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Abstract

Imagine a world where a copy of your face could trick
the most advanced security systems. This isn’t science fic-
tion; it’s a real challenge today. LivDet-Face is a compe-
tition that aims to advance the detection of attacks at the
biometric sensor, known as Presentation Attack Detection
(PAD). This international contest is a key benchmark in bio-
metric security, offering an unbiased look at the latest inno-
vations in face PAD and demonstrating progress over time
in detecting and preventing sophisticated attacks. Through
the International Joint Conference on Biometrics (IJCB)
platform, LivDet-Face 2024 provides a standardized eval-
uation process, access to advanced Presentation Attack In-
struments (PAI), and a comprehensive dataset of bona fide
face images. The competition had two main categories: al-
gorithms and systems. A total of sixteen algorithms and one
system were submitted for this year’s competition. Anony-
mous submissions topped both image and video subcate-
gories with an ACER of 4.93% and 4.13%, respectively.
In the systems category, Team Dermalog, despite being the
sole submission, achieved an impressive ACER of 3.12%.

1. Introduction

Face biometric recognition systems are integral to elec-
tronic identity management and authentication, widely
adopted in government and industry for their user-
friendliness, convenience, and high accuracy. Despite their
benefits, these systems are vulnerable to presentation at-
tacks, such as printed photos, video replays, and face masks,
which pose significant security risks [2,7, 16,21]. These at-
tacks aim to conceal identities, impersonate others, or enroll
fake identities into recognition systems [10].

To counter these threats, robust Presentation Attack De-
tection (PAD) systems are essential, employing both hard-
ware and software solutions to distinguish between genuine
and fraudulent attempts, thereby ensuring security and in-
tegrity. Presentation Attack Detection (PAD) has emerged
as a crucial technique in this domain, drawing significant
attention [1, 9, 18]. While numerous PAD methods have
achieved impressive results on benchmark datasets [4, 5],
many struggle in real-world scenarios, leaving face PAD
an unresolved challenge under unconstrained conditions
[3,21].

In response to these challenges, we introduce LivDet-
Face, a pioneering international competition within the



LivDet series, aimed at advancing face liveness detection
technologies. This competition provides a platform for
evaluating state-of-the-art PAD algorithms against unseen
face presentation attacks.

Key achievements of the LivDet-Face 2024 competition
include:

 State-of-the-Art Report: An assessment of current
PAD technologies based on independent testing of nine
algorithms for image, seven algorithms for video, and
one hardware for system category.

* Using levels defined by FIDO: A dataset prepared ac-
cording to Fast ID Online (FIDO) Biometric Require-
ments [17] and evaluated using standard PAD metrics
defined by the International Organization for Standard-
ization (ISO) [19].

* Diverse PAI Species: The competition utilized the
broadest spectrum of Presentation Attack Instruments
(PAIs) to date, grouped into nine different PAIs cap-
tured with nine sensors.

¢ Introduction of Novel PAls: Three novel PAIs were
introduced: projection on 2D, projection on 3D, and
bobblehead models of bona fide subjects.

1.1. Performance Evaluation Metrics

For LivDet-Face 2024, we maintain the evaluation met-
rics used in LivDet-Face 2021, following ISO/IEC 30107-3
guidelines [19]:

Attack Presentation Classification Error Rate
(APCER): Measures the proportion of attack presenta-
tions (PAIs) incorrectly classified as genuine, indicating
the system’s susceptibility to accepting fraudulent in-
puts. Bonafide Presentation Classification Error Rate
(BPCER): Quantifies the proportion of genuine presen-
tations incorrectly classified as attacks, highlighting the
system’s ability to reject legitimate inputs.

The overall performance is determined using the
Weighted Average of APCER (APCERyerage), Which con-
siders the average APCER across all PAI categories,
weighted by sample count. This metric provides a bal-
anced assessment of algorithm performance. For competi-
tive ranking, the Average Classification Error Rate (ACER)
is calculated as the average of APCERgyerage and BPCER.
Although ACER has been deprecated in recent ISO/IEC
guidelines for industry-related PAD evaluations, it remains
relevant in LivDet-Face 2024 for comparative assessment of
participant algorithms.

2. Comparison of Face Spoofing Challenges in
the Past S Years

In recent years, significant advancements have been
made in PAD algorithm performance through the develop-

ment of various PAIs for training and testing. Below are
notable challenges that have contributed to this progress and
how LivDet-Face 2024 distinguishes itself.

2.1. CelebA-Spoof Challenge (2020)

The CelebA-Spoof Challenge utilized a large-scale
dataset of over 600,000 images featuring print, replay, and
mask attacks to advance face anti-spoofing technology [23].
While effective for image-based spoofing detection, it pri-
marily focused on controlled environments.

2.2. CVPR Face Anti-Spoofing Challenge (2021-
2023)

The CVPR Face Anti-Spoofing Challenge provided
comprehensive datasets covering various attack types an-
nually, pushing the boundaries of spoof detection in terms
of accuracy and generalizability using standard metrics like
APCER and BPCER. These datasets included attacks such
as print, replay, and 3D mask attacks, offering a broad spec-
trum for evaluating the robustness of face anti-spoofing al-
gorithms [22].

Comparison with LivDet-Face 2024: LivDet-Face
2024 offers a unique dataset with videos captured using two
cameras from five different smartphones under varied light-
ing conditions, providing a more rigorous evaluation com-
pared to the relatively controlled environments of the CVPR
challenges.

2.3. Wild Face Anti-Spoofing Challenge (2023)

This challenge focused on evaluating algorithms in un-
controlled environments with diverse spoofing attacks, aim-
ing to benchmark performance under real-world conditions
[20].

Comparison with LivDet-Face 2024: While the Wild
Face Anti-Spoofing Challenge emphasized real-world vari-
ability, LivDet-Face 2024 innovates further by introducing
novel attack types like projection on 2D surfaces, projection
on 3D masks, and bobblehead attacks, along with realistic
testing conditions using multiple smartphones.

LivDet-Face 2024 stands out with its comprehensive
dataset, novel attack types, and realistic testing conditions
that address current challenges and pave the way for future
innovations in face PAD.

3. Competition Design
3.1. LivDet-Face 2024

LivDet-Face 2024, co-organized by Clarkson Univer-
sity (USA) and the Idiap Research Institute (Switzerland)
[6, 11], is the second edition of the LivDet competition fo-
cused on face PAD [15]. It assesses state-of-the-art facial
PAD algorithms and systems against both traditional and
novel PAIs. The competition features two main categories:



Algorithm and System, with Algorithm further divided into
Image and Video subcategories.

The competition includes nine PAI types for both sub-
categories: bobblehead, half cloth mask, high-quality 3D
mask, low-quality 3D mask, print attack, projection attack
2D, projection attack 3D, silicon mask, and replay attack of
bona fide subjects. The overall test samples and two spe-
cific PAI types (high-quality 3D masks and video displays
of bona fide subjects) were not disclosed to the competitors.

Algorithm performance was measured using an output
score ranging from O to 100, with a threshold set at 50.
Scores below 50 were classified as PAIs, while scores of
50 and above were classified as bona fide presentations. A
score of -1000, however, was used to indicate undetected
samples or other types of failures, as specified in the com-
petition’s instructions [14]. During PAI testing, a score of
-1000 was considered a correct rejection of PAls and did
not contribute to the attack presentation classification error.
Conversely, a score of -1000 for bona fide sample testing
was considered incorrect and was included in the BPCER
calculation.

All evaluations were conducted by the competition orga-
nizers, ensuring unbiased results.

4. Experimental Protocol

LivDet-Face 2024 competition welcomed participation
from international academic and industrial organizations,
both anonymously and non-anonymously. Non-anonymous
competitors were included as co-authors in the publica-
tion. Ten teams registered globally, submitting nine entries
for the image category, seven for the video category, and
one system submission. All submissions were successfully
tested.

4.1. Training Dataset

No official training dataset was provided for LivDet-Face
2024. Participants were encouraged to use any available
data, whether public or proprietary, to train their algorithms.
To aid familiarization, the organizers shared a few examples
of known PAIs. However, the remaining samples of the dis-
closed PAI types were kept unknown to competitors.

4.2. Test Dataset

The LivDet-Face 2024 competition utilized a diverse
dataset from Clarkson University and Idiap Research In-
stitute, comprising 17,512 images (2,235 bona fide and
15,277 PAI samples) and 16,291 videos (2,225 bona fide
and 14,066 PAI samples). The data was collected using
nine sensors (DSLR, iPhone 6s/12/X, Samsung Galaxy S9,
Google Pixel, Redmi 6pro/9A, Basler aA1920-150uc) from
121 subjects. Video lengths for testing were up to 5 sec-
onds. PAIs were grouped into eight categories for both im-
ages and videos with a summary in Table 1.

4.2.1 Test Dataset Details

Paper Display: The dataset includes 100 low-quality and
100 high-quality paper images and videos from 25 subjects,
captured using four sensors.

Laptop Display: 100 samples for both images and
videos from 25 subjects using four sensors.

2D Photo Mask: 100 samples each for both images and
videos, involving eye cut-outs from photo paper face im-
ages. These samples were collected from 25 subjects using
four sensors.

3D Mask: low, medium, and high-quality masks cre-
ated using 3D printed models from front and side photos of
subjects [8, 12, 15]. It features 24 low-quality, 12 medium-
quality, and 12 high-quality samples for both images and
videos, all captured using four sensors.

Silicon Mask: 141 image and video samples of silicon
masks, were collected using five sensors.

Bobblehead: Includes 3D models created from single
images, processed into bobbleheads, with 90 samples col-
lected from 5 subjects using three sensors.

White Resin and Filament 3D Masks: 15 image and 15
video samples were collected from white resin and filament
3D masks. These masks were generated using at least 40
images and were printed with resin and filament materials,
produced at the Clarkson University Makerspace workshop
using a Prusa MK3 3D printer for filament and a FormLabs
printer for resin.

Projection Attack 3D: 150 image and 78 video samples
were collected by projecting single-face images onto white
resin and filament 3D masks using a projector under various
lighting conditions.

Print Attacks: 4,665 video recordings of face photos
printed on matte and glossy paper using laser and ink-jet
printers.

Replay Mobile Attacks: 11,200 bona fide face videos
replayed to smartphone cameras, with one phone used for
replaying and another for recording.

Replay TV Attacks: 5,600 bona fide face videos re-
played on a TV screen under different lighting conditions.

Projector Attacks: 2,800 video recordings of bona fide
face videos projected under various conditions using white
and green screens.

Bona Fide Face Videos: 8,400 videos of real faces,
without masks, from 70 subjects recorded over two ses-
sions. Each video is 10 seconds long and was captured
using the selfie camera of five smartphones, simulating sce-
narios similar to those during the COVID-19 pandemic.

This comprehensive dataset with sample images shown
in Figure 1, provides a realistic and varied testing environ-
ment to ensure robust algorithm performance, making it an
essential tool for evaluating face PAD systems.



Figure 1. Example images of presentation attack types present in the LivDet-Face 2024 test dataset. Top (left to right): paper, bobblehead,
projection on a 3D mask, 3D high-quality mask, 3D low-quality mask, projection on 2D, silicon mask, and half-cloth mask.

Table 1. Test Dataset Summary

l Class [ Types of PAIs [ Total Images [ Total Videos [ Sensors ]
Bona fide - 2235 2225 DSLR, iPhone 6s:12:X, Redmi 9A:6 Pro, Pixel, S9
PAI BOBBLEHEAD (BH) 90 15 DSLR, iPhone X, S9
PAI HALF CLOTH (HC) 759 714 DSLR, iPhone 6s:12:X, Redmi 9A:6 Pro, Pixel, S9
PAI HQ 3D MASK (HQ) 111 33 DSLR, iPhone X, Pixel, S9
PAI LQ 3D MASK (LQ) 73 72 DSLR, iPhone X, Pixel, S9
PAI PRINT ATTACK (PP) 3472 3091 DSLR, iPhone 6s:12:X, Redmi 9A:6 Pro, Pixel, S9
PAI PROJECTION ATTACK 2D (2D-PA) 1400 1400 iPhone 6s:12:X, Redmi 9A:6 Pro, Pixel, S9
PAI PROJECTION ATTACK 3D (3D-PA) 721 90 DSLR, iPhone X, S9
PAI REPLAY ATTACK (RA) 8510 8510 DSLR, iPhone 6s:12:X, Redmi 9A:6 Pro, Pixel, S9
PAIL SILICON MASK (SM) 141 141 DSLR, iPhone X, S9, Pixel and Basler aA1920-150uc

5. LivDet-Face 2024 Competition Algorithms

A total of eight teams from five countries participated,
submitting nine algorithms for image, seven algorithms
for video, and one in the system category. The competi-
tion saw teams HDA-IDVC, WVU, Aeminium, UNLJ-FRI-
FE, IDLiveFace, Hummingbirds.ai, DERMALOG, and one
anonymous submission. All competitors were given the
option to present their results anonymously. Each team
was also invited to submit a description of their algorithms,
which are detailed below.

5.1. IDLiveFace

Team IDLiveFace submitted their algorithm exclusively
for the image category of the competition. The algorithm
adopts a passive, single-image liveness detection system
utilizing an ensemble of EfficientNet and transformer mod-
els. This solution is designed to accurately differentiate be-
tween genuine and spoofed face images with high through-
put and low latency. The transformers (Vision Transform-
ers) focus more attention on specific patches during clas-
sification, effectively concentrating on crucial areas that
might indicate spoofing. In contrast, EfficientNet models
use broader features across the images, allowing for a com-
prehensive yet detailed analysis of facial features. This var-

ied focus is essential for addressing sophisticated spoof-
ing attempts, such as high-fidelity masks and 4K screen
replays, which pose significant challenges in liveness de-
tection. Each model within the ensemble employs dis-
tinct image preprocessing methods to ensure focus on dif-
ferent aspects of the images. This diversity in preprocess-
ing enhances the overall detection capability by covering a
broader range of potential spoofing indicators. The models
were trained on a diverse dataset, encompassing various eth-
nic backgrounds and attack vectors, to prepare the system
for real-world applications. The ensemble is carefully con-
figured to maintain a small size and reduce computational
demands, enabling high throughput without compromising
detection accuracy.

5.2. Hummingbirds.ai

Team Hummingbirds.ai submitted solutions for both im-
age and video categories using their DepthFusion Specular-
Diffuse Attention Network (DFSD-AttentionNet). This
model leverages both RGB and depth information to en-
hance image processing from multiple perspectives. The
integration of depth information improves the separation of
flat surface features, aiding in scene geometry understand-
ing.

DFSD-AttentionNet employs a specular-diffuse separa-



tion mechanism, distinguishing between direct specular re-
flections and scattered diffuse reflections. This separation
aids in capturing surface property nuances. Convolutional
layers in the separation module learn distinct filters for each
reflection type, while attention modules dynamically weigh
feature importance, thereby enhancing the model’s capabil-
ity.

A pre-trained ConvNext model, adapted for depth im-
ages, serves as the depth extractor. This transfer learning
approach utilizes pre-learned features from large datasets,
thereby enhancing performance and generalization. The fi-
nal layers integrate features from both RGB and depth in-
puts to produce the output.

DFSD-AttentionNet combines advanced deep learning
techniques with multi-modal inputs, demonstrating poten-
tial in visual data understanding. As a preliminary exper-
iment, it offers insights for further research and develop-
ment, paving the way for sophisticated systems to tackle
complex image processing challenges.

5.3. HDA-IDVC

For this challenge, the HDA/IDVC Team submitted so-
lutions for both image and video categories. In their solu-
tion, they proposed an algorithm leveraging the SwinTrans-
former (ST) architecture with a multi-class linear classifier
as the final stage for attack detection [13]. The algorithm
addresses five distinct attack classes along with the bona
fide class. Input RGB images are preprocessed by normal-
izing using ImageNet transforms and resized to 256x256
pixels. The model is fine-tuned from ImageNet 1K weights
over 200 epochs, optimizing for the best Equal Error Rate
(EER) metric on a validation set. Softmax activation is em-
ployed on the linear classifier’s output to obtain the bona
fide class score. The training data encompass a blend of
proprietary datasets and publicly available datasets, includ-
ing OULU-NPU, CASIA, and Replay-Mobile.

5.4. UNLJ-FRI-FE

Team UNLJ-FRI-FE submitted their algorithm for the
image category, utilizing a prediction algorithm based on a
SE-ResNeXt model variant, pre-trained on ImageNet-12k.
The model was selected due to its performance on Ima-
geNet. For the training data, the team chose the 3DMAD
dataset, which contains mask attack and bona fide videos
from 17 subjects, with 15 videos per subject, captured using
Microsoft Kinect, each containing around 300 frames. This
dataset offers 76,500 images, split into non-overlapping
training and testing sets (54,000 and 22,500 images, re-
spectively). Although the dataset includes texture and depth
data, only RGB data was utilized. As such, the frames from
the videos were used as training data.

First, an off-the-shelf MTCNN model for face detection
was used on each image to crop out the face, and the images

were then resized. The ADAM optimizer was employed
along with Binary Cross Entropy loss. The initial learning
rate was set relatively low (le-5) and was halved every five
epochs to prevent overfitting. The model was then trained
for 25 epochs, with performance monitored on a set of 37
example images provided by the organizers.

5.5. Aeminium

The developed method aims to be a security-focused
PAD system, comprising several subsystems, each tasked
with a specific PAD function. The PAD system includes
the following subsystems: (1) Suspect Context Detector;
(2) Print Attack Detector; (3) Replay Attack Detector; (4)
Moiré Pattern Detector; and (5) Mask Attack Detector.

Although each subsystem is trained for a particular task,
it demonstrates some level of discrimination against other
non-trained PAD tasks. Consequently, the final solution is
designed to leverage the discrimination capabilities of each
trained PAD subsystem for both expected and unseen sce-
narios. As a result, the final system can be characterized as
an ensemble model with a high detection capability for both
seen and unseen attack scenarios. To achieve this, a maxi-
mum score fusion strategy was employed. Additionally, as
a frame-based solution, the final video score is obtained by
averaging the scores of all frames.

One of the main disadvantages of this system lies in its
sensitivity to attack detection, primarily due to the chosen
fusion strategy, which results in a high BPCER. For future
work, novel fusion strategies will be explored to maintain
the system’s ability to detect unseen attacks while reducing
the overall BPCER.

5.6. WVU

Video Liveness Detection: The proposed method uti-
lizes a novel architecture that combines a 3D Convolutional
Neural Network (3D CNN) with the Swin Transformer to
efficiently capture spatial and temporal features. Frames
extracted from videos are processed by the 3D CNN to cre-
ate a spatiotemporal rPPG (ST-rPPG) block, which captures
physiological signals. This block is then fed into the Swin
Transformer, which partitions the input into windows and
performs shifted window operations to enhance feature ex-
traction across both spatial and temporal dimensions. Dur-
ing training, rPPG signals are sampled from different lo-
cations within the same video. For liveness detection, the
Heart Rate (HR) is calculated from the Power Spectral Den-
sity (PSD) of the signal. An HR between 40-100 bpm in-
dicates a bona fide video, while values outside this range
suggest spoofing. The trained model processes new videos,
analyzing cues to output a liveness score, which is thresh-
olded for a binary decision.

Image Liveness Detection: Team WVU developed a
deep learning approach using autoencoders combined with



the VGGI19 architecture. The pre-trained VGG19 network
serves as the encoder, extracting high-level features from
input images, which are then compressed into a lower-
dimensional latent space. The decoder reconstructs the
original image from this compressed representation using
transposed convolutional layers. Training involves min-
imizing the reconstruction loss (mean squared error) be-
tween input images and their reconstructions, using only
bona fide face images. Post-training, the autoencoder ac-
curately reconstructs genuine faces and produces higher re-
construction errors for spoofed images. Reconstruction er-
rors are computed for each input image, with a threshold set
to classify images as bona fide (below threshold) or spoofed
(above threshold). This method leverages VGG19’s feature
extraction and focuses on reconstruction errors to distin-
guish bona fide from spoofed faces without requiring ex-
tensive labeled datasets.

5.7. DERMALOG (System):

Team Dermalog submitted the only hardware system for
the system category. The FLCI1 camera integrates an In-
tel RealSense (aligned RGB and depth image) with a ther-
mal sensor to continuously capture images, track faces, and
evaluate their Presentation Attack Detection (PAD) score.

The core PAD algorithm processes a 96x96 normalized
thermal image through a MobileNet-V2 model with a width
multiplier of 0.35 to generate a single PAD score. The final
PAD score is calculated as the average of eight single-shot
PAD scores, improving overall performance and handling
outliers. Additionally, any face height below 10 centimeters
is classified as an attack.

The thermal image is normalized using a similarity trans-
formation based on facial landmarks, followed by value
range adjustment, where the image’s mean value is shifted
to zero and divided by half the min-max distance.

A PAD score is calculated only if the face is fully in view
of all sensors, looking into the camera, within 1.5 meters,
and not occluded.

6. Results and Discussion

This section discusses the performance of the competing
algorithms and systems, evaluated using APCER for each
PAI category and BPCER for bona fide samples at a thresh-
old of 50, as announced before the competition. A summary
of error rates for both image and video subcategories is pro-
vided in Table 2 and Table 3, and performance comparisons
are shown in Figure 2a,b.

LivDet-Face 2024 Image Category: Team Anonymous
emerged as the winner with the lowest ACER of 4.93%, fol-
lowed by Team IDLIVEFACE with 5.53% and Team WVU
at 9.90%. The winning team’s algorithm achieved the low-
est BPCER of 1.34%. Team Anonymous performed well
with low-quality 3D masks, bobbleheads, and silicon masks

but had an average APCER of 8.52%, indicating lower per-
formance against sophisticated spoofs like replay attacks
and 2D projection attacks. Team IDLIVEFACE detected all
bobbleheads, half cloth, silicon masks, and both high and
low-quality 3D masks with nearly 0% APCER, except for
print (2.42%) and replay attacks (0.01%). However, their
BPCER was higher at 10.60%.

High APCER values for “Projection Attack 2D” and
“Print Attack” suggest these attack types are particularly
challenging and require focused research to improve detec-
tion capabilities. High BPCER values indicate many algo-
rithms struggle with accurately identifying bona fide sam-
ples, this could also be due to a face processing problem
such as face detection failure, quality checks, etc., that re-
sults in a -1000 score result for some samples. This leads
to false rejections, so training with more diverse and repre-
sentative bona fide data is needed to improve genuine user
classification. Advanced machine learning techniques and
diverse training datasets can enhance robustness and relia-
bility across different attack scenarios.

LivDet-Face 2024 Video Category: Team Anony-
mous also won the video category with an ACER of
4.13%, followed by Team WVU algorithms 1 and 3, both
with 11.92%. Team Anonymous had the lowest BPCER
of 2.16%. Team Aeminium achieved third place with
an ACER of 25.89% and the second-best avgAPCER of
2.42%. Teams like HDA-IDVC and WVU showed av-
gAPCERs of 2.24% and 2.01%, respectively, but struggled
with bona fide samples, with BPCERs as high as 61.53%
and 49.35%. The top competitors performed better against
low-quality PAIs than high-quality ones. Team WVU ex-
celled with half-cloth, high-quality, and low-quality 3D
masks (APCER = 0%) but struggled with projection attack
3D (APCER = 35.90%).

The challenges with Projection Attack 2D” and Print
Attack” remain consistent across both image and video cat-
egories, highlighting the need for focused research to de-
velop more effective detection mechanisms. High BPCER
values across multiple datasets suggest that video algo-
rithms, like image algorithms, need improvement in accu-
rately identifying bona fide samples. Enhancing algorithm
robustness and consistency across different attack scenar-
ios is crucial. Advanced machine learning techniques, in-
cluding deep learning models, can help improve generaliza-
tion capabilities, making them more reliable and effective
in real-world applications. While algorithms like IDLIVE-
FACE show promising results in both image and video cat-
egories, significant work remains to address high BPCER
values and improve detection capabilities for challenging
attack types. Focusing on these areas can substantially en-
hance the reliability and effectiveness of these algorithms in
practical applications.

LivDet-Face 2024 System Category: Team Dermalog’s



Table 2. Face PAD Competition Summary: Image Category

Presentation Attack Instruments Level Types Overall Performance
Competitor Name Level A Level B Level C
Print Attack Display Attacks 3D Face Masks APCERayg% | BPCER% ACER %
HC PP RA 2D-PA BH 3D-PA LQ HQ Silicon
Anonymous 2.47 12.72 3.61 35.07 0 5.02 0 3.60 0 8.52 1.34 4.93
HDA-IDVC 12.65 2525 1.50 1.43 0 0.28 0 0 0 1.97 62.98 3247
IDLIVEFACE 0 2.42 0.01 0 0 0 0 0 1.42 0.46 10.60 5.53
Aeminium 8.56 1.74 2.69 4.00 0 0 0 3.57 21.28 2.78 48.23 25.50
WVU-V1 0.40 2.15 0.16 0.21 14.44 4.72 0 0.99 2.13 0.91 19.62 10.26
WVU-V2 0.25 2.29 0.25 0.36 14.44 4.85 0 0.99 2.13 0.88 18.93 9.90
WVU-V3 4.61 3.48 0.99 1.86 14.44 4.72 8.33 7.92 2.13 2.09 19.91 11.00
UNLIJ-FRI-FE 28.55 6.90 3.04 0.46 10 3.17 0 9.09 0 5.17 98.27 51.72
Hummingbirds.ai 43.08 51.05 | 33.77 27.57 70 59.22 - 80.46 - 41.61 59.71 50.66
102 g 102
i' —— ANONYMOUS é‘
g 10t — WUVl g 101
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Figure 2. ROC curves for all nine algorithms for the image category and seven algorithms for the video category of the competition,
presenting the overall performance on samples representing all nine PAIs. The overall APCER is evaluated based on (APCERaverage)-

Table 3. Face PAD Competition Summary: Video Category

Presentation Attack Instruments Level Types Overall Performance %

Competitor Name Level A Level B Level C

Print Attack Display Attacks 3D Face Masks APCERayg% | BPCER ACER

HC PP RA 2D-PA BH 3D-PA LQ HQ Silicon
Anonymous 1.4 10.09 1.96 26.86 0 0 0 3.03 0 6.11 2.16 4.13
HDA-IDVC 12.61 1.55 1.96 1.67 33.33 2.56 9.72 9.09 7.02 242 61.53 31.97
Aeminium 5.60 1.86 2.22 343 0 0 0 4.76 0 242 49.35 25.89
WVU-V1 0 4.84 1.05 0 40.00 35.90 0 0 58.62 2.01 21.83 11.92
WVU-V2 3827 4475 | 45.11 31.64 40.00 35.90 0 47.62 58.62 42.63 53.36 48.00
WVU-V3 0 4.84 1.05 0 40.00 35.90 0 0 58.62 2.09 19.91 11.00
Hummingbirds.ai 4393 4393 | 32.07 28.00 33.33 60.26 4722 63.64 34.32 37.96 59.5 47.85

Table 4. Face PAD Competition Summary: System Category
DERMALOG (system) | APCER% | Spoof Samples | Errors | BPCER% | Bonafide Samples | Error |

Bobblehead 0 5 0

Bonafide 0 33 0
HQ Mask 30.00 10 3

LQ Mask 18.18 11 2

Print Paper 0 23 0

Silicone Mask 0 5 0

White Filament Mask 0 8 0

White Resin Mask 0 8 0

Full Cloth Mask 0 10 0

Weights 80 5 BPCER% ACER%
APCERavg % 6.25 0 3.12




system submission achieved an average APCER of 6.25%
and an ACER of 3.12%, as shown in Table 4. The sys-
tem demonstrated excellent performance, achieving a per-
fect 0% APCER and BPCER for most Presentation Attack
Instruments (PAIs). However, it faced difficulties with high-
quality and low-quality 3D masks, which resulted in signif-
icantly higher APCERs of 30% and 18.18%, respectively.
This increase in APCER is primarily attributed to the sys-
tem’s tendency to misclassify these PAlIs as bona fide pre-
sentations when the 3D masks are warmed to human body
temperature, leading to false recognition of them as gen-
uine. This suggests that while the Dermalog system is
highly effective in detecting most PAls, it struggles with the
more lifelike and detailed facial features presented by 3D
masks.

7. Conclusion

The LivDet-Face 2024 competition introduced five novel
PAIs (Projection Attack 2D, Projection Attack 3D, flexi-
ble 3D silicon masks, video display samples of bona fide
subjects, and Print Attack) and compared state-of-the-art
algorithms in image and video categories. The winning
image algorithm achieved an ACER of 4.93% (APCER
= 8.52%, BPCER = 1.34%), while the winning video al-
gorithm achieved an ACER of 4.13% (APCER = 6.11%,
BPCER =2.16%).

Nine image algorithms, seven video algorithms, and one
system were tested in real-world scenarios with various
PAIs, attack types, environments, and sensors.

Key trends revealed that while algorithms generally de-
tected attacks well (low APCER), they struggled with ac-
curately identifying bona fide samples (high BPCER). Pro-
jection Attack 2D and Print Attack were particularly chal-
lenging, leading to higher error rates. Robust performance
from some algorithms, like IDLIVEFACE, contrasted with
considerable variability in others, highlighting the need for
enhanced algorithm robustness and generalization.

Factors contributing to performance degradation in-
cluded:

a) Increased complexity in test datasets due to unknown
PAI types.

b) Limited access to large public datasets for new attack
types.

c¢) Lack of standardized training datasets, leaving train-
ing choices to competitors.

d) Variability between training and test datasets in envi-
ronmental factors, sensor types, and PAI quality.

e) Face processing challenges, including face detection
failures and quality check issues.

These findings underscore that face PAD remains a chal-
lenging and evolving field. Significant differences in algo-
rithm accuracy emphasize the need for large, diverse train-
ing datasets encompassing a wide range of PAIs. This com-

petition and the benchmark dataset will help enhance the
security and reliability of biometric systems. Continued re-
search and innovation are crucial to advancing face presen-
tation attack detection.
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