
Learning the eye of the beholder:

Statistical modeling and estimation

for personalized color perception

Xuanzhou Chen† Austin Xu§ Jingyan Wang⋆ Ashwin Pananjady⋆,†

Abstract—Color perception has long remained an in-
triguing topic spanning vision and cognitive science, sig-
nal processing, and computer graphics. People are often
classified as either “color-normal” or “color-blind”, and it
is widely accepted there are a few types of colorblindness
that are the most prevalent. At the same time, empirical
evidence, such as in optometry and vision science, has
repeatedly suggested that categories for colorblindness
only serve as approximations to real manifestations of it.
With the motivation of better understanding individual-
level color perception, we propose a model for color
vision that unifies existing theories for color-normal and
color-blind populations. This model posits a certain type
of low-dimensional structure in color space according to
which any given person distinguishes colors. We design
an algorithm to learn this low-dimensional structure from
user queries, and prove statistical guarantees on its per-
formance. To collect user data, we adapt a user interface
design, termed “perceptual adjustment queries” (PAQs),
to assess color perception. This user interface efficiently
infers a user’s color distinguishability profile from a few
cognitively lightweight responses. A user study shows that
our method captures individual-level differences in both
color-normal and color-blind populations.

Index Terms—Personalized color perception, learning
low-dimensional structure, metric learning, robust opti-
mization.

I. INTRODUCTION

About 8% of men and 0.5% of women have color-

blindness or color vision deficiency. Conventionally,

color-blindness is classified into a few types based on a

person’s ability to perceive the three primary colors (red,

green, and blue). Common diagnostic tests include the

Ishihara test (naming numbers from colored dots) [1] and

the Farnsworth-Munsell test (arranging colors on a line

to form a gradual hue change) [2]. However, empirical

studies suggest that these tests often fail to accurately

identify the type of color-blindness or extent of defect

in individuals [3]–[6].
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In this work, we provide a principled framework to

quantitatively analyze each individual’s color percep-

tion, building on existing models from color vision

that characterize deficiency in terms of geometry in

natural color spaces. According to these models, a person

with a particular type of color-blindness person is not

able to distinguish colors along confusion lines in color

space [7], [8]. These confusion lines intersect at a

single point, termed the “copunctal point”. Each type

of color blindness is associated with its own geometry

of confusion lines and copunctal point. On the other

hand, existing work also posits a model for the color-

normal population. Here, it is posited that color space

is partitioned into various confusion ellipses [9]–[11],

where colors within the same ellipse are hard for a

person to distinguish from the color at the center of

this ellipse—we refer to the center of the ellipse as the

“reference color” for the rest of this paper. The major

axis of the ellipse represents the direction along which

a person has most difficulty distinguishing colors from

the reference color. These major axes are also known

to share geometry, and to approximately intersect at a

point [12].

Motivated by these observations, we propose to study

a unified model of individual-level color perception

that captures both the above models. In particular, we

associate each individual (color-normal or color-blind)

with their own confusion lines, given by the major

axes of their confusion ellipses. These confusion lines

intersect at a copunctal point. Clearly, this captures both

the aforementioned cases—for those with severe color

deficiency, each confusion ellipse tends to collapse into

a line along its major axis. In general, the copunctal

point of intersection lends a geometry to the color space

that determines how the various confusion ellipses are

oriented, and it is of interest to understand this geometry.

Armed with this model for individual-level color per-

ception, we formulate the problem of copunctal point
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Fig. 1. The user interface for using perceptual adjust-
ment queries (PAQs) in a color matching experiment.

estimation from individual level perception data. We

employ a two-step procedure to compute the copunctal

point: 1) Collect user data to estimate their ellipses

and associated major axes; 2) Estimate an approximate

intersection point of these major axes via a linear pro-

gram inspired by robust optimization. We provide a

theoretical result that relates the error in estimating the

copunctal point to the error in estimating the major axes

(Theorem 1). Motivated by Theorem 1, we adopt a plug-

in approach by using the framework of perceptual ad-

justment queries (PAQ) [13] to collect human perception

data in the first step (see Figure 1). A sample experi-

mental result for this end-to-end procedure is presented

in Figure 2, which visualizes the estimated ellipses and

confusion lines for four individuals on a small-scale user

study. From a practical standpoint, our results suggest

natural improvements of downstream applications that

rely on accurate models for color perception, e.g., image

recoloring [14], [15].

The rest of this paper is organized as follows. In

Section II, we formally introduce the color space that

we work with, as well as the problem of copunctal

point estimation. Section III presents our algorithms and

theoretical guarantees. In Section IV, we conclude with

some simulation experiments and open directions. Proofs

of all our theorems as well as a more detailed exposition

can be found in the full version of the paper.

II. PROBLEM FORMULATION

We now present our problem formulation for person-

alized color perception estimation.

A. Unified model based on color theory

We work with CIE 1931 xyY color space [16]. This is

a three-dimensional space, where the (x, y) coordinates

jointly characterize a color’s chromaticity (x for hue

Fig. 2. Estimated ellipses and their major axes for one
color-blind person and three color-normal people.

and y for colorfulness), and the Y-coordinate character-

izes brightness. For the purposes of this paper, colors

are represented in the two-dimensional xy-color space

(Figure 2), where the range of visible colors forms a

horseshoe shape.

We now build our unified color perception model

based on two lines of literature on color perception. One

line of literature characterizes color perception by the

color-blind by positing that people encounter difficulty

in distinguishing colors along certain directions in xy-

color space depending their color-blindness type. These

directions are captured by confusion lines. A person

with a particular type of color-blindness is unable to

distinguish the set of colors lying on one confusion line.

Confusion lines point in different directions for different

color-blindness types. For each type of color-blindness,

confusion lines intersect at a point called the copunctal

point, which has a correspondence with a particular

primary cone receptor being missing. The location of

the copunctal point thus depends on the type of color-

blindness [8], [17]–[19].

Difficulty distinguishing similar colors also applies for

color-normal people. A second line of literature inspects

color perception for color-normal people through a color-

matching task. It has been found that even for such

people, any given reference color if indistinguishable

from its neighborhood in color space. A confusion region

(or a “color discrimination ellipse”) corresponding to

a reference color contains all colors that are indistin-
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guishable from this reference color. Prior work (see, e.g.,

MacAdam’s experiment [20]) posits that in color-normal

people, confusion regions take the shape of ellipses.

Inspired by the finding that the major axes of ellipses

align reasonably well with the confusion lines [21], we

posit a unified color perception model that combines the

copunctal point structure and confusion ellipses:

Definition 1. A person, regardless of their color per-

ception conditions, has an elliptical confusion region (el-

lipse) associated with any reference color. The confusion

line extends the major axis of an ellipse, and all of the

confusion lines intersect at a copunctal point.

Under this model, we can formally pose the problem

of estimating an individual’s copunctal point.

B. Mathematical formulation

We now describe a mathematical formulation that

captures the proposed model. Associate the CIE xy color

space with R
2, and let {zi} be a collection of reference

colors/points. Each reference color zi ∈ R
2 has asso-

ciated with it a confusion ellipse. We parameterize this

ellipse by a PSD matrix Σ
⋆
i . All points within the ellipse

are can be written as {v ∈ R
2 : (v− zi)

T
Σ

⋆
i (v− zi) f

y} for some positive scalar y. In the metric learning

literature, the matrix Σ
⋆
i is called a Mahalanobis metric1,

and the product (v − zi)
T
Σ

⋆
i (v − zi) is the (squared)

distance. In the color perception context, this distance

represents the amount of color difference perceived by

a person between the two points v and zi in this metric

space. The value of y is the minimum distance such that

the person is able to perceive the color difference, and

hence the ellipse {v ∈ R
2 : (v − zi)

T
Σ

⋆
i (v − zi) f y}

represents the confusion region of all colors indistin-

guishable from the reference color zi. Note that the

problem is equivariant in terms of (Σ⋆
i , y). That is,

(cΣ⋆
i , cy) describes the same ellipse for any c > 0. Since

our downstream task is scale invariant, we will set y to

a particular value without loss of generality.

Based on our unified model, the major axis of an

ellipse is the direction that a person has the most

difficulty distinguishing colors, i.e., the direction that the

person’s color perception changes at the slowest speed.

Formally, the major axis is the direction a ∈ R
2 along

which the value a
T
Σ

⋆
ia changes the slowest, namely

1Note that we consider a matrix Σ
⋆

i
associated with each single

reference point zi. In metric learning, there is typically a single
Mahalanobis metric on R

d. Nevertheless, given the connection our
problem setting has to the rich field of Mahalanobis metric learning,
we use the terms “metric” and “metric learning” liberally to refer to
matrices Σ

⋆

i
and the estimation of Σ⋆

i
, respectively.

the direction of the eigenvector corresponding to the

smallest eigenvalue (which is the second eigenvector

in a 2-dimensional space). A reference point and the

second eigenvector associated with this reference point

form a confusion line. Our goal is to locate the person’s

copunctal point, denoted w
⋆ ∈ R

2, which lies at the

intersection of these confusion lines.

III. METHODS

We decompose the copunctal point estimation problem

into two steps. First, we pick a set of reference points and

collect human responses to estimate the metrics associ-

ated with these reference points. Second, we estimate the

copunctal point by finding an approximate intersection

point of the major axes associated to these metrics. We

refer to the two above steps as “metric estimation” and

“copunctal point localization via linear programming”.

We propose a general algorithm for the second step,

such that it can be combined with any estimator for the

first step. For this reason, we start by discussing the

second step, followed by instantiating the first step with

a specific type of human responses, termed “perceptual

adjustment queries” (PAQs).

A. Copunctal point localization via linear programming

The general algorithm for the second step takes a set

of estimated metrics corresponding to different reference

points, and estimates the copunctal point.

1) An error cone-based algorithm: Our algorithm

takes a set of estimates of distance metrics at various

reference points as input, and we assume the estimates

have bounded operator norm error. In particular, suppose

that the algorithm has access to values Ä1, . . . , ÄN g 0
such that the metric estimates {Σ̂i}Ni=1 satisfy the Äi-

operator norm precision, i.e.,

∥∥∥Σ̂i −Σ
⋆
i

∥∥∥
op

f Äi.

a) Step 1: Computing the major axes and error

cones: For every estimated metric Σ̂i at reference point

zi, we obtain its eigenvectors û
(i)
1 and û

(i)
2 and their

respective eigenvalues ¼̂
(i)
1 and ¼̂

(i)
2 via its eigenvalue

decomposition. Here, ¼̂
(i)
1 and ¼̂

(i)
2 are the largest and

smallest eigenvalues, respectively. In particular, we are

interested in the second eigenvector û
(i)
2 that aligns with

the confusion line for this reference point. Because û2

and −û2 are both valid eigenvectors of estimated an

metric Σ̂, we reorient each eigenvector from estimated

metrics so that they point in the direction to intersect. See

the full version of this paper for a detailed description

of this reorientation step.

If we have a reasonable estimate of the metric, then

the estimated eigenvectors do not deviate too far from the
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Fig. 3. Copunctal point estimation: (a) Given the
metric estimate at zi, compute its second eigenvector
and construct an error cone; (b) Given N cones, use
cone intersection to estimate the copunctal point by
any point inside the intersection; (c) Geometry of error
cone pairs.

true eigenvectors by Davis-Kahan theorem [22], which

states if the operator norm error between an estimated

metric Σ̂i and true metric Σ
⋆
i is bounded by some

threshold Äi, then the angular deviation, which we denote

³i, between our estimated eigenvector û
(i)
2 and the true

eigenvector u
(i)
2 is bounded as ³i f Äi

|¼̂
(i)
1 −¼̂

(i)
2 |

.

Based on this result, we construct error cones of angle

³i, which we denote Ci(³i), for each of the N estimated

metrics. The i-th cone has a vertex at the reference point

zi, is symmetric about the estimated eigenvector û
(i)
2 ,

and has boundaries that are an angle ³i/2 rotated from

the estimated eigenvector.

Definition 2. Given a reference point zi, the correspond-

ing estimated metric Σ̂i, and its second eigenvector û
(i)
2

of correct orientation, we define a cone Ci with cone

angle ³i as the set

Ci(³i) :=
{
zi + tR(´)û

(i)
2 : t g 0,−³i

2
f ´ f ³i

2

}
,

where R(´) :=

[
cos(´) − sin(´)
sin(´) cos(´)

]
is a rotation matrix

of angle ´.

For each reference point and estimated metric, we

compute the error cone, a viable angular region around

the estimated eigenvector in which the true eigenvector

must lie in.

b) Step 2: Estimating the copunctal point: With

error cones constructed for each reference point, we now

turn to estimating the copunctal point. Because each

error cone contains the true eigenvector (true confusion

line), the true copunctal point (the intersection point

of all true eigenvectors) must be in the intersection of

all error cones. As a result, we solve the following

feasibility program to obtain an estimate ŵ.

ŵ ∈ Ci(³i) for every i ∈ [N ]. (1)

Specifically, if we write û
(i)
2 = [û

(i)
2,1, û

(i)
2,2]

¦, w
⋆ =

[w1, w2]
¦, and zi = [zi,1, zi,2]

¦, the copunctal point

w
⋆ must satisfy the following inequalities.

w2 − zi,2
w1 − zi,1

g
− sin(³i

2 )û
(i)
2,1 + cos(³i

2 )û
(i)
2,2

cos(³i

2 )û
(i)
2,1 + sin(³i

2 )û
(i)
2,2

w2 − zi,2
w1 − zi,1

f
sin(³i

2 )û
(i)
2,1 + cos(³i

2 )û
(i)
2,2

cos(³i

2 )û
(i)
2,1 − sin(³i

2 )û
(i)
2,2

. (2)

2) Theoretical guarantees for copunctal point local-

ization via linear programming: Suppose we have esti-

mated metrics Σ̂1, . . . , Σ̂N corresponding to N distinct

reference points. For all metrics, we assume that each of

our estimated metrics satisfies the operator norm bound∥∥∥Σ̂i −Σ
⋆
i

∥∥∥
op

f Äi, where for now, we assume exact

knowledge of Äi.
To bound the error of our estimator, we must compute

the diameter of the intersection of N error cones. For

ease of analysis, we consider pairs of cone intersections.

Consider any two error cones Ci(³i) and, Cj(³j) associ-

ated with reference points zi and zj , respectively. Recall

that ³i is denoted the cone angle of the i-th error cone.

We define the deviation angle, denoted ¹i→j , of the i-th
cone as the acute angle between the line connecting zi

and zj and the estimated eigenvector at the center of the

i-th cone, û
(i)
2 . We make the following assumption on

each pair (i, j) of reference points.

Assumption 1. Quantities (³i, ¹i→j) , (³j , ¹j→i) satisfy

¹i→j +
³i

2
f Ã

2
and ¹j→i +

³j

2
f Ã

2
.

For each pair (i, j), define a positive and finite con-

stant

Cij := max

{(
3 ( 6

tan(¹i→j ( ¹j→i +
³i(³j

2 )

)

· 1 + tan2(¹i→j ( ¹j→i)

1− tan2(¹i→j ( ¹j→i) tan
2(

³i(³j

2 )
,

sin(³i ( ³j)

sin(¹i→j ( ¹j→i)
( 1

}
.

(3)
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Theorem 1. Suppose Assumption 1 holds for all pairs

1 f i < j f N . Recall the definition of constant Cij

from Equation (3). If ∥Σ̂i−Σ∗
i ∥op f Äi for each i ∈ [N ],

then

∥ŵ −w
⋆∥2 f min

i,j∈[N ]
Cij · ∥zi − zj∥2 ·

tan

(
2ÃÄi

|¼̂(i)
1 − ¼̂

(i)
2 |

( 2ÃÄj

|¼̂(j)
1 − ¼̂

(j)
2 |

)
. (4)

Theorem 1 is a deterministic result and stated broadly

to accommodate estimates of metrics under any estima-

tion procedure.

B. Metric estimation

Given the result of Theorem 1 connecting the es-

timated metrics to the estimated copunctal point, we

now turn to the first step of estimating the metrics.

We provide one solution by using perceptual adjustment

queries (PAQs) [13], while noting that our framework is

general and not tied to any particular choice.

1) Perceptual adjustment query (PAQ): We use per-

ceptual adjustment queries to collect human data on

color perception. The continuous nature of color space

and the need to identify precise transition regions make

perceptual adjustment queries (PAQs) [13] amenable to

our task. A PAQ consists of a reference item and a con-

tinuous path of items that start at a different item from

the reference and vary gradually towards the reference.

The user is asked to select the first item along this path

that is similar to the reference.

Such queries were originally proposed and theoret-

ically analyzed in a metric learning context [13], and

are a natural query for characterizing color perception:

starting from a reference color, we slowly vary the

color along one direction and ask the user to indicate

the first color that they perceive as different from the

reference. Such responses can then be used to estimate

a metric. Operationally, PAQs can be implemented via

a slider, where the user is asked to adjust a slider that

gradually changes a color. The user is asked to compare

the changing color against a fixed reference color, and

stop on the first color that the user sees as similar to the

reference color, as shown in Figure 1.

Suppose we want to estimate an unknown metric

Σ
⋆ corresponding to the reference color z. We pick a

direction a along which the colors change2 and present

the user with a path of items of the form {z + ℓa : ℓ ∈
[0,∞)}. The user then selects the first item z+µa that is

2Note the direction of a is opposite to the direction of the slider in
Figure 1.

perceivable as different from z, resulting in the response

µ. This response µ can be viewed as a scaling of the

query vector a. Under the color perception model by

Def. 1, the response item z+µa should be a squared Σ
⋆-

Mahalanobis distance y away from the reference color.

Following [13], we consider the following noise model:

y + ¸ = ∥(z + µa)− z∥2
Σ⋆ = µ2

a
¦
Σ

⋆
a, (5)

where ¸ is a noise term. Concretely, we make the

following assumptions about the noise.

Assumption 2. The noise ¸ is a random variable such

that the following are true.

• E [¸] = 0 and there exists some positive constant

¸↑ such that |¸| f ¸↑ < y almost surely.

• ¸ and random query direction a are independent.

• The expectation E[ y
y+¸

] is finite.

We define

Ã :=
2¸↑

(y − ¸↑)(y + ¸↑)
, (6)

which is the variance of the random variable
y
¸

.

Following [13], the measurement formulation (5)

can be written as a linear measurement of the metric

ïaa¦,Σ⋆ð which satisfies

(y + ¸)/µ2 = ïaa¦,Σ⋆ð. (7)

2) Theoretical guarantees: Suppose that for each

reference point z, we collect M responses {ai, µ
2
i }Mi=1,

where ai
i.i.d∼ N (0, Id). We estimate the metric Σ̂ via

the following unregularized least squares estimator:

Σ̂ ∈ argmin
Σ°0

1

M

M∑

i=1

(
ïaia

¦
i ,Σð − y/µ2

i

)2
. (8)

The least squares estimator (8), as noted in prior

work [13], is inconsistent. However, we show that least

squares produces a consistent estimate of a scaled ver-

sion of the true metric Σ̂. Crucially, this preserves

the directions of the eigenvectors. The least squares

estimator (8) is a convex semi-definite program that can

be solved in polynomial time with off-the-shelf solvers.

Theorem 2. Let c > 0 be a universal constant. Sup-

pose Assumption 2 holds and recall the definition of Ã
from Equation (6). Consider any ¶ ∈ (0, 1). Suppose

the number of measurements M satisfies M g 3 and

M g c log3
(
M
¶

)
. Then with probability greater than

1− ¶,

∥∥∥∥Σ̂ − E[
y

y + ¸
]Σ⋆

∥∥∥∥
op

f cÃ ∥Σ⋆∥F

√(
1 + log4( 1

¶
)
)

M
.
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With this result stated, we arrive at an error bound on

the copunctal point estimation with PAQs.

Corollary 1. Suppose the conditions of Theorem 1

and Theorem 2 hold. Recall the definition of Cij

from Equation (3). Consider any ¶ ∈ (0, 1). Suppose the

number of measurements Mi for each of the N reference

points satisfies Mi g 3 and Mi g c log3
(
Mi

¶

)
. Then,

with probability greater than 1−N¶,

∥ŵ −w
⋆∥2 f Ã

√
1 + log4

(
1

¶

)
min

i,j∈[N ]
Cij · ∥zi − zj∥2

×
(

1

|¼̂(i)
1 − ¼̂

(i)
2 |√Mi

( 1

|¼̂(j)
1 − ¼̂

(j)
2 |
√
Mj

)
.

(9)

IV. EXPERIMENTS

We now present two sets of experimental results. First,

we conduct a small-scale user study on four participants.

We construct 80 questions by selecting four reference

points in CIE xyY space: (0.25, 0.34, 0.5), (0.29, 0.40,

0.5), (0.37, 0.40, 0.5) and (0.35, 0.35, 0.5). For each

reference point, we select 20 equally spaced sensing

vectors. We randomly place the reference point on the

slider, so that the “true” response is different for each

query. PAQ responses are collected from 3 color-normal

users and 1 color-blind user. Figure 2 shows four ellipses

along with major axes for each user—note the individual-

level variation even among color-normal users.

Our second set of experiments is a suite of simulation

studies in both a controlled and end-to-end setting. In

each plot of Figure 4, we report the estimation error

∥ŵ −w
⋆∥2 averaged over 20 trials. In each trial, we

select the true copunctal point w
⋆ randomly from the

bottom left quadrant of color space, and N reference

colors randomly from the rest of color space. We sim-

ulate the true metric Σ
⋆
i at each reference color zi by

choosing its minimal eigenvector to align with the vector

w
⋆−zi and assigning eigenvalues (¼1, ¼2) to ensure that

this direction remains the minimal eigenvector.

In the controlled setting, we generate an estimated

metric Σ̂i = Σ
⋆
i + ∆i where ∥∆i∥op = Ä. We use

the estimated metrics Σ̂i to estimate the copunctal point

ŵ via our algorithm. From Figure 4a, we observe that

estimation error decreases with the eigengap |¼1 − ¼2|
and increases with the parameter Ä. Both these phenom-

ena are captured by Theorem 1. Figure 4b additionally

shows that the estimation error decreases as the number

of reference points N grows. Capturing this phenomenon

theoretically is an interesting future direction.
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Fig. 4. Effect of (a) eigenvalue gap, (b) number of
references on copunctal point estimation error across
multiple error levels. (c) Comparison of copunctal
point estimation performance of PAQs at varying noise
levels to noiseless ordinal queries.

In the end-to-end setting plotted in Figure 4c, we

do not simulate the matrices Σ̂i but estimate them

using various query types. In particular, we generate re-

sponses according to noiseless Paired comparisons [23],

Triplets [24], Nearest-neighbor queries [25] and Ranking

queries [26], as well as noisy responses from PAQ

queries according to Eq. (5). As shown by the figure,

the PAQ mechanism is the most cost efficient among all

these choices, and achieves the lowest error per query.
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