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Robot Action Planning in the Presence
of Careless Humans
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and Aaron F. Bobick, Fellow, IEEE

Abstract—This article introduces the notion of carelessness level
into robot action planners such that the safety and efficiency are
optimized. The core idea is to make the robot’s plan less sensitive
to the behavior of careless humans who may inattentively violate
safety constraints and degrade efficiency. More precisely, our
planner reduces the opportunities given to the careless humans
to put themselves in danger and hamper the efficiency of
the robot’s plan. The effectiveness of the proposed planner is
demonstrated through simulation studies on a packaging line and
on a collaborative assembly line. Results show that the proposed
scheme can improve efficiency and safety in both examples.

Index Terms—Action planning, carelessness, human predictive
model, human–robot collaboration, receding horizon control.

I. INTRODUCTION

BACKGROUND: Robots are being widely used in a
large variety of applications, as a substitute for humans

or as an assistant in performing various repetitive, tedious
and/or potentially hazardous tasks [1]. While the degree of
automation has risen significantly in several industries, a large
number of applications require humans to share the workspace
with robots [2]. Thus, a safe and efficient human–robot
collaboration is a key issue that needs to be addressed [3].

Current methods employed to address safety in shared
environments can be classified into two groups: 1) precollision
methods, aiming at preventing collisions by either using
signals/indicators to alert humans of a potential hazard [4], [5]
or by modifying the robot’s actions so as to prevent a
collision [6], [7], [8], [9] and 2) post-collision methods,
aiming at deploying a set of sensors to detect collisions [10],
[11], [12], [13], and employ a reaction strategy to minimize
harm [14], [15].
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In general, pre- and post-collision methods are predomi-
nantly reactive. The use of proactive robot action planning
methods can improve both safety and efficiency of the col-
laborative interaction, by first anticipating human actions (see
e.g., [16], [17], [18], [19], [20], [21]), and then by scheduling
robot’s actions accordingly (see e.g., [22], [23], [24], [25],
[26], [27]).

Limitations of Prior Work: A large portion of existing action
planning schemes are founded on the presumption that the
humans are attentive; that is they pay attention to safety rules.
However, this presumption is not realistic. Indeed, human error
is becoming the prevalent source of accidents in environments
shared by humans and robots [28], [29], [30]. Psychological
studies have shown that repetitive and tedious works can
cause humans to lose attention [31], [32], [33], [34]. Directed
attention fatigue [35], [36] and physical fatigue [37], [38] are
additional issues that can lead to human errors. Finally, long
term exposure to visual/auditory indicators can make them less
effective in attracting humans’ attentions [39].

Despite the proven negative impact of such loss of attention
on both efficiency and safety of robot–human collaboration,
carelessness of humans does not play a major role in existing
robot action planning schemes. This article attempts to bridge
this gap by introducing human carelessness in robot action
planning with goal of developing safer and more efficient
plans. As far as we know, this is the first attempt to formalize
and use such concept to improve robot action planning.

Contribution: Two key contributions of this article are:
1) introduction of a quantifiable notion of carelessness level
and 2) development of a learning-based state-of-the-art robot
action planning scheme to improve safety and efficiency of
robot–human collaboration by leveraging the aforementioned
notion. In this article, carelessness is identified with over-
looking safety alarms. Accordingly, the carelessness level is
a quantity that reflects the likelihood of overlooking a safety
alarm; the higher the carelessness level is, the higher is the
likelihood that the human will overlook safety alarms.

The main features of the proposed scheme are: 1) it is
general and can be applied to any human–robot collaboration
satisfying the posed setting; 2) it is modular, meaning that
any other objective function or belief update rule can be
incorporated into the scheme without changing its structure;
3) carelessness level is automatically and continuously updated
by the robot as a result of the observed human’s actions,
and therefore takes into account possible time-varying effects
such as fatigue; and 4) planning policies take safety into
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account, thus avoiding the design of often complex, rarely
comprehensive, rule-based, ad-hoc safety rules.

Notation: We denote the set of real numbers by R, the
set of positive real numbers by R>0, and the set of non-
negative real numbers by R≥0. Similarly, we denote the set
of integer numbers, the set of positive integer numbers, and
the set of non-negative integer numbers by Z, Z>0, and Z≥0,
respectively. We use R[a,b] to denote real numbers in interval
[a, b]. Given x as a discrete random variable, E[x] represents
its expectation; also, we use P(x) to denote the probability
density function of x. We use N[a,b](x;µ, σ ) to indicate that
the discrete random variable x conditional on a ≤ x ≤ b has
a truncated normal distribution with mean µ and variance σ .
For a given set X, we use |X| to denote its cardinality. For
a given set X = {(x1, x2)|x1 ∈ X1 and x2 ∈ X2}, Projx1

X =
{x1 ∈ X1|∃x2 ∈ X2 such that (x1, x2) ∈ X}.

II. RELATED WORK

Predictive Human Model: In recent years, there have been
several studies on predicting humans’ actions/states in the
context of human–robot interaction. In some work (e.g., [40]),
it is assumed that the robot has complete knowledge about the
environment. However, this assumption may not be reasonable
in real-world scenarios due to uncertainties in human’s behav-
ior. As a result, many researchers have focused on developing
a method to enable robots to use the history of humans’
actions to predict their future actions and states. In [16],
propagation networks have been utilized to detect partially
ordered sequential actions of the humans. Albanese et al. [17]
introduced the concept of constrained probabilistic Petri nets
and showed how this concept can be used to predict humans’
actions. In [18], Gaussian mixture distribution techniques
have been used to model humans’ actions and predict their
timing. Markov models have been used in a variety of stud-
ies [19], [20], [41] to predict the timing of humans’ actions.
In [42], an interaction primitive framework for predicting
humans’ the most likely future movements is developed. The
anticipatory temporal conditional random fields have been
used in [43] to predict humans’ future actions. A Bayesian
framework is provided in [44] and [45] to reason about
humans’ rationality and predict humans’ actions. Hawkins
and Tsiotras [46] assumed that humans are rational and build
a predictive model to anticipate the timing of their actions.
In [47] and [48], Bayesian methods are proposed to estimate
human motion intention. A two-layer Fuzzy model has been
introduced in [49] to understand human’s emotional intention.
An empirical stochastic transition matrix and a dynamic angle
difference exponential have been proposed in [50] to introduce
a method for dynamically predicting the human’s intention
in human–robot environments. In [51], [52], [53], [54], [55],
and [56], online Bayesian method has been exploited to infer
human’s latent states, and hence to generate a predictive
model. A convolutional neural network has been proposed
in [57] to predict human motion is disassembly tasks. Hwang
et al. [58] proposed a dynamic neural network model based on
predictive coding to predict human’s actions in human–robot

interaction. Some ad hoc methods (e.g., [21]) have also been
proposed.

Robot Action Planning: Once a predictive human model
is developed, the robot can use this model to generate
a safe and efficient plan. Several robot action planning
schemes have been proposed in the literature. Wilcox
et al. [59] introduced the adaptive preferences algorithm
that computes a flexible optimal policy for robot scheduling
and control in assembly manufacturing. In [22], a method
has been proposed to optimize the task assignment such
that the cycle time is shortened, and consequently the
productivity is increased. Probabilistic wait-sensitive task
planning have been proposed in [23] and [24] to optimize
the robot tasks with respect to the posterior human action
distributions, such that the human’s total wait time is
reduced. Tanaka et al. [25] and Kanazawa et al. [26] proposed
a motion planning scheme based on human’s trajectory
prediction to improve efficiency. In [60], a gradient-based
iterative path learning method was proposed to, first, learn
the human’s motion, and then provide a safe path for the
robot. Genetic algorithms have also been utilized in some robot
action planners, e.g., [27]. To improve the safety and efficiency
of collaborative work, Lyu and Cheah [61] introduced the
notion of interactive weight to specify the robot’s interaction
behaviors based on the human’s movements. The notion of the
virtual plane is used in [62] for path planning and navigation
in dynamic environments. Aoude et al. [63] have developed
a path planning framework to safely navigate robots, while
avoiding dynamic obstacles with uncertain motion patterns. To
make robots assist humans to achieve task-specific objectives,
Ranatunga et al. [64] proposed an adaptive scheme that deals
with different human dynamics/behaviors. Jiang et al. [65]
considered walking-assistant robots and proposes a scheme to
enable the robots to adapt to user’s motion intent. A context-
aware robot action planning has been introduced in [66], where
the planning is based on descriptive scenarios describing the
expected behavior of agents. Human multirobot interaction
has been considered in [67], where a scheme is proposed to
plan/modify the robots’ actions so to keep the safety above
a given threshold. Huo et al. [68] considered wearable robots
and proposes an intention-driven method to enable the robot
to match the human’s action.

III. PROBLEM FORMULATION

In this article, analyses are restricted to the case of one robot
interacting with N humans who are not interacting among
themselves, as the goal of this article is to introduce the
notion of carelessness level. We believe the framework can
be generalized to more complex interactions involving several
robots and humans interacting and communicating in complex
manners, and we plan to tackle this challenge in future work.

Remark 1: When one robot is collaborating with only one
human, to improve safety and efficiency, the robot only needs
to predict the time instant when the human’s state is expected
to begin, and to perform the necessary prerequisite action
prior to that time instant. This can be done irrespective of the
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carelessness level of the human, and is the subject of a large
literature, e.g., [23].

A. Collaboration Setting

Consider a collaboration between one robot and N humans
(denoted by hi, i ∈ {1, . . . , N}), where human hi repeatedly
performs a single task. In this article, time will be discrete and
we will use k to denote time instants, where [k, k+1) is equal
to "T ∈ R>0 s. We use the following semantics and notations
to describe the setting.

Discrete States: The task of human hi can be described by
#i discrete states, each one describing a particular situation of
human hi. The human hi should execute a discrete transition
(will be discussed later) if a necessary prerequisite action is
performed by the robot, and should wait otherwise. Thus, we
define additional #i states to describe the gap (i.e., to model
waiting periods) between humans’ states.

Therefore, the set of all discrete states defined for human
hi is Si := {s1

i , s1′
i , . . . , s#i

i , s
#′i
i }, where |Si| = 2#i, sj

i, j ∈
{1, . . . ,#i} represent acting states, and sj′

i , j ∈ {1, . . . ,#i}
represent waiting states. For instance, s1′

i means that human
hi has completed s1

i and is waiting to begin s2
i .

At each time instant, it is assumed that human hi can be
in only one of the discrete states belonging to Si. Also, we
assume that the robot can accurately detect humans’ states at
all time instants.

Remark 2: Noisy and miscalibrated sensors, occluded
vision, and tracking failures can render human’s state detection
uncertain. By utilizing the methods presented in [23] and [24],
it is possible to improve human’s state detection results in
the presence of noisy and unreliable sensors. We leave the
investigation of the behavior of our proposed action planning
scheme in the face of human’s state detection ambiguity and
improving its robustness to future work.

Let bτ
j
i and eτ

j
i be two discrete random variables repre-

senting the beginning time and ending time of the acting state
sj

i, j ∈ {1, . . . ,#i}, and bτ
j′
i and eτ

j′
i be two discrete random

variables representing the beginning time and ending time of
the waiting state sj′

i , j ∈ {1, . . . ,#i}.
Discrete Transitions: The set of discrete transitions for

human hi are Qi = {(s1
i , s1′

i ), (s1′
i , s2

i ), . . . , (s
#′i
i , s1

i )}. Discrete
transitions are assumed to be instantaneous. Also, similar
to [23], we make a Markovian assumption that the beginning
of each state is dependent only upon the end of the preceding
state; this assumption is reasonable according to the set of
discrete transitions Qi and the fact that human hi can be in
only one of the discrete states at each time instant. Thus, each
state begins immediately after the preceding one ends1

P
(

bτ
j+1
i | eτ

j′
i

)
=

{
1, if bτ

j+1
i = eτ

j′
i

0, otherwise
(1)

1By sj−1
i and sj+1

i we mean the states before and after sj
i. For j = 1 we

have sj−1
i = s#i

i , and for j = #i we have sj+1
i = s1

i . We use the same

structure for waiting state sj′
i , and the beginning and end times of states.

and

P
(

bτ
j′
i | eτ

j
i

)
=

{
1, if bτ

j′
i = eτ

j
i

0, otherwise.
(2)

Robot Actions: Let ρ
j
i be a descriptive variable that describes

the necessary prerequisite action2 for discrete transition
(s(j−1)′

i , sj
i) ∈ Qi, j ∈ {1, . . . ,#i}. Thus, we can define the set

of robot’s actions as R = {ρ1
1 , . . . , ρ

#1
1 , . . . , ρ1

N, . . . , ρ
#N
N }.

For safety issues, the robot can perform action ρ
j
i only

when human hi is in a specific subset of the discrete states,
which is denoted by Tj

i . This set is a subset of Si (i.e.,
Tj

i ⊂ Si) and contains 2δ
j
i preceding states, i.e., Tj

i =
{sj−δ

j
i

i , s
(j−δ

j
i)
′

i , . . . , sj−1
i , s(j−1)′

i }. When there is no necessary
prerequisite action for transition (s(j−1)′

i , sj
i) ∈ Qi, ρ

j
i is null and

Tj
i = Si − {sj

i, sj′
i }. See Section III-B for illustrative examples.

Plan: A plan is comprised of a sequence of ordered actions
to be performed by the robot.

Duration of Discrete States: Regarding the acting state sj
i ∈

Si, we specify the conditional dependency via the truncated
discrete normal distribution (see [69] for characteristics of
a discrete normal distribution). As shown in [23] and [24],
truncated discrete normal distributions are proper and effective
in modeling human-state timing.

The duration of the acting state sj
i, j ∈ {1, . . . , #i} is

P
(

eτ
j
i | bτ

j
i

)
∼ N[

λ
j
i,λ

j
i

]
(

eτ
j
i − bτ

j
i ;µ

j
i, σ

j
i

)
(3)

where µ
j
i and σ

j
i are, respectively, mean and variance, and λ

j
i

and λ
j
i are truncation limits. We assume that the parameters

of (3) are either learned offline or explicitly provided for all
i and j. This assumption is plausible, as the parameters can
be computed by measuring the duration of humans’ states and
using distribution fitting techniques.

Remark 3: Using a truncated discrete normal distribution
to specify the duration of discrete states is done carefully:
1) it reasonably limits the duration from bottom and above,
as tasks have a minimum needed time to complete and cannot
last for good and 2) its parameters can be chosen such that it
captures possible asymmetric uncertainties, as the uncertainty
might be larger in one direction (the state takes longer) than in
the other direction (the state takes less). Note that as presented
in Section VI, the developed planner uses distribution (3) only
to compute the time instants that a state is expected to begin
and/or end. Thus, the developed planner can be used in cases
where the duration of acting state sj

i is specified via a different
distribution (e.g., uniform and log-normal distributions).

For what concerns the duration of waiting state sj′
i ∈ Si, j ∈

{1, . . . ,#i}, let cj→j+1
i be a binary variable (i.e., cj→j+1

i ∈
{0, 1}), which is one when the prerequisite action ρ

j+1
i is

performed by the robot and zero otherwise. It is obvious that
cj→j+1

i is always one if ρ
j+1
i is null.

2It is evident that there is no prerequisite action for discrete transition
(sj

i, sj′
i ) ∈ Qi, j ∈ {1, . . . ,#i}. Indeed, the waiting state sj′

i begins immediately
after the acting state sj

i ends.
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Fig. 1. Two applications satisfying the described setting. (a) Packaging line,
where a robot provides boxes for humans. (b) Collaborative assembly, where
a robot provides assembly pieces for humans.

When cj→j+1
i = 1, human hi proceeds3 by ending the

waiting state sj′
i . When cj→j+1

i = 0, an alarm/signal must be
triggered to alert human hi to the danger. In this case, human
hi should not proceed until the time that the robot performs
the required action and the alarm goes off. However, human hi
may inattentively violate the safety constraints by overlooking
the safety alarms. We use αi ∈ R[0,1] to specify the likelihood
that human hi overlooks the safety alarms. If αi = 1, human hi
violates the safety constraints almost surely. If αi = 0, human
hi is attentive and does not violate the safety constraints. Thus,
the overall distribution for the duration of the waiting state
sj′

i ∈ Si, j ∈ {1, . . . ,#i} should incorporate the information
about cj→j+1

i and αi (in Section VI, the developed planner
incorporates this information only with respect to the current
time).

B. Illustrative Examples

Many real-world human–robot collaborations meet the set-
ting presented in Section III-A. Here, we use two examples
to illustrate the setting: 1) packaging line [Fig. 1(a)] and
2) collaborative assembly [Fig. 1(b)].

1) Packaging Line: Each human picks up a box from a
pick-up table and puts it on a delivery table. For human
hi, we define the following discrete states: s1

i : “being inside
the red region, including walking toward the pick-up table,
picking up the box, and walking away from the pick-up table;”
s1′

i : “waiting inside the red region before exiting;” s2
i : “being

outside the red region, including walking toward the delivery
table, putting the box on the delivery table, and walking away
from the delivery table;” and s2′

i : “being outside the red region
and waiting for the robot to put a box on the pick-up table.”
Regarding the robot actions, ρ1

i is “ putting a box on the pick-
up table associated with human hi,” and ρ2

i ∀i is null. To ensure
safety, the robot should not perform action ρ1

i when human hi

is inside the red region, meaning that T1
i = {s2

i , s2′
i }.

2) Collaborative Assembly: A robot provides η assembly
pieces for each human. For human hi, we define the following
discrete states: s1

i : “hands (one or both) inside the red region to
pick up the first piece;” s1′

i : “waiting inside the red region after
picking up the first piece;” s2

i : “hands outside the red region
to fit the first piece;” s2′

i : “waiting for the second piece to be

3Note that once human hi executes transition (sj′
i , sj+1

i ) ∈ Qi, the binary

variable cj→j+1
i becomes zero again for future events.

delivered . . .;” s2η−1
i : “hands inside the red region to pick up

the ηth piece;” s(2η−1)′
i : “waiting inside the red region after

picking up the ηth piece;” s2η
i : “hands outside the red region

to fit the ηth piece;” and s(2η)′
i : “waiting for the first piece to

be delivered.” The necessary condition for discrete transitions
(s(2η)′

i , s1
i ) ∈ Qi, . . ., (s(2η−2)′

i , s2η−1
i ) ∈ Qi is, respectively,

providing the first, . . ., and ηth pieces. Thus, ρ2
i , . . . , ρ

2η
i ∀i

are null, and ρ1
i , . . . , ρ

2η−1
i are the action of providing the

appropriate assembly pieces for human hi. To ensure safety,
the robot should not perform any action if the hands of human
hi are inside the red region. Thus, T1

i = {s2η
i , s(2η)′

i }, . . ., and
T2η−1

i = {s2η−2
i , s(2η−2)′

i }.

C. Goal of This Article

As mentioned in Section III-A, to ensure safety of the
robot and humans, the robot can perform action ρ

j
i only when

human hi is in Tj
i (more precisely, when human hi is in one

of the states belonging to Tj
i ), which does not include the

acting state sj
i (since ρ

j
i is a prerequisite action for state sj

i).
Thus, when the robot has not performed the necessary action
ρ

j
i , inattentively overlooking the safety alarms and executing

the discrete transition (s(j−1)′
i , sj

i) ∈ Qi (i.e., disregarding the
waiting state s(j−1)′

i and immediately beginning the acting state
sj

i) is a hazard to human hi and the robot. Moreover, such a
careless behavior disturbs the robot’s plan, and consequently
degrades the efficiency.

The goal of this article is to develop a robot action planning
scheme that is less sensitive to the behavior of careless
humans. More precisely, the developed planner reduces the
opportunities given to the careless humans to put themselves
in danger and hamper the efficiency of the robot’s plan. The
proposed scheme has three components: 1) a predictive human
model to anticipate the timing of humans’ states; 2) a belief
update unit to update the robot’s belief about the carelessness
of each human; and 3) a planning unit to determine the
next action of the robot. These components will be discussed
separately in the following sections.

IV. HUMAN PREDICTIVE MODEL

Taking the inspiration from [23] and [24], this section devel-
ops a predictive model for human hi. Given the time instant
k, consider the prediction horizon [k, k + K], where K ∈ Z>0
is the prediction length. Assuming that human hi is in state sj

i
at time instant k, Fig. 2 shows a schematic Bayes network of
states of human hi within the prediction horizon, where G ∈
Z>0 is the number of future acting states within the prediction
horizon.

To build a predictive model to predict the behavior of
human hi within the prediction horizon [k, k + K], analogous
to [23] and [24], we optimistically assume that within this
horizon the robot is able to perform every necessary action
with perfect timing; i.e., cj→j+1

i = 1 ∀i, j within the prediction
horizon.

Remark 4: Due to human-state timing and robot-action tim-
ing, in practice, the robot may not be able to perform necessary

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on March 15,2025 at 21:55:25 UTC from IEEE Xplore.  Restrictions apply. 



5404 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 54, NO. 9, SEPTEMBER 2024

Fig. 2. Bayes network representing the states of human hi within a prediction
horizon, assuming that human hi is in state sj

i at time instant k.

prerequisite actions with perfect timing. For instance, when
humans are much faster than the robot, delays in performing
the prerequisite actions is inevitable. The developed planner
in Section VI uses the receding horizon control strategy [70],
which allows the robot to take into account these delays
in determining the plan. Thus, the impacts of the above-
mentioned optimistic assumption will be compensated by
the developed planner. Even though this approach is only
suboptimal (like any other receding horizon-based scheme
with such simplifying assumptions about future [71]), our
numerical experiments suggest that it works well. Future
research will investigate how to anticipate these delays and
include them in robot action planners.

Under the above-mentioned optimistic assumption (i.e.,
cj→j+1

i = 1 ∀i, j within the prediction horizon [k, k + K]), the
probability density function of the beginning time of human
hi’s states can be computed via the following recursion:

P
(

bτ
j+1
i

)
∝

∑

eτ
j′
i

∑

bτ
j′
i

∑

eτ
j
i

∑

bτ
j
i

P
(

bτ
j+1
i | eτ

j′
i

)
·

P
(

eτ
j′
i | bτ

j′
i

)
· P

(
bτ

j′
i | eτ

j
i

)
· P

(
eτ

j
i | bτ

j
i

)
· P

(
bτ

j
i

)
(4)

where the sum is over all possible values of bτ
j
i , eτ

j
i , bτ

j′
i ,

and eτ
j′
i . In (4), P( bτ

j+1
i | eτ

j′
i ) is as in (1), P( bτ

j′
i | eτ

j
i ) is as

in (2), P( eτ
j
i | bτ

j
i ) is as in (3), and bτ

j
i is known for the current

state of human hi. Also, under the above-mentioned optimistic
assumption, the distribution for the duration of waiting state
sj′

i ∈ Si within the prediction horizon is4

P
(

eτ
j′
i | bτ

j′
i

)
=

{
1, eτ

j′
i = bτ

j′
i

0, otherwise.
(5)

Note that the recursion given in (4) should be computed for
every bτ

j+1
i ∈ [k, k + K]. Thus, the computational complexity

of (4) is O(G · (K + 1)2). Fig. 3 demonstrates the probability
density functions computed via (4). From this figure, as we
look further in the future, the distributions become wider so
that it has less precision but higher recall.

V. HUMANS’ CARELESSNESS LEVEL

Assuming that all humans always pay attention to safety
alarms, one can use existing planners (e.g., [23], [26]) to

4Since cj→j+1
i is assumed to be one within the prediction horizon, the

predictive model (4) does not incorporate the information about αi, as
cj→j+1

i = 1 means that human hi is not given the opportunity to overlook
the safety alarms. In Section VI, our planner considers the carelessness of
humans in determining the robot’s actions. Future research will investigate
how to effectively incorporate the information about αi in the model (4).

Fig. 3. Action times of human hi within a prediction horizon.

determine a plan for the robot based on the human predictive
model given in (4). However, the efficiency of such plans can
be largely degraded if one (or more) human overlooks the
safety alarms inattentively. Note that such a careless behavior
is a hazard to the robot and human as well. To address this
issue, we introduce the notion of carelessness level of humans.
We will see in Section VI how to incorporate carelessness
of humans into robot planners to provide safe and efficient
plans.

Intuitively, the carelessness level of human hi is the robot’s
belief about the likelihood that human hi overlooks the safety
alarms. Indeed, the carelessness level of human hi should
estimate αi described in Section III. However, it is unsurpris-
ingly difficult to learn the value of αi just by observing the
behavior of human hi, as the humans’ behavior may not encode
sufficient information about their carelessness level; indeed,
human hi may never face a safety alarm.

In Section VI, our planner reduces the duration of wait
states for all humans, while prioritizing careless over attentive
humans. Such prioritization reduces the opportunities given
to careless humans to make the robot deviate from its plan.
Thus, our planner requires only relative carelessness levels to
determine a prioritization order. More specifically, the robot
only needs to arrange the humans in order of how much
careless they were about safety alarms in the past. Though
we do not claim to be optimal, our numerical experiments
suggest that generating a prioritization order based on humans’
behavior in the past can improve safety and efficiency metrics.

Let βi(k) ∈ R[0,1] be the relative carelessness level of human
hi at time instant k. The relative carelessness level βi(k) can
be computed as follows:

βi(k) =
{ Vi(k−1)∑N

j=1 Vj(k−1)
, if

∑N
j=1 Vj(k − 1) > 0

1
N , if

∑N
j=1 Vj(k − 1) = 0

(6)

where Vi(k − 1) ∈ Z≥0 is the number of safety violations by
human hi until the time instant k − 1.

Remark 5: In this article, we assume that the carelessness
level αi for human hi is constant, and consequently the number
of careless humans remain unchanged during the collaboration.
This assumption might not be realistic in real-world scenar-
ios, as carelessness level (which reflects the likelihood of
overlooking a safety alarm) involves many psychological and
behavioral aspects that can change during the collaboration.
We leave studying such cases to future research; future work
will consider how to obtain or identify the carelessness level
of humans.
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VI. ROBOT ACTION PLANNING SCHEME

In this section, we develop an optimal robot action planning
scheme which takes into account humans’ carelessness. The
developed scheme should be run only at planning instants in
which the robot is ready to begin performing a new action. We
use kp to denote the planning instants. Thus, at any planning
instant kp, the robot determines a sequence of ordered actions.
The robots uses the receding horizon control strategy [70] for
this purpose; that is, the robot optimizes the future actions
using the predictions in the horizon, but only decides the next
action and then optimizes again, repeatedly.

A. Duration of the Robot’s Actions

Let ℓ
j
i ∈ Z≥0 be the required time for the robot to complete

performing action ρ
j
i . Note that ℓ

j
i = 0 if ρ

j
i is null, and ℓ

j
i ∈

Z>0 otherwise.

B. Set of Admissible Robot Actions

Let M(kp) ⊂ R be the set of all non-null actions that
should be considered by the planner at the planning instant
kp. This set will be referred as the set of admissible robot
actions at planning instant kp. To determine the set M(kp) ⊂
R, the robot needs to, first, identify humans whose states at
the planning instant kp are safe,5 and then determine the first
upcoming transition with non-null prerequisite action for every
identified human.

Note that at any planning instant kp, the number of humans
whose states are safe is less or equal to the total number of
humans collaborating with the robot. Also, note that M(kp)

includes only one action associated with each human whose
state is safe. Therefore, |M(kp)| ≤ N ∀kp.

The set of pairs of humans and their demanded prerequisite
actions is defined as follows:

I
(
kp

)
= {(i, j)|ρj

i ∈M
(
kp

)
} (7)

where ProjiI(kp) gives the set of humans whose states at
planning instant kp are safe (or the set of humans to be
considered at the planning instant kp). It is evident that
|ProjiI(kp)| = |M(kp)| ≤ N ∀kp.

C. Expected Time Interval to Begin the Admissible Action ρ
j
i

Given M(kp) as the set of admissible actions at planning
instant kp, the probabilistic predictive model given in (4) can
be utilized to determine an expected time interval that the robot
should begin performing the admissible non-null action ρ

j
i ∈

M(kp) sometime within that interval to complete performing
that action before the time that human hi is expected to begin
the acting state sj

i ∈ Si.
Remark 6: Since any theoretical guarantee depends on the

model it is based on, safety guarantees will inherit the
probabilistic nature of human predictive model described in
Section IV. Thus, the planning scheme will need to determine

5Assuming that the robot can accurately detect the state of humans (see
Remark 2), the robot does that by excluding humans whose states are
potentially unsafe. See “Robot Actions” in Section III-A for more details
about safe and potentially unsafe states.

an action plan which is predicted/expected to be safe. To the
best of our knowledge, this is an issue in robot action plan-
ning schemes which are developed based upon probabilistic
predictive human models; see e.g., [44], [45], [63], [72], [73].

The expected time interval for the admissible non-null
action ρ

j
i ∈ M(kp) is represented by [xj

i, xj
i], where xj

i is the
time that the robot is allowed to begin performing action ρ

j
i

without any safety issues and xj
i is the time that the robot

should complete performing ρ
j
i to prevent possible safety

issues. Regarding xj
i, according to Section III two cases can

happen.
1) The Current State of Human hi Is in Tj

i : In this case, xj
i

is the time instant that the state of human hi has entered
the set Tj

i . This time is the beginning time of the acting

state s
j−δ

j
i

i , which is denoted by bτ
j−δ

j
i

i . Note that in this

case, bτ
j−δ

j
i

i is a known time instant in the past.
2) The Current State of Human hi Is Not in Tj

i : In this
case, xj

i is the time instant that the state of human hi is
expected to enter the set Tj

i . In other words, xj
i is equal

to the time that human hi is expected to begin acting

state s
j−δ

j
i

i .
For what regards xj

i, since ℓ
j
i is the time required for the

robot to complete action ρ
j
i , xj

i should be ℓ
j
i time instants before

the time that human hi is expected to exit from the set Tj
i

(i.e., the time that human hi is expected to begin the acting
state sj

i).
Therefore, according to the above-mentioned discussion, xj

i
and xj

i can be computed as

xj
i =

⎧
⎪⎨

⎪⎩

bτ
j−δ

j
i

i , if human hi is in Tj
i

E
[

bτ
j−δ

j
i

i

]
, otherwise

(8)

xj
i = E

[
bτ

j
i

]
− ℓ

j
i (9)

where ℓ
j
i is as in Section VI-A, Tj

i and δ
j
i are as in robot

actions in Section III-A, and E[ bτ
j−δ

j
i

i ] and E[ bτ
j
i ] can be

computed according to the distributions determined in (4).

Note that bτ
j−δ

j
i

i is known if human hi is in Tj
i . See Fig. 4 for

an illustration of the expected time interval [xj
i, xj

i].
Remark 7: The prediction horizon K should be selected

such that it can cover at least G future acting states for all
humans, where G should be selected such that the expected
time interval to begin the admissible action ρ

j
i can be computed

via (8) and (9). Since G depends on application (for instance,
G = 3 is sufficient for packaging line and collaborative
assembly examples presented in Sections VII and VIII), the
prediction horizon K will depend on application as well. It
should be remarked that using a small K can prevent us from
implementing the proposed scheme as it would be impossible
to compute the interval (8) and (9), and using a large K can
unnecessarily increase the computational complexity as the
computational complexity of (5) is O(G · (K + 1)2).
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Fig. 4. Illustration of the expected time interval [xj
i, xj

i] in which the robot
should begin performing the non-null admissible action ρ

j
i ∈ M(kp). (a)

Human hi is in Tj
i and (b) human hi is not in Tj

i .

D. Robot Planner

Given M(kp) as the set of admissible actions at planning
instant kp, the plan can be represented by means of the
beginning time of the admissible actions.

Let x = [xj
i] ∈ Z|M(kp)|

≥0 , where xj
i, (i, j) ∈ I(kp) is the time

that the robot should begin performing the admissible non-
null action ρ

j
i . Also, let x = [xj

i] ∈ Z|M(kp)|
≥0 and x = [xj

i] ∈
Z|M(kp)|
≥0 , where xj

i and xj
i are as in (8) and (9), respectively.

Let β = [βi(kp)] ∈ R|M(kp)|
[0,1] , where βi(kp), i ∈ ProjiI(kp) is

as in (6).
The beginning time for performing the non-null admissible

actions at the planning instant kp can be computed via the
following constrained optimization problem:

x∗ = arg min
x∈Z|M(kp)|

≥0

f
(
β, x, x, x

)
(10)

subject to

xj
i ≥ max{xj

i, kp} ∀(i, j) ∈ I
(
kp

)
(11)

and
{

xj2
i2 ≥ xj1

i1 + ℓ
j1
i1 , if xj2

i2 > xj1
i1

xj1
i1 ≥ xj2

i2 + ℓ
j2
i2 , if xj2

i2 < xj1
i1

∀(i1, j1), (i2, j2) ∈ I
(
kp

)
.

(12)

Remark 8: |M(kp)| is not constant during the collabora-
tion, which means that the dimension of the decision variable
x is not constant. Note that this does not cause any issue, as the
robot performs only the first action of each plan, and solves a
new optimization problem in the next planning instant.

The cost function f (·) as in (10) should be defined so as
to accomplish the goal of reducing the duration of waiting
states for all humans, while prioritizing careless ones. Note
that reducing the wait time, which has been widely used in
the literature (e.g., [23], [24], [25], [26], [74]), implies that
the prerequisite actions are performed in time, which improves
safety and efficiency, as it reduces the opportunities given to

the careless humans to put themselves in danger and degrade
the efficiency of the robot’s plan.

The following cost function is proposed:

f
(
β, x, x, x

)
= θ1f1

(
β, x, x, x

)
+ θ2f2

(
β, x, x, x

)
(13)

where θ1, θ2 ∈ R>0 are weighting parameters, the objective
function f1(β, x, x, x) forces the robot to begin performing the
admissible non-null actions as soon as possible, and the objec-
tive function f2(β, x, x, x) penalizes completing performing the
admissible non-null actions after the time that is expected to
be potentially unsafe.

The following objective functions are proposed:

f1
(
β, x, x, x

)
=

∑

(i,j)∈I(kp)

βi
(
kp

)(
xj

i − xj
i

)2
(14)

f2
(
β, x, x, x

)
=

∑

(i,j)∈I(kp)

e
−βi(kp)

(
xj

i−xj
i

)

(15)

which prioritize careless humans, as βi1(kp), i1 ∈ {1, . . . , N}
is greater than βi2(kp), i2 ∈ {1, . . . , N} if the robot believes
that human hi1 is more careless than human hi2 [see (6)].

Remark 9: According to (13), we can interpret θi, i ∈ {1, 2}
as the weight we attach to the objective function fi(·). In
particular, we can [75] interpret the ratio θ1/θ2 as the relative
weight or relative importance of the objective function f1(·)
compared to the objective function f2(·). Based on this insight,
the weights θ1 and θ2 can be determined by using techniques
described in, e.g., [76], [77].

Remark 10: Although we make no claim that minimizing
the cost function given in (13) with objective functions given
in (14) and (15) is ideal or unique, our numerical experiments
suggest that such a cost function with the carelessness level
incorporated into yields reasonable results.

Constraint (11) ensures that the robot can begin performing
the admissible action ρ

j
i only when it is expected to be safe,

which should be after kp. Constraint (12) ensures that the robot
cannot perform two actions simultaneously.

Remark 11: Optimization problem (10)–(12) with cost
function f (·) as in (13)–(15) is a nonconvex mixed-integer
nonlinear programming problem, as the decision variable xj

i
is integer, objective functions (14) and (15) are nonlinear,
and (12) is nonconvex.

After computing (xj
i)
∗ ∀(i, j) ∈ I(kp) by solving the

constrained optimization problem (10)–(12), the robot begins
performing the action ρ∗(kp) which can be determined as
follows:

ρ∗
(
kp

)
=

{

ρ
j∗
i∗ ∈M

(
kp

)∣∣∣
(
i∗, j∗

)
= arg min

(i,j)∈I(kp)

(
xj

i

)∗
}

.

(16)

E. Robot Action Planning Algorithm

The robot action planning algorithm is presented in
Algorithm 1. The corresponding pseudocode is given in
Algorithm 2. This algorithm should be run at every planning
instant to schedule the robot’s future actions. Note that though
Algorithm 1 should be run at every planning instant, the robot
should compute βi ∀i given in (6) at every time instant.
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Algorithm 1 Robot Action Planning Scheme
Input: Humans’ states and relative carelessness levels.
Output: The robot’s action at kp (i.e., ρ∗(kp)).

1: Determine the set of admissible actions M(kp).
2: Determine the sets I(kp) and ProjiI(kp).
3: Compute the distribution (4) for all i ∈ ProjiI(kp).
4: Determine xj

i and xj
i via (8) and (9) for all ρ

j
i ∈M(kp).

5: Solve optimization problem (10)-(12) and compute x∗.
6: Determine ρ∗(kp) as in (16).

Algorithm 2 Pseudocode of the Proposed Robot Action
Planning Scheme
Input: si and βi for all i

1: M← {}
2: I ← {}
3: ProjiI ← {}
4: P← {}
5: for i← 1 to N do
6: for j← 1 to #i do
7: if si = s(j−1)′

i then
8: M← ρ

j
i

9: I ← (i, j)
10: ProjiI ← i
11: end if
12: end for
13: end for
14: for i ∈ ProjiI do
15: for bτ

j+1
i ← k to k + K do

16: P← P( bτ
j+1
i )

17: end for
18: end for
19: for ρ

j
i ∈M do

20: xj
i ←

⎧
⎨

⎩
bτ

j−δ
j
i

i , if human hi is in Tj
i

E[ bτ
j−δ

j
i

i ], otherwise
21: xj

i ← E[ bτ
j
i ]− ℓ

j
i

22: end for
23: x∗ ← arg min f (β, x, x, x)
24: (i∗, j∗)← arg min(xj

i)
∗

25: return ρ∗

VII. SIMULATION STUDY—PACKAGING LINE

In order to demonstrate the effectiveness of the proposed
robot action planning scheme given in Algorithm 1, we sim-
ulated a human–robot collaboration on a packaging line with
four humans; see Section III-B for details. Note that our focus
in this section was on algorithmic and analytical aspects of
the proposed robot action planning scheme on a simplistic,
but yet realistic, application. We leave the evaluation of the
proposed robot action planning scheme with real humans to
future work.

System parameters were µ1
1 = µ1

4 = 4, µ1
2 = µ1

3 = 6,
µ2

1 = µ2
2 = 8, µ2

3 = µ2
4 = 10, λ1

1 = λ1
4 = 3, λ

1
1 = λ

1
4 = λ1

2 =
λ1

3 = 5, λ2
1 = λ

1
2 = λ2

2 = λ
1
3 = 7, λ

2
1 = λ

2
2 = λ2

3 = λ2
4 = 9,

λ
2
3 = λ

2
4 = 11, σ 1

1 = σ 2
1 = σ 1

4 = σ 2
4 = 0.5, σ 1

2 = σ 2
2 =

σ 1
3 = σ 2

3 = 1.5, K = 30, and ℓ
j
i = 3 ∀i, j. We assumed

that objective functions f1(·) and f2(·) are equally important;
hence, we set θ1 = θ2 = 1. For the considered collaboration,
G = 3 is sufficient to compute the expected time intervals
as in (8) and (9). We assumed that α for careless humans is
0.5, i.e., the probability that a careless human overlooks safety
alarms is 50%; see Section VII-C for a sensitivity analysis
of the performance metrics with respect to the value of this
parameter.

If the robot’s action is interrupted inattentively, the robot
goes to the source point (which is assumed to be safe) and
determines a new plan. We assumed that the required time for
the robot to reach the source point is equal to the time spent on
performing the action before interruption. Note that although,
in practice, the required time for the robot to reach the source
point depends on the robot’s dynamics, and can be larger or
smaller than the time spent on performing the action before
interruption, the above-mentioned assumption has been made
only for simulation purposes without violating the realisticity
of the problem setting.

The MIDACO6 solver [78] was used to solve the constrained
optimization problem (10)–(12). The simulations were run on
an Intel Core i7-7500U CPU 2.70 GHz with 16.00 GB of
RAM. The mean computation time was 0.2437 s, which is
largely acceptable for real-time implementation.

For comparison purposes, we simulated two strawman
schemes.

1) SS#1 [23]: The case where β1(k) = β2(k) = β3(k) =
β4(k) = 0.25 ∀k (i.e., an optimal planner that does not
consider carelessness of humans and treats all humans
equally regardless of their carelessness level).

2) SS#2 [79]: A periodic schedule where the robot serves
human h1, then human h2, then human h3, then human
h4, and repeats this cycle.

Note that these schemes do not consider carelessness level of
humans (to the best of our knowledge, there is no scheme in
the literature that considers carelessness aspect of humans),
and the presented comparison study aims at showing the
impact of incorporating the carelessness aspect of humans in
robot action planners.

To have a visual demonstration of the considered
human–robot collaboration, a simulator was generated. A
video of operation of the generated simulator is available at
the following address: https://youtu.be/_MlBWfJVFFc. Also,
time profile of βi(k) ∀i for a typical collaboration is shown in
Fig. 5.

To provide a quantitative analysis, we considered 2000
experiments, where for each experiment the initial state of
human hi is uniformly selected from the set {s1

i , s1′
i , s2

i , s2′
i } ∀i.

Also, for each experiment, the combination of careless humans

6Mixed integer distributed ant colony optimization (MIDACO) is a numeri-
cal high-performance software for solving nonconvex mixed-integer nonlinear
programming problems, which does not require the objective functions and
constraints to be given in explicit mathematical form. Note that although
MIDACO does not provide a guarantee to reach the global optimal solution,
our numerical experiments demonstrated that MIDACO can effectively obtain
the global optimal solution for problem (10)–(15).
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Fig. 5. Packaging line—time profile for βi(k) ∀i for a typical collaboration,
where humans h3 and h4 are careless with the same likelihood of overlooking
the safety alarms.

is randomly selected from the set of all possible combinations;
for instance, when there are three careless humans, we select
the combination of careless humans randomly from the set
{{h1, h2, h3}, {h1, h2, h4}, {h1, h3, h4}, {h2, h3, h4}}.

A. Efficiency Assessment

Let define the efficiency as

Efficiency =
(

1− Total Wait Time
Collaboration Time

)
× 100 (17)

where “Total Wait Time” is the wait time of all humans. The
statistics of the achieved efficiency by the strawman schemes
and the proposed robot action planning scheme is compared in
Fig. 6. As seen in Fig. 6, across all cases, the proposed robot
action planning scheme has 10.25% mean (up to 34.37%) gain
over SS#1, and 21.25% mean (up to 36.15%) gain over SS#2
with respect to efficiency.

Fig. 6 reveals that existence of a single careless human
can degrade (on mean) the efficiency of strawman schemes
SS#1 and SS#2 by 11.71% and 25.03%, respectively. While
the degradation for the proposed planner is only 0.86%. This
underlines the importance of considering the carelessness of
humans in robot action planners, as presuming that humans
are attentive and pay attention to safety alarms is not realistic
in real-world human–robot collaborations.

B. Safety Assessment

To compare safety performance, we considered the number
of safety issues (i.e., the number of safety violations) per
100 time instants (which represents the rate of safety issues).
Statistics are provided in Fig. 7. Note that the case where there
is no careless human is not shown in Fig. 7, as there will be
no safety issue regardless of the employed scheme. As seen
in Fig. 7, across all cases, the proposed robot action planning
scheme has 72.61% mean (up to 100%) gain over SS#1, and
78.85% mean (up to 100%) gain over SS#2 with respect to
safety.

Note that as the number of careless humans increases,
the variance of the efficiency (see Fig. 6) and safety (see

Fig. 6. Packaging line—comparing efficiency for the proposed scheme, the
strawman scheme SS#1, and the strawman scheme SS#2.

Fig. 7. Packaging line—comparing safety for the proposed scheme, the
strawman scheme SS#1, and the strawman scheme SS#2.

Fig. 7) metrics achieved by the proposed robot action plan-
ning scheme increase as well. This is understandable, as
the combination of two or more careless humans may
lead to a wide-range of consequences on the performance
metrics.

C. Sensitivity Analysis—Impact of α

In this section, we conducted a sensitivity analysis of the
efficiency and safety metrics with respect to the value of α

(i.e., the likelihood that a careless human overlooks safety
alarms). To carry out this sensitivity analysis, we assumed that
there are two careless humans.

Fig. 8 shows how α impacts the efficiency and safety
metrics. This figure reports the normalized mean values of
2000 runs, where the values for α = 1 are used as the
normalizing constants. From Fig. 8, we see that as α increases,
the performance of the proposed robot action planning scheme
slightly degrades. This is consistent with our expectation; as
α increases, the likelihood of overlooking safety alarms by
careless humans increases, which leads to deviation from the
generated optimal plan, and consequently efficiency and safety
degradation.

VIII. SIMULATION STUDY—COLLABORATIVE ASSEMBLY

In this section, we investigated the effectiveness of the
planning scheme given in Algorithm 1 by simulating and
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Fig. 8. Packaging line—the impact of α on the obtained mean efficiency
and safety metrics.

Fig. 9. Collaborative assembly—comparing efficiency and safety for the
proposed scheme, and for the strawman schemes SS#1 and SS#2.

testing it on a collaborative assembly line with two humans,
which is discussed in Section III-B. In the simulated sce-
nario, the robot should provide three pieces for each human,
i.e., η = 3.

System parameters were µ1
1 = µ3

1 = µ3
2 = 5, µ2

1 = 4,
µ1

2 = 6, µ2
2 = 7, σ 1

1 = σ 2
1 = 1, σ 3

1 = σ 1
2 = σ 2

2 = 1.5, σ 3
2 = 2,

λ1
1 = λ2

1 = λ3
1 = λ3

2 = 3, λ1
2 = λ2

2 = λ
2
1 = 5, λ

1
1 = λ

3
1 = λ

1
2 =

λ
3
2 = 7, λ

2
2 = 9, G = 3, K = 30, and ℓ

j
i = 2 ∀i, j. We assumed

that objective function f1(·) is more important than objective
function f2(·); hence, we set θ1 = 1 and θ2 = 0.5. Also, we
assumed that the probability that a careless human overlooks
safety alarms is 50%, i.e., α1 = α2 = 0.5.

Fig. 9 presents the achieved efficiency (left figure) as
defined in (17) and the number of safety issues per 100 time
instances (right figure) for strawman schemes (i.e., SS#1 [23]
and SS#2 [79]) and for the proposed robot action planning
scheme. Note that we used 2000 experiments to plot this
figure, where the careless human in each experiment has been
selected randomly at the beginning of the experiment. Also,
the initial state of the human hi is selected uniformly from the
set {s1

i , s1′
i , . . . , s6

i , s6′
i }.

As seen in Fig. 9-left, across all cases, the proposed robot
action planning scheme has 6.14% mean (up to 17.12%) gain
over SS#1, and 16.45% mean (up to 30.51%) gain over SS#2
with respect to efficiency. Also, from Fig. 9-right, across all
cases, the proposed robot action planning scheme has 96.67%
mean (up to 100%) gain over SS#1, and 98.19% mean (up to
100%) gain over SS#2 with respect to safety.

IX. CONCLUSION

This article proposed a robot action planning scheme to
improve safety and efficiency when a robot is collaborating
with N humans. The proposed scheme contributes to the state-
of-the-art by taking into account the carelessness of humans in
determination of the robot’s actions. The core idea is make the
planner less sensitive to the behavior of careless humans. The
robot updates its belief about the carelessness of humans by
observing their behavior, and exploits this belief in scheduling
its future actions so as to reduce the opportunities given to the
careless humans to put themselves in danger and degrade the
efficiency of the generated plan. Our numerical experiments
on a packaging line with four humans and on a collaborative
assembly line with two humans confirmed the effectiveness
of the proposed robot action planning scheme in improving
efficiency and safety. Our results revealed that the proposed
scheme has the capability of improving efficiency and safety.

Future research will consider how to update the probability
density function (3) to capture changes in humans’ behavior
as a result of tiredness and/or boredom, and modify the
developed scheme to leverage those updates. It will also
consider how to extend the presented idea to account for
a wide range of careless actions (e.g., dropping the box
in a packaging line). We are planning to investigate cases
where human’s carelessness levels (and possibly the number of
careless humans) change during the collaboration. Future work
will also discuss how to obtain/identify the actual carelessness
level of humans.
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