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Abstract: Hybrid physics-based data-driven models, namely, augmented physics-based models
(APBMs), are capable of learning complex state dynamics while maintaining some level of model
interpretability that can be controlled through appropriate regularizations of the data-driven compo-
nent. In this article, we extend the APBM formulation for high-order Markov models, where the state
space is further augmented with past states (AG-APBM). Typically, state augmentation is a powerful
method for state estimation for a high-order Markov model, but it requires the exact knowledge of the
system dynamics. The proposed approach, however, does not require full knowledge of dynamics,
especially the Markovity order. To mitigate the extra computational burden of such augmentation
we propose an approximated-state APBM (AP-APBM) implementation leveraging summaries from
past time steps. We demonstrate the performance of AG- and AP-APBMs in an autoregressive model
and a target-tracking scenario based on the trajectory of a controlled aircraft with delay-feedback
control. The experiments showed that both proposed strategies outperformed the standard APBM
approach in terms of estimation error and that the AP-APBM only degraded slightly when compared
to AG-APBM. For example, the autoregressive (AR) model simulation in our settings showed that
AG-APBM and AP-APBM reduced the estimate error by 31.1% and 26.7%. The time cost and memory
usage were reduced by 37.5% and 20% by AP-APBM compared to AG-APBM.

Keywords: nonlinear filtering; high-order Markov; hybrid neural network

1. Introduction

State estimation and filtering with noisy measurements is an essential component
in numerous information processing engineering applications [1]. The filtering process
usually involves two steps: the prediction through the transition model and a correction
based on the observed measurements and associated model. Based on the complexity of
the models, the filters can be classified into two categories: (1) linear filters, e.g., Kalman
filter (KF) for the linear models [2], and (2) nonlinear filters, e.g., extended Kalman filters
(EKF) [3], sigma-point Kalman filters [4,5], and particle filters [6]. H filter is an alternative
filtering technique other than Kalman filters, which works especially for unknown noise
statistics and the worst-case estimation error [7]. He filters are also applied to varies
applications, e.g., network systems [8], target tracking [9], battery charging [10], etc. In this
article, we focus on Kalman filter techniques with given noise statistics.

When considering nonlinear dynamics, machine learning (ML) strategies are ap-
pealing when dealing with complex models due to their flexibility and effectiveness in
constructing mappings and capturing intricate patterns. However, purely data-driven
ML solutions, which do not leverage the knowledge brought by physics-based models
(PBM), lack interpretability of the physical meaning of estimated quantities, which is es-
pecially relevant when one aims at recovering latent states [11,12]. To incorporate the
information from physics knowledge, hybrid ML algorithms are usually used to provide
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corrections to the estimation [13,14] through neural networks (NNs) or estimate the state
directly [15]. In parallel, it has been shown that the NN parameter learning process can be
interpreted as a state estimation filtering problem [16,17], which can be leveraged to design
sequential training schemes that jointly estimate the state process and NN parameters. This
training approach is exploited by augmented physics-based models (APBMs) [18] where
physics-based models are augmented by a data-driven component that complements or
learns the behaviors that physics-based models cannot represent. A survey of augmented
physics-based models for navigation systems is presented in [19].

High-order Markov chains are widely applied and are able to achieve better perfor-
mance in many time-series data processing applications, especially when data latency or
communication delay occurs, e.g., biological sequence analysis [20], speech recognition [21],
classification and detection problem [22], and autoregressive process estimation [23,24].
Current solutions to this problem usually involve a more complex system model. In those
situations the APBM has great potential, where the complexity that can be captured by the
NN part while the physics-based component of the model is kept simple.

In this paper, we focus on adapting the APBM approach to high-order Markov models
when the system dynamics and the order of the Markovity are not given. More precisely,
we augment the state of the high-order Markov model to fit the APBM and train the
parameters of the NN with longer-memory data. An approximation-based method is
also put forward to reduce the computational cost brought by the higher-dimensional
augmented state. Section 2 introduces these two proposed APBM-based methods. Finally,
a tracking experiment based on a delayed-feedback control application is discussed in
Section 3 to validate the two proposed approaches. The remainder of this section quickly
reviews APBMs and how high-order Markovianity is typically handled in filtering contexts.

1.1. Augmented Physics-Based Model

Consider the Markovian dynamics and measurement models

xp = f(x—1) + w4 1)
Y = h(xy) ‘H’Iz'

where x; € R%*1 is the state vector at time k and Yk € R%*1 is the measurement vector
at time k. f(-) and h(-) are, possibly nonlinear, vector functions describing the state
dynamics and measurement equations, respectively. w;_; ~ N(0, Q¥) is the zero-mean
Gaussian noise of dynamics model and v% ~ N (0, RY) is the zero-mean Gaussian noise of
measurement model. The proposed hybrid NN framework is able to learn the dynamics (1)
from both sampling data and physics knowledge. The state dynamics, as described by an
APBM, can be expressed as

xe = &(f(xk_1), %41 0) +wi_y, (2)

where f(-) : R% —» R% is the PBM, which can be obtained from the simplification,
approximation, or partial knowledge of the true dynamics model f(-). §(-) : R% x R s
R% is a vector-valued function, including a NN parameterized by 8 € R% to compensate
the mismatch of the PBM f compared with true dynamics function f.

Furthermore, the regularization method involving a parameter value 0 is introduced
in the APBM framework [18] to prevent the NN augmentation from completely taking
over the model dynamics and neglecting the physics. The value 8 € R% is defined such
that the augmented model is equivalent to the PBM when 6 = 6: §(f(xx_1), xx_1;0 = 0) =

f(%k-1).
The learning process infers the state x; and the parameter vector 0 estimates. Consid-
ering the Bayesian estimation training approach [16,17], based on augmentation of the state
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xx by the parameter vector 0y, the state-space dynamics and measurement model can be
rewritten as

-1 st B
= L= + 3
[xk g(f(xk—1)/xk—1}9k—1) wi_, ®)
| _ [hx)] Ug
0 Bk (4" !
where wg ~ N(0, Q%) denotes the zero-mean Gaussian noise for NN parameter dynamics.
The equation 6 = 60 + v,f in (3) serves for regularization purposes and can be perceived
as a soft constraint of the APBM with respect to the PBM. It has a form of the pseudo-

measurement with noise v,f ~ N(0, %I ), where A is the user-defined parameter that
controls penalization of distance between 6, and 6.

1.2. Augmented State for High-Order Markov Models

The transition model shown in (1) actually follows a first-order Markov chain, which
means the current state is independent of all previous states except the most recent
one [25] (Ch. 13). In a probabilistic framework, the joint distribution for a sequence
of K states [x1, ..., xg] under such a model (ignoring the measurements) is given by

K

p(x1,...,xk) = p(x1) [ [ p(xiclxe—1) - (4)
k=2

The first-order Markov model is a general and useful assumption in many applications,
but it is restrictive in others. In reality, the sequential observations usually indicate a trend,
which means the past data could provide nontrivial information to the next prediction. In
this case, we model a high-order Markov chain [25] (Ch. 13) and [26], which allows the
prediction to depend on a sequence of previous states. For instance, the joint distribution
of the states in a second-order Markov chain is given by

K
plxi,...,xk) = P(xl)p(x2|x1)I:\/[—gp(xk‘xkflkafz) : ®)
A common approach to deal with high-order Markov is to augment the state vector
with the previous states [23,27,28] so that the model becomes first-order Markovian. The
augmented-state example of a second-order linear Markov model is shown in [29] (Ch. 6).
Considering a general pth-order Markov model for the dynamics, Equation (1) can be
expressed as

Xk :f(xk_l,...,xk_p) +w,’§_1 (6)
yk - h(xk) + v;{ 7

where x;, € R%*1 is the state vector at time k, Y € R%*1 is the measurement vector at
the time k. To filter this model, the conventional technique is to augment the state as
% = [x,...,x_, ;] and the transition model becomes

% = f(%-1) } + [wlf—l ] , @)

[Idxpxdxp depxl]fk—l depxl

where I and 0 denote the identity and zero matrices with the dimensions indicated in
the sub-indices. This augmented state (AGS) transforms the high-order Markovity into a
first-order Markov model. After the augmentation, standard Bayesian filtering techniques
can be used on the transformed first-order Markov model. In this article, due to the
nonlinear nature of the APBM and measurement models, we employ a Cubature Kalman
filter (CKF) in the experiments, which propagates the cubature points through the transition
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and measurement model [5], although other filtering solutions could be considered without
loss of generality.

1.3. Contributions

State estimation in high-order Markov models presents a significant challenge due to
the dependence of system dynamics on previous states. A widely-used method to address
this issue is the aforementioned AGS approach. However, AGS is not applicable when
(1) the full knowledge of the complex system dynamics (associated with the high-order
Markov model) is unavailable or (2) the order of Markovity is unknown. In this paper,
we introduce the augmented-state APBM, which leverages the APBM technique to learn
system dynamics via the AGS method, allowing for state estimation even with partially
known system dynamics or an unknown Markovian order. To reduce the computational
burden brought by the state augmentation (based on the order of Markovity), we proposed
the approximated-state APBM by using the point estimate of the posterior distribution
of the previous states as the training input, while this approximation introduces a slight
degradation in estimation accuracy, it significantly reduces computational costs by lowering
the dimension of the state space.

2. Augmented-State APBM for High-Order Markov Models

In this section, we extend APBMs to cope with high-order Markov models, aiming
at learning the dynamics from data while constraining the augmented model around the
PBM. Since high-order Markov models considered in this paper do not lead to changes
in the measurement model (1), we focus next on the transition model and associated
prediction process.

2.1. Augmented-State APBM

APBMs are appealing when the nonlinear dynamics f(-) of the pth-order Markov
model in (6) are not accurately known, either due to their parametric representation and/or
the knowledge of the Markov process order. In this case, we employ APBM to learn the
transition model

x = g(f(xk—1), X1, - %613 0) + Wiy, ®)
where g(+) : R% x ... x R% — R includes the PBM and a NN parameterized by 6 € R%.

We use g instead of ;_l? to denote the APBM function that accounts for longer state memory. !
is a design parameter that is intuitively assumed to be chosen such that ! > p, although
simulations show that reasonable results can be obtained otherwise.

For the pth-order Markov chain, the predictive distribution of the state can be com-
puted as

p(xxlyrx—1) = /"'/P(xk\xk—p-~-/xk—p/y1:k—1)
p(Xk—1k—plyrx—1)dxg_1dxg o .. dxg . )

However, the joint posterior distribution p(x;_1.x—p|y1:x—1) is usually not accessible. As
mentioned before, the typical approach to tackling this problem is through state augmen-
tation. Considering a pth-order Markovian model (6) and the APBM (8), augmentation
of the state vector with the I — 1 previous states results in %, = [ka, el ka_ ! +1]T. The
augmented-state APBM (AG-APBM) is defined by
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F = g(f_-(xkfl)rxkflr' <o Xk—1s kal) + w]icfl
k= I 0 ¥ 0
[ dylxdyl dxlxl]xkfl dyIx1
= g(fk,ﬂek,]) + 71);{(71
0 =01+ wg,l, (10)

where @} ~ N (0, diag[Q",0(,_1)x (p_l)]> denotes the augmented state processing noise.
The first row in %y is the original pth-order Markov transition model and the other rows
represent the dynamics of the augmentation. For the joint state-parameter estimation we
assume the same augmented measurement model as in (3) since it regularizes the NN
contribution to the dynamics, i.e., §(%_1;0 = 0) = f(x;_1) [18]. For this augmented state,
the predictive distribution is given by

plyc) = [ p(ElFonyra)
p(F—1]yrk—1)dFg 1. (11)

The above Equation (11) has the same quantities with Equation (9), but different meaning
and feasibility. The posterior p(x;_1:x—p|y1:x—1) in Equation (9) is not easy to compute
because it is in the joint form. However, notice that by augmenting the vector, the poste-
rior p(%_1|y1.k—1) is not the joint distribution anymore, but a high-dimensional simpler
posterior distribution, as it only involves a single variable #_1. This posterior distribution
is accessible during the filtering process. For example, in a Kalman filter, we recursively
compute the posterior for state estimation at each time step.

2.2. Approximated-State APBM

The augmentation approach discussed above can lead to very high-dimensional state
spaces if [ is too large; therefore, it increases the computational cost of such a solution.
This cost is mostly due to the need to solve multi-dimensional integrals in the Bayesian
filtering Equation (11). To circumvent this issue, using the point estimate from the pre-
vious steps—rather than using the entire distribution—reduces the computational com-
plexity in evaluating the aforementioned integrals. This leads to the approximated-state
APBM (AP-APBM):

x = 8 (f(xk—1), Xk—1, Rh—2/ -+, Rk O 1) + Wi—1
Ok = 01+ w)_y, (12)
where £;_; = E{xy_j|y1x_;},j = 2,..., . It is worth noting that approximations have to

be made to obtain the above model. Equation (13) provides a mathematical explanation of
this intuition by approximating the posterior distribution previous to its use in the integral.

P(Xk—2k—1|y1:6—1) =

—-

~
)

I
p(xi—ilyra—1) = [ [ p(xi—ilyra—i)
i—2

Q

O(xp—i — E{xe_ily1x—i}), (13)

where §(+) is the Dirac delta function. Note that in the above approximation, we first
assume that the posterior distributions at each time step are independent, and then we
neglect the dependency between states and future measurements. In addition, we finally
replace the posterior distribution of the states with their point estimates, which is equivalent
to the model in (12).
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Finally, we present the AP-APBM

ARITRNCOR RS
Xk g(f(xkfl)r Xe—1, Rk 1k—2; 9k71) w;’f,l

ye| _ [h)] | [of

{6}_{ O * US ' 9
where it can be observed that although the AP-APBM needs memory from past state

estimates [£¢_1,..., %], its computational cost is much lower than the cost of the AG-
APBM since the dimension of the state is reduced significantly.

3. Numerical Simulations

In this section, we implement the proposed AG- and AP-APBM approaches in the
context of the high-order Markov models, particularly with the aim of performing state
estimation in two common applications: the autoregressive (AR) model problem and the
time-delayed control problem.

3.1. AR Model

The AR model is one of the most common high-order Markov models. Here, we
implemented the proposed approaches to filter the states generated by an AR(3) model
based on noisy measurements. Considering the 2-dimensional system state x = [x1, xp] "
and the 2-dimensional measurement y = [y, y»] ', the transition and measurement models
are given by

Xy = Fixp_1 + Bxg_o + FB3xp_3 + w,’(ﬁl (15)
ye = Hx + 0], (16)

where w? | ~ N'(0,Q%) and v} ~ N(0, RY) are additive Gaussian noise with Q* = 02>,
RY = ayzlm and 0x = 0.1,0y = 0.1. H = I, and

05 —03 02 0.1 0.1 0.05
Fl_{OA —0.2] F2_[0.1 0.2] F3_[—0.05 0.1}' {17)

We then compared the performance of the estimation of the filtering process when using
the true model above, the PBM-only model, AG- and AP-APBM in the 1st order and 3nd
order. It is noted that the true model is constructed based on the AGS method as shown in
Equation (7). In the experiments, the PBM refers to the below AR(1) model

X = Plxk,1 + w,’ffl. (18)

The APBM is a linear combination between the PBM and multilayer perceptrons (MLP) as
shown below

80(xk—1,-) = woFixk_1 + w1vg(xk_1,), (19)

where 6 = [wp, w1, ¢] and the MLP consists of 1 hidden layer with 5 units and ReLu
activation function and output layer with two output units and linear activation function.
The second argument in the function (19) can be null for 1st-order APBM, [xj_5, x;_3] for
3rd-order AG-APBM, and [ 5, £¢_3] for 3rd-order AP-APBM. Figure 1 shows the root
mean square errors (RMSEs) of the estimation using the measurements from the AR(3)
model, which are computed based on 200 Monte Carlo (MC) simulations. The PBM gives
the largest error because it employs limited knowledge with an AR(1) model, while the
true model always achieves the best precision since it has full knowledge of the dynamics
model. All three APBMs have better estimation precision compared to the PBM. In terms
of the estimate error median, the 1st-order APBM reduces the error from PBM by 22.2%,
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the 3rd-order AG-APBM reduces the error by 31.1%, and the 3rd-order AP-APBM reduces
the error by 26.7%. Among the hybrid learning approaches, the 3rd-order AG-APBM has
the best performance since it learns the dynamics through the augmented state with the
last two steps. Instead of incorporating the last two steps into the state, the 3rd-order
AP-APBM leverages the point estimate of the last two steps as the input of the NN. The
median of the RMSE increases about 6.5% compared to 3rd-order AG-APBM, but still
lower than the 1st-order APBM. More importantly, the computational cost is significantly
reduced by the approximation. Figure 2 shows that the time cost of the 3rd-order AP-APBM
decreases by about 37.5% compared with the 3rd-order AG-APBM and the memory usage
decreases by about 20% over 200 MC simulations. The simulations are implemented based
on the following:

e Processor (CPU): Intel Core i7-10700KF, 8 cores, 3.80 GHz. The multi-core CPU
allowed for efficient parallel processing during data preprocessing.

*  Memory (RAM): 32 GB DDR4.

e  Storage: 1 TB NVMe SSD.

*  Operating System: Windows 11 Pro.

*  Software Platform: MATLAB R2023a.

0.251

0.2r

0.15 %

0.1r

RMSE

0.05
=

AGS 1st-order 3rd-order 3rd-order PBM
APBM AG-APBM AP-APBM

Figure 1. Box plots for the root mean square error (RMSE) of state estimation for the autoregressive-3
(AR(3)) model computed over 200 Monte-Carlo (MC) simulations. The central line in the box indicates
the median. The bottom and top edges of the box denote the 25th and 75th percentiles, and the
circles denotes the outliers. The AGS and PBM represent the estimation based on the true model and
AR(1) model.

It is shown that for AP-APBM, the time cost and memory usage are larger than the
cost of the 1st-order APBM, since the extra memory is used to store the approximation
{®x_2, _3} when estimating ;. However, the computational cost of the AP-APBM has
been greatly reduced compared to the AG-APBM excluding the extra augmented state.
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—&— 1st-order APBM 801 —&— 1st-order APBM
300 - —&—3rd-order AG-APBM —o—3rd-order AG-APBM
—e— 3rd-order AP-APBM = 460 ¢ —e—3rd-order AP-APBM | |
— [ = 440t
© =
% % 420
O 5 400
< .
g L ————————————————
I

0 50 100 150 200 0 50 100 150 200
Number of Monte Carlo Simulations Number of Monte Carlo Simulations

(a) Time cost over 200 MC simulations (b) Memory usage over 200 MC simulations

Figure 2. Computational cost over 200 MC simulations. Each MC repetition includes a filtering
process of 600 time steps. The simulations were implemented on MATLAB. The cost of AGS and
PBM muodel are not plotted here because the deficiency of training process makes their computational
cost incomparable to the hybrid NN models.

3.2. A Delayed-Feedback Control Nonlinear Model

We test the different approaches based on a target tracking problem, where the tar-
get is moving on a two-dimensional horizontal plane. The target is operates with an
internal feedback control loop, unobserved to the tracker, where communication delays
usually occur inside [30,31]. The corresponding dynamics and measurement models are
also common in target tracking problems [32]. Considering the state [x',Q]", where
X = [px, Ux, Py, vy} T is the two-dimensional position and velocity, (2 is the turning rate of
the target and the feedback control input # , the dynamics model is given by

X = ka—l + Buk_1 + w,’f_l, (20)
O = Q1 +wiy, 1)

where w{ | ~ N(0,diag(0.1,0.1,0.1,0.1)), w,?fl ~ N(0,107%), F defines the constant-
velocity model

1 T, 0 O
0 1 0 O
F= 0 0 1 Tg| (22)
0 0 0 1
Ts = 1s denotes the sampling period, B = I444 is the identity matrix, and

ug_1 = s(kcGyg_1(x¢_3 — %_1)) is the input controlled by the difference between the pre-
vious state x;_5 and reference %;_1. s(A) : R*** — R*** denotes a saturation function
which restricts all elements in the matrix A within [—5, 5] due to the possible limitation of
the actuator and k. = 1 is the controller gain. Specifically, we introduce Gj_1, controlling
the state only by the difference between the true velocity and the reference.

sin(y_1Ts _ 1—cos 1 T;
0 Qpeq 0 Qg
0 cosOy_1Ts 0 —sinQy_1T;
Gi—1 = 0 1—cos Q_1Ts 0 sin Y _1Ts : (23)
Opq Qg
0 sinQy 1Ts 0 cosOy_1Ts
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The error is usually defined between the current state x;_; and the reference state ¥;_1 at
the same moment k — 1. However, in this case, it is computed based on the state before two
steps xj_3, due to communication delay, which means the aircraft can access its state until
two steps from the current time. (Note that the true state is known to the aircraft but it is
unknown to the tracker and is thus estimated by the tracker.) Notice that G_; introduces
the high-order Markovian property into the dynamics. The measurement model is given
by the received signal strength and bearings from two collocated sensors

.
Y = ( 1010g10(”PO_Pqu) ) +v], (24)
Z(po, Px)

with pg = (0,0) " being the position of the sensors, py = (P, x, pyrk)T the unknown position
of the target, 101log;,(¥o) = 30 dBm, g = 2.2 the path loss exponent, Z(py, px) denoting the
angle between locations py and py in radians, and v} ~ N(0, diag(1,0.1)) the measurement
noise. The above model can be rewritten as a third-order Markov form

xp = fxp_1,...,x_3) + wy_q (25)
yr = h(xg) + o . (26)

3.3. AG-APBM and AP-APBM Performance

We implement CKF to estimate the state of interest x = [px, Ux, Py, vy]T in 200 MC
experiments. We will compare the filtering performance of the AGS approach as described
in (7) , 1st-order Markov APBM in (3), AG-APBM in (10), AP-APBM in (14), pure NN,
and pure PBM. It is noted that the AGS approach is considered as the benchmark in this
tracking problem, since it has the full knowledge of the dynamics, including the Markovity
order and the control input, while the other approaches are not aware of these facts. The
constant-velocity model f(x;_1) = Fx;_ is used as the PBM. Here, the APBM is similar
to Equation (19), which consists of the PBM and MLP, denoted 4 (-) and parameterized
by ¢, with appropriate inputs such that gg(xx_1,-) = woFxx_1 + w17Y¢(xk_1,-), where
0 = [wo, w1, ¢]. All NNs have one hidden layer with five hidden units and ReLu activation
functions, and output layer with dimension d, = 4 and linear activation functions. It is
noted that the six approaches leverage different-level information of the transition model.
The AGS has full knowledge of the system, while 1st-order Markov APBM is only given the
assumed PBM. The AG-APBM and AP-APBM are aware of the existence of the high-order
Markov process, but not the exact order, where they use | = 5 instead. Moreover, our
reference is designed for the control problem, but the APBM approaches do not have the
knowledge of the existence of the reference.

Figure 3 shows the box plot of the RMSE of each approach. Figure 4 shows the aver-
aged experimental cumulative distribution function (CDF) over the 200 experiments. Both
plots show statistically significant improvements of APBM approaches when compared
with both PBM and NNss. In terms of the median, the error of 1st-order APBM is reduced
by 41.2%, the error of AG-APBM is reduced by 58.8%, and the error of AP-APBM is re-
duced by 52.9% compared to PBM. The performances of APBMs are only surpassed by the
true model, AGS. When comparing AG- and AP-APBM results the difference is minimal
with AP-APBM leading to slightly higher errors. We also highlight that the two proposed
approaches led to RMSE values that are very close to the ones obtained with the AGS,
despite the perfect knowledge of the order of the Markov process and the transition model
assumed in the AGS implementation.
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Figure 3. Box plots for the RMSE of position estimations computed over 200 MC simulations. The
central line in the box indicates the median. The bottom and top edges of the box denote the 25th and
75th percentiles, and the circles denotes the outliers. The AGS and PBM represents the true model
and the constant-velocity model.

1 (’r T T T T T
oot 11/ -
E 0.8 0.8 |
0.75
) ! \_) 0 500 1000 - AGS
0.7 1st-order APBM| -
AG-APBM
——AP-APBM
0.6 —— NN i
PBM

0 2000 4000 6000 8000 10000 12000
Squared Error (m?)

Figure 4. Each curve represents the average empirical cumulative distribution function (CDF) of
squared error of position estimation. The average was computed over 200 MC simulations.

4. Conclusions and Future Work

In this study, we extended the APBM framework to deal with high-order nonlinear
Markov processes. To this end, we proposed two different implementations with different
levels of computational complexity. In the first, we proposed the AG-APBM, where we
augmented the state space with past states, thus considerably increasing the number of
computations required for the estimation process. In the second approach, AP-APBM, we
mitigated the additional complexity by approximating past states by their point estimates,
eliminating the state augmentation requirements. Simulated experiments demonstrated the
performance of the proposed models in an AR(3) model state estimation and a nonlinear
third-order Markov target tracking scenario. The estimation results from the AR model
indicated that the high-order AG- and AP-APBM reduced the error by about 30% compared
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the PBM. Both of them outperformed the legacy 1st-order APBM since they leveraged more
state information from the previous steps. Furthermore, the performance of AP-APBM only
degrades slightly from the performance of AG-APBM, while significantly reducing the
computational cost with 37.5% reduction in time cost and 20% reduction in memory usage
based on our simulation environment. The tracking results showed that the AG-APBM and
AP-APBM reduced the estimate error by 58.8% and 52.9% compared with the error of PBM
even without precise knowledge of the order of the underlying Markov process. Both of
them result in a lower RMSE than the standard 1st-order APBM does.

As we mentioned earlier, this article focuses on the state estimation under unknown
dynamics (especially the unknown order of Markovity) by learning the system dynamics
with PBM. In relation to this, future works could focus on: (1) dealing with unknown
noise parameters. The noise statistics is also an important factor in the dynamics system.
The noise can be estimated by the maximum likelihood method [29] or the correlation
measurement difference method [33]. It is also shown that the data-driven algorithm
is effective when learning the noise statistics, e.g., Long short-term memory Kalman
filters [34], EKFNet [35] and KalmanNet [36]; (2) considering more general state-space
distributions beyond the widely used Gaussian assumption. That is, while APBMs focused
on Gaussian models, the general concept can be applied to non-Gaussian setups; and
(3) using a different NN structure to learn the high-Markov dynamics. We implemented
an MLP to learn the system dynamics in the simulation. The recurrent neural network
(RNN), long-short term memory (LSTM) [37], and Transformer [38] may be used due to
their mechanisms of forgetting and memorizing the past information especially when the
order of the Markovity is not given.
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Abbreviations

The article provides a definition for all the symbols and variables that are used in the derivations. For
the convenience of the reader, a list of these notations is provided here.

X State vector at time instance k
Yk Measurement vector at time instance k
wy;  Noise of the dynamics model

v;l{/ Noise of the measurement model

h(-)  Possibly nonlinear measurement model

f(-) Possibly nonlinear true dynamics model

f(-) Physics-based model (PBM)

§(-)  Augmented physics-based model (APBM)

0 Neural network (NN) parameters

wg Noise of NN parameter dynamics model

0 Pseudo-measurement for NN parameter regularization
vg Noise of NN parameter pseudo-measurement model

X Augmented state vector at time instance k
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3(-) Augmented-state APBM (AG-APBM)
@i  Noise of AG-APBM

Xy Estimated state at time instance k

6(-)  Dirac delta function
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