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Abstract— Motivated by decentralized sensing and policy
evaluation problems, we consider a particular type of dis-
tributed stochastic optimization problem over a network, called
the online stochastic distributed averaging problem. We design a
dual-based method for this distributed consensus problem with
Polyak–Ruppert averaging and analyze its behavior. We show
that the proposed algorithm attains an accelerated deterministic
error depending optimally on the condition number of the
network, and also that it has an order-optimal stochastic
error. This improves on the guarantees of state-of-the-art
distributed stochastic optimization algorithms when specialized
to this setting, and yields—among other things—corollaries for
decentralized policy evaluation. Our proofs rely on explicitly
studying the evolution of several relevant linear systems, and
may be of independent interest.

I. INTRODUCTION

Consider an online, stochastic distributed averaging prob-

lem in which noisy data becomes available sequentially

to agents residing on a network. More precisely, we con-

sider a network (undirected connected graph) G = (N ,E )
consisting of a set of nodes N = {1, . . . ,N} and a set

of edges E ¦ N ×N , where each edge (i, j) ∈ E is an

unordered pair of distinct nodes. The set of neighbors of node

i ∈ N is denoted by Ni = { j ∈ N | (i, j) ∈ E }. At every

time step t = 0,1,2, . . ., each node i ∈ N receives a local

random vector Ri
t ∈ R

n, with mean vector E
[
Ri

t

]
= µi ∈ R

n

and covariance matrix Cov
[
Ri

t

]
= Σi ∈ R

n×n. Of particular

interest will be the individual variances σ2
i,1, . . . ,σ

2
i,n of the n

components of Ri
t . We assume that the local random vectors

are generated independently across time and nodes. The goal

is to iteratively estimate the average of the mean vectors

µ̄ := 1
N ∑

N
i=1 µi at every node, via a distributed algorithm in

which the nodes can only communicate with their neighbors.

Such a setting is motivated by the following two particular

examples:

a) Distributed linear parameter estimation [2], [3]:

Here, we want to estimate a parameter vector β ∗ ∈ R
d

using observations from a network of N distributed sensors

modeled by a graph G = (N ,E ). At time t g 0, sensor

i ∈ N makes an mi-dimensional noisy measurement

Y i
t = Aiβ

∗+ ε i
t ,

where Ai is an mi × d matrix known only to sensor i, and

ε i
t ∈ R

mi is a zero-mean noise vector, that is independent

across sensors and time, with covariance matrix Σi
ε ∈R

mi×mi .

The full version [1] of this paper can be found at https://arxiv.
org/pdf/2207.11425.pdf.
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We work in the fully decentralized setting where each

sensor can only exchange data with its neighbors; there is no

central fusion center. The goal is for each sensor to have an

estimate of the unknown parameter β ∗. To make the problem

well-posed when mi < d for all i ∈ N , we will assume

that the matrix ∑
N
i=1 Ai

¦Ai is invertible (i.e. the “distributed

invertibilty” condition from [4]).

With µi := E
[
A¦

i Y i
t

]
= A¦

i Aiβ
∗, we have

β ∗ =

(
1

N

N

∑
i=1

Ai
¦Ai

)−1(
1

N

N

∑
i=1

µi

)
.

Thus, each sensor can form an estimate of β ∗ by estimating

the global averages Ā := 1
N ∑

N
i=1 A¦

i Ai and µ̄ := 1
N ∑

N
i=1 µi.

The problem of estimating Ā and µ̄ are covered by our

setting. We will present finite-time bounds on how accurately

β ∗ can be approximated given each sensor’s estimates of Ā

and µ̄ .

b) Decentralized multi-agent policy evaluation [5], [6]:

A central problem in reinforcement learning is to estimate

the value function of a given stationary policy in a Markov

decision process, often referred to as the policy evaluation

problem. Because the policy is given and applied automati-

cally to select actions, such a problem is naturally formulated

as value function estimation in a Markov reward process

(MRP).

Here, N agents operate in a common environment modeled

by a finite MRP consisting of a set of states S = {1, · · · ,n}, a

state transition matrix P∈ [0,1]n×n, rewards ri ∈R
n for agent

i∈N being in each state, and a discount factor γ ∈ [0,1). We

again work in the decentralized setting where agents can only

communicate with their neighbors in a network G = (N ,E ).
Their goal is to cooperatively estimate the value function

J∗ : S → R defined for all s ∈ S as

J∗(s) := E

[
∞

∑
t=0

γ t r̄st |s0 = s

]
,

where st+1 ∼P(st , ·) for all t g 0 and r̄ j is the j-th component

of r̄ := 1
N ∑

N
i=1 ri. It is known that J∗ solves the Bellman

equation

J = r̄+ γPJ (1)

meaning J∗ = (I − γP)−1
r̄.

In the learning setting, P and r1, . . . ,rN are unknown, and

we instead assume access to a black box simulator. This

observation model is often referred to as the generative model

[7]: for each time step t g 0 and for each state j ∈ S , each
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agent i ∈ N observes a common random next state Xt, j ∼
P( j, ·), and a local random reward Ri

t, j with mean ri, j and

variance σ2
i, j. We assume that the local random rewards are

generated independently across time and agents.

A natural approach for solving this problem is to use

the samples collected to construct estimates
(

P̂, r̂
)

of the

pair (P, r̄), and then plug these estimates into the Bellman

equation [8]. The problem of estimating r̄ in a decentralized

manner is covered by our framework, and we will provide

finite-sample bounds on how precisely J∗ can be approxi-

mated given each agent’s estimates of the pair (P, r̄).

A. Related work

There has been much recent interest in developing dis-

tributed algorithms for applications in robotics [9], power

system control [10] and multi-agent reinforcement learning

[5]. This is motivated mainly by the emergence of large-

scale networks, where large amount of data are involved, and

generation and processing of information is not centralized.

Notable among these are those algorithms that can be used

by a group agents to reach a consensus in a distributed

manner. The distributed consensus problem has been studied

extensively in the computer science literature [11] and has

found a number of applications including coordination of

UAVs [12], information processing in sensor networks [13],

and distributed optimization [14].

The distributed averaging problem is a special case in

which the goal is to compute the exact average of the

initial values of the agents via a distributed algorithm. The

most common distributed averaging algorithms are linear and

iterative, which can be classified as deterministic or random-

ized. Several well-known deterministic distributed averaging

algorithms were proposed and analyzed in [15], [16], [17],

[18], [19], where at each time step, every agent takes a

weighted average of its own value with values received from

some of the other agents. For other deterministic algorithms,

we refer the reader to [19] and the references therein. There

are also two popular randomized algorithms, where at each

time step, either two randomly selected nodes interchange

information [20], or a randomly selected node broadcasts

its value to all its neighbors [21]. For a discussion of other

randomized algorithms, we refer the reader to [22] and the

references therein.

Many existing algorithms for distributed averaging require

that agents are able to receive precise measurement values.

However, constrained by limited sensing, agents might only

be able to observe noisy measurements. Moreover, modern

distributed systems involve a large amount of data available

in a sequential order. As each agent is subject to computation

and storage constraints, it needs to process and distribute

information received in an online fashion. Motivated by these

considerations, in this paper, we study the natural online

stochastic distributed averaging problem described above.

Our framework can be viewed as a special case of

distributed stochastic optimization. The goal of distributed

optimization is to minimize a global objective function given

as a sum of local objective functions held by each agent, in

a distributed manner. The distributed optimization problem

has been studied for a long time and can be traced back

to the seminal works [15], [16] in the context of parallel

and distributed computation. It has gained growing renewed

interest over the last decade due to its various applications in

power systems [23], communication networks [24], machine

learning [25], and wireless sensor networks [26]. Recent

reviews can be found in the surveys [27], [28] and the books

[29], [30].

Distributed deterministic optimization is quite well un-

derstood with many centralized algorithms having their de-

centralized counterparts. For example, there exist distributed

subgradient methods [31], gradient methods [32], and many

variants of accelerated gradient methods [33], [34], [35],

which achieve both communication and oracle complexity

lower bounds.

Optimal methods using a primal approach for smooth and

strongly convex distributed stochastic optimization over net-

works were recently proposed and analyzed by [36] and [37].

There are also methods using dual approach [38], [39], which

are akin to the methods we develop and analyze in this paper

(for the special class of quadratic functions). Sections II and

III provide detailed discussions of similarities and differences

between our results and this body of work. In short, the

dual approaches [38], [39] achieve optimal communication

complexity in the general distributed optimization setting but

fall short in terms of their oracle complexity.

B. Contributions

In this paper, we follow the dual approach of [33] and

propose a stochastic dual accelerated method using con-

stant step-size and Polyak–Ruppert averaging for the online

stochastic distributed averaging problem. We establish non-

asymptotic convergence guarantees with explicit dependence

on the network connectivity parameter and noise in the

observations. Our analysis builds on a discrete-time dynam-

ical system representation of the algorithm and relies on

explicitly studying the evolution of several relevant linear

systems, which may be of independent interest. Our mean-

squared error upper bounds provide tight guarantees on the

bias and variance term for the algorithm. We show that (i)

the bias term decays linearly at an accelerated rate with

exponent O

(
− T√

κ(L)

)
, where κ(L) is the condition number

of the network and its precise definition is given in Section

II, (ii) the variance term achieves the O

(
∑

n
j=1 maxi∈N σ2

i, j

T

)

rate up to a higher order term in T and (iii) the convergence

rate of the algorithm is optimal. Moreover, we show that

our method outperforms a state-of-the-art primal acceler-

ated method called D-MASG in a relevant non-asymptotic

regime where T ≍
√

κ(L). Furthermore, when assuming

that σ2
i, j = σ2

i′, j for all i ̸= i′ ∈ N and j ∈ {1, . . . ,n},

and letting σ2 := ∑
n
j=1 σ2

i, j, we show that our method has

optimal per-node oracle complexity O

(
σ2

ε

)
and optimal

communication complexity O

(√
κ(L) ln

(
1
ε

))
, where ε > 0
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is the desired accuracy. In contrast, when specialized to

our setting, state-of-the-art dual accelerated methods [38],

namely, R-RRMA-AC-SA2 and SSTM sc, have the same

communication complexity O

(√
κ(L) ln

(
1
ε

))
as our algo-

rithm, but can only be shown to have much larger per-node

oracle complexity O

(
κ(L)σ2

ε2

)
.

II. STOCHASTIC DUAL ACCELERATED METHOD

In this section, we first cast distributed averaging as dis-

tributed optimization with quadratic local objective functions,

which is a well-known correspondence. Then, we follow

[33], [40] and use the dual formulation of the distributed

optimization problem to design an algorithm that can be exe-

cuted for the online stochastic distributed averaging problem.

First, notice that the target vector µ̄ = 1
N ∑

N
i=1 µi is the

unique optimal solution of the optimization problem

min
θ∈Rn

1

2

N

∑
i=1

∥θ −µi∥2
2, (2)

A standard way to solve problem (2) in a decentralized

setting is rewriting the problem as

min
θ 1=···=θ N

1

2

N

∑
i=1

∥θ i −µi∥2
2. (3)

In this paper, consider a dual approach for problem (3),

which uses a decentralized communication scheme based

on the gossip algorithm [20]. More specifically, during a

communication step, each node i ∈ N broadcasts an n-

dimensional vector to its neighbors and then computes a

linear combination of the values received from its neighbors:

node i sends θ i to its neighbors and receives ∑ j∈Ni
Li, jθ

j.

One round of communication over the network can be

represented as multiplying the current estimates with a gossip

matrix L = [Li, j]∈R
N×N . In order to encode communication

constraints imposed by the network, we impose standard

assumptions on L [33], [40]:

1. L is symmetric and positive semi-definite,

2. The kernel (i.e. nullspace) of L is the set of constant

vectors,

3. L is defined on the edges of the network: Li, j ̸= 0 only

if i = j or (i, j) ∈ E .

The second condition will ensure consensus among agents

and also allow us to rewrite the consensus agreement con-

straint θ 1 = . . .= θ N in a convenient way. Note that a simple

choice of the gossip matrix—which underlies our choice of

notation—is the the graph Laplacian matrix for G , but other

choices satisfying the above conditions are also valid.

We will denote by 0 = λN(L) < λN−1(L) f ·· · f λ1(L)

the spectrum of L. Let κ(L) := λ1(L)
λN−1(L)

be the ratio between

the largest and the second smallest eigenvalue of L. This

quantity is the condition number of L in the space orthogonal

to ker(L), and characterizes the connectivity of the network

and how fast the information is spread over the network.

Since L is a real symmetric matrix, it can be decomposed as

L = QΛQ¦, where Λ := diag(λ1(L), . . . ,λN(L)) is a diagonal

matrix whose entries are the eigenvalues of L and Q is the

orthogonal matrix whose i-th column is the eigenvector of L

associated with λi(L). Such a decomposition is not unique

when the eigenvalues are not distinct; in this case, it suffices

to choose any valid decomposition.

We observe that the equality constraint θ 1 = · · · = θ N is

equivalent to
(
In ¹

√
L
)

Θ = 0, where
√

L := Q
√

ΛQ¦, In is

the n×n identity matrix, ¹ is the the Kronecker product and

Θ := vec
([

θ 1 · · ·θ N
]¦) ∈R

Nn. Here, we use
√

L instead of

L because we will later square it via the change of variables,

and vec(A) is the vectorization of a matrix A obtained by

stacking the columns of the matrix A on top of one another.

This observation leads to the following primal problem:

min
Θ∈RNn

1

2

N

∑
i=1

∥θ i −µi∥2
2

s.t.
(

In ¹
√

L
)

Θ = 0.

(4)

The Lagrangian function ℓ associated with problem (4) is

given by

ℓ(Θ,λ ) =
1

2

N

∑
i=1

∥θ i −µi∥2
2 −λ¦

[(
In ¹

√
L
)

Θ

]

=
N

∑
i=1

[
1

2
∥θ i −µi∥2

2 − (xi)¦θ i

] (5)

where λ ∈ R
Nn is the Lagrange multiplier vector and X :=

vec
([

x1 · · ·xN
]¦)

=
(
In ¹

√
L
)

λ . Since strong duality holds,

the convex program (4) can be equivalently written in its dual

form:

max
λ∈RNn

min
Θ∈RNn

ℓ(Θ,λ )

=− min
λ∈RNn

{
1

2
λ¦ (In ¹L)λ +

[(
In ¹

√
L
)

µ
]¦

λ

}
,

(6)

where µ := vec
([

µ1 · · ·µN

]¦)
. Note that a gradient step with

step-size η > 0 for problem (6) is

λt+1 = λt −η
(

In ¹
√

L
)[(

In ¹
√

L
)

λt +µ
]
,

and the change of variables Xt :=
(
In ¹

√
L
)

λt yields the

iteration

Xt+1 = Xt −η (In ¹L)(Xt +µ) . (8)

Since µ is unknown in the online stochastic distributed

averaging problem, Eq. (8) is not directly applicable. How-

ever, we have access to samples {R1
t , . . . ,R

N
t } at every time

step t g 0. Thus, a natural way to obtain the stochastic

version of (8) is to replace µ with its unbiased estimator

µ̂t := vec
([

R1
t · · ·RN

t

]¦)
.

While the above calculations provide transparent intuition

on which to base algorithm design, our proposed algorithm

is the stochastic dual accelerated method (SDA) presented

in Algorithm 1, which involves a more sophisticated (but

still simple) iteration. In particular, it relies on Nesterov’s

accelerated gradient method [41] with constant step-size,

used in conjunction with Polyak–Ruppert averaging of the
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Algorithm 1 Stochastic Dual Accelerated Algorithm (SDA)

1: Input: number of iterations T > 0, “burn-in” time T0 ∈
[0,T −1], gossip matrix L ∈ R

N×N , step-size η > 0 and

momentum parameter ζ g 0.

2: Initialization: each agent i ∈ N initializes xi
0 = yi

0 =
0 ∈ R

n.

3: for t = 0, · · · ,T −1 do

4: for agent i ∈ N do

5: observes a local random vector Ri
t and executes

the local update:

θ i
t = xi

t +Ri
t .

6: exchanges θ i
t with each agent j ∈ Ni and exe-

cutes the local updates:

yi
t+1 = xi

t −η ∑
j∈Ni∪{i}

Li, jθ
j

t ,

xi
t+1 = yi

t+1 +ζ
(
yi

t+1 − yi
t

)
.

7: end for

8: end for

9: Output: θ̂ i
T := 1

T−T0
∑

T−1
t=T0

θ i
t for all i ∈ N .

last T −T0 iterates [42]. SDA is a stochastic variant of the

single-step dual accelerated algorithm proposed and analyzed

in [33], which was developed for smooth and strongly convex

distributed deterministic optimization. While both algorithms

are similar in spirit, the analysis of SDA uses completely

different techniques, since it applies to the stochastic setting

for a special class of quadratic functions, as opposed to

the deterministic setting for general smooth and strongly

convex functions. The analysis in this paper builds on a

dynamical system representation of the algorithm and relies

on explicitly studying the evolution of several relevant linear

systems, and may be of independent interest.

III. MAIN RESULTS

In this section, we begin by stating our theorem regarding

the performance of SDA, and discussing some of the con-

sequences of this result. In order to state our theorem, we

require the following definition:

Definition 1: k∗ is the smallest positive integer such that

for all integer k g k∗:

(
1+

k√
κ(L)+1

)(
1− 1√

κ(L)

)k

f
(

1− 1

2
√

κ(L)

)k

.

Note that k∗ is well-defined and there exists an absolute

constant C g 1 such that k∗ fC ·
√

κ(L) (see Lemma 3 and

its proof in the full version [1] of this paper). Now, we are

ready to present the finite-time performance bound of SDA

in the following theorem.

Theorem 1: Consider running SDA with the following

parameters: T0 =
T
2
g k∗, η = 1

λ1(L)
and ζ =

√
κ(L)−1√
κ(L)+1

, where

k∗ is defined according to Definition 1. Let {θ̂ i
T}i∈N be

generated by SDA. Then we have

E

[
N

∑
i=1

∥∥∥θ̂ i
T − µ̄

∥∥∥
2

2

]
f 16κ(L)

T 2
e
− T

2
√

κ(L)

N

∑
i=1

∥µi − µ̄∥2
2 (9)

+
24
(

k∗+
√

κ(L)
)

∑
N
i=1 ∑

n
j=1 σ2

i, j

T 2
+

2∑
n
j=1 maxi∈N σ2

i, j

T
.

See Section 5.1 in [1] for a proof. It is worth making a

few comments on this theorem. To simplify the discussion,

we assume that σi, j = σ2
i′, j for all i ̸= i′ ∈ N and j =

1, . . . ,n, and let σ2 := ∑
n
j=1 σ2

i, j. Such an assumption is

similar to the standard assumption in distributed stochastic

optimization that the stochastic first-order oracle has finite

variance bounded by σ2, i.e., the variance of the stochastic

(dual) gradient is bounded by σ2.

Remark 1: Let us interpret the terms appearing in the

bound (9). Since k∗ fC ·
√

κ(L) for some absolute constant

C g 1, the upper bound (9) simplifies to

E

[
N

∑
i=1

∥∥∥θ̂ i
T − µ̄

∥∥∥
2

2

]
(10)

fO

(
e
− T√

κ(L)

N

∑
i=1

∥µi − µ̄∥2
2

)

︸ ︷︷ ︸
“bias′′

+O

(
N
√

κ(L)σ2

T 2
+

σ2

T

)

︸ ︷︷ ︸
“variance′′

.

This bound is presented in terms of two components: a bias

term which is deterministic and independent of the noise

level, and a variance term that measures the effect of noise

on the algorithm. Note that our proposed method achieves

an accelerated O

(
− T√

κ(L)

)
linear decay rate in the bias

term—in the sense that it depends on
√

κ(L) rather than

κ(L)—as well as an O

(
σ2

T

)
decay rate in the variance

term, up to the higher-order term in T . In fact, we can see

from the variance term that the higher-order term in T , i.e.

O

(
N
√

κ(L)σ2

T 2

)
, is dominated by σ2

T
provided T ≳ N

√
κ(L).

Remark 2: We argue that the convergence rate of SDA is

optimal. We first consider the noiseless setting where σ2 = 0.

It follows from Eq. (10) that our algorithm has a linear

convergence rate O

(
− T√

κ(L)

)
. The proof of Theorem 2

in [33] implies that there exist a gossip matrix L and local

functions fi in the special class of quadratic functions con-

sidered in Section II such that for any black-box distributed

optimization algorithm using L, the convergence rate is at

least Ω

(
e
− T√

κ(L)

)
. Thus, the bias term achieves the optimal

rate. Next, we consider the noisy setting where σ2 > 0.

Suppose the network is fully connected (or the graph is

complete), then every node can be viewed as the center node

that receives information from every other node and thus the

distributed setting is reduced to the centralized setting for

every node. Standard information-theoretic lower bounds on

estimating Gaussian means then yield a lower bound Ω

(
σ2

T

)

(see also classical results due to [43]). Therefore, the rate of
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the variance term is optimal up to the higher-order term in

T .

Remark 3: The primal accelerated method named

D-MASG [36] is known to be asymptotically optimal

for smooth and strongly convex distributed stochastic

optimization problems [44]. If we apply Corollary

18 of [36] to our setting, we obtain that the

estimates {µ̂ i
T}N

i=1 generated by this algorithm satisfy

E

[
∑

N
i=1

∥∥µ̂ i
T − µ̄

∥∥2

2

]
= O

(
e
− T√

κ(L) + Nκ(L)2σ2

T 4 + σ2

T

)
. While

the primal approach D-MASG and the dual approach

SDA are rate-optimal for the online stochastic distributed

averaging problem, their non-asymptotic behaviors can be

significantly different. For example, in the non-asymptotic

regime where T ≍
√

κ(L)—which is the relevant regime

given the accelerated rate of deterministic error—the upper

bound on our algorithm scales as O

(
Nσ2

T

)
, which is much

better than the upper bound O
(
Nσ2

)
known to be achieved

by D-MASG.

Remark 4: It is useful to compare with dual accelerated

methods for smooth and strongly convex distributed stochas-

tic optimization, R-RRMA-AC-SA2 and SSTM sc [38]. Ap-

plying Corollary 5.8 (for R-RRMA-AC-SA2) and Corollary

5.14 (for SSTM sc) from [38] to our setting, the oracle com-

plexity (the number of oracle calls per node) and commu-

nication complexity (the number of communication rounds)

for both methods are O

(
κ(L)σ2

ε2

)
and O

(√
κ(L) ln

(
1
ε

))
,

where ε > 0 is the desired accuracy. Since these methods

use batched stochastic dual gradients, let us make a small

modification to SDA so as to facilitate a fair comparison.

Specifically, suppose we change line 5 of SDA to: each agent

i observes a batch local random vectors {Ri
t,l}

mt

l=1 of size mt ,

and executes the local update θ i
t = xi

t +
1

mt
∑

mt

l=1 Ri
t,l . Under

this modification, if we set T = O

(√
κ(L) ln

(
1
ε

))
and

mt =O

(
σ2

ε
√

κ(L) ln( 1
ε )

)
for all t = 0, . . . ,T −1, then Theorem

1 implies that E

[
∑

N
i=1

∥∥∥θ̂ i
T − µ̄

∥∥∥
2

2

]
f O (ε). Therefore, the

batched version of our method has oracle complexity O

(
σ2

ε

)

and communication complexity O

(√
κ(L) ln

(
1
ε

))
. While

our method and the ones above have the same communica-

tion complexity, the oracle complexity of our method is much

smaller since it is independent of the condition number κ(L)
of the network and its dependence on ε is 1

ε instead of 1
ε2 . It

is also worth noting that the batched version of our method

achieves the oracle complexity lower bound Ω

(
σ2

ε

)
and the

communication complexity lower bound Ω

(√
κ(L) ln

(
1
ε

))

simultaneously for our specific class of distributed stochastic

optimization problems.

We now turn to describing how we can apply Theorem 1

to the two examples introduced in Section I to obtain their

finite-time performance bounds. Due to the page limit, the

corollaries and their proofs are omitted; see the full version

[1] for details.

a) Distributed linear parameter estimation: We cover

how to generate an estimate of β ∗ = Ā−1µ̄ at each sen-

sor in this setting by estimating the global averages Ā =
1
N ∑

N
i=1 A¦

i Ai and µ̄ = 1
N ∑

N
i=1 µi, respectively. We first run

SDA with local variables Ri
t = Ai

¦Ai for all t = 0, . . . ,T ′−1

and i ∈ N to obtain the estimates {Âi
T ′}i∈N of Ā. Since

Ri
t is deterministic, iterate averaging is not necessary for the

algorithm to converge. So we let SDA output the final iterates.

Applying Theorem 1, we obtain the linear convergence

bound

N

∑
i=1

∥∥∥Âi
T ′ − Ā

∥∥∥
2

2
f O

(
e
− T ′√

κ(L)

N

∑
i=1

∥∥∥A¦
i Ai − Ā

∥∥∥
2

2

)
. (11)

We assume that T ′ is chosen large enough such that∥∥Ā−1
∥∥

2

∥∥∥Âi
T ′ − Ā

∥∥∥
2
f 1

2
for all i ∈ N . Consequently, Âi

T ′

is invertible for all i ∈ N . Indeed, since Ā is assumed to

be invertible, we have Âi
T ′ = Ā

[
I + Ā−1

(
Âi

T ′ − Ā
)]

, which

implies that the invertibility of Âi
T ′ is equivalent to the in-

vertibility of I + Ā−1
(

Âi
T ′ − Ā

)
. Since

∥∥∥Ā−1
(

Âi
T ′ − Ā

)∥∥∥
2
f

∥∥Ā−1
∥∥

2

∥∥∥Âi
T ′ − Ā

∥∥∥
2
f 1

2
, the matrix I + Ā−1

(
Âi

T ′ − Ā
)

has

strictly positive eigenvalues and thus is invertible.

Next, we run SDA with local random variables Ri
t = A¦

i Y i
t

for all t = 0, . . . ,T − 1 and i ∈ N to obtain the estimates

{µ̂ i
T}i∈N of µ̄ . Noting that Ri

t has zero mean and covariance

matrix A¦
i Σi

ε Ai, the individual variance σ2
i, j is the j-th

element on the principal diagonal of A¦
i Σi

ε Ai. Finally, each

sensor i computes its own estimate β̂ i
T,T ′ :=

(
Âi

T ′

)−1

µ̂ i
T of

the unknown parameter β ∗.

b) Decentralized multi-agent policy evaluation: In this

setting, we first construct an unbiased estimator P̂T of the

true transition matrix P using the common state transition

samples. For t = 0, · · · ,T −1, each agent i ∈N uses the set

of sample state transitions {Xt, j| j ∈ S } to form a random

binary matrix Zt ∈ {0,1}n×n, in which row j has a single

non-zero entry corresponding to the index of the sample

Xt, j. Thus, the location of the non-zero entry in row j is

drawn from the probability distribution P( j, ·). Based on

these observations, we define the common sample transition

matrix P̂T := 1
T ∑

T−1
t=0 Zt . Next, we run SDA with local random

vectors Ri
t :=

[
Ri

t,1, . . . ,R
i
t,n

]¦
for all t = 0, . . . ,T − 1 and

i ∈ N to obtain estimates
{

r̂i
T

}
i∈N

of r̄. Finally, each

agent i “plugs in” the estimates (P̂T , r̂
i
T ) into the Bellman

equation (1) to obtain the value function estimate Ĵi
T :=(

I − γP̂T

)−1

r̂i
T .

IV. DISCUSSION

Let us conclude by mentioning a two future directions.

One drawback of our setting is that the communication

network is static. In many applications, the underlying con-

nectivity structure of the network may vary with time, so

a future direction is to extend our approach to this more

challenging setting. Another drawback, from the perspective

of distributed optimization, is that our setting only considers
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the special class of quadratic objective functions. Thus, a

natural next step is to generalize our dual method to strongly

convex and smooth local objective functions. This would

allow us to make progress on the design of optimal dual-

based algorithms under this setting, which is known to be an

open problem in the literature [44].

REFERENCES

[1] S. Zhang, A. Pananjady, and J. Romberg, “A dual accelerated method
for online stochastic distributed averaging: From consensus to decen-
tralized policy evaluation,” arXiv preprint arXiv:2207.11425, 2022.

[2] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in IPSN 2005. Fourth Inter-

national Symposium on Information Processing in Sensor Networks,

2005. IEEE, 2005, pp. 63–70.

[3] S. Kar, J. M. Moura, and H. V. Poor, “Distributed linear parameter
estimation: Asymptotically efficient adaptive strategies,” SIAM Journal

on Control and Optimization, vol. 51, no. 3, pp. 2200–2229, 2013.

[4] S. Kar, J. M. Moura, and K. Ramanan, “Distributed parameter estima-
tion in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Transactions on Information Theory, vol. 58,
no. 6, pp. 3575–3605, 2012.

[5] T. T. Doan, S. T. Maguluri, and J. Romberg, “Finite-time analysis of
distributed TD(0) with linear function approximation for multi-agent
reinforcement learning,” arXiv preprint arXiv:1902.07393, 2019.

[6] X. Zhang, Z. Liu, J. Liu, Z. Zhu, and S. Lu, “Taming communica-
tion and sample complexities in decentralized policy evaluation for
cooperative multi-agent reinforcement learning,” Advances in Neural

Information Processing Systems, vol. 34, 2021.

[7] M. Kearns and S. Singh, “Finite-sample convergence rates for Q-
learning and indirect algorithms,” Advances in neural information

processing systems, pp. 996–1002, 1999.

[8] A. Pananjady and M. J. Wainwright, “Instance-dependent ℓ∞-bounds
for policy evaluation in tabular reinforcement learning,” IEEE Trans-

actions on Information Theory, vol. 67, no. 1, pp. 566–585, 2020.

[9] S. Giordani, M. Lujak, and F. Martinelli, “A distributed algorithm for
the multi-robot task allocation problem,” in International conference

on industrial, engineering and other applications of applied intelligent

systems. Springer, 2010, pp. 721–730.

[10] Q. Peng and S. H. Low, “Distributed algorithm for optimal power
flow on a radial network,” in 53rd IEEE Conference on decision and

control. IEEE, 2014, pp. 167–172.

[11] N. A. Lynch, Distributed algorithms. Elsevier, 1996.

[12] H. Li and X. Li, “Distributed consensus of heterogeneous linear time-
varying systems on UAVs–USVs coordination,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 67, no. 7, pp. 1264–1268,
2019.

[13] H. Zhang, X. Zhou, Z. Wang, H. Yan, and J. Sun, “Adaptive consensus-
based distributed target tracking with dynamic cluster in sensor
networks,” IEEE transactions on cybernetics, vol. 49, no. 5, pp. 1580–
1591, 2018.

[14] R. Tutunov, H. Bou-Ammar, and A. Jadbabaie, “Distributed Newton
method for large-scale consensus optimization,” IEEE Transactions on

Automatic Control, vol. 64, no. 10, pp. 3983–3994, 2019.

[15] J. Tsitsiklis, “Problems in decentralized decision making and com-
putation,” Ph.D. dissertation, Massachusetts Institute of Technology.
Laboratory for Information and . . . , 1984.

[16] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE

transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[17] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[18] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of parallel and distributed

computing, vol. 67, no. 1, pp. 33–46, 2007.

[19] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” SIAM journal on control and optimization,
vol. 48, no. 1, pp. 33–55, 2009.

[20] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE transactions on information theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[21] T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione, “Broad-
cast gossip algorithms for consensus,” IEEE Transactions on Signal

processing, vol. 57, no. 7, pp. 2748–2761, 2009.
[22] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,

“Gossip algorithms for distributed signal processing,” Proceedings of

the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.
[23] D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti,

R. Baldick, and J. Lavaei, “A survey of distributed optimization and
control algorithms for electric power systems,” IEEE Transactions on

Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.
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algorithms for smooth and strongly convex distributed optimization in
networks,” in International conference on machine learning. PMLR,
2017, pp. 3027–3036.

[34] H. Li, Z. Lin, and Y. Fang, “Variance reduced extra and diging and
their optimal acceleration for strongly convex decentralized optimiza-
tion,” arXiv preprint arXiv:2009.04373, 2020.

[35] H. Hendrikx, F. Bach, and L. Massoulie, “An optimal algorithm for
decentralized finite-sum optimization,” SIAM Journal on Optimization,
vol. 31, no. 4, pp. 2753–2783, 2021.

[36] A. Fallah, M. Gurbuzbalaban, A. Ozdaglar, U. Simsekli, and L. Zhu,
“Robust distributed accelerated stochastic gradient methods for multi-
agent networks,” arXiv preprint arXiv:1910.08701, 2019.

[37] A. Rogozin, M. Bochko, P. Dvurechensky, A. Gasnikov, and
V. Lukoshkin, “An accelerated method for decentralized distributed
stochastic optimization over time-varying graphs,” arXiv preprint

arXiv:2103.15598, 2021.
[38] E. Gorbunov, D. Dvinskikh, and A. Gasnikov, “Optimal decentral-

ized distributed algorithms for stochastic convex optimization,” arXiv

preprint arXiv:1911.07363, 2019.
[39] D. Dvinskikh, E. Gorbunov, A. Gasnikov, P. Dvurechensky, and

C. A. Uribe, “On dual approach for distributed stochastic convex
optimization over networks,” arXiv preprint arXiv:1903.09844, 2019.

[40] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for non-smooth distributed optimization in networks,”
arXiv preprint arXiv:1806.00291, 2018.

[41] Y. Nesterov, Introductory lectures on convex optimization: A basic

course. Springer Science & Business Media, 2003, vol. 87.
[42] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approx-

imation by averaging,” SIAM journal on control and optimization,
vol. 30, no. 4, pp. 838–855, 1992.

[43] A. S. Nemirovski and D. B. Yudin, “Problem complexity and method
efficiency in optimization,” 1983.

[44] E. Gorbunov, A. Rogozin, A. Beznosikov, D. Dvinskikh, and A. Gas-
nikov, “Recent theoretical advances in decentralized distributed convex
optimization,” arXiv preprint arXiv:2011.13259, 2020.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 15,2025 at 20:27:42 UTC from IEEE Xplore.  Restrictions apply. 


