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Learning the eye of the beholder:
Statistical modeling and estimation
for personalized color perception

Xuanzhou Chen' Austin Xu®

Abstract—Color perception has long remained an in-
triguing topic spanning vision and cognitive science, sig-
nal processing, and computer graphics. People are often
classified as either ‘““color-normal” or ‘“color-blind”’, and it
is widely accepted there are a few types of colorblindness
that are the most prevalent. At the same time, empirical
evidence, such as in optometry and vision science, has
repeatedly suggested that categories for colorblindness
only serve as approximations to real manifestations of it.
With the motivation of better understanding individual-
level color perception, we propose a model for color
vision that unifies existing theories for color-normal and
color-blind populations. This model posits a certain type
of low-dimensional structure in color space according to
which any given person distinguishes colors. We design
an algorithm to learn this low-dimensional structure from
user queries, and prove statistical guarantees on its per-
formance. To collect user data, we adapt a user interface
design, termed “perceptual adjustment queries” (PAQs),
to assess color perception. This user interface efficiently
infers a user’s color distinguishability profile from a few
cognitively lightweight responses. A user study shows that
our method captures individual-level differences in both
color-normal and color-blind populations.

Index Terms—Personalized color perception, learning
low-dimensional structure, metric learning, robust opti-
mization.

I. INTRODUCTION

About 8% of men and 0.5% of women have color-
blindness or color vision deficiency. Conventionally,
color-blindness is classified into a few types based on a
person’s ability to perceive the three primary colors (red,
green, and blue). Common diagnostic tests include the
Ishihara test (naming numbers from colored dots) [1] and
the Farnsworth-Munsell test (arranging colors on a line
to form a gradual hue change) [2]. However, empirical
studies suggest that these tests often fail to accurately
identify the type of color-blindness or extent of defect
in individuals [3]-[6].
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In this work, we provide a principled framework to
quantitatively analyze each individual’s color percep-
tion, building on existing models from color vision
that characterize deficiency in terms of geometry in
natural color spaces. According to these models, a person
with a particular type of color-blindness person is not
able to distinguish colors along confusion lines in color
space [7], [8]. These confusion lines intersect at a
single point, termed the “copunctal point”. Each type
of color blindness is associated with its own geometry
of confusion lines and copunctal point. On the other
hand, existing work also posits a model for the color-
normal population. Here, it is posited that color space
is partitioned into various confusion ellipses [9]-[11],
where colors within the same ellipse are hard for a
person to distinguish from the color at the center of
this ellipse—we refer to the center of the ellipse as the
“reference color” for the rest of this paper. The major
axis of the ellipse represents the direction along which
a person has most difficulty distinguishing colors from
the reference color. These major axes are also known
to share geometry, and to approximately intersect at a
point [12].

Motivated by these observations, we propose to study
a unified model of individual-level color perception
that captures both the above models. In particular, we
associate each individual (color-normal or color-blind)
with their own confusion lines, given by the major
axes of their confusion ellipses. These confusion lines
intersect at a copunctal point. Clearly, this captures both
the aforementioned cases—for those with severe color
deficiency, each confusion ellipse tends to collapse into
a line along its major axis. In general, the copunctal
point of intersection lends a geometry to the color space
that determines how the various confusion ellipses are
oriented, and it is of interest to understand this geometry.

Armed with this model for individual-level color per-
ception, we formulate the problem of copunctal point
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Fig. 1. The user interface for using perceptual adjust-
ment queries (PAQs) in a color matching experiment.

estimation from individual level perception data. We
employ a two-step procedure to compute the copunctal
point: 1) Collect user data to estimate their ellipses
and associated major axes; 2) Estimate an approximate
intersection point of these major axes via a linear pro-
gram inspired by robust optimization. We provide a
theoretical result that relates the error in estimating the
copunctal point to the error in estimating the major axes
(Theorem 1). Motivated by Theorem 1, we adopt a plug-
in approach by using the framework of perceptual ad-
Jjustment queries (PAQ) [13] to collect human perception
data in the first step (see Figure 1). A sample experi-
mental result for this end-to-end procedure is presented
in Figure 2, which visualizes the estimated ellipses and
confusion lines for four individuals on a small-scale user
study. From a practical standpoint, our results suggest
natural improvements of downstream applications that
rely on accurate models for color perception, e.g., image
recoloring [14], [15].

The rest of this paper is organized as follows. In
Section II, we formally introduce the color space that
we work with, as well as the problem of copunctal
point estimation. Section III presents our algorithms and
theoretical guarantees. In Section IV, we conclude with
some simulation experiments and open directions. Proofs
of all our theorems as well as a more detailed exposition
can be found in the full version of the paper.

II. PROBLEM FORMULATION
We now present our problem formulation for person-
alized color perception estimation.

A. Unified model based on color theory

We work with CIE 1931 xyY color space [16]. This is
a three-dimensional space, where the (x,y) coordinates
jointly characterize a color’s chromaticity (x for hue
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Fig. 2. Estimated ellipses and their major axes for one
color-blind person and three color-normal people.

and y for colorfulness), and the Y-coordinate character-
izes brightness. For the purposes of this paper, colors
are represented in the two-dimensional xy-color space
(Figure 2), where the range of visible colors forms a
horseshoe shape.

We now build our unified color perception model
based on two lines of literature on color perception. One
line of literature characterizes color perception by the
color-blind by positing that people encounter difficulty
in distinguishing colors along certain directions in xy-
color space depending their color-blindness type. These
directions are captured by confusion lines. A person
with a particular type of color-blindness is unable to
distinguish the set of colors lying on one confusion line.
Confusion lines point in different directions for different
color-blindness types. For each type of color-blindness,
confusion lines intersect at a point called the copunctal
point, which has a correspondence with a particular
primary cone receptor being missing. The location of
the copunctal point thus depends on the type of color-
blindness [8], [17]-[19].

Difficulty distinguishing similar colors also applies for
color-normal people. A second line of literature inspects
color perception for color-normal people through a color-
matching task. It has been found that even for such
people, any given reference color if indistinguishable
from its neighborhood in color space. A confusion region
(or a “color discrimination ellipse”) corresponding to
a reference color contains all colors that are indistin-
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guishable from this reference color. Prior work (see, e.g.,
MacAdam’s experiment [20]) posits that in color-normal
people, confusion regions take the shape of ellipses.
Inspired by the finding that the major axes of ellipses
align reasonably well with the confusion lines [21], we
posit a unified color perception model that combines the
copunctal point structure and confusion ellipses:

Definition 1. A person, regardless of their color per-
ception conditions, has an elliptical confusion region (el-
lipse) associated with any reference color. The confusion
line extends the major axis of an ellipse, and all of the
confusion lines intersect at a copunctal point.

Under this model, we can formally pose the problem
of estimating an individual’s copunctal point.

B. Mathematical formulation

We now describe a mathematical formulation that
captures the proposed model. Associate the CIE xy color
space with R?, and let {2;} be a collection of reference
colors/points. Each reference color z; € R? has asso-
ciated with it a confusion ellipse. We parameterize this
ellipse by a PSD matrix X7. All points within the ellipse
are can be written as {v € R? : (v —2;)TZf (v —z;) <
y} for some positive scalar y. In the metric learning
literature, the matrix 37 is called a Mahalanobis metric!,
and the product (v — 2z;)TE% (v — 2;) is the (squared)
distance. In the color perception context, this distance
represents the amount of color difference perceived by
a person between the two points v and z; in this metric
space. The value of y is the minimum distance such that
the person is able to perceive the color difference, and
hence the ellipse {v € R? : (v — 2;) TS (v — z;) < y}
represents the confusion region of all colors indistin-
guishable from the reference color z;. Note that the
problem is equivariant in terms of (X7,y). That is,
(¢X7, cy) describes the same ellipse for any ¢ > 0. Since
our downstream task is scale invariant, we will set y to
a particular value without loss of generality.

Based on our unified model, the major axis of an
ellipse is the direction that a person has the most
difficulty distinguishing colors, i.e., the direction that the
person’s color perception changes at the slowest speed.
Formally, the major axis is the direction a € R? along
which the value a’3fa changes the slowest, namely

'Note that we consider a matrix 3% associated with each single
reference point z;. In metric learning, there is typically a single
Mahalanobis metric on R4, Nevertheless, given the connection our
problem setting has to the rich field of Mahalanobis metric learning,
we use the terms “metric” and “metric learning” liberally to refer to
matrices 3% and the estimation of 37, respectively.

the direction of the eigenvector corresponding to the
smallest eigenvalue (which is the second eigenvector
in a 2-dimensional space). A reference point and the
second eigenvector associated with this reference point
form a confusion line. Our goal is to locate the person’s
copunctal point, denoted w* € R2, which lies at the
intersection of these confusion lines.

III. METHODS

We decompose the copunctal point estimation problem
into two steps. First, we pick a set of reference points and
collect human responses to estimate the metrics associ-
ated with these reference points. Second, we estimate the
copunctal point by finding an approximate intersection
point of the major axes associated to these metrics. We
refer to the two above steps as “metric estimation” and
“copunctal point localization via linear programming”.

We propose a general algorithm for the second step,
such that it can be combined with any estimator for the
first step. For this reason, we start by discussing the
second step, followed by instantiating the first step with
a specific type of human responses, termed “perceptual
adjustment queries” (PAQs).

A. Copunctal point localization via linear programming

The general algorithm for the second step takes a set
of estimated metrics corresponding to different reference
points, and estimates the copunctal point.

1) An error cone-based algorithm: Our algorithm
takes a set of estimates of distance metrics at various
reference points as input, and we assume the estimates
have bounded operator norm error. In particular, suppose

that the algorithm has access to values 71,..., 7y > 0
such that the metric estimates {3;}} | satisfy the 7;-
operator norm precision, i.e., HZi -7 <.

op

a) Step 1: Computing the major axes and error
cones: For every estimated metric 3; at reference point
z;, we obtain its eigenvectors " and 4’ and their
respective eigenvalues 2D and A via its eigenvalue
decomposition. Here, A\ and A\ are the largest and
smallest eigenvalues, respectively. In particular, we are
interested in the second eigenvector ﬁ;) that aligns with
the confusion line for this reference point. Because 4,
and fﬁAQ are both valid eigenvectors of estimated an
metric 3, we reorient each eigenvector from estimated
metrics so that they point in the direction to intersect. See
the full version of this paper for a detailed description
of this reorientation step.

If we have a reasonable estimate of the metric, then
the estimated eigenvectors do not deviate too far from the
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Fig. 3. Copunctal point estimation: (a) Given the
metric estimate at z;, compute its second eigenvector
and construct an error cone; (b) Given N cones, use
cone intersection to estimate the copunctal point by
any point inside the intersection; (c) Geometry of error
cone pairs.

true eigenvectors by Davis-Kahan theorem [22], which
states if the operator norm error between an estimated
metric ¥; and true metric X} is bounded by some
threshold 7;, then the angular deviation, which we denote
«;, between our estimated eigenvector ﬁg) and the true
eigenvector ug) is bounded as «; < W

Based on this result, we construct error cones of angle
a;, which we denote C;(«;), for each of the N estimated
metrics. The ¢-th cone has a vertex at the reference point
z;, 1S symmetric about the estimated eigenvector ﬁg),
and has boundaries that are an angle «;/2 rotated from
the estimated eigenvector.

Definition 2. Given a reference point z;, the correspond-
ing estimated metric f]i, and its second eigenvector ﬁg)
of correct orientation, we define a cone C; with cone
angle o as the set

Ciley) = {zl +tR(B)E ¢ >0, % <p< %}

where R(f3) = {Z?r?((g ; _(:Z:(léﬁ) )} is a rotation matrix
of angle .

For each reference point and estimated metric, we
compute the error cone, a viable angular region around
the estimated eigenvector in which the true eigenvector
must lie in.

b) Step 2: Estimating the copunctal point: With
error cones constructed for each reference point, we now
turn to estimating the copunctal point. Because each

error cone contains the true eigenvector (true confusion
line), the true copunctal point (the intersection point
of all true eigenvectors) must be in the intersection of
all error cones. As a result, we solve the following
feasibility program to obtain an estimate .

w € C;i(a;) for every i € [N]. (1)
Specifically, if we write @) = [ué)l,ﬂgz)Q}T, w* =

[w1,ws] ", and 2z; = [2i1,2i2]", the copunctal point
w* must satisfy the following inequalities.

wy — 29 _ —sin(F )u2 1t COS(%)QZ)Q

w1 =z cos(“—)u2 1+ sin( S )ﬂgé

Wa — Z; 2 < sin(%) (z) 1+ cos(% 2 )uéz)z 2
w1z cos(%)u2 1 — sin(G )ué)2

2) Theoretical guarantees for copunctal point local-
ization via linear programming: Suppose we have esti-
mated metrics X, ..., 3y corresponding to N distinct
reference points. For all metrics, we assume that each of
our estimated metrics satisfies the operator norm bound
Hiz — Ej’ < 7;, where for now, we assume exact
knowledge 8? T;-

To bound the error of our estimator, we must compute
the diameter of the intersection of N error cones. For
ease of analysis, we consider pairs of cone intersections.
Consider any two error cones C; () and, C;(«;) associ-
ated with reference points z; and z;, respectively. Recall
that o is denoted the cone angle of the i-th error cone.
We define the deviation angle, denoted 6;_,;, of the i-th
cone as the acute angle between the line connecting z;
and z; and the estimated eigenvector at the center of the
i-th cone, ﬁg). We make the following assumption on
each pair (4, j) of reference points.

Assumption 1. Quantities (0, 0i-5), (o, 0;-;) satisfy
o T
- <

<T —.
2 72

2
);

0ij Jr 2 and  0;_; +
For each pair (i, j

stant

define a positive and finite con-

6
tan(0;—; V 0, +

1+ tan®(0;; V 0;-;)
1 — tan® (i V 0;5) tan® (*522)’

Cj; = max 3V

oz\/on)

3)

sin(a; V o)

—— V1
Sin(@i_ﬂ \ GJ_H)
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Theorem 1. Suppose Assumption 1 holds for all pairs
1 <4 < j < N. Recall the definition of constant Cy;
from Equation (3). If || Z; —X7||op < T for each i € [N],
then

I — 'l < min G-Iz~ -

2Ty 2T
tan | =V = |- @)
A=A A = AT
Theorem 1 is a deterministic result and stated broadly

to accommodate estimates of metrics under any estima-
tion procedure.

B. Metric estimation

Given the result of Theorem 1 connecting the es-
timated metrics to the estimated copunctal point, we
now turn to the first step of estimating the metrics.
We provide one solution by using perceptual adjustment
queries (PAQs) [13], while noting that our framework is
general and not tied to any particular choice.

1) Perceptual adjustment query (PAQ): We use per-
ceptual adjustment queries to collect human data on
color perception. The continuous nature of color space
and the need to identify precise transition regions make
perceptual adjustment queries (PAQs) [13] amenable to
our task. A PAQ consists of a reference item and a con-
tinuous path of items that start at a different item from
the reference and vary gradually towards the reference.
The user is asked to select the first item along this path
that is similar to the reference.

Such queries were originally proposed and theoret-
ically analyzed in a metric learning context [13], and
are a natural query for characterizing color perception:
starting from a reference color, we slowly vary the
color along one direction and ask the user to indicate
the first color that they perceive as different from the
reference. Such responses can then be used to estimate
a metric. Operationally, PAQs can be implemented via
a slider, where the user is asked to adjust a slider that
gradually changes a color. The user is asked to compare
the changing color against a fixed reference color, and
stop on the first color that the user sees as similar to the
reference color, as shown in Figure 1.

Suppose we want to estimate an unknown metric
3* corresponding to the reference color z. We pick a
direction @ along which the colors change® and present
the user with a path of items of the form {z + fa : { €
[0,00)}. The user then selects the first item z+~a that is

2Note the direction of a is opposite to the direction of the slider in
Figure 1.

perceivable as different from z, resulting in the response
~. This response v can be viewed as a scaling of the
query vector a. Under the color perception model by
Def. 1, the response item z+ya should be a squared X*-
Mahalanobis distance y away from the reference color.
Following [13], we consider the following noise model:

®)

where 7 is a noise term. Concretely, we make the
following assumptions about the noise.

2
y+n=1(z+7a) - z|5. =v’a’ S*a,

Assumption 2. The noise 1 is a random variable such
that the following are true.

e E[n] = 0 and there exists some positive constant

n' such that |n| < n' <y almost surely.

e 1 and random query direction a are independent.

o The expectation B[] is finite.
We define

2nt

./ E— 6
T =+ ©

which is the variance of the random variable %

Following [13], the measurement formulation (5)
can be written as a linear measurement of the metric
(aaT,¥*) which satisfies

(y+n)/7" = (aa’,=%). (7

2) Theoretical guarantees: Suppose that for each
reference point z, we collect M responses {a;, v2}M,,

~

g.d . . .
where a; “~° N(0,1;). We estimate the metric 3 via
the following unregularized least squares estimator:

M
- 1
S e argmin — > ({aia],2) —y/42)". @®)
20 i=1

The least squares estimator (8), as noted in prior
work [13], is inconsistent. However, we show that least
squares produces a consistent estimate of a scaled ver-
sion of the true metric 3. Crucially, this preserves
the directions of the eigenvectors. The least squares
estimator (8) is a convex semi-definite program that can
be solved in polynomial time with off-the-shelf solvers.

Theorem 2. Let ¢ > 0 be a universal constant. Sup-
pose Assumption 2 holds and recall the definition of o
from Egquation (6). Consider any § € (0,1). Suppose
the number of measurements M satisfies M > 3 and
M > ¢ log® (%) . Then with probability greater than
1-4,

(1+1og"(5)

bR ) o

— ]E*
y+n

< co||Z|p

op
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With this result stated, we arrive at an error bound on
the copunctal point estimation with PAQs.

Corollary 1. Suppose the conditions of Theorem 1
and Theorem 2 hold. Recall the definition of Cj;
Sfrom Equation (3). Consider any § € (0, 1). Suppose the
number of measurements M; for each of the N reference
points satisfies M; > 3 and M; > ¢ log3 (1\5/11) Then,
with probability greater than 1 — N,

4min Cij . Hzi - ZjH2

1
b — w*], < oy/1+1log* [ =
|lw—w*||, <o + log (5> i,

1 1
OIS I NS INved &
AT = AT VMG (A = AT M

9
IV. EXPERIMENTS

We now present two sets of experimental results. First,
we conduct a small-scale user study on four participants.
We construct 80 questions by selecting four reference
points in CIE xyY space: (0.25, 0.34, 0.5), (0.29, 0.40,
0.5), (0.37, 0.40, 0.5) and (0.35, 0.35, 0.5). For each
reference point, we select 20 equally spaced sensing
vectors. We randomly place the reference point on the
slider, so that the “true” response is different for each
query. PAQ responses are collected from 3 color-normal
users and 1 color-blind user. Figure 2 shows four ellipses
along with major axes for each user—note the individual-
level variation even among color-normal users.

Our second set of experiments is a suite of simulation
studies in both a controlled and end-to-end setting. In
each plot of Figure 4, we report the estimation error
|lw — w*||, averaged over 20 trials. In each trial, we
select the true copunctal point w* randomly from the
bottom left quadrant of color space, and N reference
colors randomly from the rest of color space. We sim-
ulate the true metric X} at each reference color z; by
choosing its minimal eigenvector to align with the vector
w* —z; and assigning eigenvalues (A1, A2) to ensure that
this direction remains the minimal eigenvector.

In the controlled setting, we generate an estimated
metric ¥; = X¥ + A; where ||A = 7. We use
the estimated metrics f]z to estimate the copunctal point
w via our algorithm. From Figure 4a, we observe that
estimation error decreases with the eigengap |A\; — Ay
and increases with the parameter 7. Both these phenom-
ena are captured by Theorem 1. Figure 4b additionally
shows that the estimation error decreases as the number
of reference points N grows. Capturing this phenomenon
theoretically is an interesting future direction.
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Fig. 4. Effect of (a) eigenvalue gap, (b) number of
references on copunctal point estimation error across
multiple error levels. (c) Comparison of copunctal
point estimation performance of PAQs at varying noise
levels to noiseless ordinal queries.

In the end-to-end setting plotted in Figure 4c, we
do not simulate the matrices X; but estimate them
using various query types. In particular, we generate re-
sponses according to noiseless Paired comparisons [23],
Triplets [24], Nearest-neighbor queries [25] and Ranking
queries [26], as well as noisy responses from PAQ
queries according to Eq. (5). As shown by the figure,
the PAQ mechanism is the most cost efficient among all
these choices, and achieves the lowest error per query.
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