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Abstract— This article presents a survey of the use of AI/ML
techniques in navigation and tracking applications, with a focus
on the dynamical models typically involved in corresponding state
estimation problems. When physics-based models are either not
available or not able to capture the complexity of the actual
dynamics, recent works explored the use of deep learning models.
This article tradeoffs both models and presents promising solutions
in between, whereby physics-based models are augmented by data-
driven components. The article uses two target tracking examples,
both with syntethic and real data, to illustrate the various choices
of the models and their parameters, highlighting their benefits and
challenges. Finally, the paper provides some conclusions and an
outlook for future research in this relevant area.

Index Terms— Machine learning, data-driven, physics-
informed, navigation systems, target tracking, state estimation,
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I. INTRODUCTION

Navigation is a method for determining or planning
the position and course of an object (e.g., ship, aircraft, or
ground vehicle) by means of geometry, astronomy, sensor
data, etc. Common sensors include radio signal receivers,
inertial measurement units, and electro-optical (EO) sen-
sors. Reliable and accurate navigation is a key prereq-
uisite for transportation efficiency. Tracking, similarly to
navigation, aims to find accurate positioning information.
Still, in contrast to navigation, the information is surveyed
by a third party without using measurements from sensors
onboard the tracked object.

The ever-increasing navigation safety and accuracy re-
quirements force the continuous development of sensors,
models, and methods for processing sensor information,
estimating immeasurable quantities directly, and fusing
the available navigation information. For a long time, the
processing, estimation, and fusion methods have relied on
purely physics-based models to characterize the sensor
operation, the relation of the sensor measurements to
quantities of interest, and the dynamics of these quantities
using mathematical relations. Efforts to make use of the
vast amount of information available recently for navi-
gation and tracking (N&T) purposes lead to complicated
methods and models with, sometimes, limited utility or
even the unavailability of suitable models.

The growing capabilities of currently available com-
putational resources [1] caused a new wave and explosion
of N&T methods that use available data to improve their
performance or to learn the correct functioning purely
from data. The use of artificial intelligence/machine learn-
ing (AI/ML) algorithms has been reported in almost all
types of N&T systems for land, marine, and air vehicles,
either manned or unmanned [2]-[6]. AI/ML-enhanced
N&T systems have been developed either as a proof of
concept or with an intended application in an area without
a certification need (e.g., supervised autonomous vehi-
cles). However, AI/ML-enhanced navigation for safety-
critical applications cannot be certified due to the lack
of legislation and performance operational standards. For
instance, those applications requiring design assurance
level (DAL) A, DAL B with failure condition catastrophic
or hazardous according to DO-178C [7], [8]; or those
supporting or even allowing autonomous operation in
critical phases of flight, such as landing using an in-
strument landing system. To address those limitations,
the European Union Aviation Safety Agency (EASA),
ensuring civil aviation safety, published an Al road map
for its use in navigation applications [9]. The road map
defines the areas where the Al can support the design of
aviation systems', proposes a time frame, and identifies
the critical issues. Some of the frequently mentioned
issues, which need to be urgently solved, are navigation
information trustworthiness, predictability, explainability,

'Mentioned topics include, for example, navigation, air traffic manage-
ment, maintenance, or safety risk management.
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Fig. 1: A simplified block scheme of a N&T system.

and lack of standardized methods for evaluation. Through-
out the manuscript we adopt the taxonomy presented in
[9] regarding the definitions of Al and ML. Note that the
EASA road map is not the only or the first document
on this topic. For example, in the nineties, the Federal
Aviation Administration (FAA) published a technical note
on Al for maintenance, monitoring, and control of airway
facilities [10].

This paper aims to provide a brief overview of AI/ML
techniques applied in sensor information processing, sys-
tem modeling, estimation, and data fusion, which are
core parts of any N&T system (c.f. Fig. 1). State-space
modeling possibly utilizing AI/ML techniques is the focal
point of the paper, leading either to completely data-
driven models or to augmenting physics-based state-space
models by efficiently leveraging and integrating data-
driven models as illustrated in Fig. 2 in a top-level view. In
the picture, an object is tracked (e.g., an airplane) through
standard state estimation techniques [11], [12], which
typically makes assumptions on the object dynamics to es-
timate its state better. In practice, there are inaccuracies in
the process. For instance, several dynamical models might
be available; there might be unmodeled forces or effects
(F) either because these are unknown or too complex to
model, or models might have time-varying fluctuations
not easily captured through parsimonious models. The
AI/ML-based modeling approaches are analyzed in detail
and compared using two numerical tracking examples.

The paper is structured as follows: Section II provides
a brief overview of AI/ML techniques in sensor informa-
tion processing, estimation, and data fusion, with pointers
to surveyed literature. Section III then gives an overview
of physics-based and AI/ML techniques used in modeling
N&T systems and describes selected essential techniques
in detail. Two illustrative target tracking examples are
discussed in Section IV to provide additional insights on
the use of Al modeling in N&T contexts. Section V delves
into the challenges of employing Al in N&T and gives
pointers for future research directions. Finally, Section VI
concludes the paper with final remarks and perspectives.

II. USE OF AI/ML TECHNIQUES IN NAVIGATION
TECHNOLOGIES

This section provides a brief review of the use of
AI/ML within N&T. Particularly, the literature has been
surveyed to cover: sensors, where the most pervasive

Fig. 2: State estimation often assumes dynamics for target
states xj, which are sometimes inaccurately described
by physics-based models due to, for instance, unmodeled
external forces F or dynamics.

technologies in N&T are tackled; models, which are just
briefly mentioned since that is deeply discussed in Section
III, at the core of this article; and estimation/fusion
components, which are relevant in any N&T system, as
introduced in Fig. 1.

A. Sensors information processing

1. Satellite-based global position, navigation, and timing

Global Navigation Satellite System (GNSS) is the
de facto technology for position, navigation, and timing
(PNT) applications, when it is available [13]-[17]. GNSS
encompasses global and regional positioning systems that,
based on constellations of monitored satellites, enable
receivers to compute range estimates to provide reliable
position and timing absolute measures. Since their early
development, GNSS receivers have been designed fol-
lowing physics-based principles, the same as the ma-
jority of communication systems are [18]. Recently, the
use of data-driven receiver design has been substantially
explored, showing remarkable improvements under non-
nominal conditions where physics-based methods are not
accurately representing reality [6].

GNSS literature is flourishing with articles on using
(deep) learning models and methods to address otherwise
challenging problems; see [19] for a comprehensive sur-
vey. For instance, machine learning is becoming a popular
approach for the detection, classification, and mitigation
of GNSS interferences (such as jammers or spoofers).
Work [20] discusses the use of Support Vector Machine
(SVM) and Convolutional Neural Network (CNN) models
to detect and classify jamming signals, while a NN was
used for evil waveforms detection in [21]. A distributed
approach for jammer classification training was proposed
in [22], while a distributed localization algorithm was pre-
sented in [23]. In [24], an multi-layer perceptron (MLP)
network is built together with an adaptive notch filter for
mitigation of narrowband interference. In the context of
spoofing attacks, [25]-[29] proposed a variety of NN-
based supervised ML approaches for spoofing detection
(methods including CNN, MLP, recurent neural networks
(RNN) based on the long-short term memory (LSTM) and
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C-SVM with the principal component analysis (PCA)).
ML data-driven models have also been considered to
counteract the effects of multipath. Primarily, most works
use models to enhance the observables processed by the
receiver chain, for instance, [30]-[36]. Alternatively, some
works investigate data-driven methods at the signal level;
for instance, [37], [38] proposed a GNSS signal acquisi-
tion method based on various deep learning models; [39]
used a DNN to substitute the loop discriminator in multi-
path scenarios; and [40] proposed a data-driven approach
enhancing the signal correlation component such that
it can augment the optimal physics-based solution with
multipath datasets. More articles can be found showing
the popularity of this topic [41]-[45].

GNSS is well known for its use in remote sensing and
Earth observation as a passive radar in some contexts. In
remote sensing, the use of ML has also been growing; for
instance, [46] proposed a NN for earthquake detection,
and [47], [48] proposed to track hurricanes and detect
sea ice with a CNN. Various deep NNs were discussed in
[49] for different environmental remote sensing problems.
In ionospheric scintillations and tropospheric wet delay
estimation, [50], [51] explored the topic of detecting scin-
tillation. The work in [52] explored the forecasting of low-
latitude ionospheric conditions, while estimation of GNSS
atmospheric-induced delays was performed using an MLP
[53], CNN [54], and employing an ANN for tropospheric
wet delay estimation [55]. The comprehensive survey
[56] discusses the use of machine learning in ionospheric
scintillation monitoring and estimation.

2. Inertial sensors

Inertial sensors are represented by accelerometers
(measuring the specific force) and gyroscopes (measuring
the angular rate). Their measurements are integrated using
the inertial navigation equations (INEs) in an inertial
navigation system (INS) to calculate the position and
attitude estimates [57], [58]. The INS is a traditional self-
contained system with dual properties w.r.t. the GNSS,
such as short-term stability and independence on exter-
nally broadcast signals.

Similarly to the GNSS, the algorithms of the AI/ML
have also been used in the inertial area, namely in design
of the inertial sensors and processing of inertial measure-
ments [2], [59]. Whereas the former group aims at algo-
rithms for, e.g., sensor life prediction, the latter, the more
popular, group includes algorithms for inertial sensor cal-
ibration, error (or bias) estimation and compensation, and
inertial data processing to get navigation information. For
example, in [60], a calibration of the camera and inertial
measurement unit is treated using reinforcement learning
with the goal of learning which sequences of motion con-
tain helpful information to obtain calibration parameters
with sufficient accuracy. In [61], a strap-down gyroscope
drift rate is modeled by the time series neural networks
of sigmoid type, and in, e.g., [62], [63], the NN-based
temperature drift modeling of the MEMS-type gyroscope
and accelerometer is discussed. The AI/ML algorithms

IMBIRIBA ET AL.: Augmented Physics-Based ML for N&T

have also been used in the processing and post-processing
of inertial data as an alternative to purely geometric
INEs. In the literature, two types of the NN-based inertial
navigation system can be found; AI/ML enhanced inertial
navigation, where specific noise components are identified
from data and modeled by the NN [64], or full-data driven
AI/ML navigation, where the whole INEs mechanization
is substituted with the NN [65]. Besides that, the AI/ML
algorithms have been in navigation system alignment [66]
and in the detection of certain features, which can improve
navigation performance, such as the zero-velocity (or
the ZUPT) [67] or movement pattern [68]. In [69], it
was recognized that successful application of AI/ML
to motion sensing and localization training data-set and
public data-set was introduced. Similarly to the inertial
sensors, the magnetometer measurements can be corrected
using the AI/ML methods [70], [71].

3. Electro-optical sensors

Electro-optical (EO) sensors, e.g., cameras, radars,
and LiDARs, and the need to process a huge amount of
produced wide range data have significantly contributed to
or even drive the development of the AL/ML techniques
for data interpretation, object detection, and classifica-
tion. Indeed, almost any computer vision system takes
advantage of AI/ML algorithms [72]. The literature on the
EO measurement (pre-)processing is vast and out of the
scope of this paper; however, a survey can be found, e.g.,
in [73]-[75]. Besides the object detection, the computer
vision systems can also provide estimates of the position
or orientation of their platform or another sensed object
w.r.t. prerecorded map or a detected horizon [76], [77].
In this case, the computer vision system can be seen as
an alternative sensor to inertial or GNSS-based sensors.
Alternative solutions consider the joint use of visual and
inertial measurements, for instance as in [78].

4. Maps and environment models

Modern navigation systems often rely on pre-recorded
maps (e.g., terrain, magnetic, gravity, or celestial), fea-
tures, or images in different spectra. These data-based
references can improve navigation system performance
or even allow navigation in adverse or harsh environ-
ments (spoofed or jammed GNSS, reduced visibility,
etc.). Therefore, similarly, research interest has focused on
improving or enhancing the data-based references using
tools of AI/ML. For example, in [79], [80], an automated
terrain feature identification by deep learning is discussed,
and in [81] deep learning for a mapping of magnetic
field distribution to topologies of different complexities
is introduced.

B. System models

Obtaining a model of the dynamics of a system of
interest may proceed from the application of the first prin-
ciples if the model is reasonably complex. Alternatively,
a system identification procedure processing measured
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input-output data is used to find the model structure and/or
parameters. ML found its use in system identification
more than two decades ago; see the excellent review
focused on input-output models in [82] and [83]. N&T
problems usually involve state-space models, for which
identification by ML techniques is a recent topic; ap-
proaches utilizing ML in system modeling are addressed
in detail in Section III.

C. Estimation and data fusion

ML is applied in state estimation mainly in the con-
text of tracking. The dynamic of the tracked object is
typically unknown, and the estimator makes use of its
simple approximations, such as nearly constant velocity or
acceleration models. Thus, data-driven approaches to state
estimation utilizing NNs to improve the estimate quality
are quite popular. The ML approaches can be classified
into hybrid-driven (combining standard Bayesian estima-
tion with NNs) and purely data-driven, utilizing end-to-
end learning.

Some hybrid-driven approaches correct the estimates
computed by standard model-based estimation algorithms.
The algorithms [84] and [85] use back-propagation NN’
to correct position estimates. The algorithm proposed
in [86] predicts nonlinear velocity and acceleration cor-
rections to linear predicted states by an RNN, and the
algorithm [87] augments the error-state Kalman filter (KF)
by a radial basis function (RBF) NN to compensate for
the lack of KF performance. These algorithms use NNs
unaware of the system model and can be called loosely
coupled hybrid-driven approaches see Fig. 3a.

measurement estimate for

(b) Data-driven state estimation.

Fig. 3: Data-driven and hybrid-driven state estimation.

In addition to providing estimate corrections, sev-
eral hybrid-driven approaches directly estimate the state.
xIn [88], two algorithms based on deep LSTM NNs [89]
were proposed, which provide estimates either in two
steps (time-update and measurement-update) or in a single
step. Both algorithms are unaware of the system model,
and the learning is based on estimation quality optimiza-
tion. The algorithm [90] uses an NN in the prediction
step of the KF to provide not only the estimate but also
the associated covariance matrix. In this case, the learn-
ing optimizes the negative log-likelihood of multivariate
normal distribution.

Fully data-driven approaches to state estimation (see
Fig. 3b) use plain data to learn mappings from observa-

N&T information

measurement estimate for
—_—
N&T information

tions to the states to avoid complications of the loosely
coupled hybrid-driven methods. In [91], a large amount
of data was simulated to achieve end-to-end learning.
In [92], a new deep approach to Kalman filtering, which
can be learned directly in an end-to-end manner, was
proposed, and in [93] all components of the process, i.e.,
data generator, sliding window, centralization strategy,
and the learner, have been proposed.

When several information sources, either at the signal
level or the estimated level, are available, the prevalent
way to obtain more consistent and accurate information
is to employ a data fusion algorithm. ML automatically
gaining deep relationships in data inputs may improve
the overall performance of data fusion algorithms. Thus,
the application of ML in data fusion has also become an
endeavor of intensive research; see the reviews [3]-[5].
We highlight that, when dealing with multiple sensing
devices, it is paramount that proper transformations are
performed such that the measurements are represented in
the same coordinate system. More information about this
can be found in [94].

Ill. STATE SPACE MODELS

As has been mentioned above, high-quality state space
models are the heart of many modern N&T systems as
the state usually represents the N&T information, and
the models describe its dynamics and its relation to the
measurements obtained from the available sensors.

In N&T systems, we are typically concerned with
models of the type:

X¢ Zf(Xnut;;\)—f'(It (D
v = h(x, 1) 2)

consisting of models of dynamics (1) and measure-
ment (2). Here, x; € R% is the state vector, u; is a
vector input, f and h are the vector-valued state transition
and measurement functions, respectively, and g; and r;
are arbitrary zero-mean noise terms independent of x;.
The measurement equation (2) describes the operation
of the sensor, which provides some information about
the state x;. In the sequel, we will concern with the
dynamics (1) only as the measurement model is often
given sufficiently accurately by the sensor manufacturer.
In particular, we are interested in models where the
transition function f is not fully representative of the true
state dynamics due to either incapacity to explain time-
varying dynamic scenarios or other unmodeled factors.

A. True models

Any state estimation algorithm requires a sufficiently
accurate yet reasonably complex mathematical model of
the underlying system. Unfortunately, often the “true”
model, i.e., the system or data generator, is very complex
and context-dependent and cannot be expressed in a
finite-dimensional closed form. Instead, an approximate

4 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. XX, No. XX XXXXX 2023



(and reasonably complex) physics-based model (PBM) is
constructed from the first-principles modeling?.

To formalize and illustrate the problem, consider the
“true” model (i.e., system or data generator) in the state-
space form

Mtrue .

where xj is the state at time instant &, f*TU¢(.) is
unknown (and possibly complex) vector function, g™ is
the state noise with PDFs ¢;™$ ~ N(0,Q), and A}™$ are
model parameters (possibly time-varying) characterizing
the context and influence of ambient environment.

xp, = £ (-1, w1 A0D) + @, (3)

B. Physics-based models

A simplified approximate PBM is then constructed in
the form

MPBM = fPBM (0w A em1) @i Y @)

where fPBM is known function and X\;_; is an estimate of

the “true” parameters A" with an error AL = Abrue
Ax—1. The parameter estimate A;_; can be found offline
by system identification methods [95] or online by the
joint or dual state estimation [96].

If not neglected in the state estimator design, the dis-
crepancy of (i) the model structure (i.e., between fFBM(.)
and f%9¢(.)) and (ii) the model parameters (i.e., between
Ax—1 and AY™M$) is typically considered as “another white”
component of the state noise resulting in inequality of
covariance matrices cov|g} 2] > cov[gi™"¢]. The state-
space model (4) with larger state noise (i.e., with a larger
covariance matrix) then inevitably leads to less accurate
state estimates. More precisely, it is known that achievable
estimation bounds are degraded when inaccurate or wrong
models are used to derive optimal estimators, which in
certain cases can jeopardize the estimation capabilities.
This bound is called the misspecified Cramér-Rao Bound
(MCRB) [97]. The model f"BM(.) is then often enhanced
through data-driven methods such that the mismatch be-
tween fPBM(.) and f*™u¢(.) is reduced and, consequently,
the MCRB can be reduced.

C. Data-driven models

While ML appeared in system identification of input-
output models a long time ago, see the excellent review
in [82], most approaches using ML for system identifi-
cation of state-space models have appeared only recently.
They can be classified according to state-space structures
embedding the NNs. In the general state-space structures
(see Fig. 4), both functions in dynamics and measurement
equations are replaced by an NN.

The data-driven model can be written in this case as

M xp =g (xpm1, we— ;0N + @iy, (5)

2 Alternatively, a reasonably complex data-driven model found by system
identification or by a combination of modeling and identification can
be considered as well.
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Fig. 4: General state space structure dynamics.

Fig. 5: Fixed model structure dynamics.

where g(-) is a vector-valued function modeled as an
NN being a function of the state and control, which is
parameterized by the vector 8NN designed to minimize
the discrepancy between (5) and the true model (3), i.e.,
designed so that cov[q!™¢] ~ cov[gh™,].

Another approach to state space model system iden-
tification is to consider a fixed model structure such as a
linear parameter-varying model and use the NNs to repre-
sent the matrices associated with Kalman equations [98],
[99] (see Fig. 5).

A similar idea was elaborated in [100] where an
incremental state-space structure has been proposed that
separates f into linear and nonlinear parts and uses a NN
to represent the nonlinear part (see Fig. 6).

The main differences among the aforementioned mod-
els are in the way the available knowledge of the
physics is considered. Namely, purely data driven models
(Fig. 4) completely disregard the PBM. In Fig. 5, the
PBM is assumed, with its parameters being learnt by a
NN. Hence the modeling adheres to the PBM structure.
This corresponds to (adaptive) system identification. The
model Fig. 6 supplements the PBM approximation by a
NN aimed at correcting the linear model in an additive
manner. Here, no control is enforced on the NN, which
may result in a negligible role of the linear model in the
overall behavior. In summary, none of them fully exploits
the potential of the PBM — often constructed by experts in
the field— while exploiting the available data in a flexible
manner.

D. Al augmented physics-based models

The pure PBM and general state-space structure
dynamics using the NN are inherently tied with the
above-mentioned limitations. An attractive, yet not much
explored, structure addressing the limitations augments
the PBM by an NN to model the discrepancy between
the PBM and the true system dynamics [101]. Due to
embracing the full PBM, this structure may have great
potential for state estimation as it efficiently combines
the knowledge of some parts of the model while using
NNs to represent the unknown or uncertain parts.

Fig. 6: Incremental state space structure dynamics.
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The proposed concept of the Al-augmented physics-
based models (APBMs) aims at the compensation of
the true and approximate PBM structure and parameter
discrepancy by a data-driven Al component processing
additional data® (hard and soft) as illustrated in Fig. 7. The
resulting state-space model can be written in the following
structure

MAPBM . (6)
x = g (FPPM(xp1, wem 13 A), xp—1, di—1;0) + gt 0,
where dj,_; represents the additional data, g(-) is a vector-
valued NN-based function that is aware of the PBM f"BM
and is parameterized by the vector 6 designed to minimize
the discrepancy between (6) and the true model (3), i.e.,
designed so that*

cov[ai™5] ~ cov[ap M. (7

Compared to the standard Al-based solutions, APBMs can
be used even without available training data (and without
training), in which case the physics will be driving the
model. Once data is available, the NN is trained (online
or offline), and the APBM is used instead, leading to
performance improvement. Note that the APBM approach
also allows data-based tuning of the PBM parameter
vector A, which typically has to be (somehow) specified
by the designer or the user.

The APBM framework takes advantage of combining
both model- and Al-based approaches, thus enabling

e natural incorporation of the physical insights of the
system, allowing specification of the model as close
to reality as possible or specification of ranges of
sought parameters,

e leveraging available data for model improvement,
leading to a more accurate model and, subsequently,
to more accurate inference results.

Essentially, the use of APBMs ensures that nonlin-
ear complex models can be learned, while the well-
understood physics of the nominal models are still en-
forced.

g (f,xx_1,dr_1;0)
PBM

(Xk—h uk-,—l) Xk

[ Pt

f(xkp—1, k15 A)

Fig. 7: Augmented physics-based model dynamics.

E. Comparison of modeling approaches

Different modeling approaches involve different trade-
offs. Table I provides a comparison of the alternatives
detailed earlier, namely the use of PBM from Section B;

3The additional data represent the data that are available and provide
some information about the state but that are not used by the PBM for
various reasons.

4We suppose that the modeling uncertainty is summarized through the
model covariance

Data-driven models as in Fig. 4, whereby a NN model is
used without knowledge of the physics of the problem;
Data-driven models as in Fig. 5, where a NN model
is used to characterize the parameters of the physics-
based model. Referred to as NN-param in the table; Data-
driven models as in Fig. 6, where the NN component
is used to incrementally assist the physics-based com-
ponent. Referred to as NN-increm in the table; and the
APBM architecture in Fig. 7, where physics-based and
data-driven are fully interlaced. The comparison tackles
important aspects of the models such as their validity in
non-nominal conditions (that is, conditions under which
they were initially learned), their explainability ability,
and the need for supervised learning.

IV. ILLUSTRATIVE EXAMPLES

To further compare the different modeling approaches,
we considered two illustrative examples: 1) a synthetic
experiment considering a radar target tracking problem
with non-Gaussian measurement noise, which enabled
the use of ground truth for error metrics benchmarking;
and 2) a vehicular car tracking application, where real-
data measurements were used. This experiment assisted
in showing the performance of physics-based and APBM
approaches under non-Gaussian data and varying object
dynamics.

A. Radar target tracking

To test the discussed approach, we consider a two-
dimensional target tracking application with additive con-
stant velocity [102] and sinusoidal [103] terms. Synthetic
measurements from two collocated sensors measuring
received signal strength (RSS) and bearings were con-

sidered:
) +I‘k )

®)
with p}, being the position of the sensors, p; the unknown
position of the target, 10log;, (¥p) = 30 dBm, o = 2.2
the path loss exponent, Z(pj,px) denoting the angle
between locations pj and pj in radians, and r; ~
N (0,Ry), Ry = diag(0.1,0.1), the measurement noise.
In our experiments, we assume that the exact sensors
positions are unknown [104], [105], but their estimates
pj, = pj, + r}, are provided by a GNSS system with r
representing the GNSS positioning error 1§ ~ N (0, Rj}),
Rj, = I Consequently, the measurement equation (8)
contains both additive and non-additive noise components
r; and rj, respectively. Thus, the measurement model
in (8) can be re-written as y; = h(pj — r5, px) + r.
For the state estimation task, the non-additive com-
ponent was transformed into an additive form leading
to the following model for the measurement equation
ve = h(p},pr) + ry + I}, where ¥} represent the

w
101ogy (\Ipi—ng“)

yi = h(p}, pr) +11 = (
Z(p}, Pr)
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TABLE I: Summary of pros/cons for the various modeling approaches discussed in Section III.

PBM NN NN-param NN-increm APBM

Pros  Accurate predictions  Potential ability  Ability to model  Ability to  Potential to model
under nominal condi- to model complex complex parameter complement complex phenomena
tions; Explainability, —phenomena; Efficient correlations; physics-based under  non-nominal
Great interpretability.  offline learning  Explainability, knowledge; Limited conditions; Accurate

schemes. Interpretability; explainability. performance  under
Efficient offline nominal conditions;
learning schemes. Explainability.

Cons  Limited adaptability;  Vasts amounts  Large amounts of data ~ Moderate ~ amounts ~ Moderate amounts of
Prone to modeling of data required; required; Limited of data required; data required; Pos-
mismatches under  Supervised training  adaptability to  Moderate adaptability  sibility for unsuper-
non-nominal typically needed; No  changing conditions. to non-nominal  vised learning.
conditions; Expert  explainability. conditions;

knowledge required.

approximate additive effect of the non-additive component
r}, on the measurement. Its moments, i.e., the mean and
the covariance matrix, were obtained by the statistical
linearization at the current estimate and the non-additive
noise component mean value [106].

Regarding the target’s dynamical model we consider
two scenarios. In the first scenario (S1) the dynamics of
the target is simulated from a model composed of two
parts, a constant velocity (CV) part and a variable turn-
rate (VT) part. We refer to this model as CVVT:

M xp=F+Gro1)xp—1 + Mg, (9
Q= Q1 + v
with
1 T, 0 0 T2/2 0
0 1 0 O T, 0
F= 0 0 1 T » M= 0o T2/2 |
0 0 0 1 0 T
sin Q1T 1—cosQp_1Ts
0 1}25‘ 0 o Qkfkl
0 cosQp_1Ts 0 —sinQyp_1T,
Gp1 = 0 locos@aT. g sin Q1T
Qr_1 Qr—1
0 sinQg_1Ts O cos Q1T

X = (zr, T, Yr, Yx) | being a state vector, composed of
the two-dimensional position (p = (z,y:) ") and veloc-
ity (px = (Zx,9x) ") of the target, and €, being an angle
state. In our experiments we generate trajectories with the
following parameters: T = 1s is the sampling period and
qr ~ N (0,0.01-1) is the process noise that models the
acceleration as a random term. v, ~ N'(0,107°) is the
process noise for the angle ;. The true trajectory was
initialized at xo = (50,0,50,0)" and Qo = 0.057.

In the second scenario (S2) we consider a near con-
stant velocity (CV) model:

true

82 ° §'°(Gr—1=0), Vke€Zy. (10)

We performed Monte-Carlo (MC) experiments where
100 trajectories were generated for each scenario for 7' =
1000 seconds, with true sensor position p5 = (0,0) .

We performed estate estimation using four ap-
proaches. Two PBMs (Section III.B), CVVT and CV;
a completely data-driven (III.C) using neural networks
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(NN); and the APBM (II1.D) composed of a CV term aug-
mented with a NN. While CVVT and CV are described by
Egs. (9) and (10), respectively, the NN model and APBM
are given by

MY Xp = Y(Xp—1;w) + Mgy (11)

and

MAPBM = g(f (Xk—1), Xk-13 6) (12)

= ¢poFxp_1 + dr1y(Xp—1;w) + Mgr—1

where g¢(-) is the APBM parameterized by 6 =
{¢o,d1,w}, v(-) is a neural network parameterized by
w with one hidden layer with 5 neurons and ReLu
activation function, an output layer with 4 neurons and
linear activation, leading to a total of 42 + 2 parameters
including bias terms.

The unknown target tracking scenario with access
only to noise measurements of position states makes the
supervised (in terms of pairs on inputs and outputs of the
transition function) training for NN model and APBM
unfeasible. For this reason, similarly to [101], we opted
for an online training approach by augmenting the state
space with model parameters and using cubature rules to
solve the recursive Bayesian equations under Gaussianity
assumptions. Specifically, we used the Cubature Kalman
Filter (CKF) approach [103]. To control NN contribution
in APBMs and make purely NN-transitions more stable
we leveraged the augmented likelihood model discussed
in [101], which effectively introduces a regularization to
model parameters that can be controlled by a hyperparam-
eter A. Here, we set Aapgm = Ann = 0.05 so that a number
of MC realizations diverging for both models becomes
comparable with the CVVT for S1 and CV for S2. For all
methods Xy was drawn from a Gaussian distribution with
mean xo and covariance diag (0.1,0.01,0.1,0.01). For the
CVVT we initialized €y drawing from A (Qg, 107?).

A fragment of one realization of the true trajectory
(under S1) and the estimated trajectories for the four
models can be seen in Fig. 8. The root-mean-square-error
over the time and MC simulations for the two scenarios
S1 (left plots) and S2 (right plots) can be found in Fig.
9. The top plots illustrate the RMSE in the form of the
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Fig. 9: RMSE box-plots over 100 Monte-Carlo simu-
lations and CDFs of single realizations for trajectories
generated under S1 (left) and S2 (right). A was set so that
the numbers of divergent were comparable with the true
models. For S1 (left plots) we had 0, 0, 2, 0 divergent
runs for CVVT, APBM, NN, and APBM, respectively.
For S2 the number of divergent runs was 2, 2, 5, and 0.
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box-plots (across all MC realizations) and the bottom
figures visualize the RMSE results using the cumulative
distribution function (CDF) for a single realization.

It can be seen that in Scenario S1, with a dominant
TR component, the CVVT leads to the best results, and
the CV results in quite large estimation errors. Although
the APBM is based on the CV model, the NN-based
component is able to compensate to some extent for the
discrepancy between the true model and APBM physics
component. Examining the results for Scenario S2, we
can see that the CVVT leads to poor performance due
to the model mismatch while CV leads to the best
performance. We highlight that the CV model and the
APBM provide very similar performance which are far
superior to the ones achieved with the CVVT and NN
models. Comparing the plots for S1 and S2, the APBM
seems to offer good estimation performance with the
minimized effort on a priori selection of the PBM model.
On the other hand, the NN-based model provides the least
accurate estimates. This is also expected since NNs are

trained online without any prior information regarding the
underlying dynamics. Code is also available (upon paper
acceptance) and the interested reader is encouraged to use
it to explore different parameters and models.

In general, the results clearly indicate that online
learning trajectory models are challenging and leverag-
ing physical knowledge can dramatically improve model
performance.

B. Car tracking from real GPS data

To compare the APBM and its physics-based counter-
part model, CV, on real data we considered a vehicular
tracking problem where noisy GNSS positions are avail-
able while the dynamics of the receiver are not accurately
known a priori. To that aim, we used a GNSS dataset of
digitized RF signals named the Oak Ridge Spoofing and
Interference Test Battery (OAKBAT) [107], recorded with
the bandwidth of 5 MHz. The dataset contains digitized
recordings of the GPS L1 C/A signal. Besides the six
spoofing sets, OAKBAT contains two spoofing-free base-
line sets: static and dynamic. For the experiment, we used
the spoofing-free dynamic set. The sampled RF signal
was processed using the GNSS-SDR [108], an open-
source GNSS software-defined radio (SDR) receiver. The
software was used for the acquisition; tracking; and
position, velocity, and time (PVT) computation steps. The
position component of the PVT was then used as the noisy
measurement for the vehicular tracking experiment, where
states contained both position and velocities. The dataset
used is representative of non-Gaussian, possibly biased
observations, given the vehicle travels a multipath-rich
environment.

Since the underlying model is, in fact, unknown, we
considered only CV and APBM models as described
in (10) and (12), respectively. In this experiment, covari-
ances and parameters were setto R = 10-1, Q = 10731,
Ts = 0025, /\APBM = 108.

Fig. 10 depicts the measurements (light orange dots)
and the estimated trajectories provided by CV (black) and
APBM models (blue). It is clear that during turns the
APBM compensated for the overconfidence of the CV on
its dynamics, providing a more accurate estimation of the
trajectory. Despite the fact that there is no ground truth for
this model and, thus, providing a quantitative performance
metric is challenging we can observe that the trajectory
obtained with the APBM is confined to the road limits
for a substantially longer time than the CV, especially
during sharp turns. This real data experiment shows that
the flexibility offered by APBMs can outperform purely
physics-based models, when these are not accurately
representing the dynamics of the state.

V. CHALLENGES AND FUTURE RESEARCH

A. Explainability, Quantification and Control of NN
Contribution

When referring to APBMs and other hybrid model
variants, a fundamental point for the explainability of the
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Fig. 10: GPS-based car (starting from the right) tracking.
Noisy measurements are depicted by orange dots while
estimated trajectories obtained using CV and APBM
are depicted by solid lines. The APBM provides more
accurate trajectory estimates, particularly during sharp
turns of the vehicle whereas the CV model has a longer
convergence time due to the assumed inertia.
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model relates to the ability to quantify and control the
NN contribution to the overall model. While in [101], an
augmented likelihood model was used for controlling the
NN contribution to the overall model, the quantification
is still an open problem. Furthermore, the augmented
likelihood approach leads to a tremendous increase in the
computational cost since it increases the dimension of the
measurements with the number of model parameters.

B. Theoretical Guarantees

Although NNs and hybrid models such as the APBM
can lead to improved performances in many scenarios,
the lack of convergence guarantees, bounds on their ap-
proximation capabilities, and guarantees over the observ-
ability of states, especially under online scenarios, make
their applications risky under critical safety applications.
Therefore, there is a need for sound theoretical work
discussing and addressing these points.

While there are several observability and identifia-
bility analysis frameworks in the literature [109]-[111],
only a few results exist when NNs are included in the
models [112], [113]. The inclusion of NNs leads to
clear observability issues since different solutions (e.g.,
permutations of parameters and layers can lead to the
same effective model. However, how this impacts the
observability of states with NN components as part of
the model is still a plain field.

Models are, in essence, misspecified mathematical
approximations of complex underlying real-world phe-
nomena. Although bounds on the variance of estimators,
such as the Cramér-Rao bound (CRB), exist under mis-
specified models [97], [114], [115], Bayesian versions of
misspecified CRB (MCRB) have only been addressed re-
cently [116] and in a non-recursive fashion and assuming
very simplistic models.

IMBIRIBA ET AL.: Augmented Physics-Based ML for N&T

C. Identification of Noise Parameters

The combination of PBM and NN-based models in
hybrid models calls for the specification of the state noise
parameters, such as the mean and covariance matrix.
While many methods for noise parameter estimation have
been proposed [117], [118], classified into correlation,
covariance matching, likelihood, and Bayesian methods,
most of them are limited to linear models and batch
processing of the data. The inclusion of NNs inevitably
leads to (highly) nonlinear models, which is the first
limiting factor. Online scenarios then require a recursive
update of the noise parameter estimates, and a simple
extending the state with the parameters may make the
problem intractable as the state also contains the NN
parameters. Identification of noise parameters in hybrid
models is thus another challenging issue tied to the
APBM.

D. Computational Aspects

One of the advantages of NN models is often the
capability to generate approximations of complex phe-
nomena at relatively low computational costs. In online
scenarios, though, the need for constant adaptation of
model parameters introduces a tremendous computational
burden. This is even more problematic when performing
recursive Bayesian inference where nonlinearities require
integral approximations via either linearization [106],
sampling [103], [119], [120], or other approximations
such as variational methods [121], [122]. Although vari-
ational approximations leverage the machinery of NN
toolboxes and can be trained using stochastic gradient
descent, they are slow to converge, trained over a time
window, and, thus, are still far from ideal for real-time
applications. In non-online/real-time settings, time-series
modeling via recurrent NNs requires back-propagation
through time, which can lead to further issues such
as vanishing gradients (especially for long sequences),
and the need for accurate initial state estimations when
deployed.

VI. CONCLUSIONS

This paper discusses the importance of modeling
dynamics in state estimation, and in particular in the
context of navigation and tracking systems. When purely
physics-based modeling cannot be realistically used, a
current trend is to leverage data-driven models. This
article presented various alternatives to employ data-
driven methods as an alternative or jointly with physics-
based models, where different tradeoffs were identified.
Among the approaches, augmented physics-based models
are a powerful modeling tool that accounts for physics-
informed components which provide model explainability,
while leveraging data-driven machine learning models
that assist in learning complex behaviors. Two illustrative
examples, both with synthetic and real dataset, were



discussed to better understand those modeling choices and
their implications in the state estimation performance.
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