaging problem described above.

Our framework can be viewed as a special case of
distributed stochastic optimization. The goal of distributed
optimization is to minimize a global objective function given
as a sum of local objective functions held by each agent, in

a distributed manner. The distributed optimization problem
has been studied for a long time and can be traced back
to the seminal works [15], [16] in the context of parallel
and distributed computation. It has gained growing renewed
interest over the last decade due to its various applications in
power systems [23], communication networks [24], machine
learning [25], and wireless sensor networks [26]. Recent
reviews can be found in the surveys [27], [28] and the books
[29], [30].

Distributed deterministic optimization is quite well un-
derstood with many centralized algorithms having their de-
centralized counterparts. For example, there exist distributed
subgradient methods [31], gradient methods [32], and many
variants of accelerated gradient methods [33], [34], [35],
which achieve both communication and oracle complexity
lower bounds.

Optimal methods using a primal approach for smooth and
strongly convex distributed stochastic optimization over net-
works were recently proposed and analyzed by [36] and [37].
There are also methods using dual approach [38], [39], which
are akin to the methods we develop and analyze in this paper
(for the special class of quadratic functions). Sections II and
IIT provide detailed discussions of similarities and differences
between our results and this body of work. In short, the
dual approaches [38], [39] achieve optimal communication
complexity in the general distributed optimization setting but
fall short in terms of their oracle complexity.

B. Contributions

In this paper, we follow the dual approach of [33] and
propose a stochastic dual accelerated method using con-
stant step-size and Polyak—Ruppert averaging for the online
stochastic distributed averaging problem. We establish non-
asymptotic convergence guarantees with explicit dependence
on the network connectivity parameter and noise in the
observations. Our analysis builds on a discrete-time dynam-
ical system representation of the algorithm and relies on
explicitly studying the evolution of several relevant linear
systems, which may be of independent interest. Our mean-
squared error upper bounds provide tight guarantees on the
bias and variance term for the algorithm. We show that (i)
the bias term decays linearly at an accelerated rate with
_T

K(L)
of the network and its precise definition is

exponent & | — , where k(L) is the condition number

iven in Section

n 2

.. . . i max;c g OF
II, (ii) the variance term achieves the & Ljo i v Oij
rate up to a higher order term in 7 and (iii) the convergence
rate of the algorithm is optimal. Moreover, we show that
our method outperforms a state-of-the-art primal acceler-
ated method called D-MASG in a relevant non-asymptotic
regime where T =< /k(L). Furthermore, when assuming
that 67; = o7 for all i #i' € A and je {1,....n},
=Y 0'31-, we show that our method has

o~

and letting ©

optimal per-node oracle complexity & (%2 and optimal

communication complexity & (\/ k(L)In (1)), where € >0
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is the desired accuracy. In contrast, when specialized to
our setting, state-of-the-art dual accelerated methods [38],
namely, R-RRMA-AC-SA? and SSTM_sc, have the same
communication complexity & ( v/ k(L)In (%)) as our algo-
rithm, but can only be shown to have much larger per-node
oracle complexity & (K(L)g—z2

II. STOCHASTIC DUAL ACCELERATED METHOD

In this section, we first cast distributed averaging as dis-
tributed optimization with quadratic local objective functions,
which is a well-known correspondence. Then, we follow
[33], [40] and use the dual formulation of the distributed
optimization problem to design an algorithm that can be exe-
cuted for the online stochastic distributed averaging problem.

First, notice that the target vector fI = %Z{»\;l U; is the
unique optimal solution of the optimization problem

= 0 — 1|3, 2

min > Z 16 — il|3 2)

A standard way to solve problem (2) in a decentralized
setting is rewriting the problem as

L g 2

913“59~2;H9 will3- 3)
In this paper, consider a dual approach for problem (3),
which uses a decentralized communication scheme based
on the gossip algorithm [20]. More specifically, during a
communication step, each node i € .4 broadcasts an n-
dimensional vector to its neighbors and then computes a
linear combination of the values received from its neighbors:
node i sends O’ to its neighbors and receives ¥, e Li, 07
One round of communication over the network can be
represented as multiplying the current estimates with a gossip
matrix L= [L; ;] € RV*V_ In order to encode communication
constraints imposed by the network, we impose standard
assumptions on L [33], [40]:

1. L is symmetric and positive semi-definite,

2. The kernel (i.e. nullspace) of L is the set of constant
vectors,
3. L is defined on the edges of the network: L; ; # 0 only
ifi=jor(i,j)eé&.
The second condition will ensure consensus among agents
and also allow us to rewrite the consensus agreement con-
straint 8! = ... = 6" in a convenient way. Note that a simple
choice of the gossip matrix—which underlies our choice of
notation—is the the graph Laplacian matrix for ¢, but other
choices satisfying the above conditions are also valid.

We will denote by 0 = Ay(L) < Ay_1(L) < --- < A1 (L)
the spectrum of L. Let k(L) := l’l (L()> be the ratio between
the largest and the second smallest eigenvalue of L. This
quantity is the condition number of L in the space orthogonal
to ker(L), and characterizes the connectivity of the network
and how fast the information is spread over the network.
Since L is a real symmetric matrix, it can be decomposed as
L=QAQ", where A :=diag(A(L),...,Ay(L)) is a diagonal
matrix whose entries are the eigenvalues of L and Q is the

orthogonal matrix whose i-th column is the eigenvector of L
associated with A;(L). Such a decomposition is not unique
when the eigenvalues are not distinct; in this case, it suffices
to choose any valid decomposition.

We observe that the equality constraint 8! = ... = @V is
equivalent to ( ®+/L ) ® =0, where VL := Qf Q I, is
the n X n identity matrix, ® is the the Kronecker product and
® :=vec [61 e GN]T € RV Here, we use v/L instead of
L because we will later square it via the change of variables,
and vec(A) is the vectorization of a matrix A obtained by
stacking the columns of the matrix A on top of one another.
This observation leads to the following primal problem:

1y
min — 0 — 3
in, 5 L 10u “

s.t. (In ® fL) ®—0.

The Lagrangian function ¢ associated with problem (4) is
given by

fézne' w327 [(nevi)e)

N . 2 . T .
=X [5l00 w0y
i=1

where 4 € RV is the Lagrange multiplier vector and X :=
vec ([xl . xN} M= (In & ﬁ) A. Since strong duality holds,
the convex program (4) can be equivalently written in its dual
form:

(&)

max min ¢(®,1)
AERN @eRN"

—— min {;QLT(In@L)/I—&- [(&@ﬁ)url},

AERNn

(6)

where U :=vec ([Hl . -[JNJ T). Note that a gradient step with
step-size 7 > 0 for problem (6) is

hevr=d=n (L VL) (L@ VL) A +u,

and the change of variables X; := (In®ﬁ) A: yields the
iteration

X1 =X —1 (L QL) (X, +1u). (8)

Since p is unknown in the online stochastic distributed
averaging problem, Eq. (8) is not directly applicable. How-
ever, we have access to samples {R!,...,RV} at every time
step t > 0. Thus, a natural way to obtain the stochastic
version of (8) is to replace u with its unbiased estimator
i 1= vee ([R! ...Ry]TS

While the above calculations provide transparent intuition
on which to base algorithm design, our proposed algorithm
is the stochastic dual accelerated method (SDA) presented
in Algorithm 1, which involves a more sophisticated (but
still simple) iteration. In particular, it relies on Nesterov’s
accelerated gradient method [41] with constant step-size,
used in conjunction with Polyak—Ruppert averaging of the
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Algorithm 1 Stochastic Dual Accelerated Algorithm (SD2)
1: Input: number of iterations 7 > 0, “burn-in” time Ty €
[0,T — 1], gossip matrix L € RNV step-size > 0 and
momentum parameter § > 0.
2: Initialization: each agent i € ./ initializes x}) =y =
0eR".
3: fortr=0,---,T—1do
for agent i € ./ do
5: observes a local random vector R! and executes
the local update:

6, =x +R.

6: exchanges 6/ with each agent j € .4 and exe-
cutes the local updates:

Y L 6/,

jeAuli}

i o
Vi1 =% —1

x§+1 = Y§+1 +¢ <y§+1 _Y§) .
end for
8: end for
9: Output: 6} := L ¥/ 1 6/ forall i € 4.

last T — Ty iterates [42]. SDA is a stochastic variant of the
single-step dual accelerated algorithm proposed and analyzed
in [33], which was developed for smooth and strongly convex
distributed deterministic optimization. While both algorithms
are similar in spirit, the analysis of SDA uses completely
different techniques, since it applies to the stochastic setting
for a special class of quadratic functions, as opposed to
the deterministic setting for general smooth and strongly
convex functions. The analysis in this paper builds on a
dynamical system representation of the algorithm and relies
on explicitly studying the evolution of several relevant linear
systems, and may be of independent interest.

III. MAIN RESULTS

In this section, we begin by stating our theorem regarding
the performance of SDA, and discussing some of the con-
sequences of this result. In order to state our theorem, we
require the following definition:

Definition 1: k* is the smallest positive integer such that
for all integer k > k*:

k k
k 1 1
<l+\/K(L)+1> <1_ K(L)) <<1_2«/K‘(L)> '

Note that k* is well-defined and there exists an absolute
constant C > 1 such that k* <C-/x(L) (see Lemma 3 and
its proof in the full version [1] of this paper). Now, we are
ready to present the finite-time performance bound of SDA

in the following theorem.
Theorem 1: Consider running SDA with the following
and § = %;i, where

k* is defined according to Definition 1. Let {5%}1-6,,/ be

parameters: Ty = % >k, n= yries

generated by SDA. Then we have
16K‘ LN _
[ ~a ] <MK T Y Jw-al ©
i=1

+24(k*+\/ ) i= IZ 12/+22?:

See Section 5.1 in [1] for a proof. It is worgl making a
few comments on this theorem To simplify the discussion,
we assume that G,j = G/ for all i£i{ € A and j=
1,...,n, and let o2 ": o; J. Such an assumption is
similar to the standard assumption in distributed stochastic
optimization that the stochastic first-order oracle has finite
variance bounded by o2, i.e., the variance of the stochastic
(dual) gradient is bounded by &2.

Remark 1: Let us interpret the terms appearing in the
bound (9). Since k* <C-+/x(L) for some absolute constant
C > 1, the upper bound (9) simplifies to

Noooo 2
e[ a -

. _ N+/k(L)o?
( K<LZ||ui—u||§>+ﬁ<T§)+

“bias" “variance"

2
| MaXic v O;;

(10)
o2

This bound is presented in terms of two components: a bias
term which is deterministic and independent of the noise
level, and a variance term that measures the effect of noise
on the algorithm. Note that our proposed method achieves

an accelerated & T(L> linear decay rate in the bias
K
term—in the sense that it depends on /(L) rather than

2 . .
k(L)—as well as an O ("7 decay rate in the variance

term, up to the higher-order term in 7. In fact, we can see
from the variance term that the higher—order term in T, i.e.

2
% % prov1ded TZNyx

Remark 2: We argue that the convergence rate of SDA is
optimal. We first consider the noiseless setting where 6> = 0.
It follows from Eq. (10) that our algorithm has a linear

is dominated by %

convergence rate O

z(L) . The proof of Theorem 2
in [33] implies that there exist a gossip matrix L and local
functions f; in the special class of quadratic functions con-
sidered in Section II such that for any black-box distributed
optimization algorithm using L, the convergence rate is at
)

least Q <e Thus, the bias term achieves the optimal

rate. Next, we consider the noisy setting where 6> > 0.
Suppose the network is fully connected (or the graph is
complete), then every node can be viewed as the center node
that receives information from every other node and thus the
distributed setting is reduced to the centralized setting for
every node. Standard information-theoretic lower bounds on
estimating Gaussian means then yield a lower bound Q (%2

(see also classical results due to [43]). Therefore, the rate of
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the variance term is optimal up to the higher-order term in
T.

Remark 3: The primal accelerated method named
D-MASG [36] is known to be asymptotically optimal
for smooth and strongly convex distributed stochastic
optimization problems [44]. If we apply Corollary
18 of [36] to our setting, we obtain that the
estimates {{i}}Y | generated by this algorithm satisfy

T
E[XY, A -alh] = o <e VA 4 NELEG® | a2 while
the primal approach D-MASG and the dual approach
SDA are rate-optimal for the online stochastic distributed
averaging problem, their non-asymptotic behaviors can be
significantly different. For example, in the non-asymptotic
regime where T < \/k(L)—which is the relevant regime
given the accelerated rate of deterministic error—the upper

bound on our algorithm scales as & (NT"Z), which is much

better than the upper bound & (N (‘72) known to be achieved
by D-MASG.

Remark 4: 1t is useful to compare with dual accelerated
methods for smooth and strongly convex distributed stochas-
tic optimization, R—~RRMA-AC-SA? and SSTM_sc [38]. Ap-
plying Corollary 5.8 (for R-RRMA-AC-SA?) and Corollary
5.14 (for SSTM_sc) from [38] to our setting, the oracle com-
plexity (the number of oracle calls per node) and commu-
nication complexity (the number of communication rounds)
for both methods are & (K(L)%j) and O (y/K(L) In (é)),
where € > 0 is the desired accuracy. Since these methods
use batched stochastic dual gradients, let us make a small
modification to SDA so as to facilitate a fair comparison.
Specifically, suppose we change line 5 of SDA to: each agent
i observes a batch local random vectors {R l} 1~ of size my,
and executes the local update 6] = x! + —- o le (R, Under

this modification, if we set T = ﬁ(\/K(L)ln(é)) and

_ c _
mt—ﬁ(e K(L)ln(é)) forallt=0,...,T

N 2
1 implies that E {Z?’l HG} _ﬁHzl < 0 (€). Therefore, the

— 1, then Theorem

batched version of our method has oracle complexity & (%2)

and communication complexity & (\/ k(L)In (é)) While
our method and the ones above have the same communica-
tion complexity, the oracle complexity of our method is much
smaller since it is independent of the condition number k(L)
of the network and its dependence on &€ is % instead of 8% It
is also worth noting that the batched version of our method

achieves the oracle complexity lower bound Q (%2 and the

communication complexity lower bound Q (\/K(L)ln (é))
simultaneously for our specific class of distributed stochastic
optimization problems.

We now turn to describing how we can apply Theorem 1
to the two examples introduced in Section I to obtain their
finite-time performance bounds. Due to the page limit, the
corollaries and their proofs are omitted; see the full version
[1] for details.

a) Distributed linear parameter estimation: We cover
how to generate an estimate of B* = A~'fi at each sen-
sor in this setting by estimating the global averages A =
;,ZN ATA and i = sz | Mis respectively. We ﬁrst run
SDA with local variables Ri = A;"A; for all 1 =0,. -1
and i € .4 to obtain the estimates {AT,},G y of A Since
R! is deterministic, iterate averaging is not necessary for the
algorithm to converge. So we let SDA output the final iterates.
Applying Theorem 1, we obtain the linear convergence
bound

N o _12

Y |4y -4 <o e
4 2

i=1

We assume that 7’ is chosen large enough such that
A~ leHA —AH < § for all i € .#. Consequently,
is invertible for all i € /V Indeed, since A is assumed to
be invertible, we have X’T, =A LIJrA_l (A\’T, 7A>] , which
implies that the invertibility of AiT, is equivalent to the in-
vertibility of 7+A~"! (Xi —A) Since HA ( fA) H

HA’IHZ HA\ZT/ —AHZ < %, the matrix 7+ A~! (A’T, —A) has
strictly positive eigenvalues and thus is invertible.

Next, we run SDA with local random variables Ri =AY/
for all r =0,...,7—1 and i € .4 to obtain the estimates
{f:-}icy of fi. Noting that R! has zero mean and covariance
matrix AYLA;, the individual variance O'fj is the j-th

element on the principal diagonal of A?ZiAi. Finally, each

1 N T 2
VeD) A»A-—AH RS
;H A ). an

o~

sensor i computes its own estimate E}’T, = (A’T,) 1,17} of
the unknown parameter f3*.

b) Decentralized multi-agent policy evaluation: In this
setting, we first construct an unbiased estimator ﬁT of the
true transition matrix P using the common state transition
samples. For r =0,--- , T — 1, each agent i € ./ uses the set
of sample state transitions {X; j|j € ./} to form a random
binary matrix Z, € {0,1}"*", in which row j has a single
non-zero entry corresponding to the index of the sample
X; ;. Thus, the location of the non-zero entry in row j is
drawn from the probability distribution P(j,-). Based on
these observations we define the common sample transition
matrix PT T Z,T 01 Z;. Next, we run SDA with local random
[R;l, R;‘,, for all 1 =0,...,T — 1 and
i € .4 to obtain estimates {’r’T} of 7. Finally, each
agent i “plugs in” the estimates (PT,rT) into the Bellman
equation (1) to obtain the value function estimate JT

(1- yPT)il’r"T.

vectors Ri :=

IV. DISCUSSION

Let us conclude by mentioning a two future directions.
One drawback of our setting is that the communication
network is static. In many applications, the underlying con-
nectivity structure of the network may vary with time, so
a future direction is to extend our approach to this more
challenging setting. Another drawback, from the perspective
of distributed optimization, is that our setting only considers
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the special class of quadratic objective functions. Thus, a
natural next step is to generalize our dual method to strongly
convex and smooth local objective functions. This would
allow us to make progress on the design of optimal dual-
based algorithms under this setting, which is known to be an
open problem in the literature [44].
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