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Continuous Venous Oxygen Saturation
Estimation via Population-Informed Personalized
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Abstract—Mixed venous oxygen saturation (SvO2) can
play a pivotal role for patient monitoring and treatment in
critical care and cardiopulmonary medicine. Unfortunately,
its continuous measurement requires the use of invasive
pulmonary artery catheters. This letter presents a novel
population-informed personalized Gaussian sum extended
Kalman filtering (PI-P-GSEKF) approach to continuous
SvO2 estimation from arterial oxygen saturation (SpO2)
measurement. The main challenge in SvO2 estimation is
large inter-individual variability in the cardiopulmonary
dynamics, which seriously deteriorates the efficacy of stan-
dard EKF. To cope with this challenge, we employ the
GSEKF in which individual EKFs are designed using a
mathematical model of cardiopulmonary dynamics whose
operating points are selected from (i) population-level
generative sampling (thus “population-informed”) and
(ii) Markov chain Monte Carlo (MCMC) sampling based on
a one-time SpO2-SvO2 measurement (thus “personalized”).
Using the experimental data collected from 8 hypoxia trials
in 4 large animals, we showed the ability of the PI-P-GSEKF
to estimate SvO2 from SpO2 in comparison with its PI-
EKF (EKF with population-level generative sampling as
the source of process noise) and PI-GSEKF (GSEKF with
population-level generative sampling alone) counterparts
(average SvO2 root-mean-squared error: PI-EKF 4.7%, PI-
GSEKF 4.3%, PI-P-GSEKF 3.0%). We also showed that
population-level generative sampling and MCMC sampling
both had respective roles in improving SvO2 estima-
tion accuracy. In sum, the PI-P-GSEKF demonstrated its
proof-of-principle to enable non-invasive continuous SvO2
estimation.

Index Terms—Mixed venous oxygen saturation,
Gaussian sum filter, Kalman filter, generative sampling,
MCMC sampling.
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I. INTRODUCTION

IN CRITICAL care and cardiopulmonary medicine, effec-
tive patient management frequently requires maintaining

the balance between oxygen (O2) supply and consump-
tion [1], [2]. In this context, mixed venous oxygen saturation
(SvO2) can play a pivotal role for patient monitoring and
treatment. A reduction in SvO2 often signifies the mismatch
between O2 supply and consumption caused by, e.g., a
decrease in arterial O2 content, a decrease in cardiac output
(CO), or an increase in O2 demand [3]. As an example,
SvO2 can offer more immediate and accurate assessment
of oxygenation status in circulatory shock than rudimentary
vital signs used in clinical practice today [4]. As another
example, SvO2 can reveal post-operative clinical deterioration
due to inadequate O2 supply not apparently indicated by blood
pressure (BP) and arterial oxygen saturation (SpO2) [5]. In
this way, SvO2 can improve the monitoring and treatment of
critically ill patients.

The O2 supply-consumption balance varies dynamically.
Hence, continuous SvO2 measurement has the potential to
enable frequent and precise titration of treatment to each
patient. However, continuous measurement of SvO2 requires
invasive pulmonary artery catheterization, whose use has
declined due to its clinical risks and complications [6], [7], [8],
[9]. SvO2 can also be measured via venous blood sampling [3].
However, it is still invasive. Moreover, it is intermittent,
making it inadequate for continuous SvO2 monitoring.

Given that the difference between inspired oxygen fraction
(FIO2) and SpO2 may approximately represent O2 intake,
SvO2 may likely be inferred from these readily available
continuous measurements by leveraging the balance between
O2 intake and consumption. An attractive solution may be state
estimation based on a mathematical model of cardiopulmonary
dynamics. In this context, the main challenge in SvO2 estima-
tion is large inter-individual variability in the cardiopulmonary
dynamics [10]. Such variability acts as uncertainty in state
estimation and deteriorates its accuracy. In particular, standard
extended Kalman filter built upon nominal cardiopulmonary
dynamics may suffer from unacceptably large parametric
errors and process noise. One can conceive adaptive state
estimation to address this challenge, e.g., by augmenting
unknown parameters into the plant dynamics to estimate
states and unknown parameters simultaneously [11] or sequen-
tially [12], [13], [14]. However, adaptive state estimation may
still result in inadequate accuracy because the augmentation
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Fig. 1. Population-informed personalized Gaussian sum extended
Kalman filter (PI-P-GSEKF). ϑ

(0)
i , i = 1, . . . , NG : Generative parameter

vectors. θi and Qθi , i = 1, . . . , NEKF : Personalized generative parameter
vectors selected as the operating points for the EKFs.

of a large number of parameters as states can degrade the
observability of the plant dynamics.

To cope with this challenge, we present a novel population-
informed personalized Gaussian sum extended Kalman
filtering (PI-P-GSEKF) approach to continuous non-invasive
SvO2 estimation from continuous FIO2-SpO2 measurements
(Fig. 1). We exploit Gaussian sum filtering (GSF) [15] to
achieve good state estimation accuracy while avoiding the
worsening of observability caused by state augmentation in
adaptive state estimation. We employ a large number of EKFs
in the GSF to deal with the nonlinear and uncertain nature
of the cardiopulmonary dynamics. A novel aspect of our
approach lies in the way the operating points of the individual
EKFs are selected. First, we use population-level generative
sampling [16] to generate a large number of parameter vector
samples, which can replicate diverse plausible cardiopul-
monary dynamics when characterizing its mathematical model.
Second, we use Markov chain Monte Carlo (MCMC) sam-
pling based on a one-time SpO2-SvO2 measurement, which
personalizes the generative parameter vector samples toward
the cardiopulmonary dynamics pertaining to the SpO2-SvO2
measurement. Third, we select a preset number of personalized
parameter vector samples as the operating points for designing
the EKFs in the GSF. In this way, our approach is population-
informed (i.e., via generative sampling) and personalized (i.e.,
via MCMC sampling) GSEKF (PI-P-GSEKF). We investigated
the ability of the PI-P-GSEKF to estimate SvO2 from FIO2-
SpO2 using the experimental data collected from 8 hypoxia
trials in 4 large animals in our prior work [10].

II. POPULATION-INFORMED PERSONALIZED GAUSSIAN

SUM EXTENDED KALMAN FILTER

The PI-P-GSEKF consists of 3 key components: (i) a GSF
composed of a bank of EKFs with a broad range of operating
points, which are selected by (ii) a population-level generative
sampling and (iii) an MCMC sampling driven by a one-time
measurement (Fig. 1). Consider a nonlinear system whose
dynamics is given by:

x(k + 1) = f (x(k), u(k), θ) + w(k)

y(k) = h(x(k)) + v(k) (1)

where f (·) and h(·) are continuously differentiable vector func-
tions, w(k) ∼ N(0, Q(k)) and v(k) ∼ N(0, R(k)) are zero-mean
Gaussian noises with Q(k) and R(k) as covariance matrices,
θ is a vector which contains the parameters characterizing the
system dynamics, and x(k) and u(k) are state and input vectors
at a time instant k. The PI-P-GSEKF estimates the state x̂(k)

using a large number of state estimates x̂i(k), i = 1, . . . , NEKF
furnished by a bank of EKFs:

x̂ =
NEKF∑
i=1

wix̂i

P =
NEKF∑
i=1

wi

[(
x̂i − x̂

)(
x̂i − x̂

)T + Pi

]
(2)

where NEKF is the number of EKFs, x̂i(k) and Pi(k) are
the state estimated by the i-th EKF and its corresponding
covariance, x̂(k) and P(k) are the state estimated by the PI-P-
GSEKF and its corresponding covariance, wi(k) is the weight
pertaining to the i-th EKF. Each EKF estimates its state
(i.e., x̂i(k), i = 1, . . . , NEKF) using the standard prediction-
correction procedure. Each weight wi(k), i = 1, . . . , NEKF in
Eq. (2) is initially set to 1

NEKF
and subsequently updated at

each time instant based on the likelihood of y(k) given x̂−
i (k):

wi(k) = wi(k − 1)p
(
y(k)|x̂−

i (k)
)

wi(k) = wi(k)∑NEKF
i=1 wi(k)

(3)

where x̂−
i (k) is the state predicted by the i-th EKF at a

time instant k. In the PI-P-GSEKF, the operating points of
the EKFs (i.e., θi, i = 1, . . . , NEKF) are selected by a
population-level generative sampling and an MCMC sampling.
In this context, the generative sampling generates a large
number of operating points which can encompass diverse
yet plausible cardiopulmonary dynamics, while the MCMC
sampling personalizes the generative samples using a one-
time measurement. First, the PI-P-GSEKF generates plausible
yet wide-ranging random operating point samples from a pre-
constructed generative sampler:

ϑ
(0)
i ∼ G(φ) (4)

where ϑ
(0)
i , i = 1, . . . , NG are the generative operating point

samples while G(φ) is the generative sampler in the form of
a multi-dimensional probability density function characterized
by a set of latent parameters φ (which specify the shape of
G [16]). Second, the PI-P-GSEKF generates a sequence of
personalized operating point samples from each ϑ

(0)
i , i =

1, . . . , NG using an MCMC sampler (e.g., the Metropolis-
Hastings algorithm [17]) so that the operating points included
in the MCMC sequence can (i) replicate the available one-time
measurement of the system state and (ii) avoid non-sensical
state. In this way, random generative operating points are
personalized to the system at hand, to the extent where the
EKF can be parameterized at the operating points congruent
with the one-time measurement. For this purpose, the PI-P-
GSEKF uses the following likelihood function in performing
the Metropolis-Hastings algorithm:

L
(

z(0)

∣∣∣ϑ(m)
i

)
= L1

(
z(0)

∣∣∣ϑ(m)
i

)
L2

(
ϑ

(m)
i

)

L1

(
z(0)

∣∣∣ϑ(m)
i

)
= exp

(
−α1

∥∥∥z(0) − ẑ
(

0, ϑ
(m)
i

)∥∥∥
2

)

L2

(
ϑ

(m)
i

)
= exp

(
−α2

[∥∥∥max
(

0, x̂
(

0, ϑ
(m)
i

)
− x̌(0)

)∥∥∥
1

+
∥∥∥max

(
0, x̆(0) − x̂

(
0, ϑ

(m)
i

))∥∥∥
1

])
(5)

where z(0) is the one-time measurement of a subset of the state
(i.e., z(0) ⊂ x(0)), 0 is a zero vector with the same dimension
as x, ·̌ and ·̆ are element-wise maximum and minimum, and
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Fig. 2. Mathematical model of oxygenation transport in response to
mechanical ventilation.

m = 1, . . . , NMCMC − 1. The MCMC sampling yields:

ϑ i =
{
ϑ

(1)
i , . . . , ϑ

(NMCMC)
i

}
(6)

where ϑ
(j)
i , j = 1, . . . , NMCMC are the personalized operating

points in the sequence ϑ i pertaining to ϑ
(0)
i . Third, the PI-P-

GSEKF computes the mean and covariance pertaining to all
the ϑ i’s as the candidate operating points and their covariance
matrices:

θi = ϑ i, Qθi = �(ϑ i) (7)

where · denotes mean value and �(·) denotes covariance.
Fourth, the PI-P-GSEKF ranks these NG population-informed
and personalized operating points based on the likelihood in
Eq. (5), and adopts the NEKF operating points with the highest
likelihood values to construct the PI-P-GSEKF.

In this way, the PI-P-GSEKF can estimate the state even
when the ground truth system dynamics is substantially dif-
ferent from its nominal counterpart. This can be achieved by
a large number of EKFs whose operating points are diverse
(by virtue of generative sampling) yet still close to the ground
truth system dynamics (by virtue of MCMC sampling). In
this sense, the PI-P-GSEKF may probably be superior to the
conventional EKF based solely on nominal system dynamics,
especially when the ground truth vs nominal system dynamics
are substantially different.

III. CONTINUOUS SVO2 ESTIMATION VIA PI-P-GSEKF
A. Cardiopulmonary Dynamics: Mathematical Model

We used a mathematical model capable of simulating O2
transport during mechanical ventilation developed in our prior
work [10] as system dynamics. The mathematical model
includes 5 states: end-tidal O2 saturation (ETO2) (x1) and O2
concentrations in arteries (x2 and x3), tissues and veins (x4),
and peripheral SpO2 measurement site (x5). The input to the
system is O2 provided by mechanical ventilation through the
lungs. The output of the system is SpO2 (Fig. 2).

O2 in the lungs increases with its supply via mechanical
ventilation and decreases with its diffusion to the arterial blood
(i.e., pulmonary vein):

ẋ1 = f

VL
V̇ALV(u − x1) − kD,O2

VL
(PALVx1 − PaO2) (8)

where x1 is ETO2 [%], VL is lung volume [ml], V̇ALV is
minute ventilation [ml/s], PALV is alveolar pressure, PaO2 is
O2 partial pressure in the proximal arteries close to the heart
[mmHg], kD,O2 is diffusion coefficient between the lungs and
the arterial blood [ml/(mmHg·s)], u is FIO2, and f is the
fraction of minute ventilation participating in O2 exchange in

the lungs [18]. PaO2 is related to x2 via the O2-hemoglobin
dissociation curve [19]:

x2 = KO2 SaO2 = KO2

PaOγ

2

PaOγ

2 + P50Oγ

2

(9)

where SaO2 is arterial O2 saturation, KO2 is a factor to convert
O2 saturation to O2 concentration (0.204 [ml O2/ml]), P50O2
is O2 partial pressure corresponding to 50% O2 saturation,
and γ is cooperativity constant. O2 in the proximal arteries
increases with its supply from the lungs as well as veins and
decreases with its transport to the distal arteries:

ẋ2 = Q

VPV + VSA
(x4 − x2) + kD,O2

VPV + VSA
(PALVx1 − PaO2)

(10)

where x2 is O2 concentration in the proximal arterial blood
[ml O2/ml], VPV and VSA are pulmonary venous and systemic
arterial blood volumes [ml], Q is cardiac output (CO) [ml/s],
and x4 is O2 concentration in the venous (including the tissues)
blood [ml O2/ml]. O2 in the distal arteries increases with
its supply from the proximal arteries and decreases with its
transport to the tissues and veins [20]:

ẋ3 = −Q3

V3
x3 + Q3

V3
x2 (11)

where x3 is O2 concentration in the distal arterial blood [ml
O2/ml], and V3 and Q3 are hypothetical volume and blood
flow to represent the distal arteries. O2 in the tissues and veins
increases with its supply from the distal arteries and decreases
with its consumption in the tissues as well as its transport to
the proximal arteries:

ẋ4 = − Q

VV
x4 + Q

VV
x3 − η

VV
(12)

where x4 is O2 concentration in the veins (including the
tissues) [ml O2/ml], VV is systemic venous plus pulmonary
arterial volume [ml], η is metabolic O2 consumption rate
[ml/s]. PvO2 is related to x4 via the O2 dissociation curve:

x4 = KO2 SvO2 = KO2

PvOγ

2

PvOγ

2 + P50Oγ

2

(13)

where SvO2 is venous O2 saturation. O2 at the SpO2 mea-
surement site is modeled as a delayed version of O2 in the
proximal arteries:

ẋ5 = −Q5

V5
x5 + Q5

V5
x2 (14)

where x5 is O2 concentration at the SpO2 measurement site [ml
O2/ml], and V5 and Q5 are hypothetical volume and blood flow
to represent the SpO2 measurement site. This mathematical
model can be expressed into Eq. (1) upon discretization with
x = [x1, . . . , x5]T and y = x5, which is characterized by the
following parameter vector θ :

θ =
{

VPV + VSA, VV , VL, kD,O2 , P50O2, γ,
Q3

V3
,

Q5

V5
, η, f

}
(15)

B. Experimental Data
To evaluate the PI-P-GSEKF approach to continuous SvO2

estimation, we used the experimental data collected from
8 hypoxia trials conducted in 4 male pigs (45-60kg) in our
prior work (approved by the Institutional Animal Care and
Use Committee at University of Maryland School of Medicine
(ID #0121006)). In these trials, we recorded physiological
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parameters including SvO2 and CO at a sampling rate of
0.05Hz, and SpO2, ETO2, and minute ventilation at a sampling
rate of 1Hz. The animals underwent large dynamic decrease in
SvO2 due to the hypoxia induced by lowering FIO2 from 20%
down to 10%-13%. Hence, the experimental data were ideally
suited to the development and validation of the PI-P-GSEKF
approach to continuous SvO2 estimation.

C. Evaluation and Analysis
We evaluated and analyzed the PI-P-GSEKF in the context

of continuous estimation of SvO2 from continuous SpO2
measurement as follows.

We derived a generative sampler for the mathematical model
in Fig. 1 by analyzing all the experimental data using the
collective variational inference (C-VI) method developed in
our prior work [10]. The C-VI method derives probability
density of both hyoxia trial-specific and hypoxia trial-average
mathematical model parameter values [16]. We employed the
hypoxia trial-average probability density as the generative
sampler in this letter.

For each hypoxia trial, the PI-P-GSEKF estimated SvO2
as follows. First, it used the generative sampler derived
above to generate plausible operating point samples (i.e., ϑ

(0)
i ,

i = 1, . . . , NG = 100, each of which represents a vector
of mathematical model parameters pertaining to a plausible
animal) (Eq. (4)). Second, it adapted the NG ϑ

(0)
i s using a one-

time measurement of pre-hypoxic steady-state SpO2-SvO2 pair
based on the MCMC sampling (i.e., the Metropolis-Hastings
algorithm with the likelihood function in Eq. (5)), so that the
resulting MCMC sequences ϑ is, i = 1, . . . , NG = 100 in
Eq. (7) could replicate the SpO2-SvO2 measurement pair when
the corresponding FIO2 and minute ventilation were inputted
to the mathematical model parameterized by the samples
therein. Although multiple SpO2-SvO2 pairs may be advan-
tageous to minimize the adverse influence of measurement
noise, only a single SpO2-SvO2 pair was considered given
that each SvO2 measurement requires invasive blood sampling
procedure. After generating 12,000 samples and excluding
the first 6,000 burn-in samples corresponding to transient
convergence, the MCMC sequences had the size of NMCMC =
6000. Third, it calculated θi and Qθi in Eq. (7) pertaining to
all the ϑ is, i = 1, . . . , NG = 100. Fourth, it selected NEKF =
30 θi-Qθi pairs with the highest likelihood values based on
Eq. (5). Fifth, it designed a bank of NEKF = 30 EKFs, each of
which was parameterized with θi and used Qθi as the source
of its process noise covariance matrix similarly to our prior
work [21], [22]. In all the EKFs, it used a constant sensor
noise covariance: R(k) = R, which is the (scalar) variance
pertaining to SpO2 measurement. Sixth, it estimated SvO2 as
the Gaussian sum of the NEKF = 30 EKFs as in Eq. (2)
using FIO2, minute ventilation, and SpO2. Each EKF predicted
and corrected the states based on the standard prediction and
update procedure. Then, the weights were updated based on
the likelihood of the NEKF = 30 predicted states to yield the
measured SpO2 as in Eq. (3). We repeated the above PI-P-
GSEKF computations across all the 8 hypoxia trials.

We evaluated the efficacy of the PI-P-GSEKF in terms of
the root-mean-squared error (RMSE) and its variability caused
by the randomness due to generative and MCMC sampling
(defined as the standard deviation of RMSE resulting from
10 evaluations), the correlation coefficient between measured
vs estimated SvO2, and the confidence interval (defined as
+/−SD envelope pertaining to SvO2 estimation) pertaining

to SvO2 estimation averaged across each hypoxia trial. To
examine the merit of (i) the GSEKF relative to the EKF
in encompassing diverse plausible operating points and (ii)
the MCMC sampling in personalizing the operating points
pertaining to the EKFs, we designed three competing state
estimators. First, we designed a PI-EKF, an EKF designed
using the nominal system dynamics and the population-level
covariance pertaining to the generative sampler [16] as the
source of the process noise covariance matrix similarly to our
prior work [21], [22]. Second, we designed a PI-P-EKF, the
PI-EKF with its operating point and process noise covariance
personalized via MCMC sampling. Third, we designed a PI-
GSEKF, a GSEKF designed using a bank of NEKF = 30 EKFs.
We selected the operating points pertaining to these EKFs by
(i) generating NG = 1000 ϑ

(0)
i s using the generative sampler in

Eq. (4) and (ii) selecting NEKF = 30 samples with the highest
likelihood values according to Eq. (5). As in the case of the
PI-EKF, we used the population-level covariance pertaining
to the generative sampler as the source of the process noise
covariance matrix pertaining to all the EKFs in the PI-GSEKF.
We evaluated the ability of these state estimators to estimate
SvO2 using all the experimental data (i.e., the 8 hypoxia trials),
in terms of the metrics described above. Then, we compared
the SvO2 estimation accuracy pertaining to the PI-EKF, the PI-
P-EKF, the PI-GSEKF, and the PI-P-GSEKF. We determined
the statistical significance in the difference in the performance
metrics using the Wilcoxon’s rank sum test with Bonferroni
correction for multiple comparisons (p<0.0083).

IV. RESULTS AND DISCUSSION

Continuous measurement of SvO2 has the potential to
advance patient monitoring and treatment in critical care and
cardiopulmonary medicine. However, it requires invasive pul-
monary artery catheterization. In this letter, we demonstrated
the proof-of-principle of non-invasive continuous estimation
of SvO2 from readily available continuous SpO2 measurement
based on a novel PI-P-GSEKF approach. Its key idea is to
exploit both population-level generative sampling and MCMC
sampling to select the operating points of the bank of EKFs
comprising the PI-P-GSEKF in such a way that the EKFs can
operate in the vicinity of the ground truth system dynamics
against large inter-individual variability in cardiopulmonary
system dynamics.

Table I summarizes the performance metrics pertaining
to the PI-P-GSEKF, while Fig. 3 shows two representative
examples of measured SvO2 vs SvO2 estimated by the PI-
P-GSEKF. Fig. 4 shows the ground truth operating point,
the operating points pertaining to the PI-P-GSEKF, and the
nominal operating point pertaining to the generative sampler
(and thus the PI-EKF), all associated with the two examples in
Fig. 3. The PI-P-GSEKF demonstrated efficacy in continuous
estimation of SvO2 from continuous SpO2 measurement read-
ily available in clinical settings. In the hypoxia trials, SvO2
changed 18-47%. Hence, the average RMSE of 3.0% may be
viewed as small. In addition, the PI-P-GSEKF significantly
outperformed the PI-GSEKF, the PI-P-EKF, and the PI-EKF
in terms of RMSE and r value (except the PI-GSEKF in terms
of r value). Further, the variability of RMSE pertaining to the
PI-P-GSEKF was smaller than the same variability pertaining
to the PI-P-EKF and the PI-GSEKF (0.95% vs 1.26% and
1.92%, respectively). All these findings suggest the potential
of the PI-P-GSEKF approach to SvO2 estimation in critically
ill patients.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 20,2024 at 02:34:04 UTC from IEEE Xplore.  Restrictions apply. 



REZAEI et al.: CONTINUOUS VENOUS OXYGEN SATURATION ESTIMATION VIA PI-P-GSEKF 2803

TABLE I
EFFICACY OF PI-P-GSEKF, PI-P-EKF, PI-GSEKF, AND PI-EKF:

ROOT-MEAN-SQUARED ERROR (RMSE), R VALUE, AND
TIME-AVERAGED CONFIDENCE INTERVAL (CI; ±σ ENVELOPE)

PERTAINING TO SvO2 ESTIMATION (MEDIAN (IQR)). * , † , ‡ : P<0.0083
WITH RESPECT TO THE PI-EKF, THE PI-GSEKF, AND THE PI-P-EKF

(WILCOXON RANK SUM TEST)

Fig. 3. Two representative examples of measured SvO2 vs SvO2
estimated by the PI-P-GSEKF, the PI-P-EKF, the PI-GSEKF, and the PI-
EKF. (a) An example where the ground truth operating point was close to
the nominal SpO2 and SvO2 operating point. (b) An example where the
ground truth operating point was far from the nominal SpO2 and SvO2
operating point.

Both the population-level generative sampling and the
MCMC sampling via one-time SpO2-SvO2 measurement
appeared to play meaningful roles in improving the efficacy of
continuous SvO2 estimation via the PI-P-GSEKF. In develop-
ing the PI-P-GSEKF, we predicted that the generative sampling
would provide diverse operating points to cope with the
large inter-individual variability in the system dynamics, and
that the MCMC sampling via one-time measurement would
adapt the generative operating points toward the ground truth
system dynamics. First, the PI-GSEKF exhibited significant
improvement in the RMSE of 7% on the average relative to
the PI-EKF, which confirmed our prediction on the merit of
the generative sampling. Second, the PI-P-GSEKF exhibited

Fig. 4. Two representative examples of ground truth operating point
(i.e., experimental values; black square), operating points pertaining to
the PI-P-GSEKF (blue circles), and nominal operating point pertaining
to the generative sampler (and the PI-EKF) (red triangle) in SpO2-SvO2
space pertaining to Fig. 3. OP: operating point.

an even greater improvement in the RMSE of 31% on the
average (which translates into 36% on the average relative
to the PI-EKF) relative to the PI-GSEKF, which confirmed
our prediction on the merit of the MCMC sampling. In fact,
the MCMC sampling personalized the generative operating
points to the vicinity of the ground truth (namely, experimental
values) in terms of SpO2 and SvO2 (Fig. 4). The generative
sampling and the MCMC sampling are both crucial to the
PI-P-GSEKF: they appear to exert synergistic effects on the
efficacy of the PI-P-GSEKF, especially when the ground
truth system dynamics cannot be fully captured by the one-
time measurement: diverse generative operating points can be
adapted to diverse candidate operating points which replicate
the one-time measurement, as illustrated in Fig. 4, a subset of
which is close to the ground truth operating point. Indeed, the
PI-P-GSEKF exhibited significant improvement in the RMSE
of 23% on the average relative to the PI-P-EKF with smaller
inter-individual variability in all the metrics in Table I, which
shows the advantage in leveraging the GSEKF relative to a
single EKF. The advantage of the PI-P-GSEKF, which employs
a bank of EKFs at diverse operating points commensurate
with the one-time measurement, may be further highlighted
by the limitations pertaining to the state-of-the-art methods.
In particular, our work showed that adaptive techniques such
as augmented EKF (where parameters are augmented in the
state [11]) and dual-EKF (where the state and the parameters
are estimated sequentially [12], [13], [14]) suffered from poor
accuracy in continuous SvO2 estimation, which is likely due
to the deteriorated observability as implied by a substantial ill
conditioning of the observability test matrix (not shown; not
surprisingly, a large number of mathematical model parameters
in addition to SvO2 cannot be inferred from FIO2 and SpO2
measurements alone).

All in all, the comparison of Fig. 3 and Fig. 4 illustrates
that the PI-P-GSEKF was comparable to the PI-P-EKF, the PI-
GSEKF, and the PI-EKF when the ground truth operating point
was close to the nominal operating point in terms of SpO2 and
SvO2 (so that it could be easily generated by the generative
sampler) (Fig. 3(a) and Fig. 4(a)), whereas the PI-P-GSEKF
appeared to largely outperform the PI-P-EKF, the PI-GSEKF,
and the PI-EKF when the ground truth operating point was far
from the nominal operating point in terms of SpO2 and SvO2
(so that the generative sampler could not generate operating
points close to it) (Fig. 3(b) and Fig. 4(b)).

The GSF architecture is known to frequently result in a
large confidence interval in state estimation [15]. In contrast,
the integration of the generative sampling in the PI-P-GSEKF
approach resulted in a small confidence interval (Table I). In
the setting of the PI-GSEKF, the operating points are diversely
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Fig. 5. Dependence of the RMSE pertaining to the PI-P-GSEKF (black)
and PI-GSEKF (red) on their size (i.e., the number of EKFs therein). The
blue dashed line indicates the RMSE pertaining to the PI-EKF (whose
size is fixed to 1).

distributed. Hence, we observed that only a small number
(usually 1) of EKFs which are close to the ground truth
operating point attained high weights, whereas most of the
remaining EKFs attained weights close to zero, which may
have contributed to decrease the confidence interval. On the
other hand, the integration of the MCMC sampling in the PI-
P-GSEKF approach resulted in a larger confidence interval
(Table I). In the setting of the PI-P-GSEKF, the operating
points are clustered in the vicinity of the ground truth operating
point (e.g., Fig. 4). In addition, the size of the process noise
covariance pertaining to most (if not all) operating points
(i.e., Qθi , i = 1, . . . , NEKF = 30 in Eq. (8)) is decreased by
virtue of personalization. However, there are a good number
of equally good MCMC operating points. Hence, we observed
that a relatively large number (usually ≥3) of EKFs attained
high weights, which may have contributed to increase the
confidence interval relative to the PI-GSEKF. Nonetheless, the
confidence interval was small in the absolute sense (<2%).

Our analysis also revealed that there may be an optimal size
(i.e., the number of EKFs) pertaining to the PI-P-GSEKF. In
the context of continuous SvO2 estimation problem at hand,
Fig. 5 shows the dependence of the RMSE pertaining to the
PI-P-GSEKF and the PI-GSEKF on their size. In the case
of the PI-P-GSEKF, the estimation efficacy initially improved
as its size increased (Fig. 5). But, beyond a certain size,
the efficacy started to deteriorate (Fig. 5). In the case of the
PI-GSEKF, the trend was more sophisticated (Fig. 5). The
biphasic trend in Fig. 5 pertaining to the PI-P-GSEKF may be
explained as follows. Since the PI-P-GSEKF includes NEKF
high-rank operating points based on the likelihood evaluated
using Eq. (6), its efficacy improves initially as an increasing
number of high-rank operating points are included. However,
its efficacy deteriorates as low-rank operating points start to be
included. Hence, the size of the PI-P-GSEKF may need to be
selected with caution. Remarkably though, the PI-P-GSEKF
consistently outperformed the PI-EKF and the PI-GSEKF
irrespective of its size, which may be an additional evidence
to support the efficacy of the PI-P-GSEKF.

In sum, our work illustrates that (i) SvO2 estimation via
SpO2 measurement may be a reasonable approach; and that
(ii) the PI-P-GSEKF may be a viable solution to continuous
SvO2 estimation problem, with its ability to cope with the
large inter-individual variability via the generative sampling
and the MCMC sampling to specify diverse yet personalized
operating points relevant to the EKFs therein.

V. CONCLUSION

We demonstrated the proof-of-principle of the novel PI-P-
GSEKF approach to state estimation in dynamical systems

with large inter-individual variability using continuous SvO2
estimation as a case study. The PI-P-GSEKF may enable
non-invasive continuous SvO2 estimation, which may enable
superior patient management in critical care and cardiopul-
monary medicine. Future work must be invested to further
investigate the PI-P-GSEKF approach including its computa-
tional aspects, compare it with other existing state estimation
techniques, and explore its use in other challenging state
estimation problems.
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