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Abstract—Simulating quantum circuits wusing classical
computers can accelerate the development and validation of
quantum algorithms. Our newly developed algorithm, variational
quantum search (VQS), has shown an exponential advantage over
Grover’s algorithm in the range from 5 to 26 qubits, in terms of
circuit depth, for searching unstructured databases. We need to
further validate the VQS for more than 26 qubits. Numerous
simulators have been developed. However, it is not clear which
simulator is most suitable for executing VQS with many qubits. To
solve this issue, we implement a typical quantum circuit used in
VQS on eight mainstream simulators. Results show that the time
and memory required by most simulators increase exponentially
with the number of qubits and that Pennylane with GPU and
Qulacs are the most suitable simulators for executing VQS
efficiently. Our results aid researchers in selecting suitable
quantum simulators without the need for exhaustive
implementation, and we have made our codes available for
community contributions.
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I. INTRODUCTION

Quantum computing (QC) shows great promise for
revolutionizing various fields by offering enhanced
computational capabilities compared to classical computers.
However, the accessibility of real quantum computers is limited,
often resulting in long wait times. Moreover, the finite
entanglement time of qubits imposes constraints on the
achievable circuit depth.

As a result, simulators play a crucial role in accelerating the
development and validation of quantum algorithms, providing a
valuable platform for algorithm exploration and noise
simulation, and insights into the behavior of real quantum
systems. However, choosing the right simulator can be
challenging, especially for beginners, as there are multiple
options available, each with its features and limitations. This
exploration process can be time-consuming and may lead to the
selection of a simulator that is not well-suited to the specific
requirements of the research.

In this paper, we focus on the Variational Quantum Search
(VQS) algorithm [1], which has demonstrated exponential
advantage over Grover's search algorithm and has been
successfully verified up to 26 input qubits. However, an
important question remains: can this exponential advantage be
scaled up to around 50 qubits [2]? To address this question, we
investigate various simulators to determine if there is one that
can simulate the VQS with many qubits.

Our first contribution is a comprehensive comparison of
commonly used simulators, providing recommendations on
which simulators to choose based on their respective strengths

and limitations. We assess computational time and memory
usage to guide researchers, particularly beginners, in selecting
the most suitable simulator for their simulations.

Furthermore, we explore the performance of different
simulators and find that all of them encounter challenges related
to exponentially increasing time or memory requirements as the
number of qubits grows.

II.  PROBLEM AND SIMULATOR DESCRIPTION

In this study, we execute a typical quantum circuit used in
VQS on different simulators, i.e., calculate the expectation value
of the observable Z;, denoted as (Z,), as shown in Fig. 1a of Ref
[1]. Note that this paper uses type-1I Ansatz with three layers for
the VQS. Calculating the (Z) is the most time and memory-
consuming part of executing VQS on a classical computer. The
maximum memory required for simulating VQS is exactly the
memory needed for calculating (Z;).

We have executed the quantum circuit on eight common
simulators which are briefly described below.

Qiskit: An open-source framework by IBM for QC research,
offering a user-friendly interface, versatile functionality, and
support for both simulation and execution on real quantum
hardware [3].

Pennylane: An open-source library that combines classical
machine learning with QC, enabling the construction and
training of quantum neural networks. It integrates with popular
frameworks and supports CPU and GPU computation [4].

TensorCircuit: A Python-based QC framework emphasizing
speed and flexibility. It provides efficient simulations of
quantum circuits and seamless integration with machine
learning frameworks like TensorFlow and JAX [5].

Qulacs: A powerful and versatile QC framework with high-
performance simulation capabilities. It supports both CPU and
GPU computing, offering a user-friendly interface and a variety
of quantum gates and operations [6].

ProjectQ: An open-source software framework with
compilation and simulation capabilities. It allows running
quantum programs on IBM Quantum Experience chip, AWS
Bracket, Azure Quantum, or lonQ service provided devices [7].

Cirq: An open-source Python framework for writing,
manipulating, and optimizing quantum circuits. It focuses on
near-term quantum algorithms, offering fine-grained control
over circuits and compatibility with quantum computers and
simulators [8].

III.  RESULTS

We calculated the exact expectation value described above
for the VQS on various simulators using the NCSA Delta high
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performance computer (A100x8). We adopt the most
appropriate configuration for implementing VQS in each
simulator. Fig. 1 displays the computational time and memory
usage for different qubit numbers.

We mainly focus on simulating larger systems, particularly
those with more than 26 qubits. As shown in Fig. 1, we compare
the performance of different simulators in terms of resource
consumption. The results demonstrate that Pennylane using
GPU exhibits the lowest time consumption, followed by Qulacs
(see Fig. 1a). In terms of memory usage, Qulacs requires the
least amount, followed by Pennylane using GPU (see Fig. 1b).

Figure 1 shows that the time consumption of each simulator
increases exponentially as the number of qubits increases.
Specifically, adding one qubit roughly doubles the time
consumption. On the other hand, except for Qulacs with the
“CasualConeSimulator” backend, the memory consumption of
all simulators increases exponentially with the number of
qubits. Notably, the Qulacs simulator consistently requires only
0.02 MiB across all cases involving 24-30 qubits, primarily
because it selectively extracts only the necessary gates linked
to a specific observable by reversing the circuit traversal [6].
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Figure 1: Time (top panel) and memory (bottom panel) consumed by different
simulators to obtain the expectation value of observable (Z;) in the VQS for
different numbers of qubits. Note: Pennylane (CPU), Pennylane (GPU), and
TensorCircuit (CPU) reached their memory limit for more than 29, 30, and 28
qubits, respectively. Qiskit (CPU) and Cirq encounter errors when calculating
the exact expectation value for more than 15 and 28 qubits, respectively.
Qulacs and Project Q encounter time limits when calculating the exact
expectation value for more than 30 and 16 qubits, respectively.

Another notable observation is that TensorCircuit with GPU
has the best performance in terms of time consumption (refer to
table results in [10]) while ranking second in memory
consumption (behind Qulacs) for up to 26 qubits. Although

TensorCircuit with GPU encounters tensor limitations for
circuits larger than 26 qubits, its potential as a simulator for
superior simulation of larger quantum circuits is evident.

Based on our findings, we recommend using Qulacs for
optimal memory efficiency and Pennylane with GPU for
optimal time efficiency.

IV. CONCLUSION AND FUTURE WORK

Our benchmarking of quantum simulators for VQS provides
valuable insights into their scalability and efficiency. Most
simulators exhibit exponential growth in time and memory
consumption with the number of qubits, except for Qulacs. This
necessitates the exploration of alternative techniques, such as
circuit cutting or Matrix Product State, to enable simulations of
VQS on a larger scale. Pennylane with GPU is the optimal
choice for time-constrained scenarios, while Qulacs excels in
minimizing memory usage.

The results presented above focus on calculating the exact
expectation value without considering noise and sampling
effects. The exact simulation serves the purpose of validating
the correctness of quantum algorithms, rather than assessing
their performance on real quantum hardware. We plan to
explore sampling-based simulations, where noise and sampling
effects are considered, in future research.

Our findings have revealed that TensorCircuit with GPU is
highly efficient in time and memory usage for up to 26 qubits.
However, GPU memory allocation becomes challenging for
more qubits. To overcome this, we plan to utilize multiple
GPUs and leverage CUDA-specific instructions [9] for
effective GPU memory management.

We have shared our codes on GitHub [10], enabling
community contributions to expand the comparison of quantum
simulators. This establishes our work as a foundation for an
ongoing project to benchmark diverse simulators.
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