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Abstract—Multi-resolution image fusion is a key problem for
real-time satellite imaging, which has a central role in detecting
and monitoring the intensity of key natural phenomena such as
floods. It aims to solve the trade-off between high temporal and
high spatial resolution in remote sensing instruments. Although
several algorithms have been proposed to solve this problem, the
presence of outliers caused by, e.g., cloud cover downgrades their
performance. In this paper, an online image fusion method based
on a robust Kalman filter with a weakly supervised approach for
temporal dynamics estimation is proposed. Outliers are modelled
as a discrete variables, where the probability of contamination
for each pixel and spectral band is modelled by a latent variable
whose distribution is approximated under variational inference.
Experiments fusing images from the MODIS and Landsat 8
sensors show that the proposed approach is significantly more
robust against cloud cover, without losing its efficiency when no
clouds are present.

Index Terms—Multispectral imaging, Image fusion, Bayesian
Filtering, Super-resolution, Variational Inference.

I. INTRODUCTION

Satellite-based remote sensing of the environment is an
essential tool for many applications such as monitoring land-
cover [1], deforestation [2] and water quality [3]. A major
concern when leveraging satellite-based imaging regards the
trade-off among temporal, spatial, and spectral resolutions.
Such trade-off is due to the large distances from space-borne
instruments and target scenes, and limitations of multiband
imaging systems. In practice, these limitations imply that
higher spatial resolution leads to longer revisit times. For
instance, the Moderate Resolution Imaging Spectroradiometer
(MODIS) has pixels sizes of 250/500/1000 m (depending on
the band) with daily revisiting period while Landsat 8 captures
images with pixel sizes of 30/100 m with revisiting period
of approximately 16 days [4]. This is a major issue when
monitoring events that are rapidly changing and require high
spatial resolution to be properly characterized.

To cope with these limitations image fusion approaches
were proposed to generate high-spatial-temporal resolution
images with emphasis on fusing image data from multiple
space-borne instruments [5] generating daily high (e.g., 30
m pixels) resolution estimated images, impacting the study
of drought-induced tree mortality [6], and daily construction
of snow cover maps [7]. Spatial-temporal image fusion ap-
proaches can be roughly divided into four main categories, i.e.,

unmixing-based [8], weighted fusion [9], learning-based [10]
and Bayesian approaches [11]. Recently, a recursive image
fusion approach was proposed using a Bayesian filtering
framework where the process noise covariance was estimated
following a weakly supervised approach [12; 13].

Despite the efficiency of these methods, outliers caused by
cloud contamination can severely impact their image fusion
performance. Thus, the detection and removal of pixels con-
taminated by clouds constitute an essential step of existing
image fusion pipelines. Different algorithms for cloud (and
cloud shadow) detection and removal have been proposed,
which can be divided into three categories [14]. The first kind
is to restore the cloudy/shadow contaminated pixels by assum-
ing they share the same statistical distribution or geometric
structures as the surrounding cloudless ones. Typical methods
include spatial interpolation [15], and deep learning algorithms
[16]. The second kind is to use auxiliary information from
different sensors, such as synthetic aperture radar (SAR) [17]
or MODIS images [18]. The third kind is to utilize cloudless
images from the same sensor on other dates as reference
images [19]. However, since the quality of cloud cover infor-
mation is limited, the images used in the fusion process might
still contain outliers. Thus, the development of robust image
fusion methods is paramount. Moreover, although noise-robust
image fusion methods have been proposed [20], there is a lack
of robust online image fusion approaches.

In this paper, the cloudy pixels are treated under a Bayesian
filtering paradigm similar to [13], where the covariance of the
transition noise is estimated by a weakly supervised method,
and the fusion process is implemented by modeling the ob-
served images of different modalities (with different spatial
and temporal resolutions) as measurements of a Bayesian filter.
For cloud removal, pixels under cloud/shadow influence is
regarded as outliers, whose probability is modelled by latent
variables defined as outlier indicators. The latent variables are
estimated based on variational inference, following [21]. The
novelty of this paper is a variational Kalman filter framework
for recursive fusion of images from multiple modalities with
robustness to outliers incorporating a weakly supervised esti-
mator for the dynamical image evolution model. Experiments
fusing images from the MODIS and Landsat 8 sensors illus-
trate the superior performance of the proposed approach.
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II. DYNAMICAL IMAGING MODEL

Definitions and notation: Let us denote the the ℓ-th band
of the k-th acquired image reflectances from modality m P Ω
by ym

k,ℓ P RNm,ℓ , with Nm,ℓ pixels for each of the bands
ℓ “ 1, . . . , Lm, and Ω denoting the set of image modalities
(e.g., Landsat-8 and MODIS). We denote the corresponding
high resolution latent reflectances by Sk P RNHˆLH , with
NH pixels and LH bands, with LH ě Lm and NH ě Nm,ℓ,
@ℓ,m. Subindex k P N˚ denotes the acquisition time index.
We also denote by vecp¨q, colt¨u, diagt¨u and by blkdiagt¨u

the vectorization, vector stacking, diagonal and block diagonal
matrix operators, respectively. The notation xa:b for a, b P

N˚ represents the set txa,xa`1, . . . ,xbu. N pµ,Σq denotes a
Gaussian distribution with mean µ and covariance matrix Σ.

Measurement model: The images acquired at each time
k consist of spatially degraded, noisy versions of a high-
resolution image Sk. Following this assumption, the measure-
ment model can be expressed according to:

ym
k,ℓ “ Hm

ℓ pSkqcmℓ ` rmk,ℓ , ℓ “ 1, . . . , Lm , (1)

for each modality m P Ω, where cmℓ P RLH denotes a spectral
transformation vector, mapping all bands in Sk to the ℓ-th
measured band at modality m; Hm

ℓ is a linear operator repre-
senting the band-wise spatial degradation, modeling blurring
and downsampling effects of each high resolution band, and
rmk,ℓ represents the measurement noise. Note that, while we
consider the spatial resolution of the high resolution bands in
Sk to be the same, different bands from the same modality can
have different resolutions. Most works assume the measure-
ment noise to be Gaussian and uncorrelated among bands, that
is, rmk,ℓ „ N p0,Rm

ℓ q with time-invariant covariance matrix
given by Rm

ℓ P RNm,ℓˆNm,ℓ . At each time index k the scene
is measured through one of the imaging modalities m P Ω.

Using (1) and properties of the vectorization of matrix
products, we can stack all bands of the m-th modality in
the vector rym

k P Rnm
y , with nm

y “ rNmLm, leading to the
equivalent reformulation of model (1) as

rym
k “ ĂH

m

k sk ` rrmk , (2)

where ĂH
m

k “
“`

pcm1 qJHm
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k “ blkdiag
␣

Rm
1 , . . . ,Rm

Lm

(

,

and Hm
ℓ is a matrix form representation of the operator Hm

ℓ ,
such that vecpHm

ℓ pSkqq “ Hm
ℓ sk. sk P RLHNH denotes a

vector-ordering of the high-resolution image Sk obtained by
grouping all pixels such that the bands of a single HR pixel,
and positions corresponding to nearby pixels are adjacent to
each other (see [13] for details about how the ordering is done).

Note that satellite images may be corrupted by several
effects, including dead pixels in the sensor, incorrect atmo-
spheric compensation, and the presence of heavy cloud cover.
Such pixels cannot be reliably used in the image fusion process
as they may degrade the performance of the method. Most

existing algorithms ignore the existence of such outlier pixels,
which can lead to a considerable loss of performance when
they are applied in real settings. Thus, we address this issue
by considering two hypotheses for the measurements. Under
the first hypothesis, denoted by C0, the pixels are only affected
by Gaussian noise rrmk , whereas under the second hypothesis,
denoted by C1, the pixels are corrupted, being affected by
a vector of outliers rom

k P Rnm
y . This leads to the following

measurement model:

ry
m,piq
k “

#

rh
m,piq

k sk ` rr
m,piq
k , under C0

rh
m,piq

k sk ` rr
m,piq
k ` ro

m,piq
k , under C1

(3)

for i “ 1, . . . , nm
y , where ry

m,piq
k , rr

m,piq
k and ro

m,piq
k denote

the i-th element of rym
k , rrmk and rom

k respectively, and rh
m,piq

k

denotes the i-th row of ĂH
m

k . Note that we have one hypothesis
for each band and pixel in the measurement of modality m,
which might be affected by an outlier. Moreover, the approach
we will consider will not need a rigid statistical model for rom

k ,
as will be shown in the following section.

Dynamical evolution model: To exploit the temporal
information in the image sequence, an adequate dynamical
model is necessary to describe the evolution of the HR images.
We consider the following model proposed in [13]:

sk`1 “ F ksk ` qk , (4)

where F k “ I P Rns is the state transition matrix (ns “

LHNH ˆ LHNH ), and qk „ N p0,Qkq with Qk P Rns

being the state process noise covariance matrix. Selecting an
adequate Qk is paramount to the performance of the method:
at each instant k, the process noise qk should have high
variance on pixels that are expected to undergo larger changes,
and low variance otherwise. In this work we follow the
approach proposed in [13], in which a diagonal approximation
of Qk is computed based on historical high-resolution image
data of the same geographical region.

III. A ROBUST IMAGE FUSION METHOD

Given the probabilistic model described in the previous
section for both the image generation and its temporal dy-
namics, the online image fusion consists of computing the
posterior distribution of the high-resolution image conditioned
on all past measurements, p

`

sk
ˇ

ˇtrym
1:kumPΩ

˘

. When the data
follows a linear and Gaussian measurement model, this PDF
can be computed efficiently using the Kalman filter [13; 22].
Nevertheless, such techniques do not account for the presence
of disruptive outliers such as clouds or shadows.

To address this issue, we consider an approach based on the
general VBKF (GVBKF) proposed in [21], which is summa-
rized in this section. First, let us introduce the outlier indicator
vector zm

k “
`

z
m,p1q

k , . . . , z
m,pnm

y q

k

˘J
P Z “ t0, 1un

m
y , such

that z
m,piq
k “ 0 if there is an outlier on the i-th (corrupted)

element of rym
k , i.e., rym,piq

k , and z
m,piq
k “ 1 if the i-th element is

otherwise clean (not corrupted). The clean elements of rym
k can

be used nominally in the image fusion process, whereas the
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contribution of the corrupted ones should be down-weighted.
This is performed by modifying the observation model such
that the i-th position of indicator vector, z

m,piq
k , adjusts the

variance of a modified (referred to as improper) Gaussian noise
distribution, leading to

p prym
k |sk, z

m
k q “

1

cpzm
k q

exp
´

´
1

2

›

›

rym
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›

2
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¯

,

(5)

where the covariance matrix Σkpzm
k q is given by
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where σ2
i,j fi rrR

m

k si,j (the dependence on k and m has
been omitted from σ2

i,j for notational simplicity). This corre-

sponds to the original matrix rR
m

k with indicators tz
m,piq
k u

nm
y

i“1

dividing its diagonal terms, such that rR
m

k “ Σkp1q (i.e.,
when there are no outliers). The normalization constant in (5)
can be computed as cpzm

k q “

b

p2πqn
m
y

1

|Cpzm
k q|. Note that

it depends on the indicator vector, through matrix Cpzm
k q,

which is a transformation of Σkpzm
k q where the rows/columns

corresponding to those z
m,piq
k “ 0 are removed. Special cases

are iq Cp1q “ Σkp1q “ rR
m

k (resulting in the original
model without indicators), and iiq Cp0q, corresponding to the
absence of measurements and defined as Cp0q “ I.

Therefore, the dimension nm
y

1 of the variables that are Gaus-
sian distributed in rym

k is effectively reduced by the amount of
zero indicators: nm

y
1

“
řnm

y

i“1 z
mpiq
k ď nm

y , with equality when
all indicators are one. To solve the image fusion problem, we
need to approximate the posterior distribution p psk, z

m
k |rym

k q

of both the HR image and of the outlier indicator vector.
Following a Bayesian framework, we impose a beta-Bernoulli
hierarchical prior to each indicator element,
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(6)
where π

m,piq
k is a beta distributed random variable parameter-

ized by (unknown shape hyper-parameters) epiq
0 and f

piq
0 ,

p
´

π
m,piq

k
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´

π
m,piq

k

¯e
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k

¯f
piq
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β
´

e
piq

0 , f
piq

0

¯ , (7)

and βp¨, ¨q is the beta function. Notice that we are assuming
that the indicators are mutually independent

ppzm
k ,πm

k q “

nm
y

ź

i“1

p
´

z
m,piq
k

ˇ

ˇ

ˇ
π
m,piq
k

¯

p
´

π
m,piq
k

¯

, (8)

as well as independent from the observations since the un-
derlying statistics modeling the outliers do not depend on the
actual values of the data.

According to the Variational Inference (VI) principle [23],
to estimate the posterior distribution of the latent variables
θ “ tsk,π

m
k , zm

k u, that is ppθ|rym
1:kq, we can use an auxiliary

distribution qpθq and independence assumptions such that:

q pθq “ q pskq q pπm
k q q pzm

k q “ q pskq

nm
y

ź

i“1

q
´

π
m,piq
k

¯

q
´

z
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(9)
rym
k is conditionally independent on πm

k ; sk is conditionally
independent on zm

k and πm
k ; rym

1:k´1 is conditionally inde-
pendent on zm

k , πm
k and rym

k . Thus, the various marginal
distributions, qp¨q, are then obtained from the mean-field
VI method, which attempts to compute q pθq which closely
approximates the posterior under the true joint distribution:

p psk,π
m
k , zm

k , rym
1:kq 9 p

`

sk|rym
1:k´1

˘

p prym
k |sk, z

m
k q ppzm
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(10)
Within the Gaussian filtering framework, the first term on the
right-hand side of (10) is a predictive density, which can be
approximated as p

`

sk|rym
1:k´1

˘

« N
`

ŝk|k´1,P k|k´1

˘

, where
the corresponding mean and covariance are [22]

ŝk|k´1 “

ż

pFsk´1q p
`

sk´1|rym
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dsk´1 , (11)
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˘ `
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˘J

ˆ p
`

sk´1|rym
1:k´1

˘

dsk´1 ` Qk , (12)

with ŝk´1|k´1 and P k´1|k´1 the mean and covariance of
the filtering posterior at k ´ 1, that is p

`

sk´1|rym
1:k´1

˘

«

N
`

ŝk´1|k´1,P k´1|k´1

˘. The auxiliary distributions in (9), qpskq,
qpπm

k q and qpzm
k q, are computed by updating them sequen-

tially and iteratively under Bayesian filtering scheme, defined
as GVBKF in [21]. For details of the algorithm, please refer
to [21] for its full derivation.

IV. EXPERIMENTS AND RESULTS

In this section, we use the proposed methodology to fuse
Landsat and MODIS images over time. The proposed GVBKF
is compared with the Kalman filter with the weakly supervised
process noise covariance estimation proposed in [13] with
a block diagonal state covariance matrix, which we refer to
simply as KF. This method is selected because it achieved the
best performance among the online methods compared in [13].

Remotely Sensed data: We collected data from Oroville
Dam, which is introduced in [13] and shown in Figure 1.
Specifically, we collected the dataset separately for cloudless
and cloudy cases. In terms of the cloudless case, we collected
MODIS and Landsat data acquired on an interval ranging from
2018{07{03 to 2018{09{21. In terms of the cloudy case, we
collected MODIS and Landsat data on a interval ranging from
2018{03{29 to 2018{07{19. This interval was selected because
a typical cloud cover occurs at 2018{05{16 in the Landsat
data. In this experiment, we will focus on the red and near-
infrared (NIR) bands since they are often used to distinguish
water from other landcover elements in the image. We also
collected 50 Landsat data from 2013{04{09 to 2017{12{07 to
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Fig. 1: Oroville dam. Blue and orange boxes delimit the study area
used in the cloudy and cloudless datasets, respectively.

serve as a past historical dataset Dk and for the purpose of
weakly supervised covariance estimation approach of [13].

The study region corresponds to Landsat and MODIS
images with 81 ˆ 81 and 9 ˆ 9 pixels for cloudy case, and
162 ˆ 162 and 18 ˆ 18 pixels for cloudless case respectively
After filtering for heavy cloud cover during the designated
time periods, a set of 6 Landsat and 15 MODIS images
were obtained for cloudless case. We used the first Landsat
images for initialization leading to 5 and 15 images used in
the remaining fusion process. In terms of the cloudy case, 6
Landsat and 10 MODIS images were obtained, among which
the first Landsat is used for initialization leading to 5 Landsat
and 10 MODIS as the observation.

In the cloudless case, from the set of 5 Landsat images of
the Oroville Dam site that were available for testing, three
of them were set aside and not processed by any of the
algorithms. These images were acquired at dates 07/19, 08/20
and 09/05, when MODIS observations were also available,
and will be used in the form of a reference for the evaluation
of the algorithms’ capability of estimating the high resolution
images at these dates solely from the low resolution MODIS
measurements. As for the cloudy case, 2 out of 5 Landsat
images were set aside and not processed by all algorithms.
These images were acquired at dates 06/01, 07/03, when
MODIS observations were also available.

Algorithm setup: We initialized the proposed Kalman
filter using a high resolution Landsat observation as the state,
i.e., s0|0 “ ryL

0, and set all the parameters according to the
statistic of observations as well as the experience. P 0|0 “

10´10P 0. where P 0 “ 1
101B ` 9

10I , with 1B being a block
diagonal matrix of ones. The noise covariance matrices were
set as RL

ℓ “ 3ˆ 10´2R0 and RM
ℓ “ 10´4R0 for all ℓ, where

R0 is a block diagonal matrix with the block as
„

1 0.1
0.1 2

ȷ

,
which is selected based on the variance of the noise in each
band. The blurring and downsampling matrices were set as
HL

ℓ “ I for Landsat, while for MODIS HM
ℓ consisted of

a convolution by an uniform 9 ˆ 9 filter, defined by h “
1
8119ˆ9 (where 19ˆ9 is a 9 ˆ 9 matrix of ones), followed by
decimation by a factor of 9, which represents the degradation
occurring at the sensor. Vectors cmℓ contained a positive gain in
the ℓ-th position to compensate for scaling differences between
Landsat and MODIS sensors, and zeros elsewhere.

To reduce the complexity of the proposed method, we
consider the assumption of a block-diagonal state covariance
matrix with one block per Landsat multispectral pixel, simi-
larly to [13]. We also set epiq

0 “ 0.5 and f
piq
0 “ 0.5. In addition,

note that the VI process in GVBKF algorithm is an iterative

TABLE I: Misclassification Percentage without cloud cover.
07/19 08/20 09/05 09/21 Average

KF 6.1119 8.6496 10.1242 10.4100 8.8239
GVBKF 3.7189 8.0590 9.5946 9.8384 7.8027

TABLE II: Misclassification Percentage with cloud cover.
06/01 07/03 07/19 Average

KF 7.0873 7.9713 11.1264 8.7283
GVBKF 7.1635 7.4531 9.5565 8.0577

TABLE III: Mean Square Error without cloud cover.
07/19 08/20 09/05 09/21 Average

KF 0.0028 0.0053 0.0049 0.0056 0.0047
GVBKF 0.0019 0.0046 0.0045 0.0050 0.0040

TABLE IV: Mean Square Error with cloud cover.
06/01 07/03 07/19 Average

KF 0.0074 0.0049 0.0073 0.0065
GVBKF 0.0072 0.0070 0.0092 0.0078
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Fig. 2: Reconstruction Landsat image in red band in cloudy case (a
cloud was present in 05/16). Acquisition dates are displayed in the
top labels at each column with a character, M for MODIS and L for
Landsat, indicating the image used in the fusion algorithms.

procedure, which was run until the relative difference between
state estimation in different iterations was less then 10%, or
up to a maximum of 20 iterations.

Results and discussion: In Figure 2, we show the
fused reflectances as well as the acquired reflectance values
from MODIS and Landsat for the red band. Quantitative
results in the form of the misclassification percentage of
water mapping results and mean squared error (MSE) of
reconstruction results, with/without cloud cover, are shown
in Tables I, II, III and IV. We recall that only the first and
last Landsat images as well as the one at 05/16 were used
in the fusion process, keeping the remaining two images as
ground-truth for evaluation purposes. Note that the Landsat
image at 05/16 is covered by clouds, leading the image in
Figure 2 appearing as totally white. Analyzing the results we
can see that the reconstruction results of KF, especially the
ones around cloudy Landsat observation are heavily affected
by the presence of the cloud, while the GVBKF holds a
stable performance which is more robust against cloud cover.
Figure 3 shows a classification water mapping results, where
the performance of the KF and GVBKF are more similar. As
shown in the quantitative results, the GVBKF holds a better
performance than the KF both in the cloudless and cloudy
cases in terms of lower misclassification percentages. This
illustrates that the proposed method grants robustness to large
outliers without considerable loss of performance. On the other
hand, the GVBKF performs a bit worse in terms of MSE
in the cloudy case. This is because the GBVKF has a lower
amount of pixels with large errors but a higher error-per-pixel
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Fig. 3: Classification water mapping in cloudy case.

on average, which explains why it has a lower misclassification
percentage but a higher MSE.

V. CONCLUSION

In this paper, we proposed an online image fusion method
that is robust to outliers such as clouds and shadows. To
achieve this goal we proposed a linear Gaussian imaging
model, contaminated by discrete outliers, and whose time
evolution is learned from a set of historical images. To
estimate the high-resolution states, i.e. the high-resolution
image estimates, we resorted to variational inference strategies
to implement a variational Kalman filter under the proposed
model. Experimental results show that the proposed algorithm
is robust against cloud cover, without losing performance when
no clouds are present.
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