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Abstract

This paper presents ML-DiCE (Machine Learned Diffusion Coefficient Estimator),

a comprehensive machine learning framework designed to predict diffusion coefficients

in impure metallic (IM) and multi-component alloy (MCA) media. The framework

incorporates five ML models, each tailored to specific diffusion modes: (1) impurity

and (2) self-diffusion in IM media, and (3) self, (4) impurity, and (5) chemical diffusion

in MCA media. These models use statistical aggregations of atomic descriptors for

both the diffusing elements and the diffusion media, along with the temperature of

the diffusion process, as features. Models are trained using the random forest and

deep neural network algorithms, with performance evaluated through the coefficient

of determination (R2), mean squared error (MSE), and uncertainty estimates. The

models within this framework achieve an impressive R2 score above 0.90 with MSE less

than 10−16 m2/s, demonstrating high predictive accuracy and reliability for diffusion

coefficient.
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1 Introduction

Conventional metallic alloys are composed of one or two principal elements along with ad-

ditional minor alloying elements in negligible quantities to modify their microstructures and

properties. These traditional alloys have a long history of successful applications and have

been extensively studied and optimized over the years. This study employs the application of

Machine Learning (ML) in predicting an important elemental diffusion parameter – diffusion

coefficient in conventional metallic alloys. The diffusion coefficient represents the propor-

tionality constant in Fick’s laws of diffusion, which describe the relationship between the

flux of particles and their concentration gradient.1 Typically, the elemental diffusion process

in alloys is a thermally activated process, exerting a profound influence on alloy microstruc-

tures and hence mechanical properties.2,3 The diffusion process can be classified based on

modes of diffusion such as self-diffusion, interstitial diffusion, impurity diffusion, chemical

diffusion, and grain boundary diffusion. The diffusion coefficient is a key factor in all the

aforementioned diffusion modes, intricately linked to various factors of the diffusion medium

and the diffusing elements, wherein especially their chemical and physical characteristics.

Given the multifaceted association of the diffusion coefficient with intrinsic and extrinsic

material properties, the prospect of employing ML algorithms to comprehend and decipher

these relationships appears promising. Thus the goal of this study is to predict the diffusion

coefficient for a given temperature by incorporating a wide range of physio-chemical features

of diffusion medium and diffusing element for a specific diffusion mode.

Experimentally determining diffusion coefficients typically involves two main approaches:

the tracer method and the interdiffusion method. The tracer method involves tracking dif-

fusing species tagged with radioactive isotopes, allowing for the determination of tracer

diffusion coefficients by applying known diffusion solutions to measured concentration pro-

files. However, this method necessitates numerous independent measurements across various

homogeneous alloys, with the number of required compositions scaling exponentially with

the number of components, making the tracer method a time-consuming process. In addition
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to this, the availability and stability of radioactive isotopes present further challenges espe-

cially when elements like Al and Ca are employed as diffusing species.4 In such scenarios, the

secondary ion mass spectrometry-based thin-film technique mitigates the stability problem

to an extent by employing enriched stable isotopes.5 Additionally, the diffusion coefficient

calculation is hampered by the dependence on heavy isotopes as tracers especially when com-

paring different isotopic species of the same molecule. This is because potential functions

are invariant with isotopic substitution within the bounds of the Born-Oppenheimer approx-

imation, potentially overlooking many important but poorly understood factors.6 On the

other hand, chemical diffusion, or interdiffusion, is measured by bringing alloys of different

compositions into contact and inducing diffusion transport through chemical potential gra-

dients. In this approach, techniques like the Boltzmann-Matano method in binary systems

and the Matano-Kirkaldy method in ternary systems are commonly employed to determine

the diffusion coefficients, offering efficient alternatives to the tracer method.7,8 However, for

multicomponent alloys (number of components ≥ 4) it is generally impossible to apply this

Onsager-formalism-based scheme to estimate the entire matrix of independent interdiffusion

coefficients, as the given number of independent diffusion paths, which are one-dimensional

by definition, cannot intersect in a multi-component space.9–11

These days, first-principles calculations and molecular dynamics simulations have be-

come efficient methods for determining diffusion coefficients with the increase in computing

resources. Particularly, the nudged elastic band (NEB) and its modified version (climbing

image algorithm) implemented in the first principle codes are well-proclaimed for accuracy in

determining minimum energy paths and hence the diffusion coefficient.12,13,13 NEB relies on

harmonic transition state theory which uses quadratic approximations of the energy surface

around saddle points where reaction intermediates situates.14 Generally, reactions proceed

through a minimum energy path (MEP), connected by saddle points in the potential en-

ergy terrain commonly known as images in NEB.15 First-order saddle points, where energy

is at a maximum along the MEP but at a minimum in all normal directions, determine
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the activation energy which can be further solved for diffusion coefficient using Arrhenius

equation.16,17 One major drawback of NEB-based methods is the immense computational

resources required when the system becomes sufficiently large and multi-component, as is

typical in alloys.

To estimate of diffusion process using molecular dynamics within the assumption of

a simple Lennard-Jones fluid model, the mean squared displacement (MSD) and velocity

auto-correlation function (VACF) of ions can be used. The slope of the MSD versus time

graph is proportional to the diffusion coefficient, while the time-integral of the VACF, in

accordance with the Green–Kubo relation, is also proportional to the diffusion coefficient.18

To ensure accurate results, it is crucial that this integral converges well. Furthermore, errors

in the diffusion coefficient calculation can arise from deviations of the MSD from linear

time dependence. To validate the accuracy in such instances, the diffusion coefficient can

be cross-checked using the VACF where diffusion coefficient is estimated using Einstein’s

relation.19 Simulations using the Lennard-Jones potential often modify to overcome its finite

range nature.20 These changes might not fully capture the diverse interactions as in alloy

systems, potentially overstating the force between atoms.

Through various learning approaches, ML has already been established in material sci-

ence to understand complex interdependencies among material parameters, thereby offering

invaluable insights into tuning properties of materials for target-specific applications. Such

approaches are particularly advantageous given the time-consuming process of experimen-

tally understanding material properties. This opens a new dimension in alloy designing,

enabling the identification and optimization of the most promising diffusive element for a

given alloy. It also allows the fine-tuning of heat treatment and surface treatment processes

for selective diffusive elements to enhance and tailor the alloy’s characteristics for specific

applications. By leveraging information on the host material’s composition, as well as its

physical and chemical attributes, the presented ML approach facilitates the estimation of

diffusion parameters specific to a particular diffusive species. Subsequently, the acquired
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knowledge of diffusion parameters can be applied to the design of alloys for various engineer-

ing applications. For instance, a study by Lü et al. 21 investigated the impact of a solution

heat treatment at 693 K on Mg2Si particles in Mg−Al−Si alloys. The study revealed that

the treatment led to spheroidization of Mg2Si particles due to Si atom diffusion along the

Mg2Si/Mg interface, resulting in superior mechanical properties for the alloys. Similarly in

Titanium alloys with (α+β) dual phases, the diffusion of α-stabilizing elements (Al, O, etc.)

and β-stabilizing elements (Mo, V, etc.) into corresponding phases during heat treatments

is identified as a critical aspect of microstructural evolution, which in turn makes the alloy

apt for aerospace and marine application.22

In general, predictive modeling in material science encompasses two main domains. The

first domain revolves around the prediction of a material’s mechanical properties, including

fundamental factors like lattice parameters, lattice volume, density, and a range of elastic

features. These properties play a crucial role in determining how a material responds to

mechanical forces and deformations. For instance, the work of Li et al. 23 predicts lattice

constants from the fundamental features of material composition. In a similar work, Peng

et al. 24 examines the link between geometry parameters, relative densities, and range of lat-

tice constants to predict mechanical and fatigue properties of lattice structures with different

relative densities and crystalline systems. Another paper by Lee et al. 25 explores high-order

Bézier curves to optimize lattice structures by using learning techniques, enhancing mechan-

ical properties like modulus and strength while maintaining efficiency in load bearing and

energy absorption. On the other hand, the second domain is mostly on predicting electri-

cal and thermodynamic properties, encompassing key aspects like melting point, electrical

conductivity, thermal conductivity, specific heat capacity, and diffusion parameters. Re-

cent review articles have highlighted the optimum performance of ML-based models over

analytical models in predicting thermal transport properties and advancing thermo-electric

materials research.26,27 Parallelly, similar studies are also accelerated in optimizing battery

performance by targeting high-cycling efficiency, and durability with superior safety precau-
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tions.28–30 In the literature on ML-based diffusion studies, most research focuses on liquid

or gas diffusion media. For instance, a study by Zhao et al. 31 utilized training data from

molecular dynamics simulations to estimate the diffusion coefficients of binary and ternary

supercritical water mixtures, employing neural networks with the aid of transfer learning.

Similarly, other ML-based studies have predicted self-diffusion coefficients in pure liquids,

Lennard-Jones fluids, and binary diffusion coefficients in gases.32,33 A detailed literature

survey reveals that while diffusion studies in fluid media are prevalent, there is a notable

absence of ML-based diffusivity studies in solids, particularly in alloy media.34–37

Here, we introduce a novel ML-based computational framework – Machine Learned Dif-

fusion Coefficient Estimator (ML - DiCE) that can predict the diffusion coefficient for two

modes of diffusion in impure metallic (IM) media and three modes of diffusion in multi-

component alloy (MCA) media with an accuracy above 90%. In particular, our model

considers self and impurity diffusion modes in IM media, and self, impurity, and chemical

modes of diffusion in MCA media. The choice of these models are based on three key cri-

teria: 1) the quality of the data which ensures the diversity in DM and DE; 2) quantity of

data that ensures the availability of sufficient number data points for a given ML algorithm

to perform optimally; 3) variability in diffusion coefficient that aims for a lower standard

deviation which results in reliably across different DM present in data. The model has

been trained with a sufficiently large experimental dataset using the Random Forest(RF),

Deep Neural Network (DNN) and Support Vector Regression (SVR) algorithms from the

Scikit− learn library. A separate featurization scheme was employed for diffusing elements

and diffusion media that include fundamental atomic properties as well as composition level

features of the diffusion media for multi-component diffusion media. Remarkably, our model

encompasses 95% of elements from the periodic table, either as diffusing elements or part

of the diffusion medium’s composition, allowing it to predict diffusion coefficients across a

wide verity of diffusion processes. The model performs optimally for a temperature range

of 100–3500 K. Rigorous cross-testing against experimental data ensures the reliability and
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accuracy of our predictions, establishing our model as a valuable tool in understanding and

predicting diffusion processes.

The paper is structured as follows: Section Sec. 2 presents an overview of the data

types used, data preprocessing, accessible experimental features, statistical considerations

regarding the data, and the criteria employed for model selection. Section Sec. 3 delves

into a comprehensive analysis of feature engineering alongside the training scheme. This

section also includes an individual assessment of model performance, key feature extraction

techniques, and an uncertainty analysis. In Sec. 4, we discuss a comparative analysis of

model’s performance with RF, DNN and SVR algorithms and potential bias and limitations

of the model. Finally, the conclusions drawn and the model’s accessibility are discussed in

Section Sec. 5.

2 Materials and methods

2.1 Diffusion data

Input feature data : This study utilized diffusion data extracted from the material

database popularly known as MatNavi, developed by the National Institute of Material Sci-

ence, Japan.38 Kakusan is the diffusion database subset under MatNavi material database

that aims to encompass fundamental diffusion data of metallic and inorganic materials,

primarily sourced from relevant literature references.39,40 The dataset used for this study

includes attributes such as the diffusion coefficient (m2/s), temperature (K), diffusing ele-

ment, diffusion mode, reference literature, and composition of alloy with weight percentages

of constituent elements. The diffusing media presented in the dataset encompasses both

multi-component alloys and impure metals, with purity quantified as a percentage. A com-

prehensive overview of the data collected for IM and MCA media is depicted in Figure 1.

The choice selection of diffusion modes for modeling is based on the dataset size. For ex-

ample, Figure 1a illustrates the IM media dataset, where the impurity and self diffusion
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Figure 1: Dataset overview: a) diffusion mode present in dataset for IM media and b) MCA
media. Frequency of temperature range of diffusion for c) IM media and d) MCA media.

modes comprise a larger number of diffusion data points (3431 and 2567, respectively) com-

pared to other modes, thus making them suitable for training. Similarly, in MCA media

(Figure 1b), self diffusion (3431 data points), impurity diffusion (2567 data points), and

chemical diffusion (483 data points) modes have been selected due to the sufficient amount

of data available. Some diffusion modes are ambiguously labeled in the dataset; for instance,

471 data points are categorized under a diffusion mode termed ‘grain boundary, self’ in

MCA dataset. Despite the sufficient number of data points in such modes, the ambiguity

in diffusion mode classification led to the exclusion of such modes of diffusion from further

study. Figure 1c and d display the experimental temperature range, mostly between 500

and 1500 K, for calculating the diffusion coefficients in IM and MCA media respectively.

The periodic tables given in Figure S1a and b highlight the diffusing elements considered

for IM and MCA media respectively. The percentage contribution from each block is shown

in the pie diagram given in the inset of the periodic table. The pie diagram illustrates the
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distribution pattern of diffusing elements across both media types. It shows that a minority

of diffusing elements originate from the s and f blocks, while the majority stem from the d

and p blocks in both media. This visualization also facilitates the assessment of the model’s

applicability to specific diffusing elements and diffusion media, offering valuable insights for

users.

Data preprocessing: The MatNavi database offers diffusion data along with essential

descriptors such as temperature, diffusion mode, diffusion medium composition, and diffu-

sion element for a diffusion coefficient. Specifically, in alloy compositions, it provides the

constituent ratios of elements as percentages, while in elemental media, purity of the media

is expressed as a percentage. Since most of the experimental data are based on isotope tracer

method, corresponding diffusing elements were tagged with the information (mass number)

of isotope used.

The data was initially categorized according to diffusion modes, with subsequent removal

of rows containing missing data points. Additionally, we identified and eliminated extrane-

ous alphanumeric characters within the diffusion media representation, along with isotope

labels associated with diffusing elements. Similarly, the dataset was further treated to ad-

dress outliers, missing values, and duplicate data. Before being input into the featurization

algorithm, the diffusion system was subjected to representation alterations that guarantee

the process of diffusing element X across AaBbCcDd (or Aa in the case of IM media) media

at a specific temperature, where uppercase letters denote the element and lowercase letters

indicate the corresponding percentage of the element. The overall preprocessing treatments

are illustrated in a diagram given in Figure S3

Target data – the diffusion coefficient: The diffusion coefficient (D) presented in the
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dataset is calculated based on Arrhenius representation of diffusivity given by Equation 1.

D = D0 exp

(

−Q

RT

)

(1)

where D0 is a temperature-independent constant, Q the activation energy for diffusion, R

the gas constant and T the temperature. The statistical parameters of diffusion coefficient

for respective models are given in Table 1. Prima facie, it can be seen that the diffusion

Table 1: Statistical parameters of target data – diffusion coefficient∗.

Medium Diffusion
mode

Types of
diffusion
medium#

Number
of data

Minimum
(×10−25)

Maximum
(×10−7)

Mean (µ)
(×10−10)

Standard
deviation (σ)
(×10−9)

Coefficient of
variation (σ

µ
)

(%)

Impure metallic
Impurity 33 2506 0.099 1800 1520 4220 3336.35

media self 32 1240 0.028 0.011 0.046 0.058 1260.25

Multi-component

self 191 3431 22.70 0.009 0.020 0.022 1126.92

impurity 271 2567 0.230 6.840 9.080 15.601 1724.90

alloy media chemical 14 483 5000 0.011 0.448 10.500 23.54

* Unit of Diffusion coefficient is given in m2/s in the table.
# Number of different types of diffusion media present in data.

coefficient has extremely low order of magnitude ranging from 10−25 – 10−7 m2/s in the overall

data. Secondly, the aggregation of data points at certain frequencies is evident (Figure S4)

because the diffusion coefficients corresponding to most of the alloys are collected for a widely

varying range of temperatures from the experiment. This results in an elevated value for

the coefficient of variation as given in Table 1. In particular, self-diffusion in IM media, and

self and chemical diffusion in MCA media show higher variance compared to other modes

of diffusion. Considering this higher variability in target data, log-transformed values of the

diffusion coefficients were used for training. This study prefers the log-transformed diffusion

coefficient as the target variable since it exhibits close proximity to the normal distribution

behavior as seen in Figure S4, aiding in better performance of models.
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3 Feature Engineering

Performance of predictive models in the ML domain is highly influenced by both the quantity

and quality of data, as well as the choice of training algorithms. This study observes that the

choice of descriptors plays a significant role in predicting diffusion coefficients. Descriptors

encompass factors that have direct or indirect influence on diffusion coefficients and are

therefore considered meticulously in this study. In light of this, we included a detailed set

of descriptors separately for diffusing elements and diffusion media for predicting diffusion

coefficients, acknowledging that certain descriptors may pertain specifically to the chemical

and structural characteristics of the chemical species involved. In addition to this, the

temperature corresponding to the diffusion is placed as an important feature considering its

direct influence on the target variable.

Diffusion Medium
Ex: A

a
B

b
C

c
D

d

Diffusing Element

Ex: X

Composition to Features

Ex: electronic configuration, lattice 

volume, dipole moment, etc.

Element to Features

Ex: Atomic volume, magnetic 

moment, band gap, etc.

Pearson Correlation Analysis

Retains features whose 

correlation is less than 90 %

Pearson Correlation Analysis

Retains features whose 

correlation is less than 90 %

Features of diffusion 
medium + Features of 

diffusing element

Statistical and Cross-correlation 

Analysis, Fine Clipping of Data

Principal
Component Space

Tuning and Training

Performance analysis

Combined 
Feature Space 

Feature Space

Figure 2: Workflow of modeling.

Featurization : Figure 2 presents an overview of our modeling approach through featuriza-

tion, where we utilize the Magpie featurization preset available in the Matminer library to

featurize the composition of the diffusion medium and the diffusing element. Matminer, an

open-source Python library designed for material data mining, serves as a valuable resource

in our featurization scheme and model development.41 The Magpie featurization preset in-

cludes statistical computations for elemental attributes as mean, average deviation, range,
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mode, minimum, and maximum.42 A detailed overview of all such attributes along with the

statistical operation considered is given in Table S1. When employing the Magpie algorithm

to extract composition features, we considered descriptors weighted by the composition frac-

tion of each element. However, this weighted scheme was omitted when featurizing the

diffusion element. Consequently, two sets of descriptors were generated, one corresponding

to the diffusion media and the other to the diffusing element. Then, these two sets of fea-

tures underwent separate Pearson’s correlation analyses implemented through Pandas – a

Python library, wherein features exhibiting a correlation exceeding 90% were excluded.43,44

For instance, in cases where two features displayed a correlation above 90%, we retained

the feature with the greater Mean Absolute Deviation (MAD). Pearson’s correlation (rf1,f2)

between feature-1 (f1) and feature-2 (f2), was computed using the Equation 2.

rf1,f2 =

∑
(

f1i − f̄1
) (

f2i − f̄2
)

√

∑
(

f1i − f̄1
)2 (

f2i − f̄2
)2

(2)

where f1i and f2i are the feature values, and f̄1 and f̄2 respective sample mean. Pearson’s

coefficient, a statistical metric, quantifies the magnitude and direction of a linear correlation

between two continuous variables. This coefficient varies between -1 and 1, with 1 indicating

a flawless positive linear relationship, -1 denoting a perfect negative linear correlation, and

0 signifying no linear association. The correlation-based filtering was applied separately to

each set of features, the features of the diffusion medium and element were merged, and

then another correlation analysis was performed in the combined feature space. However

this time features with a correlation greater than 75% were omitted, by retaining the feature

with the highest MAD (= 1
n

∑n

i=1 |xi − x̄| where n is the number of data and, xi and x̄ are

data point and mean of the data respectively). This feature space is then considered for

further analysis and training.

Feature space analysis: Scaled principal component analysis (PCA) based on the covari-

13

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
2
2
0
0
1



ance matrix was utilized to minimize the dimension of the data due to the large number

of features. There are various ways to calculate the number of PCs.45,46 In this study, the

choice of the number of PCs to be retained was based on the explained variance. Finally,

the training was performed using both decomposed feature space (PC space that explains

99% of variance in data) and pristine feature space for a comparative analysis of the model’s

performance.

Training scheme: Considering the size of data, number of features, and complexity among

features, the RF and DNN have been chosen as the main algorithms for training purposes

with hyperparameters optimized through GridSearchCV method implemented thorough

scikit-learn 47 library. Here, a computationally intensive tuning scheme, incorporating a

broad range of hyperparameters, is employed to maximize the R2 and minimize the MSE

scores to ensure the optimum performance of model. For a comparative study of perfor-

mance of models based on the algorithm chosen, we also included the training and testing

results of SVR. In all models, training and testing were carried out in segmented data in-

tervals in order to determine the ideal range of target data that provides maximum model

performance with a larger number of training data. Furthermore, we conducted 10 random

trials to assess the stability of the model’s performance across different test-train sampling

sizes while maintaining a test-train ratio of 20% and 80% throughout.

Model evaluation: As a standard regression problem, the following three evaluation criteria

have been used to compare the performance of all models, including the Root Mean Squared

Error (RMSE), and coefficient of determination (R2) calculated as follows.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Dexp
i −Dpred

i )2 (3)
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R2 =

û

ü

ü

ü

ü

ý

∑

(Dexp
i Dpred

i )−
∑

(Dexp
i D

pred
i )

n
√

[

∑

Dexp2

i −

(

∑

D
exp2

i

)

n

] [

∑

Dpred2

i −

(

∑

D
pred2

i

)

n

]

þ

ÿ

ÿ

ÿ

ÿ

ø

2

(4)

In addition to error estimation, we have also performed an uncertainty analysis in our

modeling. Our findings demonstrate that the errors generated by the RF algorithm im-

plemented in LoLo (an RF-centered machine learning library in Scala) library are well-

calibrated.48 As mentioned in Ling et al. 49 ’s work, an ideally calibrated uncertainty esti-

mate should have a particular relationship with the errors of an ML model. Specifically, the

distribution of r(x)/σ(x) where r(x) is the normalized residuals of the prediction given by

r(x) = f̂(x)−f(x)
σ(x)

(here, f̂(x)− f(x) is the difference between the predicted and actual value)

and σ(x)is the uncertainty of the prediction given by Equation 5,

σ(x) =

√

√

√

√

(

n
∑

i=1

max[σ2
i (x), ω]

)

+ σ̃2(x) (5)

where σ2
i (x) is the sample-wise variance at test point x due to training point i, ω is the

noise threshold in the sample-wise variance estimates, and σ̃(x) is an explicit bias function.

The noise threshold is set to ω = miniσ
2(xi), the magnitude of the minimum variance over

the training data as suggested by Ling et al. 49 . If the uncertainty estimates were perfectly

well-calibrated and the samples in the data set were independently distributed, then the

normalized residuals would follow a Gaussian distribution with zero mean and unit standard

deviation.

3.1 Machine Learned Models of Diffusion Coefficient

3.1.1 Impurity diffusion in impure metallic media

In the impurity diffusion mode comprising 2506 data points, correlation analysis revealed

that among the 19 features of diffusing element and 35 features of diffusion media show
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correlations below 90%. The heatmaps illustrating the correlation between features after re-

moving highly correlated features are given in Figure 3. Figure 3a describes the feature space

of diffusing element, characterized by a predominantly negative correlation trend compared

to the feature space of diffusion media shown in Figure 3 b, where a more positive corre-

lation trend is evident on average, denoted by the red squares. Merging these two feature

spaces yields a combined feature space, excluding features with correlations exceeding 75%.

Specifically, three features were eliminated from diffusing element’s feature space, and four

from diffusion media’s. The correlation heatmap of the combined feature space, depicted in

Figure 3 c, indicates an average feature correlation of less than 25% after the final correlation

correction. Finally, the temperature feature is integrated into the combined feature space,

leading to a training dataset dimension of 2497 × 49 (comprising 48 diffusion features and

temperatures). Notably, some rows with missing variables in the feature space have been

omitted, which accounts for the dataset’s dimension of 2497.

After analyzing the distribution of the target variable, the diffusion coefficient, it is ap-

parent that the log-transformed diffusion coefficient exhibits a more normal distribution

compared to the pure diffusion coefficient. In this model, using the log of the diffusion co-

efficient as the target variable proves beneficial (with a better R2 score). The Figure S4a

illustrates this shift, with the mean and standard deviation for the pure diffusion coefficient

being 1.15 × 10−7 m2/s and 2.64 × 10−6 m2/s, respectively. After applying the logarithm

transformation, these values become 31.00 and 7.06, respectively. The log-transformed dif-

fusion coefficient is more suitable for modeling due to its normalized distribution character-

istics. Similarly, the feature, temperature also exhibits a normal distribution, with a mean

of 1010.39 K and a standard deviation of 450.69 K.

PC analysis (Figure 4a) reveals that 25 PCs can represent 90% of the variance in the

data, whereas 39 PCs can represent 99% of the variance. Notably, the number of PCs

needed to represent at least 90 % variance is remarkably higher, indicating the presence

of complex relationships among the descriptors.50 Figure 4b depicts the important features
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Figure 3: Feature spaces – impurity diffusion in IM media for a) diffusing elements, b)
diffusion media, and c) the combined feature space used for training. Features of diffusing
elements and diffusion media are indexed sequentially and the respective indices are marked
in the combined feature space for reference. Common abbreviations such as ‘min.’ for
minimum, ‘avg.’ for average, and ‘dev.’ for deviation are used.

when projecting eigenvectors of features in the PC space spanned by the first two PCs that

together represent ≈ 24% of variance in data. In this figure, red and blue arrows represent

important features of diffusing elements and diffusion media, and other trivial features are

marked by green arrows. Further, the features of diffusing element namely the GS bandgap,

electronegativity, number of p valance, number of p unfilled, Mendeleev number, column, and

covalent radius are identified as the most contributing features to the PC1 and PC2. In
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depicts variance of features represented by 25PCs and b) most contributed features in PC
space spanned by first two PCs. The eigenvectors of features are projected as arrows. The
important features of diffusing element are marked in red, diffusion media in blue, and other
less contributing features in green color. The scatter plot in the background illustrates the
scaled distribution of data points in PC space.

contrast, only one feature of diffusion media, the min. melting temperature, is identified as

the most contributing feature in the same PC space. The decreased variance (≈ 24%)of the

data represented in PC 1 and 2 is the prime reason for this. However, when considering

the magnitude of eigenvectors of features in 39-dimensional PC space, as given in the inset

of Figure 4a, it can be seen that the majority of features exhibit a variance above 80%.

Therefore, 39 PCs that explain 99% of the variance in data are used when training with

PCs.

Figure 5a displays the model’s performance when trained using feature space, yielding

a R
2 score of 0.94; b, on the other hand, displays the model’s performance when trained

with PCs, yielding a R
2 value of 0.90. Although the feature-trained model outperforms PC-

trained model in terms of the R2 score, it is noteworthy that the PC-trained model exhibits

a slightly lower MSE compared to the feature-trained model.

When examining the model’s uncertainty as given in Figure S5a, both models show that

the root mean square out-of-bag approach is not a well-calibrated metric; it significantly

overestimates the error for a substantial portion of the data points. In contrast, employing
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Figure 5: Performance of model – impurity diffusion in IM media: a) when trained with the
entire feature space (dimension: 2497× 49) and b) with principal components of the entire
feature space(dimension: 2497× 39). The gray solid lines depict the uncertainty associated
with each data point.

the Lolo uncertainty approach results in comparatively well-calibrated uncertainty estimates

(Figure S5b), indicating that the samples in the dataset are independently distributed. On

comparing Lolo uncertainty estimates between feature-trained and PC-trained models as

shown in Figure S5b, histograms are closer to normalized distributions of residuals in feature-

trained rather than PC-trained models. Nevertheless, the Lolo uncertainty approach cannot

comprehensively address all sources of uncertainty as seen from the small outgrowth of

histogram in Figure S5b. This is particularly due to the uncertainties arising from factors

not explained by the existing feature set—commonly referred to as ‘unknown unknowns’ as

mentioned in Ling et al. 49 ’s work. For example, the diffusion coefficient data is unavailable for

certain temperature steps, leading to gaps in information. The absence of such information

may slightly undermine the reliability of uncertainty estimates.

Upon examining the feature importance derived from the RF algorithm used during

training, we noted that 16 out of the 49 features used hold significance based on their

mean accuracy decrease score. These crucial features, along with their respective standard
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Figure 6: Feature importance – impurity diffusion in IM media: features of diffusing elements
are highlighted in bold fonts and diffusion media are given in normal fonts.

deviations, are detailed in Figure 6. Notably, the temperature of the diffusion process emerges

as the most pivotal feature among them. Furthermore, within the subset of seven important

features pertaining to diffusion elements, the number of unfilled orbitals stands out as the

most critical. Likewise, within the nine important features associated with diffusion media,

both the minimum melting temperature and GS volume were identified as significant.

3.1.2 Self diffusion in impure metallic media

The dataset for self-diffusion in IM media has 2506 data points. 19 features of diffusing

elements and 35 features of diffusion media were identified to have mutual correlations of less

than 90% by correlation analysis. Figure 7a describes the feature space of diffusing element,

characterized by negative and positive correlation trends in equal proportion compared to

the feature space of diffusion media shown in Figure 7b, where a more positive correlation

trend is evident on average, denoted by the reddish squares. After merging the feature spaces

of diffusing element and diffusion media and removing features with correlations over 75%,

one feature from diffusing element and sixteen features from diffusion media were eliminated.
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The resulting correlation heatmap (Figure 7c) shows an average feature correlation below

25% after the final correction. Additionally, the temperature feature was incorporated into

the combined space, resulting in training data of dimension 2506 × 30 (29 diffusion features

and temperatures).
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Figure 7: Feature spaces – self diffusion in IM media for a) diffusing elements, b) diffusion
media, and c) the combined feature space used for training. Features of diffusing element
and diffusion media are indexed sequentially and the respective indices are marked in the
combined feature space for reference. Common abbreviations such as ‘min.’ for minimum,
‘avg.’ for average, and ‘dev.’ for deviation are used.

Statistical analysis reveals that the log-transformed diffusion coefficient displays a more

normalized distribution compared to the original diffusion coefficient, leading to better mod-

21

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
2
2
0
0
1



eling performance (with an improved R2 score). As illustrated in Figure S4b, the mean and

standard deviation of the pure diffusion coefficient are 8.09 × 10−12 m2/s and 7.68 × 10−11

m2/s, respectively. Following the logarithmic transformation, these values shift to 34.90

m2/s and 6.01 m2/s. This transformation enhances modeling performance due to the nor-

malized distribution trend. Similarly, the temperature feature also demonstrates a normal

distribution, with a mean of 1027.98 K and a standard deviation of 500.71 K.

PC analysis (Figure 8 a) shows that 16 PCs capture 90% of the data’s variance, while

24 PCs capture 99%. Notably, representing at least 90% variance requires significantly

more PCs, indicating complex relationships among descriptors.50 In Figure 8 b, important

features are shown using eigenvectors projected onto the first two PCs, explaining 28% of the

variance. Diffusing element’s features such as covalent radius, Mendeleev number, melting

temperature, electronegativity, number of p, and d valence, and number d unfilled, and GS

volume contribute most to PC1 and PC2. Conversely, only one feature of diffusion medium,

99 % of variance ~ 24 PCs

90 % of variance ~ 16 PCs
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Figure 8: PC analysis; a) PCs that explain cumulative variance with inset graph that
depicts variance of features represented by 24PCs and b) most contributed features in PC
space spanned by first two PCs. The eigenvectors of features are projected as arrows. The
important features of diffusing elements are marked in red, diffusion media in blue, and other
less contributing features in green color. The scatter plot in the background illustrates the
scaled distribution of data points in PC space.

the average deviation of row, is identified as the most contributing feature in the same PC

space. The decreased variance of the data (≈ 28%) represented by PC 1 and 2 is the prime
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reason for this. However when considering the magnitude of eigenvectors of features in 24-

dimensional PC space, as given in the inset of Figure 8a, it can be seen that the majority of

features exhibit a variance above 80%. Therefore, 24 PCs that explain 99% of the variance

in data are used when training with PCs.

Figure 9a shows the model’s performance when trained with feature space, achieving an

R2 score of 0.95; in comparison, Figure 9b shows the model’s performance when trained with

PCs, resulting in an R2 value of 0.91. Despite the feature-trained model outperforming the
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Figure 9: Performance of model – self diffusion in IM media: a) when trained with entire
feature space (dimension: 2506 × 30) and b) with principal components of the entire feature
space (dimension: 2506 × 24). The vertical gray solid lines depict the uncertainty associated
with each data point.

PC-trained model in R2 score, both models exhibit a very similar MSE score of approximately

1.5× 10−21.

When examining the model’s uncertainty (Figure S5c), both models reveal that the root

mean square out-of-bag approach is not well-calibrated; it tends to overestimate errors sig-

nificantly for many data points. Conversely, using the Lolo uncertainty approach yields

comparatively well-calibrated uncertainty estimates (Figure S5d), indicating independently

distributed samples in the dataset. Comparing Lolo uncertainty estimates between feature-

trained and PC-trained models (Figure S5d), histograms show closer-to-normalized distri-
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butions of residuals in the feature-trained models than in the PC-trained ones. However, as

mentioned in Sec. 3.1.1, the Lolo uncertainty approach cannot comprehensively address all

sources of uncertainty, as evidenced by the histogram’s outgrowth in Figure S5d. This is

mainly due to the missing diffusion coefficient data for certain temperature steps, resulting

in the overestimation of uncertainty.
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Figure 10: Feature importance – self diffusion in IM media: features of diffusing elements
are highlighted in bold font and diffusion media are given in normal font.

When analyzing the feature importance derived from the RF algorithm used during

training, we observed that 11 out of the 29 features used are significant based on their mean

accuracy decrease score. These important features, along with their respective standard

deviations, are detailed in Figure 10. As expected, the temperature of the diffusion process

emerges as the most crucial feature among them. Furthermore, within the subset of eight

important features related to diffusing elements, melting temperature and number of unfilled

orbitals are highlighted as the most pivotal. Similarly, within the two important features
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associated with diffusion media, both average deviation of row and average deviation in GS

volume were identified as highly significant.

3.1.3 Self diffusion in multi-component alloys

In the context of self diffusion mode, with 3431 data points, 18 features of diffusing elements

and 87 features of diffusion media have been identified that correlate less than 90%. The

heatmap presented in Figure 11 visualizes the feature space following the post-correlation

filtration. In Figure 11 a, diffusing element’s feature space shows predominantly positive

correlations, similar to diffusion medium’s feature space depicted in Figure 11 b, where a

positive correlation trend is also noticeable on average, highlighted by reddish squares. Then,

the combined feature space was formed by excluding highly correlated features (over 75%),

resulting in the elimination of 6 features from diffusing elements and 47 from diffusion media.

The correlation heatmap of the combined feature space (Figure 11 c) indicates an average

feature correlation of less than 25%. Finally, incorporating temperature into the combined

feature space expanded the dataset to dimensions of 3431 × 54, comprising 53 diffusion

features and temperature.
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Figure 11: Feature space – self diffusion in MCA media: combined feature space of diffusing
element and diffusion media used for training. Features of diffusing elements are highlighted
in bold fonts and diffusion media in regular fonts(Individual feature space of diffusing element
and diffusion media for this model are given in Figure S6a and b respectively). Common
abbreviations such as ‘min.’ for minimum, ‘avg.’ for average, and ‘dev.’ for deviation are
used.

A statistical examination of the distribution of the diffusion coefficient, reveals that log-

transformed diffusion coefficient follows a more normal distribution compared to the normal

diffusion coefficient. Employing the log of the diffusion coefficient as the target variable in

this model results in a better R2 score. Figure S4c visually depicts this transformation,

with the mean and standard deviation for the normal diffusion coefficient being 3.27× 10−12

m2/s and 2.89× 10−11 m2/s, respectively. After the logarithm transformation, these values

shift to 33.80 m2/s and 5.37 m2/s, respectively. The log-transformed diffusion coefficient
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is favored for modeling because it closely aligns with normal distribution. Likewise, the

temperature feature also exhibits a normal distribution, with a mean of 1234.19 K and a

standard deviation of 374.52 K.

PC analysis (Figure 12 a) indicates that 21 PCs capture 90% of variance of data, while 40

PCs capture 99%. This disparity suggests complex relationships among descriptors, as more

PCs are needed to represent at least 90% variance. In Figure 12 b, important features are

displayed using eigenvectors projected onto the basis of first two PCs, together explaining ap-

proximately 28% of the total variance in data. diffusing element’s features such as Mendeleev

99% of variance ~ 40 PCs

90% of variance ~ 21 PCs
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Figure 12: PC analysis – self diffusion in MCA media; a) PCs that explain cumulative
variance with inset graph that depicts variance of features represented by 40 PCs and b)
most contributed features in PC space spanned by first two PCs. The eigenvectors of features
are projected as arrows. The important features of diffusing elements are marked in red,
diffusion media in blue and other less contributing features in green color. The scatter plot
in the background illustrates the scaled distribution of data points in PC space.

number, melting temperature, and number of p unfilled orbitals are significant contributors

mainly to PC1. In the same PC space, important diffusion medium’s features include mean

number of p valence, minimum GS volume, and maximum GS magnetic moment. Given

the fact that PC1 and PC2 collectively represent approximately 28% of the variance in the

data, considering a higher-dimensional PC space that incorporates greater variance is recom-

mended for training. The scatter plot given in the inset of Figure 12a suggests that training

with 40 PCs is beneficial as most features capture above 90% variance.
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This model exhibits overfitting when trained with the feature space using RF. This is

primarily due to the high diversity in diffusion media within the self diffusion dataset, which

comprises 191 distinct types of diffusion media, as given in Table 1. Therefore we choose

MLPRegressor to train the model using feature space that gives R2 score of 0.93 with MSE

2.48 × 10−22. Training was also performed using 40 PCs that captured 99% of variance in

training data. Figure 13b illustrates the model’s performance when trained using the PC

space with RF, achieving an R2 score of 0.92 with MSE 1.65× 10−22. These results are very

similar to those obtained from the MLPRegressor using the feature space. This indicates

that despite the high diversity in the feature space leading to RF overfitting, projecting the

features to PC space and then using PCs for RF training yields accurate results and precise

uncertainty estimates.

Actual diffusion coefficient (exp(D)) (m2/s) Actual diffusion coefficient (exp(D)) (m2/s) 

Uncertainty
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Figure 13: Performance of model – self diffusion in MCA media when trained with a) the
entire feature space (dimension: 3431 × 54) and with b) the principal components of the
entire feature space (dimension: 3431 × 40). The gray solid lines depict the uncertainty
associated with each test data point.

On comparing out-of-bag uncertainty estimates calculated using feature space (trained

with MLPRegressor since RF is overfitting) and PC space (trained with RF ) as given in

Figure S5e it can be seen that both training schemes overestimates errors for many data

points. However using Lolo approach, as given in Figure S5f the uncertainty estimates are
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more normally distributed for most of the data points.
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Figure 14: Feature importance – self diffusion in MCA media: MLPRegressor were used
with feature permutation scheme. Features of diffusing elements are highlighted in bold font
and diffusion media are given in normal font.

Figure 14 summarizes the feature importance analysis calculated using MLPRegressor

based on feature permutation. Among the six key features of diffusing elements, minimum

number of p and d valence were identified as most important. For diffusion media, out of

twenty important features, mean electronegativity and range of d valence of the composition

elements were highlighted as most important. Furthermore, temperature of diffusion process

stands out as the most important feature among all other features.
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3.1.4 Impurity diffusion in multi-component alloys

In the impurity diffusion mode, encompassing 2567 data points, 19 features of diffusing

elements and 85 features of diffusion media were identified to correlate less than 90%. As
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Figure 15: Feature space – impurity diffusion in MCA media: combined feature space used
for training. Features of diffusing elements are highlighted in bold characters and diffusion
media in regular fonts(Individual feature space of diffusing element and diffusion media for
this model are given in Figure S7a and b respectively). Common abbreviations such as ‘min.’
for minimum, ‘avg.’ for average, and ‘dev.’ for deviation are used.

depicted in Figure S7a, diffusing element’s feature space predominantly exhibits negative

correlations, contrasting with diffusion media’s feature space shown in Figure S7b, where a

positive correlation trend is evident on average, highlighted by reddish squares. Subsequently,

the combined feature space was created by excluding highly correlated features (over 75%),

resulting in the removal of 4 features from diffusing elements and 47 from diffusion media.
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The correlation heatmap of the combined feature space (Figure 15c) indicates an average

feature correlation of less than 25%. Finally, integrating temperature into the combined

feature space expanded the dataset to dimensions of 2567 × 49, comprising 50 diffusion

features and temperatures.

To enhance the model performance during training, the diffusion coefficient is transformed

to a log scale, resulting in a more normal distribution and a better R2 score. The mean and

standard deviation for the original diffusion coefficient are 1.66× 10−9 m2/s and 1.98× 10−6

m2/s, respectively, while after the logarithm transformation, these values shift to 32.90 m2/s

and 8.53 m2/s, respectively as shown in Figure S4d. Similarly, the temperature feature

exhibits a normal distribution with a mean of 1049.33 K and a standard deviation of 422.75

K.
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Figure 16: PC analysis – impurity diffusion in MCA media; a) PCs that explain cumulative
variance with inset graph that depicts variance of features represented by 43PCs and b) most
contributed features in PC space spanned by first two PCs. The eigenvectors of features are
projected as arrows. The important features of diffusing elements are marked in red, diffusion
media in blue, and other less contributing features in green color. The scatter plot in the
background illustrates the scaled distribution of data points in PC space.

PC analysis (Figure 16a) reveals that 25 PCs capture 90% of the data’s variance, while

43 PCs capture 99%. This discrepancy indicates complex relationships among descriptors,

requiring more PCs to represent at least 90% variance. In Figure 16b, important features

are displayed using eigenvectors projected onto the first two PCs, explaining approximately

31

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
2
2
0
0
1



22% of the total variance in data. Diffusing element’s features such as number and band gap

significantly contribute to PC1. Similarly, notable diffusion media’s features include 0-norm,

maximum melting temperature, and range of d valence in the same PC space. Considering

that PC1 and PC2 collectively represent only 22% of the variance in the data, we selected a

43-dimensional PC space that captures 99% of the variance for PC-based training, as shown

in the inset of Figure 16a. In this space, most features contribute over 80% variance ensuring

the effective inclusion of all of the features.
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Figure 17: Performance of model – impurity diffusion in MCA media when trained with a)
the entire feature space (dimension: 2567 × 49) and b) principal components of the entire
feature space (dimension: 2567 × 43). The vertical gray solid lines depict the uncertainty
associated with each data point.

Similar to the self diffusion model in MCA media described in Sec. 3.1.3, this model also

displays overfitting when trained with the feature space, mainly because of the highly diverse

diffusion media (271 types) present in the data. For this reason, we used the MLPRegressor

for training with the feature space, achieving a higherR2 score of 0.98, as shown in Figure 17a.

However, RF performs well when trained using 43 PCs but a comparatively lower R2 score

of 0.95 as depicted in Figure 17b. When examining the MSE of both training schemes, the

32

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
2
2
0
0
1



differences are minimal, with MSE values on the order of 10−16.

When comparing out-of-bag uncertainty estimates calculated using the feature space

(trained with MLPRegressor since RF is overfitting) and the PC space (trained with RF )

as shown in Figure S5g, it is evident that both training methods tend to overestimate errors

for many data points. In contrast, the Lolo approach, depicted in Figure S5h, provides

uncertainty estimates that are more normally distributed across most data points.
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Figure 18: Feature importance – impurity diffusion in MCA media: MLPRegressor were
used with feature permutation scheme. Features of diffusing elements are highlighted in bold
font and diffusion media are given in normal font.

Figure 18 summarizes the feature importance analysis calculated using MLPRegressor

based on feature permutation. Among the four key features of the diffusing elements, min-

imum GS bandgap was identified as the most significant. For diffusion media, out of six

important features, mean melting temperature and minimum number of unfilled orbitals of

composition elements were highlighted as the most important. Further, temperature of dif-

fusion process was identified as the most influential feature overall.
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3.1.5 Chemical diffusion in alloys

The dataset for self-diffusion in IM media comprises 483 data points. From correlation anal-

ysis, 9 features of diffusing elements and 45 features of diffusion media were identified with

correlations below 90%. Figure S8a depicts the feature space of diffusing elements, show-

casing mainly positive correlation trends. Similarly, Figure S8b illustrates the feature space

of diffusion media, also with predominantly positive correlations, indicated by the reddish

squares. Upon merging these feature spaces and filtering out features with correlations ex-

ceeding 75%, 5 features from diffusing elements and 30 features from diffusion media were

removed. The resulting correlation heatmap (Figure 19) exhibits an average feature correla-

tion below 25% after these adjustments. Lastly, incorporating the temperature feature into
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the combined space led to training data dimensions of 483 × 20 (19 diffusion features and

temperature).

The statistical analysis indicates that the log-transformed diffusion coefficient exhibits
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a more normalized distribution compared to the original diffusion coefficient. This nor-

malization leads to improved modeling performance, reflected in an enhanced R2 score. In

Figure S4e, the log-transformed standard deviation graph displays two bell-shaped curves, in-

dicating higher data variability, mostly symmetric around the mean. Specifically, for the pure

diffusion coefficient shown in Figure S4e, the mean and standard deviation are 5.83× 10−11

m2/s and 1.17×10−10 m2/s, respectively. After logarithmic transformation, these values shift

to 30.01 m2/s and 5.59 m2s, respectively. This transformation contributes to improved mod-

eling performance due to the normalized distribution trend. Additionally, the temperature

feature also demonstrates a normal distribution, with a mean of 1264.02 K and a standard

deviation of 426.21 K.

38

11

52

7

37

20

43

17

Index of features

V
a

ri
a

n
c
e

 c
o

n
ta

in
s
 i
n

 P
C

s

1 7 13 19

0.75

0.80

0.85

0.90

1.00

0.95

b)

PC1

-0.5 -0.3 -0.1 0.1 0.3 0.5

P
C

2

0.5

0.3

0.1

-0.1

-0.3

-0.5

Feature of DE
Feature of DM

C
u

m
u

la
ti
v
e

 v
a

ri
a

n
c
e

Number of principal components

1.0

0.8

0.6

0.4

0.2

0 10 10 15 20

a)

9
0
%

 o
f 
va

ri
a
n
ce

 ~
 7

 P
C

s

99% of variance ~ 12 PCs

Figure 20: PC analysis; a) PCs that explain cumulative variance with inset graph that
depicts variance of features represented by 12PCs and b) most contributed features in PC
space spanned by first two PCs. The eigenvectors of features are projected as arrows. The
important features of diffusing elements are marked in red, diffusion media in blue, and other
less contributing features in green color. The scatter plot in the background illustrates the
scaled distribution of data points in PC space.

The PC analysis (Figure 20 a) reveals that 7 PCs capture 90% of the data’s variance, while

12 PCs capture 99%. It is noteworthy that achieving a representation of at least 90% variance

necessitates a considerably higher number of PCs, indicating complex relationships among

descriptors. In Figure 20 b, important features are depicted using eigenvectors projected

onto the first two PCs, explaining 43% of the variance. Notably, a single feature of diffusing
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element, the number of d unfilled orbitals, appears as the strongest feature which is more

leaned to PC1. And, features of diffusion media, such as the 2-norm, average deviation of

number, range of Mendeleev number, mode of the number of p valence, range of the number

of p valence, average deviation of valence, and minimum space group number, are identified

as the most contributing features in the same PC space. However, when considering the

magnitude of eigenvectors of features in the 12-dimensional PC space that includes higher

variance of data, as shown in the inset of Figure 20a, it is visible that the majority of features

exhibit a variance above 80%. Therefore, 24 PCs that explain 99% of the variance in the

data are used during training with PCs.

Figure 21a shows the model’s performance when trained using the feature space, resulting

in an R2 score of 0.94. Conversely, Figure 21b displays the model’s performance when trained

with PCs, achieving an R2 value of 0.96. Comparing these models, the PC-trained model

slightly outperforms the feature-trained model, despite similar MSE scores.
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Figure 21: Performance of model – chemical diffusion in MCA media: a) when trained
with the entire feature space (dimension: 483 × 20) and b) with principal components of
the entire feature space (dimension: 483 × 12). The gray solid lines depict the uncertainty
associated with each data point.
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When examining the model’s uncertainty (Figure S5k), both models demonstrate that

the root mean square out-of-bag approach is poorly calibrated, tending to overestimate er-

rors significantly for many data points. In contrast, using the Lolo uncertainty approach

yields comparatively well-calibrated uncertainty estimates (Figure S5l), indicating indepen-

dently distributed samples in the dataset. Comparing Lolo uncertainty estimates between

feature-trained and PC-trained models (Figure S5l), histograms show closer-to-normalized

distributions of residuals in the feature-trained models than in the PC-trained ones. However,

as mentioned in Sec. 3.1.1 and Sec. 3.1.2, the Lolo uncertainty approach cannot compre-

hensively address all sources of uncertainty, as evidenced by the histogram’s outgrowth in

Figure S5l. This is primarily due to missing diffusion coefficient data for certain temperature

steps.
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Figure 22: Feature importance – chemical diffusion in MCA media: Features of diffusing
elements are highlighted in bold font and diffusion media are given in normal font.

When analyzing the feature importance derived from the RF used during training, we

observed that 7 out of the 20 features used for training are significant based on their mean

accuracy decrease score. These important features and their respective standard deviations
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are detailed in Figure 22. Notably, the temperature of the diffusion process emerges as

the most crucial feature among them. However, only one feature related to diffusing ele-

ments, the number of s valence is identified as important. Similarly, within the subset of

important features associated with diffusion media, both mean Mendeleev number and mean

electronegativity were identified as significant.

4 Performance Analysis of Models

This section includes a comparative analysis of performance of models trained with RF, DNN

and SVR algorithms. All models are trained with the methodology described in section 3

with corresponding feature space as described in sections 3.1.1 – 3.1.5. When evaluating the

model’s performance using R2 and MSE scores, the results indicate that RF and DNN trained

models outperform SVR models. Specifically, RF models demonstrate optimal performance

in predicting impurity and self-diffusion in IM media and DNN models for impurity, self and

chemical diffusion in MCA media, as given in Table 2. The same table also highlights the

overfitting of RF models as the number of features increases in the case of impurity and

self diffusion in MCA media. Since the highly correlated features of the DE and DM were

Table 2: Performance overview of all models.

Diffusion Medium Model
Number of R2 MSE (×10−19)

features RF DNN SVR RF DNN SVR

Impure metallic
Impurity 49 0.94 0.93 0.88 12.50 387.90 15.40

Self 30 0.95 0.92 0.87 0.015 0.0480 0.047

Multi-component alloy

Impurity 54 * 0.98 0.97 * 1030.1 1363.4

Self 54 * 0.96 0.90 * 0.0025 0.0021

Chemical 20 0.94 0.96 0.93 0.0068 0.0092 0.0047

* Model is overfitting.

removed during the feature engineering step, none of the features from the final feature space

removed to negotiate hyperparameter tuning time. This approach maximizes the model’s
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predictive performance, as all features in the final feature space contribute, either directly

or indirectly, to the model’s efficiency.

The prediction bias and limitations of a ML model can be understand through the nature

and diversity of the training data along with R2, MAE score and uncertainty estimates.

Figure S1 and Figure S2 provide a comprehensive overview of the nature of the diffusion data

used for training. The pie charts in Figure S1 clearly illustrate that nearly 40% of DEs are

from the d -block for both IM and MCA media, which explains the model’s higher efficiency in

predicting d -block elements as DE. Similarly, the average percentage contributions from the

s, p, and f blocks are 15%, 32%, and 11%, respectively, for DE, leading to a corresponding

bias in prediction accuracy. Furthermore, as shown in Figure S2, the majority of DM is

also composed of d -block elements (frequency of specific elements is also given in the same

figure), which results in the model being more inclined towards the accurate predictions of

diffusion coefficient for DM composed of d -block elements.

5 Conclusions

The exploration of five ML diffusion models presented in this article underscores the paramount

importance of fundamental atomic feature of diffusing element and diffusion medium in gov-

erning the diffusion process. While traditional empirical approaches focus on relating flux

gradients and temperatures to estimate diffusion coefficients, our study illuminates the po-

tential of a holistic modeling scheme that meticulously considers the atomic environment of

the diffusion process.

This ML-framework incorporates most of the crucial elements from the periodic table,

either as diffusion elements or diffusing media. This enhances the diversity and inclusion

of atomic species, resulting in a versatile model capable of accurately predicting diffusion

coefficients for a wide range of diffusing elements and media. By employing two training

approaches–using feature space and principal component space–we observed that the variance
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in atomic descriptors influences the prediction of diffusion coefficients.

This study also emphasizes the benefits of applying a deep neural network for training,

particularly when the feature space exhibits higher diversity. This is evidenced by models

for self-diffusion and impurity diffusion in multi-component alloy media. The complexities

arising from diverse multi-component alloys necessitate a sophisticated feature space, which

challenges the efficiency of the Random Forest algorithm and advocates for the reliance on

neural networks. However, employing principal component analysis is an effective alternative

when dealing with a complex feature space. PC analysis captures the variance in the feature

space through a reduced number of components, enabling the RF algorithm to perform

better, although not as efficiently as neural networks.

When looking into the important features that evolved from the five diffusion models, we

observed that features of diffusing elements mainly, atomic radius, atomic volume, number of

unfilled orbitals, electronegativity, band gap, magnetic moment and melting temperature are

significant features. On the other hand, when it comes to diffusion media, mean Mendeleev

number, minimum space group number, maximum number of s valence, mode of GS bandgap,

minimum GS magnetic moment and minimum electronegativity of elements present in the

composition of alloys are significant. In addition to this, temperature of the diffusion process

stands out as one of the important features in all of the models.

In conclusion, the diffusion framework, ML-DiCE, comprising models for impurity (R2 =

0.94) and self diffusion (R2 = 0.95) modes in IM media, as well as self (R2 = 0.96), impurity

(R2 = 0.98), and chemical (R2 = 0.96) diffusion modes in MCAmedia, demonstrates superior

performance with optimum R2 scores and minimal prediction error and uncertainty. We

also reaffirm that when the feature space becomes excessively large and exhibits complex

relationships, employing PC analysis can effectively capture variance thus enabling training

without overfitting in tree-based regression models. Our framework, alongside our user-

friendly open-source code, can be accessed at https://github.com/yanqingsu/ML-DiCE. This

resource facilitates the estimation of diffusion coefficients and fine-tuning of the material
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properties of diffusion media and elements to achieve the desired diffusion coefficient when

designing alloys.

6 Supplementary Material

See the supplementary material for further details on model feasibility, data preprocessing

steps, feature information, standard deviation of target variable and temperature, uncer-

tainty analysis, and correlation analysis.
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