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Abstract

Modern face recognition (FR) models, particularly their
convolutional neural network based implementations, often
raise concerns regarding privacy and ethics due to their
“black-box” nature. To enhance the explainability of FR
models and the interpretability of their embedding space,
we introduce in this paper three novel techniques for discov-
ering semantically meaningful feature directions (or axes).
The first technique uses a dedicated facial-region blend-
ing procedure together with principal component analysis
to discover embedding space direction that correspond to
spatially isolated semantic face areas, providing a new per-
spective on facial feature interpretation. The other two pro-
posed techniques exploit attribute labels to discern feature
directions that correspond to intra-identity variations, such
as pose, illumination angle, and expression, but do so either
through a cluster analysis or a dedicated regression pro-
cedure. To validate the capabilities of the developed tech-
niques, we utilize a powerful template decoder that inverts
the image embedding back into the pixel space. Using the
decoder, we visualize linear movements along the discov-
ered directions, enabling a clearer understanding of the in-
ternal representations within face recognition models. The
source code will be made publicly available.

1. Introduction

Face recognition (FR) technology has proven itself ben-
eficial across various domains. The benefits of face recog-
nition stem from its ability to efficiently and unobtrusively
determine identity. Leveraging this capability, face recogni-
tion technology has become ubiquitous in personal devices,
border controls, and law enforcement [5, 26]. While it is
not difficult to find positive applications for face recogni-
tion, it has also raised concerns about the opacity of recog-
nition decisions in contemporary FR models [16], under-
scoring the need for improved interpretability and explain-
ability to ensure their trustworthiness. Despite considerable
efforts towards better understanding the mechanisms behind
today’s deep learning based FR techniques, it remains dif-
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ficult to precisely explain the inner workings of FR models
in a human-interpretable way. This is because most modern
models are based on heavily parameterized neural networks
with elaborate architectures that implement the input-output
mapping in a complex non-interpretable way and are there-
fore often treated as black-box models, where only the in-
put images and output results bear semantic meaning. In
response to these challenges, researchers are continually
studying the inner workings of FR models to better explain
their behaviour [19]. Such explanations are critical for the
transparency of automated decision-making, the trustwor-
thiness of face recognition technology and, not least, are
also expected to be available by default by various privacy
laws and regulations, such as GDPR'.

Central to the operation of FR models is the concept
of template similarity. When two faces are subjected to a
comparison within a face recognition system, a comparison
score is typically computed that captures the similarity of
the faces in the embedding (or template) space of the FR
model. This comparison score, in a sense, encodes how
similar two faces are in terms of their visual features and
overall appearance. Typically, the comparison score is the
extent of the explanation that face recognition systems pro-
vide during the recognition process. Unfortunately, this sin-
gular number leaves practitioners wondering: What visual
features were used to determine the similarity and come to
an identity conclusion? To answer such questions, vari-
ous explainability techniques have emerged in the literature
over the years that aim to provide insight into the internal
mechanisms governing face recognition models [19].

Existing techniques towards the explainability of face
recognition models generally fall into one of two categories:
(i) attribution techniques that attempt to locate the most
important pixels in an image given a recognition decision
(or embedding comparison), and (i7) embedding/template
interpretation techniques that assign human-interpretable
meaning to the deep features used in modern face recogni-
tions models. The first category of explainability techniques
most often relies on the so-called saliency maps [2, 13, 18].
These maps give some indication of what region of the im-
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age was the most “important” for the recognition decision.
Generally, their indications tend to highlight pixels that rep-
resent the eyes, nose, and mouth as important for a recogni-
tion outcome. While this result tells us that these regions are
important to identity in a general sense, it does not give any
further detail on what about the eyes, nose, and mouth dis-
tinguishes individuals. Furthermore, these predictions come
with a high degree of variance, further increasing the uncer-
tainty of results and the potential for selection bias [3, 6].
The second category of techniques is focused on decipher-
ing what the deep features are specifically encoding about
the face. These techniques have the potential to explain
FR decisions in much greater detail as they are focused on
the feature space rather than the image space. Prior work
in this area has investigated the organization of the feature
space by analyzing: (1) the similarity structure of the tem-
plate codes [20], (2) the semantics of the greatest variance
directions in the embedding space [21], or (3) feature hier-
archies in the template space [| 1] to mention a few of the
most impactful works. While these techniques provide in-
sight into the organization and high-level characteristics of
the FR embedding space, they are still limited in their abil-
ity to discover/interpret data attributes beyond a few basic
classes (e.g., gender, illumination, viewpoint) and are chal-
lenging to apply with facial images captured in-the-wild.
In this work, we aim to expand the explainability of face
recognition decisions and the interpretability of the FR tem-
plate space by developing multiple novel technique for dis-
covering semantically meaningful deep features (and direc-
tions) in the embedding space of contemporary face recog-
nition models. Specifically, we propose the following tech-
niques that also present the main contributions of this work:
* Semantic Spatially Isolated Deep Feature Discovery:
With this approach, we first introduce a targeted facial-
region blending process (illustrated in Figure 1) that ma-
nipulates local semantic structures of the face and pro-
duces images with identical pixel values in all areas ex-
cept the targeted semantic region. Using a large number
of such manipulated faces, we then probe the template
space of face recognition models and explore directions
of greatest variations to identity deep features that corre-
spond to spatially isolated semantic face structures.

* Label-Guided Discovery with Centroid Modelling:
With the second proposed approach, we utilize attribute
labels of the facial images to identify clusters of faces in
the template space that share the same appearance charac-
teristics. We then estimate the difference vector between
the centroid of an observed attribute-cluster and the cen-
troid of a selected reference cluster (e.g., canonical faces
in neutral pose, expression and homogenous illumination)
and use this vector (a deep feature) to explain selected di-
rection in the embeddings space.

* Label-Guided Discovery with Regression Modelling:
For the last approach, we model the relationship between
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Figure 1. Targeted facial-region blending. An example set of
the blended facial images used for discovering semantic-spatially
isolated (SSI) deep features is presented. The face donor image
is blended into the region donor images using facial region masks
in the left-most column. After a set of blended images is created,
they are embedded into the embedding space of a face recognition
model and used for discovering SSI feature directions.

selected attributes and the embeddings of facial images
using linear regression. This process allows us to estimate
regression coefficients that can be interpreted as embed-
ding space directions and exploited for studying template
variations along the estimated embedding space axis.

To visualize the results of the proposed feature discovery
techniques, we utilize the recently introduced Deep Face
Decoder [15] that allows us to invert FR templates back
into the image space. We apply our techniques to three
distinct face recognition models and demonstrate state-of-
the-art semantic feature discovery with a number of inter-
esting insights. For example, we show that: (1) certain di-
rections in the template space encode local facial properties,
(2) within-class variations can be encoded through feature
directions and be consistently applied across various identi-
ties, (3) various facial features utilize distinctly-shaped fea-
ture manifold, and also point to differences and similarities
among the considered 3 FR models.

2. Related Work

With advancements in face recognition capabilities and
the deployment of FR models on a wider scale, a criti-
cal issue that received considerable attention recently has
been enhancing the interpretability and transparency of face
recognition models [19]. While a considerable number of
conceptually different techniques have been proposed in the
literature so far, the majority of existing work falls into two
broad categories that are briefly presented below.

Attribution Techniques aim to identify informative image
regions and commonly utilize saliency maps to elucidate the
decision-making processes of the studied face recognition
models. Castanon et al. [2], John et al. [13], and Xu et



al. [30], for instance, employed saliency maps to visualize
and quantify the critical features in facial images that influ-
ence the decisions made by deep learning-based face recog-
nition systems. These methods not only provide insights
into the features that are deemed important by the models
but also contribute to a better understanding of how these
models process and recognize facial features. Similarly,
Domingo [17] presented an approach that used saliency
maps for explaining facial analysis techniques in scenarios,
where internal access to the model is limited. This method-
ology stands out for its ability to interpret recognition deci-
sions in a true black-box scenario, emphasizing the changes
in recognition probability when the images are perturbed.

Feature Interpretability Techniques, on the other hand,
focus on different aspects of face recognition and often
aim to understand the properties of the embedding space
of face recognition models. Upchurch et al. [24], for exam-
ple, studied the interpolation of features within deep neural
networks to achieve controlled modifications in image at-
tributes, such as age or expression. O’Toole et al. [20], Hill
etal. [11], and Parde ef al. [21] explored the organization of
the embedding space, which is instrumental in understand-
ing how these deep learning based face recognition models
handle recognition across varied attributes. Wang et al. [28]
focused on data augmentation techniques leveraging deep
network feature linearization, and Williford et al. [29] and
Knoche et al. [14] contributed to the field of explainable Al
with innovative methods for explaining model predictions.

Our Contribution. The techniques, presented in this work,
build on the research outlined above, but extend it in mul-
tiple aspects. Specifically, as we show in the experimental
section, our techniques are capable of finding feature direc-
tions that correspond to much more complex facial struc-
tures/attributes with substantially less entanglement than
what prior work was able to identify (i.e., global attributes,
such as gender or ethnicity), and to determine feature axes
that allow us to impact the encoded template properties,
such as pose or illumination angle.

3. Semantic Spatially Isolated (SSI) Deep Fea-
ture Discovery

In this section, we present the first main contribution of
this work, i.e., a novel technique for the discovery of fea-
ture directions in the embedding space of face recognition
networks that correspond to semantically meaningful and
spatially isolated visual facial features.

3.1. Problem formulation and method overview

Given an input face image I € R™*"*3 and black-box
facial recognition network R, our goal is to discover human-
interpretable deep features (or directions), t, in the abstract
embedding space, R(I), with the goal of gaining insight into
the inner workings of deep face recognition models and the
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Figure 2. The SSI deep feature discovery approach leverages
the variability in a specific facial region to discover principal direc-
tions within the embedding space that correspond to semantically
meaningful changes of this region in the reconstructed images
only. Semantic meaning is assigned to these directions through
a visual analysis facilitated by a template inversion approach.

characteristics of its embedding space.

Central to the discovery of high-quality, disentangled,
semantic and spatially isolated (SSI) features in the deep
embedding space are two novel components, as illustrated
in Figure 2. The first is a targeted facial-region blending
(TFRB) module, which allows us to sample precise vari-
ations in different facial structures and then model them
in the embedding space via principal component analysis
(§3.2). The second is the feature decoding technique, which
allows us to visualize the discovered deep feature directions
with an arbitrary face sample and evaluate their level of en-
tanglement and generalizability (§3.3).

3.2. Targeted blending and feature discovery

Facial region isolation. As different facial structures nat-
urally correlate with one another in face data, we need to
isolate the different face regions to learn disentangled fa-
cial recognition features. We begin by isolating the targeted
face region, f, using a facial landmarking model S, for each
sample in a dataset of N training images, {I;}2,. Here,
a standard 68-point landmarking model is used, where the
landmarks are used to isolate selected facial regions. For
the experiments, we consider the eyes, nose and lower face
region (see Figure 1), but the facial-region isolation process
is general and can be applied to arbitrary facial structures.

Targeted blending. Next, we wish to blend the facial re-
gions into donor faces to create a dataset of embeddings
with selective variations. Using the previously computed
facial region boundaries, we blend the facial region from
a region donor image I, with the surrounding face from a
donor image I,,, using a Gaussian kernel. This generates a
dataset of blended images {I” klEZ TN} € Rixwxs,

Computing the corresponding face recognition embeddings



for network, R, with embedding length d, results in the set
of templates {t’ [, =T N} € R%

Feature direction discovery. To learn appropriate (disen-
tangled) feature directions, we need to first isolate the dif-
ferences in the face embeddings attributed only to changes
in the targeted face region f. Thus, we begin by computing

the template center for each face donor image, i.e.:

1 N-1
_ b
=N ]; t] - (1)

Next, to remove the influence of each face donor, m, from
the templates, we center the face embeddings with respect
to their face donor images, as follows:

T=[t), , — ][ TN 0 )

This step ensures that the subsequent analysis focuses
on region-specific features, rather than individual-specific
traits. With the template scatter isolated to the target face
region, f, we now center the face embeddings with respect

to each feature, T, = T — T, calculate the covariance ma-
trix C,

1
C=—————TIT, 3
and then solve the following eigenproblem for the eigenvec-
tors and eigenvalues:

CV = VA. “4)

The eigenvectors v; and eigenvalues \; are obtained from
the columns of V and diagonal entries of A, respectively.
The leading eigenvectors corresponding to the largest d’
eigenvalues, i.e, V = [vi,va,...,vg] € R @' < d
define the (orthonormal) principal axes of the face region
subspace in the FR embedding space and represent the ba-
sis for meaningful features corresponding to the targeted
face region f. The eigenvalues indicate the relative impor-
tance of each basis vector in describing the scatter. For our
discovery procedure, we select the top d’ eigenvectors, that
jointly form a feature direction matrix Z:

Z =[vi,Va, ..., Va]. (5)
3.3. Feature direction visualization

Based on the computed direction matrix Z it is possible
to manipulate specific aspects of a provided face embedding
by moving the embedding along the directions encoded in
Z. For instance, given a probe image I,,, its template t,, can
be transformed in a way that corresponds to spatially local
appearance variations in the original input image I, i.e.:

=, (©)

|vil

where v; is the i-th eigenvector of the targeted facial region

and « corresponds to the strength of the manipulation.
Finally, to evaluate the impact of the transformation in-

duced by moving the embeding along the discovered feature
directions, we use the state-of-the-art template inversion

t,=t,+a
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Figure 3. Overview of the label-guided feature direction discov-
ery techniques. The flowchart illustrated the main ideas behind
the centroid- and linear-regression-based modelling techniques to
embedding-space direction discovery. Both techniques are capa-
ble of identifying linear directions that correspond to semantically
meaningful within-identity face variations.

procedure from [ 1 5], called Deep Face Decoder (DFD). The
DFD decoder is capable of inverting arbitrary face embed-
dings back into the visual domain, allowing for the interpre-
tation of the encoded visual features. Using the decoder, the
probe reconstruction I;) can then be computed using:

I, = 6p(t)), )

where, ¢p represents the DFD network mapping.

4. Label-Guided Feature Discovery

The discovery of semantic information in the template
space can also be done by leveraging attribute labels as-
sociated with a dataset of facial images. In this section,
we present two novel techniques, capable of discovering
informative embedding space directions based on such la-
bels. Formally, this task can be described as follows. Given
a dataset of N facial images, {I,}Y_; € RMw>3 with
annotated attribute labels {y,, }_; determine semantically
meaningful embedding space directions corresponding to
the labels. In accordance with this task, we design the
first of our techniques based on a procedure build around
centroid-based modelling and the second one based on lin-
ear regression modelling, as also illustrated in Figure 3. De-
tails on the two techniques are provided below.

4.1. Centroid-based modeling

With the first proposed label-guided approach, based on
centroid modelling, the initial requirement involves procur-
ing a dataset comprising samples annotated with attribute
labels. These samples must include both the target (posi-
tive) and baseline (neutral) manifestations of the attributes
under investigation, such as smile and neutral, when study-
ing facial expressions, for instance. This bifurcation is piv-
otal for isolating the attribute’s effect on the corresponding
embedding. Unfortunately, this also rules out many in-the-
wild datasets, thus favoring the use of controlled datasets.



With the data requirement satisfied, we compute the
mean template for a given attribute, denoted as . Simi-
larly, the mean template for the corresponding neutral at-
tribute, denoted as v, is also computed. Next, we subtract
the mean template pertaining to neutral attribute from the
mean template of positive attribute, leaving behind the tem-
plate difference d:

di = tly,=x — tly,= ®)

This differential d embodies the deep features characteristic
of the attribute s, which can be incorporated into the given
probe template t, by

t = t, + ad,, ©)

where factor « controls the level to which the attribute & is
considered. In our experiments we use o« = 1. The trans-
formed probe template t;; can then be reconstructed into the
image domain, similarly to the procedure given in (7). Note
that the above equation corresponds to a line in a vector
space, where d, is the directional vector.

4.2. Linear Regression Modeling

For the second proposed label-guided discovery ap-
proach, we use linear regression to model the relationship
between a particular label in the dataset (dependent variable
y) and the deep features t that make up the facial recogni-
tion templates. The relationship can be expressed as:

y = Bo + Pit1 + Bata + Butn + €. (10)

Here, the coefficients [51, (2, . . . 8] represent the relative
weights assigned to each deep feature to optimally predict
the dataset label y. The intercept B represents the predicted
value when the independent variables are zero. The residu-
als ¢ represent the differences between the observed values
of the labels y and the values predicted by the linear regres-
sion model. The coefficient vector 3 is fit by minimizing
the sum of squared residuals:

N
IrgnZ(yi —[Bo--Bnl - [tli])Q (11)
=1

Given the coefficients 3 = [3, 1, - .. O] and the de-
sired label y, the probe template t,, corresponding to neutral
label can then be transformed as:

t;:tp+a[/81"'6n], (12)
where the weighting factor « is defined as:
1
a—(y—ﬁH), (13)
P

to ensure that the transformed template corresponds to the
label y. Note that with the above setup, the regression coef-
ficients are interpreted as a linear direction (or axis) in the
embeddings space that can be traversed, similarly to a direc-
tion vector, to explore variations in the information content
of the template corresponding to label y. The transformed
template can again be decoded into the image space follow-
ing the procedure given in (7).

Original VGG16-Softmax

- &
i il
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Figure 4. Example decodings generated with DFD. The probe
image on the left (from NISTMedslI [7]) was first embedded using
three different FR models and then decoded back into the image
space using DFD [15]. Note what information is reconstructed.

5. Experiments
5.1. Experimental Settings

Face Recognition Models. We utilize three publicly avail-
able pre-trained face recognition models to evaluate the ef-
fectiveness of the proposed feature discovery techniques.
The three models are chosen because they differ in the back-
bone architecture and learning objectives, and hence pro-
vide a solid cross-section of model variants for the evalua-
tion. Additionally, these models are come with trained DFD
inversion networks that are used to visualize results [15].

* VGG16-Softmax: The first model is based on the 16
layer convolutional neural network (ConvNet) VGG16
originally introduced in [23]. It consists of a set of convo-
lutional layers with 3 x 3 filters, interspersed with max-
pooling layers, and ending with fully connected layers
with a softmax activation function to produce class prob-
abilities. The model is trained on VGGFace?2 [1] using
a cross-entropy loss, followed by fine-tuning with a stan-
dard triplet loss. On LFW [12], VGG-16 attains a verifi-
cation accuracy of 95.3%, as documented in [27].

* ResNet-Softmax: The second models uses a 50-layer
residual ConvNet from [10], trained also on the VG-
GFace?2 dataset, using a softmax loss. Unlike the VGG-
16 model presented above, the ResNet-50 model contains
skip connections, impacting the way the face images are
encoded. Compared to VGG-16, the ResNet-50 model is
also fairly lightweight with around 23M trainable param-
eters. The ResNet embeddings e € R24® needed for the
experiments are computed from the last global average
pooling layer. The model has a verification accuracy of
97.3% on the LFW database, as reported in [27].

* ResNet-ArcFace: The last model is based on a 32-layer
residual ConvNet trained on CASIA [3 1] using the imple-
mentation from [22]. While using the same type of back-
bone as the ResNet softmax implementation, ArcFace,
[4], adds an angular margin to the softmax loss to enhance
the discriminative power of the learned features. This
modification is designed to encourage templates from the
same identity to be near one another in an angular space,
while increasing the gap between templates from different
identities. Furthermore, feature embeddings are normal-
ized before applying the ArcFace loss to encourage the
templates to map to the surface of a hypersphere. This
modification helps with robustness to changes in pose, il-
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Figure 5. Visualization of movements along the Nose directions.
Results are presented for 3 FR models (in columns) and the first 3
principal components of the PCA subspace (in rows).

lumination, and expression.
Decoder Models. For decoding the deep templates and in-
verting them back into the visual domain, we utilize the pre-
trained Deep Face Decoder models from [15]. The models
are based on an inverted VGG architecture that maps face
embedding to image reconstructions and were designed for
deep feature-space exploration. The decoder models are
pretrained for inverting the features of the VGG16-Softmax,
ResNet-Softmax and ResNet-ArcFace FR models. Exam-
ple decoding results using DFD for the three embedding
models are shown in Figure 4.

Datasets We select three datasets for the experiments, each

providing a unique environment to comprehend the nuances

of the discovered deep feature directions, i.e.:

¢ SiblingsDB-HQf. [25] This dataset contains 184 frontal
facial images of 92 sibling pairs captured at a resolution
of 4256 x 2832. The dataset was acquired in front of a
homogenous background and under diffuse illumination.
This dataset is used exclusively for the discovery of se-
mantic spatially isolated features. After removing dupli-
cates and excluding problematic samples, 163 images are
left for the quantitative part of the evaluation.

e NISTMedsIl. [8] The NIST Multiple Encounter Dataset
(MEDS) II dataset was compiled by the FBI Data Anal-
ysis Support Laboratory (DASL) and consists of persons
with multiple frontal captures. The data is used exclu-
sively for testing the discovered feature directions.

e Multi-PIE. [9] The Carnegie Mellon University Multi-
ple Encounter Pose Illumination and Expression dataset
is a face dataset consisting of over 750,000 images of 337
people recorded in up to four sessions over five months.
Face images were collected in a laboratory environment
and have controlled variation in viewpoint, illumination,
and expression. This data is used exclusively for the
learning of intra-subject deep FR features.

5.2. SSI Feature Direction Analysis

By applying the SSI feature discovery technique to par-
ticular regions of the face, we can discover feature direc-
tions that are corresponding to each of the targeted facial
structures. As these directions represent a linear combina-
tion of the original deep features, we can consider them to
be deep features themselves. Because the feature discovery
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Figure 6. Visualization of movements along the Eye Region di-
rections. Results are presented for 3 FR models (in columns) and
the first 3 principal components of the PCA subspace (in rows).
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Figure 7. Visualization of movements along the Lower-Face-
Region directions. Results are presented for 3 FR models (in
columns) and the first 3 principal directions (in rows).

process is unsupervised, we use a subjective visual analysis
to associate semantic meaning to the discovered directions.
In Figures 5, 6, and 7, we demonstrate our technique in
the nose, eye, and lower face regions, respectively, and visu-
alize what impact movements along the first three principal
axes have on the encoded template information. For brevity
and ease of comparison between the 3 FR models, all results
are visualized using the same probe image - from Figure 4:
* Nose: We observe some consistent themes in the discov-
ered features, as illustrated in Figure 5. Consistently rep-
resented by principal component O (PCO0), the nose length
appears to be the most significant feature. Moving fur-
ther down, PC1 appears to be tied to the prominence of
the bridge of the nose. Last of all, PC2 appears to repre-
sent the nose width among all three FR model variations.
The ResNet-ArcFace FR model has the weakest feature
disentanglement from the feature vector, possibly due to
the way with which the ArcFace loss encourages angular
margins between different identities.

* Eyes: From Figure 6, we notice a similar trend in
the common features discovered among the different FR
models for the eye region. The most significant features
consistently appear to relate to sunken or shadowed eyes,
followed by eyebrow thickness and iris color. As each of
these features can be modified using makeup, facial hair
trimming, or colored contacts, these results suggest that
modifying the eye region could be a successful method
for obscuring identity. This also provides some evidence
that the use of eye-shadow could be responsible for demo-
graphic variations in FR performance. Rather than being
exploited as a vulnerability, this knowledge could also be
used for the selective modification of these attributes dur-
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Figure 8. Centroid-based Pose Features. Using the proposed ap-
proach, we discovered the feature directions associated with the
pose (in 15-degree increments) for three different FR models.

30° ®15° x Probe ® —15° ® —30°
wol ¥ T T ] ofF % ] T T ®
@ L u
.2 «~ =
3 ° = —
[}
23S |e < °
o= = — [a\}
5 —
| [® - s
3 | e °
o ©o | | [
E o o 1
S e I — ® | o o[ | o
I o o o o 0 m o o
SE < S

Embedding axis 1
(a) VGGFace-Softmax  (b) ResNet-Softmax (c) ResNet-ArcFace
Figure 9. Pose-angle Centroid Visualization. By using multidi-
mensional scaling (MDS) we create a 2D representation of data
labeled with different poses. We observe that despite the differing
matcher designs (subfigures 9a, 9b, 9c), they each create a very
similar horseshoe-type relationship for pose data.
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Figure 10. Centroid-based Illumination Direction Features.
With the proposed approach, we are able to discover feature direc-
tions associated with the angle of illumination (in 15° increments)
for three different face matchers. Best viewed zoomed-in.

ing training for increased model robustness.

* Lower-Face: Last of all, we test what deep features we
discover when targeting the lower-face region. As the de-
fault cropping of the FR inputs typically cuts off the bot-
tom of the chin, we opted to study the mouth and chin
area together. As seen in Figure 7, we notice common
features relating to facial hair, cheekbones, and nose-to-
mouth distance. Unlike cheekbones and nose-to-mouth
distance which have a strong inherent grounding to iden-
tity, we find it concerning that facial hair is found to be the
most significant lower-face feature. This can likely lead to
misidentification errors as facial hair color and style can
change frequently, particularly among men. This result
suggests that facial hair may be a source of differential
performance among different demographic groups.
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Figure 11. Illumination-angle Centroid Visualization. By using
multidimensional scaling (MDS), we create a 2D representation
of data labeled with different illumination angles. We observe that
each embedding network (subfigures 11a, 11b, 11c) has a unique
path for positive and negative illumination angles, suggesting that
the directional information is encoded in the templates. Addi-
tionally, we observe similar paths in the two softmax-based fa-
cial matchers with a unique circular path for the ArcFace-based
matcher. This suggests that loss function design influences tem-
plate feature organization more than matcher backbone design.

Flgure 12. Centroid-based Expression Features. With the pro-
posed methods, we discover the feature directions associated with
5 different facial expressions (disgust, scream, smile, squint, and
surprise), for three different face matchers. The template is ad-
justed in the learned-expression direction by up to 200% of the
average centroid difference. As can be seen in the columns right
of 100%, the expression strength relationship carries beyond the
average centroid distance. Best viewed zoomed-in.

5.3. Discovering Intra-identity Deep Features

In this section, we present experiments for discover-
ing label-guided feature directions that correspond to intra-
identity variation, specifically pose-angle, illumination-
angle, and expression. We accomplish this using our two
different label-guided feature discovery techniques on a
controlled dataset. The first technique uses the relative po-
sitioning of the templates corresponding to different data
labels to compute feature directions. This technique is
flexible to different feature manifold shapes and compat-
ible with multidimensional scaling (MDS) visualizations.
Our second technique utilizes linear regression to compute
the features directions that are predictive of the desired la-
bels using linear combinations of the original deep features.
Contrary to the prior technique, linear regression considers
within-label variance during the fit procedure.

Pose Deep Features. When learning pose, we focused on
five different pose angles, -30 degrees, -15 degrees, 0 de-
grees, 15 degrees, and 30 degrees. Empirically, we found
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Figure 13. Expression Centroid Visualization. With multidi-
mensional scaling (MDS) we create a 2D representation of data la-
beled with different expressions in the dataset. We observe that the
three embedding networks (subfigures 13a, 13b, 13c) have simi-
lar relative embedding distances between the different expression
centroids, suggesting they each encode expressions similarly.
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Figure 14. Learned Features Directions using Linear Regres-
sion. The fitted coefficients are used for visually evaluating the
ability of the regression to model the relationship in rows a-f.

this to be the limit for left-to-right pose variation that is tol-
erated by the standard facial landmark detection pipelines.
When using the centroid-learning approach, we computed
the difference between the centroid for 0 degrees and the
central embedding of either -30,-15,15, or 30. In Figure
8, we apply these learned vectors to the probe embedding
to evaluate their semantic meaningfulness. For the two
Softmax-based models, we see the learned feature able to
control pose with minimal side effects. The ArcFace-based
model has a more muted pose response, possibly illustrating
better model robustness to pose variation. To visualize the
shape of the feature manifold, we use MDS to create a low-
dimensional representation of the relative distances between
the different centroids (Figure 9). We find that, regardless of
FR model, the relative distances between the label centroids
appear to construct a similar horseshoe shape.

Next, we applied our linear regression pipeline to learn
a single deep feature that can predict the pose label in the
dataset. As shown in row (d) in Figure 14, this technique
can learn a feature that has the desired effect on the pose an-
gle for the ResNet-softmax network. In columns (b) and (f,)
we see the features not having the desired effect for the other
two FR models, likely due to the feature manifold shape.

Illumination Deep Features. Concerning illumination, we
focused on the lighting angles -90 to 90 degrees (with 15-
degree increments) in illumination along with a no-flash
state. Using the same centroid learning approach used to
detect pose features, we computed individual deep features
for each illumination angle. Visualizing the deep features

(Figure 10), we see varying illumination content in the em-
bedding reconstructions. VGG16-Softmax is the most ex-
pressive in the visualization, able to encode both illumina-
tion intensity and direction. ResNet-Softmax and ResNet-
ArcFace on the other hand, seem to primarily encode aver-
age light intensity. In Figure 11, we visualize the relative
distances between the different light-angle centroids. We
notice that VGG16-Softmax and ResNet-Softmax produce
very similar mappings with two separate and somewhat par-
allel paths representing each illumination side. On the other
hand, the ArcFace-based FR model encodes illumination
angle and direction in a circular manifold. This suggests
that the type of loss has a substantial effect on the structure
of the feature space for these attributes.

The use of linear regression for learning the deep fea-
ture representing illumination has varying success among
the different FR networks. In row (a) of Figure 14, we see
reasonable success for the VGG16-based network. In row
(c) however, we see that the learned feature for the ResNet-
Softmax network does not have much effect. In row (e), we
see that the ArcFace-based network can express the illumi-
nation direction, but is unable to do so without entangle-
ment with other facial features.

Expression Deep Features. When learning deep features
representing different facial expressions, we rely entirely on
the centroid learning technique. This is because our dataset
labels have only binary expression information, indicating
the presence or absence of a particular facial expression. In
Figure 12 we show the effect of the learned expression vec-
tors on the probe image. We find VGG16-softmax to encode
expression with the highest fidelity, followed by ResNet-
Softmax, and then ResNet-ArcFace. When plotting the
MBDS visualization for the expression centroids (Figure 13),
we observe that the models exhibit highly similar relative
distances between different expressions. This suggests that
the three embedding networks encode facial expressions in
a comparable manner, indicating that despite differences in
their architectures, these models share a similar approach to
representing expressions in the embedding space.

6. Conclusion

We presented three novel techniques for learning seman-
tically meaningful embedding space directions that can pro-
vide insights into the behavior of FR models. The tech-
niques were tested in experiments with interesting findings.
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